Merge tag 'input-for-v6.1-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor...
[platform/kernel/linux-starfive.git] / drivers / acpi / cppc_acpi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4  *
5  * (C) Copyright 2014, 2015 Linaro Ltd.
6  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
7  *
8  * CPPC describes a few methods for controlling CPU performance using
9  * information from a per CPU table called CPC. This table is described in
10  * the ACPI v5.0+ specification. The table consists of a list of
11  * registers which may be memory mapped or hardware registers and also may
12  * include some static integer values.
13  *
14  * CPU performance is on an abstract continuous scale as against a discretized
15  * P-state scale which is tied to CPU frequency only. In brief, the basic
16  * operation involves:
17  *
18  * - OS makes a CPU performance request. (Can provide min and max bounds)
19  *
20  * - Platform (such as BMC) is free to optimize request within requested bounds
21  *   depending on power/thermal budgets etc.
22  *
23  * - Platform conveys its decision back to OS
24  *
25  * The communication between OS and platform occurs through another medium
26  * called (PCC) Platform Communication Channel. This is a generic mailbox like
27  * mechanism which includes doorbell semantics to indicate register updates.
28  * See drivers/mailbox/pcc.c for details on PCC.
29  *
30  * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31  * above specifications.
32  */
33
34 #define pr_fmt(fmt)     "ACPI CPPC: " fmt
35
36 #include <linux/delay.h>
37 #include <linux/iopoll.h>
38 #include <linux/ktime.h>
39 #include <linux/rwsem.h>
40 #include <linux/wait.h>
41 #include <linux/topology.h>
42
43 #include <acpi/cppc_acpi.h>
44
45 struct cppc_pcc_data {
46         struct pcc_mbox_chan *pcc_channel;
47         void __iomem *pcc_comm_addr;
48         bool pcc_channel_acquired;
49         unsigned int deadline_us;
50         unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
51
52         bool pending_pcc_write_cmd;     /* Any pending/batched PCC write cmds? */
53         bool platform_owns_pcc;         /* Ownership of PCC subspace */
54         unsigned int pcc_write_cnt;     /* Running count of PCC write commands */
55
56         /*
57          * Lock to provide controlled access to the PCC channel.
58          *
59          * For performance critical usecases(currently cppc_set_perf)
60          *      We need to take read_lock and check if channel belongs to OSPM
61          * before reading or writing to PCC subspace
62          *      We need to take write_lock before transferring the channel
63          * ownership to the platform via a Doorbell
64          *      This allows us to batch a number of CPPC requests if they happen
65          * to originate in about the same time
66          *
67          * For non-performance critical usecases(init)
68          *      Take write_lock for all purposes which gives exclusive access
69          */
70         struct rw_semaphore pcc_lock;
71
72         /* Wait queue for CPUs whose requests were batched */
73         wait_queue_head_t pcc_write_wait_q;
74         ktime_t last_cmd_cmpl_time;
75         ktime_t last_mpar_reset;
76         int mpar_count;
77         int refcount;
78 };
79
80 /* Array to represent the PCC channel per subspace ID */
81 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
82 /* The cpu_pcc_subspace_idx contains per CPU subspace ID */
83 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
84
85 /*
86  * The cpc_desc structure contains the ACPI register details
87  * as described in the per CPU _CPC tables. The details
88  * include the type of register (e.g. PCC, System IO, FFH etc.)
89  * and destination addresses which lets us READ/WRITE CPU performance
90  * information using the appropriate I/O methods.
91  */
92 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
93
94 /* pcc mapped address + header size + offset within PCC subspace */
95 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
96                                                 0x8 + (offs))
97
98 /* Check if a CPC register is in PCC */
99 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&             \
100                                 (cpc)->cpc_entry.reg.space_id ==        \
101                                 ACPI_ADR_SPACE_PLATFORM_COMM)
102
103 /* Check if a CPC register is in SystemMemory */
104 #define CPC_IN_SYSTEM_MEMORY(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&   \
105                                 (cpc)->cpc_entry.reg.space_id ==        \
106                                 ACPI_ADR_SPACE_SYSTEM_MEMORY)
107
108 /* Check if a CPC register is in SystemIo */
109 #define CPC_IN_SYSTEM_IO(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&       \
110                                 (cpc)->cpc_entry.reg.space_id ==        \
111                                 ACPI_ADR_SPACE_SYSTEM_IO)
112
113 /* Evaluates to True if reg is a NULL register descriptor */
114 #define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
115                                 (reg)->address == 0 &&                  \
116                                 (reg)->bit_width == 0 &&                \
117                                 (reg)->bit_offset == 0 &&               \
118                                 (reg)->access_width == 0)
119
120 /* Evaluates to True if an optional cpc field is supported */
121 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?          \
122                                 !!(cpc)->cpc_entry.int_value :          \
123                                 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
124 /*
125  * Arbitrary Retries in case the remote processor is slow to respond
126  * to PCC commands. Keeping it high enough to cover emulators where
127  * the processors run painfully slow.
128  */
129 #define NUM_RETRIES 500ULL
130
131 #define OVER_16BTS_MASK ~0xFFFFULL
132
133 #define define_one_cppc_ro(_name)               \
134 static struct kobj_attribute _name =            \
135 __ATTR(_name, 0444, show_##_name, NULL)
136
137 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
138
139 #define show_cppc_data(access_fn, struct_name, member_name)             \
140         static ssize_t show_##member_name(struct kobject *kobj,         \
141                                 struct kobj_attribute *attr, char *buf) \
142         {                                                               \
143                 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);           \
144                 struct struct_name st_name = {0};                       \
145                 int ret;                                                \
146                                                                         \
147                 ret = access_fn(cpc_ptr->cpu_id, &st_name);             \
148                 if (ret)                                                \
149                         return ret;                                     \
150                                                                         \
151                 return scnprintf(buf, PAGE_SIZE, "%llu\n",              \
152                                 (u64)st_name.member_name);              \
153         }                                                               \
154         define_one_cppc_ro(member_name)
155
156 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
157 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
158 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
159 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
160 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
161 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
162
163 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
164 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
165
166 static ssize_t show_feedback_ctrs(struct kobject *kobj,
167                 struct kobj_attribute *attr, char *buf)
168 {
169         struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
170         struct cppc_perf_fb_ctrs fb_ctrs = {0};
171         int ret;
172
173         ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
174         if (ret)
175                 return ret;
176
177         return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
178                         fb_ctrs.reference, fb_ctrs.delivered);
179 }
180 define_one_cppc_ro(feedback_ctrs);
181
182 static struct attribute *cppc_attrs[] = {
183         &feedback_ctrs.attr,
184         &reference_perf.attr,
185         &wraparound_time.attr,
186         &highest_perf.attr,
187         &lowest_perf.attr,
188         &lowest_nonlinear_perf.attr,
189         &nominal_perf.attr,
190         &nominal_freq.attr,
191         &lowest_freq.attr,
192         NULL
193 };
194 ATTRIBUTE_GROUPS(cppc);
195
196 static struct kobj_type cppc_ktype = {
197         .sysfs_ops = &kobj_sysfs_ops,
198         .default_groups = cppc_groups,
199 };
200
201 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
202 {
203         int ret, status;
204         struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
205         struct acpi_pcct_shared_memory __iomem *generic_comm_base =
206                 pcc_ss_data->pcc_comm_addr;
207
208         if (!pcc_ss_data->platform_owns_pcc)
209                 return 0;
210
211         /*
212          * Poll PCC status register every 3us(delay_us) for maximum of
213          * deadline_us(timeout_us) until PCC command complete bit is set(cond)
214          */
215         ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
216                                         status & PCC_CMD_COMPLETE_MASK, 3,
217                                         pcc_ss_data->deadline_us);
218
219         if (likely(!ret)) {
220                 pcc_ss_data->platform_owns_pcc = false;
221                 if (chk_err_bit && (status & PCC_ERROR_MASK))
222                         ret = -EIO;
223         }
224
225         if (unlikely(ret))
226                 pr_err("PCC check channel failed for ss: %d. ret=%d\n",
227                        pcc_ss_id, ret);
228
229         return ret;
230 }
231
232 /*
233  * This function transfers the ownership of the PCC to the platform
234  * So it must be called while holding write_lock(pcc_lock)
235  */
236 static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
237 {
238         int ret = -EIO, i;
239         struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
240         struct acpi_pcct_shared_memory __iomem *generic_comm_base =
241                 pcc_ss_data->pcc_comm_addr;
242         unsigned int time_delta;
243
244         /*
245          * For CMD_WRITE we know for a fact the caller should have checked
246          * the channel before writing to PCC space
247          */
248         if (cmd == CMD_READ) {
249                 /*
250                  * If there are pending cpc_writes, then we stole the channel
251                  * before write completion, so first send a WRITE command to
252                  * platform
253                  */
254                 if (pcc_ss_data->pending_pcc_write_cmd)
255                         send_pcc_cmd(pcc_ss_id, CMD_WRITE);
256
257                 ret = check_pcc_chan(pcc_ss_id, false);
258                 if (ret)
259                         goto end;
260         } else /* CMD_WRITE */
261                 pcc_ss_data->pending_pcc_write_cmd = FALSE;
262
263         /*
264          * Handle the Minimum Request Turnaround Time(MRTT)
265          * "The minimum amount of time that OSPM must wait after the completion
266          * of a command before issuing the next command, in microseconds"
267          */
268         if (pcc_ss_data->pcc_mrtt) {
269                 time_delta = ktime_us_delta(ktime_get(),
270                                             pcc_ss_data->last_cmd_cmpl_time);
271                 if (pcc_ss_data->pcc_mrtt > time_delta)
272                         udelay(pcc_ss_data->pcc_mrtt - time_delta);
273         }
274
275         /*
276          * Handle the non-zero Maximum Periodic Access Rate(MPAR)
277          * "The maximum number of periodic requests that the subspace channel can
278          * support, reported in commands per minute. 0 indicates no limitation."
279          *
280          * This parameter should be ideally zero or large enough so that it can
281          * handle maximum number of requests that all the cores in the system can
282          * collectively generate. If it is not, we will follow the spec and just
283          * not send the request to the platform after hitting the MPAR limit in
284          * any 60s window
285          */
286         if (pcc_ss_data->pcc_mpar) {
287                 if (pcc_ss_data->mpar_count == 0) {
288                         time_delta = ktime_ms_delta(ktime_get(),
289                                                     pcc_ss_data->last_mpar_reset);
290                         if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
291                                 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
292                                          pcc_ss_id);
293                                 ret = -EIO;
294                                 goto end;
295                         }
296                         pcc_ss_data->last_mpar_reset = ktime_get();
297                         pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
298                 }
299                 pcc_ss_data->mpar_count--;
300         }
301
302         /* Write to the shared comm region. */
303         writew_relaxed(cmd, &generic_comm_base->command);
304
305         /* Flip CMD COMPLETE bit */
306         writew_relaxed(0, &generic_comm_base->status);
307
308         pcc_ss_data->platform_owns_pcc = true;
309
310         /* Ring doorbell */
311         ret = mbox_send_message(pcc_ss_data->pcc_channel->mchan, &cmd);
312         if (ret < 0) {
313                 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
314                        pcc_ss_id, cmd, ret);
315                 goto end;
316         }
317
318         /* wait for completion and check for PCC error bit */
319         ret = check_pcc_chan(pcc_ss_id, true);
320
321         if (pcc_ss_data->pcc_mrtt)
322                 pcc_ss_data->last_cmd_cmpl_time = ktime_get();
323
324         if (pcc_ss_data->pcc_channel->mchan->mbox->txdone_irq)
325                 mbox_chan_txdone(pcc_ss_data->pcc_channel->mchan, ret);
326         else
327                 mbox_client_txdone(pcc_ss_data->pcc_channel->mchan, ret);
328
329 end:
330         if (cmd == CMD_WRITE) {
331                 if (unlikely(ret)) {
332                         for_each_possible_cpu(i) {
333                                 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
334
335                                 if (!desc)
336                                         continue;
337
338                                 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
339                                         desc->write_cmd_status = ret;
340                         }
341                 }
342                 pcc_ss_data->pcc_write_cnt++;
343                 wake_up_all(&pcc_ss_data->pcc_write_wait_q);
344         }
345
346         return ret;
347 }
348
349 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
350 {
351         if (ret < 0)
352                 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
353                                 *(u16 *)msg, ret);
354         else
355                 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
356                                 *(u16 *)msg, ret);
357 }
358
359 static struct mbox_client cppc_mbox_cl = {
360         .tx_done = cppc_chan_tx_done,
361         .knows_txdone = true,
362 };
363
364 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
365 {
366         int result = -EFAULT;
367         acpi_status status = AE_OK;
368         struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
369         struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
370         struct acpi_buffer state = {0, NULL};
371         union acpi_object  *psd = NULL;
372         struct acpi_psd_package *pdomain;
373
374         status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
375                                             &buffer, ACPI_TYPE_PACKAGE);
376         if (status == AE_NOT_FOUND)     /* _PSD is optional */
377                 return 0;
378         if (ACPI_FAILURE(status))
379                 return -ENODEV;
380
381         psd = buffer.pointer;
382         if (!psd || psd->package.count != 1) {
383                 pr_debug("Invalid _PSD data\n");
384                 goto end;
385         }
386
387         pdomain = &(cpc_ptr->domain_info);
388
389         state.length = sizeof(struct acpi_psd_package);
390         state.pointer = pdomain;
391
392         status = acpi_extract_package(&(psd->package.elements[0]),
393                 &format, &state);
394         if (ACPI_FAILURE(status)) {
395                 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
396                 goto end;
397         }
398
399         if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
400                 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
401                 goto end;
402         }
403
404         if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
405                 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
406                 goto end;
407         }
408
409         if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
410             pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
411             pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
412                 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
413                 goto end;
414         }
415
416         result = 0;
417 end:
418         kfree(buffer.pointer);
419         return result;
420 }
421
422 bool acpi_cpc_valid(void)
423 {
424         struct cpc_desc *cpc_ptr;
425         int cpu;
426
427         if (acpi_disabled)
428                 return false;
429
430         for_each_present_cpu(cpu) {
431                 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
432                 if (!cpc_ptr)
433                         return false;
434         }
435
436         return true;
437 }
438 EXPORT_SYMBOL_GPL(acpi_cpc_valid);
439
440 bool cppc_allow_fast_switch(void)
441 {
442         struct cpc_register_resource *desired_reg;
443         struct cpc_desc *cpc_ptr;
444         int cpu;
445
446         for_each_possible_cpu(cpu) {
447                 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
448                 desired_reg = &cpc_ptr->cpc_regs[DESIRED_PERF];
449                 if (!CPC_IN_SYSTEM_MEMORY(desired_reg) &&
450                                 !CPC_IN_SYSTEM_IO(desired_reg))
451                         return false;
452         }
453
454         return true;
455 }
456 EXPORT_SYMBOL_GPL(cppc_allow_fast_switch);
457
458 /**
459  * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
460  * @cpu: Find all CPUs that share a domain with cpu.
461  * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
462  *
463  *      Return: 0 for success or negative value for err.
464  */
465 int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
466 {
467         struct cpc_desc *cpc_ptr, *match_cpc_ptr;
468         struct acpi_psd_package *match_pdomain;
469         struct acpi_psd_package *pdomain;
470         int count_target, i;
471
472         /*
473          * Now that we have _PSD data from all CPUs, let's setup P-state
474          * domain info.
475          */
476         cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
477         if (!cpc_ptr)
478                 return -EFAULT;
479
480         pdomain = &(cpc_ptr->domain_info);
481         cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
482         if (pdomain->num_processors <= 1)
483                 return 0;
484
485         /* Validate the Domain info */
486         count_target = pdomain->num_processors;
487         if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
488                 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
489         else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
490                 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
491         else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
492                 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
493
494         for_each_possible_cpu(i) {
495                 if (i == cpu)
496                         continue;
497
498                 match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
499                 if (!match_cpc_ptr)
500                         goto err_fault;
501
502                 match_pdomain = &(match_cpc_ptr->domain_info);
503                 if (match_pdomain->domain != pdomain->domain)
504                         continue;
505
506                 /* Here i and cpu are in the same domain */
507                 if (match_pdomain->num_processors != count_target)
508                         goto err_fault;
509
510                 if (pdomain->coord_type != match_pdomain->coord_type)
511                         goto err_fault;
512
513                 cpumask_set_cpu(i, cpu_data->shared_cpu_map);
514         }
515
516         return 0;
517
518 err_fault:
519         /* Assume no coordination on any error parsing domain info */
520         cpumask_clear(cpu_data->shared_cpu_map);
521         cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
522         cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
523
524         return -EFAULT;
525 }
526 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
527
528 static int register_pcc_channel(int pcc_ss_idx)
529 {
530         struct pcc_mbox_chan *pcc_chan;
531         u64 usecs_lat;
532
533         if (pcc_ss_idx >= 0) {
534                 pcc_chan = pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
535
536                 if (IS_ERR(pcc_chan)) {
537                         pr_err("Failed to find PCC channel for subspace %d\n",
538                                pcc_ss_idx);
539                         return -ENODEV;
540                 }
541
542                 pcc_data[pcc_ss_idx]->pcc_channel = pcc_chan;
543                 /*
544                  * cppc_ss->latency is just a Nominal value. In reality
545                  * the remote processor could be much slower to reply.
546                  * So add an arbitrary amount of wait on top of Nominal.
547                  */
548                 usecs_lat = NUM_RETRIES * pcc_chan->latency;
549                 pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
550                 pcc_data[pcc_ss_idx]->pcc_mrtt = pcc_chan->min_turnaround_time;
551                 pcc_data[pcc_ss_idx]->pcc_mpar = pcc_chan->max_access_rate;
552                 pcc_data[pcc_ss_idx]->pcc_nominal = pcc_chan->latency;
553
554                 pcc_data[pcc_ss_idx]->pcc_comm_addr =
555                         acpi_os_ioremap(pcc_chan->shmem_base_addr,
556                                         pcc_chan->shmem_size);
557                 if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
558                         pr_err("Failed to ioremap PCC comm region mem for %d\n",
559                                pcc_ss_idx);
560                         return -ENOMEM;
561                 }
562
563                 /* Set flag so that we don't come here for each CPU. */
564                 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
565         }
566
567         return 0;
568 }
569
570 /**
571  * cpc_ffh_supported() - check if FFH reading supported
572  *
573  * Check if the architecture has support for functional fixed hardware
574  * read/write capability.
575  *
576  * Return: true for supported, false for not supported
577  */
578 bool __weak cpc_ffh_supported(void)
579 {
580         return false;
581 }
582
583 /**
584  * cpc_supported_by_cpu() - check if CPPC is supported by CPU
585  *
586  * Check if the architectural support for CPPC is present even
587  * if the _OSC hasn't prescribed it
588  *
589  * Return: true for supported, false for not supported
590  */
591 bool __weak cpc_supported_by_cpu(void)
592 {
593         return false;
594 }
595
596 /**
597  * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
598  *
599  * Check and allocate the cppc_pcc_data memory.
600  * In some processor configurations it is possible that same subspace
601  * is shared between multiple CPUs. This is seen especially in CPUs
602  * with hardware multi-threading support.
603  *
604  * Return: 0 for success, errno for failure
605  */
606 static int pcc_data_alloc(int pcc_ss_id)
607 {
608         if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
609                 return -EINVAL;
610
611         if (pcc_data[pcc_ss_id]) {
612                 pcc_data[pcc_ss_id]->refcount++;
613         } else {
614                 pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
615                                               GFP_KERNEL);
616                 if (!pcc_data[pcc_ss_id])
617                         return -ENOMEM;
618                 pcc_data[pcc_ss_id]->refcount++;
619         }
620
621         return 0;
622 }
623
624 /*
625  * An example CPC table looks like the following.
626  *
627  *  Name (_CPC, Package() {
628  *      17,                                                     // NumEntries
629  *      1,                                                      // Revision
630  *      ResourceTemplate() {Register(PCC, 32, 0, 0x120, 2)},    // Highest Performance
631  *      ResourceTemplate() {Register(PCC, 32, 0, 0x124, 2)},    // Nominal Performance
632  *      ResourceTemplate() {Register(PCC, 32, 0, 0x128, 2)},    // Lowest Nonlinear Performance
633  *      ResourceTemplate() {Register(PCC, 32, 0, 0x12C, 2)},    // Lowest Performance
634  *      ResourceTemplate() {Register(PCC, 32, 0, 0x130, 2)},    // Guaranteed Performance Register
635  *      ResourceTemplate() {Register(PCC, 32, 0, 0x110, 2)},    // Desired Performance Register
636  *      ResourceTemplate() {Register(SystemMemory, 0, 0, 0, 0)},
637  *      ...
638  *      ...
639  *      ...
640  *  }
641  * Each Register() encodes how to access that specific register.
642  * e.g. a sample PCC entry has the following encoding:
643  *
644  *  Register (
645  *      PCC,    // AddressSpaceKeyword
646  *      8,      // RegisterBitWidth
647  *      8,      // RegisterBitOffset
648  *      0x30,   // RegisterAddress
649  *      9,      // AccessSize (subspace ID)
650  *  )
651  */
652
653 #ifndef arch_init_invariance_cppc
654 static inline void arch_init_invariance_cppc(void) { }
655 #endif
656
657 /**
658  * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
659  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
660  *
661  *      Return: 0 for success or negative value for err.
662  */
663 int acpi_cppc_processor_probe(struct acpi_processor *pr)
664 {
665         struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
666         union acpi_object *out_obj, *cpc_obj;
667         struct cpc_desc *cpc_ptr;
668         struct cpc_reg *gas_t;
669         struct device *cpu_dev;
670         acpi_handle handle = pr->handle;
671         unsigned int num_ent, i, cpc_rev;
672         int pcc_subspace_id = -1;
673         acpi_status status;
674         int ret = -ENODATA;
675
676         if (!osc_sb_cppc2_support_acked) {
677                 pr_debug("CPPC v2 _OSC not acked\n");
678                 if (!cpc_supported_by_cpu())
679                         return -ENODEV;
680         }
681
682         /* Parse the ACPI _CPC table for this CPU. */
683         status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
684                         ACPI_TYPE_PACKAGE);
685         if (ACPI_FAILURE(status)) {
686                 ret = -ENODEV;
687                 goto out_buf_free;
688         }
689
690         out_obj = (union acpi_object *) output.pointer;
691
692         cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
693         if (!cpc_ptr) {
694                 ret = -ENOMEM;
695                 goto out_buf_free;
696         }
697
698         /* First entry is NumEntries. */
699         cpc_obj = &out_obj->package.elements[0];
700         if (cpc_obj->type == ACPI_TYPE_INTEGER) {
701                 num_ent = cpc_obj->integer.value;
702                 if (num_ent <= 1) {
703                         pr_debug("Unexpected _CPC NumEntries value (%d) for CPU:%d\n",
704                                  num_ent, pr->id);
705                         goto out_free;
706                 }
707         } else {
708                 pr_debug("Unexpected _CPC NumEntries entry type (%d) for CPU:%d\n",
709                          cpc_obj->type, pr->id);
710                 goto out_free;
711         }
712
713         /* Second entry should be revision. */
714         cpc_obj = &out_obj->package.elements[1];
715         if (cpc_obj->type == ACPI_TYPE_INTEGER) {
716                 cpc_rev = cpc_obj->integer.value;
717         } else {
718                 pr_debug("Unexpected _CPC Revision entry type (%d) for CPU:%d\n",
719                          cpc_obj->type, pr->id);
720                 goto out_free;
721         }
722
723         if (cpc_rev < CPPC_V2_REV) {
724                 pr_debug("Unsupported _CPC Revision (%d) for CPU:%d\n", cpc_rev,
725                          pr->id);
726                 goto out_free;
727         }
728
729         /*
730          * Disregard _CPC if the number of entries in the return pachage is not
731          * as expected, but support future revisions being proper supersets of
732          * the v3 and only causing more entries to be returned by _CPC.
733          */
734         if ((cpc_rev == CPPC_V2_REV && num_ent != CPPC_V2_NUM_ENT) ||
735             (cpc_rev == CPPC_V3_REV && num_ent != CPPC_V3_NUM_ENT) ||
736             (cpc_rev > CPPC_V3_REV && num_ent <= CPPC_V3_NUM_ENT)) {
737                 pr_debug("Unexpected number of _CPC return package entries (%d) for CPU:%d\n",
738                          num_ent, pr->id);
739                 goto out_free;
740         }
741         if (cpc_rev > CPPC_V3_REV) {
742                 num_ent = CPPC_V3_NUM_ENT;
743                 cpc_rev = CPPC_V3_REV;
744         }
745
746         cpc_ptr->num_entries = num_ent;
747         cpc_ptr->version = cpc_rev;
748
749         /* Iterate through remaining entries in _CPC */
750         for (i = 2; i < num_ent; i++) {
751                 cpc_obj = &out_obj->package.elements[i];
752
753                 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
754                         cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
755                         cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
756                 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
757                         gas_t = (struct cpc_reg *)
758                                 cpc_obj->buffer.pointer;
759
760                         /*
761                          * The PCC Subspace index is encoded inside
762                          * the CPC table entries. The same PCC index
763                          * will be used for all the PCC entries,
764                          * so extract it only once.
765                          */
766                         if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
767                                 if (pcc_subspace_id < 0) {
768                                         pcc_subspace_id = gas_t->access_width;
769                                         if (pcc_data_alloc(pcc_subspace_id))
770                                                 goto out_free;
771                                 } else if (pcc_subspace_id != gas_t->access_width) {
772                                         pr_debug("Mismatched PCC ids in _CPC for CPU:%d\n",
773                                                  pr->id);
774                                         goto out_free;
775                                 }
776                         } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
777                                 if (gas_t->address) {
778                                         void __iomem *addr;
779
780                                         if (!osc_cpc_flexible_adr_space_confirmed) {
781                                                 pr_debug("Flexible address space capability not supported\n");
782                                                 if (!cpc_supported_by_cpu())
783                                                         goto out_free;
784                                         }
785
786                                         addr = ioremap(gas_t->address, gas_t->bit_width/8);
787                                         if (!addr)
788                                                 goto out_free;
789                                         cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
790                                 }
791                         } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
792                                 if (gas_t->access_width < 1 || gas_t->access_width > 3) {
793                                         /*
794                                          * 1 = 8-bit, 2 = 16-bit, and 3 = 32-bit.
795                                          * SystemIO doesn't implement 64-bit
796                                          * registers.
797                                          */
798                                         pr_debug("Invalid access width %d for SystemIO register in _CPC\n",
799                                                  gas_t->access_width);
800                                         goto out_free;
801                                 }
802                                 if (gas_t->address & OVER_16BTS_MASK) {
803                                         /* SystemIO registers use 16-bit integer addresses */
804                                         pr_debug("Invalid IO port %llu for SystemIO register in _CPC\n",
805                                                  gas_t->address);
806                                         goto out_free;
807                                 }
808                                 if (!osc_cpc_flexible_adr_space_confirmed) {
809                                         pr_debug("Flexible address space capability not supported\n");
810                                         if (!cpc_supported_by_cpu())
811                                                 goto out_free;
812                                 }
813                         } else {
814                                 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
815                                         /* Support only PCC, SystemMemory, SystemIO, and FFH type regs. */
816                                         pr_debug("Unsupported register type (%d) in _CPC\n",
817                                                  gas_t->space_id);
818                                         goto out_free;
819                                 }
820                         }
821
822                         cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
823                         memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
824                 } else {
825                         pr_debug("Invalid entry type (%d) in _CPC for CPU:%d\n",
826                                  i, pr->id);
827                         goto out_free;
828                 }
829         }
830         per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
831
832         /*
833          * Initialize the remaining cpc_regs as unsupported.
834          * Example: In case FW exposes CPPC v2, the below loop will initialize
835          * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
836          */
837         for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
838                 cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
839                 cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
840         }
841
842
843         /* Store CPU Logical ID */
844         cpc_ptr->cpu_id = pr->id;
845
846         /* Parse PSD data for this CPU */
847         ret = acpi_get_psd(cpc_ptr, handle);
848         if (ret)
849                 goto out_free;
850
851         /* Register PCC channel once for all PCC subspace ID. */
852         if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
853                 ret = register_pcc_channel(pcc_subspace_id);
854                 if (ret)
855                         goto out_free;
856
857                 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
858                 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
859         }
860
861         /* Everything looks okay */
862         pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
863
864         /* Add per logical CPU nodes for reading its feedback counters. */
865         cpu_dev = get_cpu_device(pr->id);
866         if (!cpu_dev) {
867                 ret = -EINVAL;
868                 goto out_free;
869         }
870
871         /* Plug PSD data into this CPU's CPC descriptor. */
872         per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
873
874         ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
875                         "acpi_cppc");
876         if (ret) {
877                 per_cpu(cpc_desc_ptr, pr->id) = NULL;
878                 kobject_put(&cpc_ptr->kobj);
879                 goto out_free;
880         }
881
882         arch_init_invariance_cppc();
883
884         kfree(output.pointer);
885         return 0;
886
887 out_free:
888         /* Free all the mapped sys mem areas for this CPU */
889         for (i = 2; i < cpc_ptr->num_entries; i++) {
890                 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
891
892                 if (addr)
893                         iounmap(addr);
894         }
895         kfree(cpc_ptr);
896
897 out_buf_free:
898         kfree(output.pointer);
899         return ret;
900 }
901 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
902
903 /**
904  * acpi_cppc_processor_exit - Cleanup CPC structs.
905  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
906  *
907  * Return: Void
908  */
909 void acpi_cppc_processor_exit(struct acpi_processor *pr)
910 {
911         struct cpc_desc *cpc_ptr;
912         unsigned int i;
913         void __iomem *addr;
914         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
915
916         if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) {
917                 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
918                         pcc_data[pcc_ss_id]->refcount--;
919                         if (!pcc_data[pcc_ss_id]->refcount) {
920                                 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
921                                 kfree(pcc_data[pcc_ss_id]);
922                                 pcc_data[pcc_ss_id] = NULL;
923                         }
924                 }
925         }
926
927         cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
928         if (!cpc_ptr)
929                 return;
930
931         /* Free all the mapped sys mem areas for this CPU */
932         for (i = 2; i < cpc_ptr->num_entries; i++) {
933                 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
934                 if (addr)
935                         iounmap(addr);
936         }
937
938         kobject_put(&cpc_ptr->kobj);
939         kfree(cpc_ptr);
940 }
941 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
942
943 /**
944  * cpc_read_ffh() - Read FFH register
945  * @cpunum:     CPU number to read
946  * @reg:        cppc register information
947  * @val:        place holder for return value
948  *
949  * Read bit_width bits from a specified address and bit_offset
950  *
951  * Return: 0 for success and error code
952  */
953 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
954 {
955         return -ENOTSUPP;
956 }
957
958 /**
959  * cpc_write_ffh() - Write FFH register
960  * @cpunum:     CPU number to write
961  * @reg:        cppc register information
962  * @val:        value to write
963  *
964  * Write value of bit_width bits to a specified address and bit_offset
965  *
966  * Return: 0 for success and error code
967  */
968 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
969 {
970         return -ENOTSUPP;
971 }
972
973 /*
974  * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
975  * as fast as possible. We have already mapped the PCC subspace during init, so
976  * we can directly write to it.
977  */
978
979 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
980 {
981         void __iomem *vaddr = NULL;
982         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
983         struct cpc_reg *reg = &reg_res->cpc_entry.reg;
984
985         if (reg_res->type == ACPI_TYPE_INTEGER) {
986                 *val = reg_res->cpc_entry.int_value;
987                 return 0;
988         }
989
990         *val = 0;
991
992         if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
993                 u32 width = 8 << (reg->access_width - 1);
994                 u32 val_u32;
995                 acpi_status status;
996
997                 status = acpi_os_read_port((acpi_io_address)reg->address,
998                                            &val_u32, width);
999                 if (ACPI_FAILURE(status)) {
1000                         pr_debug("Error: Failed to read SystemIO port %llx\n",
1001                                  reg->address);
1002                         return -EFAULT;
1003                 }
1004
1005                 *val = val_u32;
1006                 return 0;
1007         } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1008                 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1009         else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1010                 vaddr = reg_res->sys_mem_vaddr;
1011         else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1012                 return cpc_read_ffh(cpu, reg, val);
1013         else
1014                 return acpi_os_read_memory((acpi_physical_address)reg->address,
1015                                 val, reg->bit_width);
1016
1017         switch (reg->bit_width) {
1018         case 8:
1019                 *val = readb_relaxed(vaddr);
1020                 break;
1021         case 16:
1022                 *val = readw_relaxed(vaddr);
1023                 break;
1024         case 32:
1025                 *val = readl_relaxed(vaddr);
1026                 break;
1027         case 64:
1028                 *val = readq_relaxed(vaddr);
1029                 break;
1030         default:
1031                 pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
1032                          reg->bit_width, pcc_ss_id);
1033                 return -EFAULT;
1034         }
1035
1036         return 0;
1037 }
1038
1039 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
1040 {
1041         int ret_val = 0;
1042         void __iomem *vaddr = NULL;
1043         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1044         struct cpc_reg *reg = &reg_res->cpc_entry.reg;
1045
1046         if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1047                 u32 width = 8 << (reg->access_width - 1);
1048                 acpi_status status;
1049
1050                 status = acpi_os_write_port((acpi_io_address)reg->address,
1051                                             (u32)val, width);
1052                 if (ACPI_FAILURE(status)) {
1053                         pr_debug("Error: Failed to write SystemIO port %llx\n",
1054                                  reg->address);
1055                         return -EFAULT;
1056                 }
1057
1058                 return 0;
1059         } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1060                 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1061         else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1062                 vaddr = reg_res->sys_mem_vaddr;
1063         else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1064                 return cpc_write_ffh(cpu, reg, val);
1065         else
1066                 return acpi_os_write_memory((acpi_physical_address)reg->address,
1067                                 val, reg->bit_width);
1068
1069         switch (reg->bit_width) {
1070         case 8:
1071                 writeb_relaxed(val, vaddr);
1072                 break;
1073         case 16:
1074                 writew_relaxed(val, vaddr);
1075                 break;
1076         case 32:
1077                 writel_relaxed(val, vaddr);
1078                 break;
1079         case 64:
1080                 writeq_relaxed(val, vaddr);
1081                 break;
1082         default:
1083                 pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1084                          reg->bit_width, pcc_ss_id);
1085                 ret_val = -EFAULT;
1086                 break;
1087         }
1088
1089         return ret_val;
1090 }
1091
1092 static int cppc_get_perf(int cpunum, enum cppc_regs reg_idx, u64 *perf)
1093 {
1094         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1095         struct cpc_register_resource *reg;
1096
1097         if (!cpc_desc) {
1098                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1099                 return -ENODEV;
1100         }
1101
1102         reg = &cpc_desc->cpc_regs[reg_idx];
1103
1104         if (CPC_IN_PCC(reg)) {
1105                 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1106                 struct cppc_pcc_data *pcc_ss_data = NULL;
1107                 int ret = 0;
1108
1109                 if (pcc_ss_id < 0)
1110                         return -EIO;
1111
1112                 pcc_ss_data = pcc_data[pcc_ss_id];
1113
1114                 down_write(&pcc_ss_data->pcc_lock);
1115
1116                 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1117                         cpc_read(cpunum, reg, perf);
1118                 else
1119                         ret = -EIO;
1120
1121                 up_write(&pcc_ss_data->pcc_lock);
1122
1123                 return ret;
1124         }
1125
1126         cpc_read(cpunum, reg, perf);
1127
1128         return 0;
1129 }
1130
1131 /**
1132  * cppc_get_desired_perf - Get the desired performance register value.
1133  * @cpunum: CPU from which to get desired performance.
1134  * @desired_perf: Return address.
1135  *
1136  * Return: 0 for success, -EIO otherwise.
1137  */
1138 int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1139 {
1140         return cppc_get_perf(cpunum, DESIRED_PERF, desired_perf);
1141 }
1142 EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1143
1144 /**
1145  * cppc_get_nominal_perf - Get the nominal performance register value.
1146  * @cpunum: CPU from which to get nominal performance.
1147  * @nominal_perf: Return address.
1148  *
1149  * Return: 0 for success, -EIO otherwise.
1150  */
1151 int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
1152 {
1153         return cppc_get_perf(cpunum, NOMINAL_PERF, nominal_perf);
1154 }
1155
1156 /**
1157  * cppc_get_perf_caps - Get a CPU's performance capabilities.
1158  * @cpunum: CPU from which to get capabilities info.
1159  * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1160  *
1161  * Return: 0 for success with perf_caps populated else -ERRNO.
1162  */
1163 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1164 {
1165         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1166         struct cpc_register_resource *highest_reg, *lowest_reg,
1167                 *lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1168                 *low_freq_reg = NULL, *nom_freq_reg = NULL;
1169         u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1170         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1171         struct cppc_pcc_data *pcc_ss_data = NULL;
1172         int ret = 0, regs_in_pcc = 0;
1173
1174         if (!cpc_desc) {
1175                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1176                 return -ENODEV;
1177         }
1178
1179         highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1180         lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1181         lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1182         nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1183         low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1184         nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1185         guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1186
1187         /* Are any of the regs PCC ?*/
1188         if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1189                 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1190                 CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1191                 if (pcc_ss_id < 0) {
1192                         pr_debug("Invalid pcc_ss_id\n");
1193                         return -ENODEV;
1194                 }
1195                 pcc_ss_data = pcc_data[pcc_ss_id];
1196                 regs_in_pcc = 1;
1197                 down_write(&pcc_ss_data->pcc_lock);
1198                 /* Ring doorbell once to update PCC subspace */
1199                 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1200                         ret = -EIO;
1201                         goto out_err;
1202                 }
1203         }
1204
1205         cpc_read(cpunum, highest_reg, &high);
1206         perf_caps->highest_perf = high;
1207
1208         cpc_read(cpunum, lowest_reg, &low);
1209         perf_caps->lowest_perf = low;
1210
1211         cpc_read(cpunum, nominal_reg, &nom);
1212         perf_caps->nominal_perf = nom;
1213
1214         if (guaranteed_reg->type != ACPI_TYPE_BUFFER  ||
1215             IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1216                 perf_caps->guaranteed_perf = 0;
1217         } else {
1218                 cpc_read(cpunum, guaranteed_reg, &guaranteed);
1219                 perf_caps->guaranteed_perf = guaranteed;
1220         }
1221
1222         cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1223         perf_caps->lowest_nonlinear_perf = min_nonlinear;
1224
1225         if (!high || !low || !nom || !min_nonlinear)
1226                 ret = -EFAULT;
1227
1228         /* Read optional lowest and nominal frequencies if present */
1229         if (CPC_SUPPORTED(low_freq_reg))
1230                 cpc_read(cpunum, low_freq_reg, &low_f);
1231
1232         if (CPC_SUPPORTED(nom_freq_reg))
1233                 cpc_read(cpunum, nom_freq_reg, &nom_f);
1234
1235         perf_caps->lowest_freq = low_f;
1236         perf_caps->nominal_freq = nom_f;
1237
1238
1239 out_err:
1240         if (regs_in_pcc)
1241                 up_write(&pcc_ss_data->pcc_lock);
1242         return ret;
1243 }
1244 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1245
1246 /**
1247  * cppc_perf_ctrs_in_pcc - Check if any perf counters are in a PCC region.
1248  *
1249  * CPPC has flexibility about how CPU performance counters are accessed.
1250  * One of the choices is PCC regions, which can have a high access latency. This
1251  * routine allows callers of cppc_get_perf_ctrs() to know this ahead of time.
1252  *
1253  * Return: true if any of the counters are in PCC regions, false otherwise
1254  */
1255 bool cppc_perf_ctrs_in_pcc(void)
1256 {
1257         int cpu;
1258
1259         for_each_present_cpu(cpu) {
1260                 struct cpc_register_resource *ref_perf_reg;
1261                 struct cpc_desc *cpc_desc;
1262
1263                 cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1264
1265                 if (CPC_IN_PCC(&cpc_desc->cpc_regs[DELIVERED_CTR]) ||
1266                     CPC_IN_PCC(&cpc_desc->cpc_regs[REFERENCE_CTR]) ||
1267                     CPC_IN_PCC(&cpc_desc->cpc_regs[CTR_WRAP_TIME]))
1268                         return true;
1269
1270
1271                 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1272
1273                 /*
1274                  * If reference perf register is not supported then we should
1275                  * use the nominal perf value
1276                  */
1277                 if (!CPC_SUPPORTED(ref_perf_reg))
1278                         ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1279
1280                 if (CPC_IN_PCC(ref_perf_reg))
1281                         return true;
1282         }
1283
1284         return false;
1285 }
1286 EXPORT_SYMBOL_GPL(cppc_perf_ctrs_in_pcc);
1287
1288 /**
1289  * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1290  * @cpunum: CPU from which to read counters.
1291  * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1292  *
1293  * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1294  */
1295 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1296 {
1297         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1298         struct cpc_register_resource *delivered_reg, *reference_reg,
1299                 *ref_perf_reg, *ctr_wrap_reg;
1300         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1301         struct cppc_pcc_data *pcc_ss_data = NULL;
1302         u64 delivered, reference, ref_perf, ctr_wrap_time;
1303         int ret = 0, regs_in_pcc = 0;
1304
1305         if (!cpc_desc) {
1306                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1307                 return -ENODEV;
1308         }
1309
1310         delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1311         reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1312         ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1313         ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1314
1315         /*
1316          * If reference perf register is not supported then we should
1317          * use the nominal perf value
1318          */
1319         if (!CPC_SUPPORTED(ref_perf_reg))
1320                 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1321
1322         /* Are any of the regs PCC ?*/
1323         if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1324                 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1325                 if (pcc_ss_id < 0) {
1326                         pr_debug("Invalid pcc_ss_id\n");
1327                         return -ENODEV;
1328                 }
1329                 pcc_ss_data = pcc_data[pcc_ss_id];
1330                 down_write(&pcc_ss_data->pcc_lock);
1331                 regs_in_pcc = 1;
1332                 /* Ring doorbell once to update PCC subspace */
1333                 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1334                         ret = -EIO;
1335                         goto out_err;
1336                 }
1337         }
1338
1339         cpc_read(cpunum, delivered_reg, &delivered);
1340         cpc_read(cpunum, reference_reg, &reference);
1341         cpc_read(cpunum, ref_perf_reg, &ref_perf);
1342
1343         /*
1344          * Per spec, if ctr_wrap_time optional register is unsupported, then the
1345          * performance counters are assumed to never wrap during the lifetime of
1346          * platform
1347          */
1348         ctr_wrap_time = (u64)(~((u64)0));
1349         if (CPC_SUPPORTED(ctr_wrap_reg))
1350                 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1351
1352         if (!delivered || !reference || !ref_perf) {
1353                 ret = -EFAULT;
1354                 goto out_err;
1355         }
1356
1357         perf_fb_ctrs->delivered = delivered;
1358         perf_fb_ctrs->reference = reference;
1359         perf_fb_ctrs->reference_perf = ref_perf;
1360         perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1361 out_err:
1362         if (regs_in_pcc)
1363                 up_write(&pcc_ss_data->pcc_lock);
1364         return ret;
1365 }
1366 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1367
1368 /**
1369  * cppc_set_enable - Set to enable CPPC on the processor by writing the
1370  * Continuous Performance Control package EnableRegister field.
1371  * @cpu: CPU for which to enable CPPC register.
1372  * @enable: 0 - disable, 1 - enable CPPC feature on the processor.
1373  *
1374  * Return: 0 for success, -ERRNO or -EIO otherwise.
1375  */
1376 int cppc_set_enable(int cpu, bool enable)
1377 {
1378         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1379         struct cpc_register_resource *enable_reg;
1380         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1381         struct cppc_pcc_data *pcc_ss_data = NULL;
1382         int ret = -EINVAL;
1383
1384         if (!cpc_desc) {
1385                 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1386                 return -EINVAL;
1387         }
1388
1389         enable_reg = &cpc_desc->cpc_regs[ENABLE];
1390
1391         if (CPC_IN_PCC(enable_reg)) {
1392
1393                 if (pcc_ss_id < 0)
1394                         return -EIO;
1395
1396                 ret = cpc_write(cpu, enable_reg, enable);
1397                 if (ret)
1398                         return ret;
1399
1400                 pcc_ss_data = pcc_data[pcc_ss_id];
1401
1402                 down_write(&pcc_ss_data->pcc_lock);
1403                 /* after writing CPC, transfer the ownership of PCC to platfrom */
1404                 ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1405                 up_write(&pcc_ss_data->pcc_lock);
1406                 return ret;
1407         }
1408
1409         return cpc_write(cpu, enable_reg, enable);
1410 }
1411 EXPORT_SYMBOL_GPL(cppc_set_enable);
1412
1413 /**
1414  * cppc_set_perf - Set a CPU's performance controls.
1415  * @cpu: CPU for which to set performance controls.
1416  * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1417  *
1418  * Return: 0 for success, -ERRNO otherwise.
1419  */
1420 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1421 {
1422         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1423         struct cpc_register_resource *desired_reg;
1424         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1425         struct cppc_pcc_data *pcc_ss_data = NULL;
1426         int ret = 0;
1427
1428         if (!cpc_desc) {
1429                 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1430                 return -ENODEV;
1431         }
1432
1433         desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1434
1435         /*
1436          * This is Phase-I where we want to write to CPC registers
1437          * -> We want all CPUs to be able to execute this phase in parallel
1438          *
1439          * Since read_lock can be acquired by multiple CPUs simultaneously we
1440          * achieve that goal here
1441          */
1442         if (CPC_IN_PCC(desired_reg)) {
1443                 if (pcc_ss_id < 0) {
1444                         pr_debug("Invalid pcc_ss_id\n");
1445                         return -ENODEV;
1446                 }
1447                 pcc_ss_data = pcc_data[pcc_ss_id];
1448                 down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1449                 if (pcc_ss_data->platform_owns_pcc) {
1450                         ret = check_pcc_chan(pcc_ss_id, false);
1451                         if (ret) {
1452                                 up_read(&pcc_ss_data->pcc_lock);
1453                                 return ret;
1454                         }
1455                 }
1456                 /*
1457                  * Update the pending_write to make sure a PCC CMD_READ will not
1458                  * arrive and steal the channel during the switch to write lock
1459                  */
1460                 pcc_ss_data->pending_pcc_write_cmd = true;
1461                 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1462                 cpc_desc->write_cmd_status = 0;
1463         }
1464
1465         /*
1466          * Skip writing MIN/MAX until Linux knows how to come up with
1467          * useful values.
1468          */
1469         cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1470
1471         if (CPC_IN_PCC(desired_reg))
1472                 up_read(&pcc_ss_data->pcc_lock);        /* END Phase-I */
1473         /*
1474          * This is Phase-II where we transfer the ownership of PCC to Platform
1475          *
1476          * Short Summary: Basically if we think of a group of cppc_set_perf
1477          * requests that happened in short overlapping interval. The last CPU to
1478          * come out of Phase-I will enter Phase-II and ring the doorbell.
1479          *
1480          * We have the following requirements for Phase-II:
1481          *     1. We want to execute Phase-II only when there are no CPUs
1482          * currently executing in Phase-I
1483          *     2. Once we start Phase-II we want to avoid all other CPUs from
1484          * entering Phase-I.
1485          *     3. We want only one CPU among all those who went through Phase-I
1486          * to run phase-II
1487          *
1488          * If write_trylock fails to get the lock and doesn't transfer the
1489          * PCC ownership to the platform, then one of the following will be TRUE
1490          *     1. There is at-least one CPU in Phase-I which will later execute
1491          * write_trylock, so the CPUs in Phase-I will be responsible for
1492          * executing the Phase-II.
1493          *     2. Some other CPU has beaten this CPU to successfully execute the
1494          * write_trylock and has already acquired the write_lock. We know for a
1495          * fact it (other CPU acquiring the write_lock) couldn't have happened
1496          * before this CPU's Phase-I as we held the read_lock.
1497          *     3. Some other CPU executing pcc CMD_READ has stolen the
1498          * down_write, in which case, send_pcc_cmd will check for pending
1499          * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1500          * So this CPU can be certain that its request will be delivered
1501          *    So in all cases, this CPU knows that its request will be delivered
1502          * by another CPU and can return
1503          *
1504          * After getting the down_write we still need to check for
1505          * pending_pcc_write_cmd to take care of the following scenario
1506          *    The thread running this code could be scheduled out between
1507          * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1508          * could have delivered the request to Platform by triggering the
1509          * doorbell and transferred the ownership of PCC to platform. So this
1510          * avoids triggering an unnecessary doorbell and more importantly before
1511          * triggering the doorbell it makes sure that the PCC channel ownership
1512          * is still with OSPM.
1513          *   pending_pcc_write_cmd can also be cleared by a different CPU, if
1514          * there was a pcc CMD_READ waiting on down_write and it steals the lock
1515          * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this
1516          * case during a CMD_READ and if there are pending writes it delivers
1517          * the write command before servicing the read command
1518          */
1519         if (CPC_IN_PCC(desired_reg)) {
1520                 if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1521                         /* Update only if there are pending write commands */
1522                         if (pcc_ss_data->pending_pcc_write_cmd)
1523                                 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1524                         up_write(&pcc_ss_data->pcc_lock);       /* END Phase-II */
1525                 } else
1526                         /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1527                         wait_event(pcc_ss_data->pcc_write_wait_q,
1528                                    cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1529
1530                 /* send_pcc_cmd updates the status in case of failure */
1531                 ret = cpc_desc->write_cmd_status;
1532         }
1533         return ret;
1534 }
1535 EXPORT_SYMBOL_GPL(cppc_set_perf);
1536
1537 /**
1538  * cppc_get_transition_latency - returns frequency transition latency in ns
1539  *
1540  * ACPI CPPC does not explicitly specify how a platform can specify the
1541  * transition latency for performance change requests. The closest we have
1542  * is the timing information from the PCCT tables which provides the info
1543  * on the number and frequency of PCC commands the platform can handle.
1544  *
1545  * If desired_reg is in the SystemMemory or SystemIo ACPI address space,
1546  * then assume there is no latency.
1547  */
1548 unsigned int cppc_get_transition_latency(int cpu_num)
1549 {
1550         /*
1551          * Expected transition latency is based on the PCCT timing values
1552          * Below are definition from ACPI spec:
1553          * pcc_nominal- Expected latency to process a command, in microseconds
1554          * pcc_mpar   - The maximum number of periodic requests that the subspace
1555          *              channel can support, reported in commands per minute. 0
1556          *              indicates no limitation.
1557          * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
1558          *              completion of a command before issuing the next command,
1559          *              in microseconds.
1560          */
1561         unsigned int latency_ns = 0;
1562         struct cpc_desc *cpc_desc;
1563         struct cpc_register_resource *desired_reg;
1564         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1565         struct cppc_pcc_data *pcc_ss_data;
1566
1567         cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1568         if (!cpc_desc)
1569                 return CPUFREQ_ETERNAL;
1570
1571         desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1572         if (CPC_IN_SYSTEM_MEMORY(desired_reg) || CPC_IN_SYSTEM_IO(desired_reg))
1573                 return 0;
1574         else if (!CPC_IN_PCC(desired_reg))
1575                 return CPUFREQ_ETERNAL;
1576
1577         if (pcc_ss_id < 0)
1578                 return CPUFREQ_ETERNAL;
1579
1580         pcc_ss_data = pcc_data[pcc_ss_id];
1581         if (pcc_ss_data->pcc_mpar)
1582                 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1583
1584         latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1585         latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1586
1587         return latency_ns;
1588 }
1589 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);