usb: typec: altmodes/displayport: Add pin assignment helper
[platform/kernel/linux-starfive.git] / drivers / acpi / acpi_pad.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * acpi_pad.c ACPI Processor Aggregator Driver
4  *
5  * Copyright (c) 2009, Intel Corporation.
6  */
7
8 #include <linux/kernel.h>
9 #include <linux/cpumask.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/kthread.h>
14 #include <uapi/linux/sched/types.h>
15 #include <linux/freezer.h>
16 #include <linux/cpu.h>
17 #include <linux/tick.h>
18 #include <linux/slab.h>
19 #include <linux/acpi.h>
20 #include <linux/perf_event.h>
21 #include <asm/mwait.h>
22 #include <xen/xen.h>
23
24 #define ACPI_PROCESSOR_AGGREGATOR_CLASS "acpi_pad"
25 #define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
26 #define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
27 static DEFINE_MUTEX(isolated_cpus_lock);
28 static DEFINE_MUTEX(round_robin_lock);
29
30 static unsigned long power_saving_mwait_eax;
31
32 static unsigned char tsc_detected_unstable;
33 static unsigned char tsc_marked_unstable;
34
35 static void power_saving_mwait_init(void)
36 {
37         unsigned int eax, ebx, ecx, edx;
38         unsigned int highest_cstate = 0;
39         unsigned int highest_subcstate = 0;
40         int i;
41
42         if (!boot_cpu_has(X86_FEATURE_MWAIT))
43                 return;
44         if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
45                 return;
46
47         cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
48
49         if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
50             !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
51                 return;
52
53         edx >>= MWAIT_SUBSTATE_SIZE;
54         for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
55                 if (edx & MWAIT_SUBSTATE_MASK) {
56                         highest_cstate = i;
57                         highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
58                 }
59         }
60         power_saving_mwait_eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
61                 (highest_subcstate - 1);
62
63 #if defined(CONFIG_X86)
64         switch (boot_cpu_data.x86_vendor) {
65         case X86_VENDOR_HYGON:
66         case X86_VENDOR_AMD:
67         case X86_VENDOR_INTEL:
68         case X86_VENDOR_ZHAOXIN:
69                 /*
70                  * AMD Fam10h TSC will tick in all
71                  * C/P/S0/S1 states when this bit is set.
72                  */
73                 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
74                         tsc_detected_unstable = 1;
75                 break;
76         default:
77                 /* TSC could halt in idle */
78                 tsc_detected_unstable = 1;
79         }
80 #endif
81 }
82
83 static unsigned long cpu_weight[NR_CPUS];
84 static int tsk_in_cpu[NR_CPUS] = {[0 ... NR_CPUS-1] = -1};
85 static DECLARE_BITMAP(pad_busy_cpus_bits, NR_CPUS);
86 static void round_robin_cpu(unsigned int tsk_index)
87 {
88         struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
89         cpumask_var_t tmp;
90         int cpu;
91         unsigned long min_weight = -1;
92         unsigned long preferred_cpu;
93
94         if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
95                 return;
96
97         mutex_lock(&round_robin_lock);
98         cpumask_clear(tmp);
99         for_each_cpu(cpu, pad_busy_cpus)
100                 cpumask_or(tmp, tmp, topology_sibling_cpumask(cpu));
101         cpumask_andnot(tmp, cpu_online_mask, tmp);
102         /* avoid HT sibilings if possible */
103         if (cpumask_empty(tmp))
104                 cpumask_andnot(tmp, cpu_online_mask, pad_busy_cpus);
105         if (cpumask_empty(tmp)) {
106                 mutex_unlock(&round_robin_lock);
107                 free_cpumask_var(tmp);
108                 return;
109         }
110         for_each_cpu(cpu, tmp) {
111                 if (cpu_weight[cpu] < min_weight) {
112                         min_weight = cpu_weight[cpu];
113                         preferred_cpu = cpu;
114                 }
115         }
116
117         if (tsk_in_cpu[tsk_index] != -1)
118                 cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
119         tsk_in_cpu[tsk_index] = preferred_cpu;
120         cpumask_set_cpu(preferred_cpu, pad_busy_cpus);
121         cpu_weight[preferred_cpu]++;
122         mutex_unlock(&round_robin_lock);
123
124         set_cpus_allowed_ptr(current, cpumask_of(preferred_cpu));
125
126         free_cpumask_var(tmp);
127 }
128
129 static void exit_round_robin(unsigned int tsk_index)
130 {
131         struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
132
133         cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
134         tsk_in_cpu[tsk_index] = -1;
135 }
136
137 static unsigned int idle_pct = 5; /* percentage */
138 static unsigned int round_robin_time = 1; /* second */
139 static int power_saving_thread(void *data)
140 {
141         int do_sleep;
142         unsigned int tsk_index = (unsigned long)data;
143         u64 last_jiffies = 0;
144
145         sched_set_fifo_low(current);
146
147         while (!kthread_should_stop()) {
148                 unsigned long expire_time;
149
150                 /* round robin to cpus */
151                 expire_time = last_jiffies + round_robin_time * HZ;
152                 if (time_before(expire_time, jiffies)) {
153                         last_jiffies = jiffies;
154                         round_robin_cpu(tsk_index);
155                 }
156
157                 do_sleep = 0;
158
159                 expire_time = jiffies + HZ * (100 - idle_pct) / 100;
160
161                 while (!need_resched()) {
162                         if (tsc_detected_unstable && !tsc_marked_unstable) {
163                                 /* TSC could halt in idle, so notify users */
164                                 mark_tsc_unstable("TSC halts in idle");
165                                 tsc_marked_unstable = 1;
166                         }
167                         local_irq_disable();
168
169                         perf_lopwr_cb(true);
170
171                         tick_broadcast_enable();
172                         tick_broadcast_enter();
173                         stop_critical_timings();
174
175                         mwait_idle_with_hints(power_saving_mwait_eax, 1);
176
177                         start_critical_timings();
178                         tick_broadcast_exit();
179
180                         perf_lopwr_cb(false);
181
182                         local_irq_enable();
183
184                         if (time_before(expire_time, jiffies)) {
185                                 do_sleep = 1;
186                                 break;
187                         }
188                 }
189
190                 /*
191                  * current sched_rt has threshold for rt task running time.
192                  * When a rt task uses 95% CPU time, the rt thread will be
193                  * scheduled out for 5% CPU time to not starve other tasks. But
194                  * the mechanism only works when all CPUs have RT task running,
195                  * as if one CPU hasn't RT task, RT task from other CPUs will
196                  * borrow CPU time from this CPU and cause RT task use > 95%
197                  * CPU time. To make 'avoid starvation' work, takes a nap here.
198                  */
199                 if (unlikely(do_sleep))
200                         schedule_timeout_killable(HZ * idle_pct / 100);
201
202                 /* If an external event has set the need_resched flag, then
203                  * we need to deal with it, or this loop will continue to
204                  * spin without calling __mwait().
205                  */
206                 if (unlikely(need_resched()))
207                         schedule();
208         }
209
210         exit_round_robin(tsk_index);
211         return 0;
212 }
213
214 static struct task_struct *ps_tsks[NR_CPUS];
215 static unsigned int ps_tsk_num;
216 static int create_power_saving_task(void)
217 {
218         int rc;
219
220         ps_tsks[ps_tsk_num] = kthread_run(power_saving_thread,
221                 (void *)(unsigned long)ps_tsk_num,
222                 "acpi_pad/%d", ps_tsk_num);
223
224         if (IS_ERR(ps_tsks[ps_tsk_num])) {
225                 rc = PTR_ERR(ps_tsks[ps_tsk_num]);
226                 ps_tsks[ps_tsk_num] = NULL;
227         } else {
228                 rc = 0;
229                 ps_tsk_num++;
230         }
231
232         return rc;
233 }
234
235 static void destroy_power_saving_task(void)
236 {
237         if (ps_tsk_num > 0) {
238                 ps_tsk_num--;
239                 kthread_stop(ps_tsks[ps_tsk_num]);
240                 ps_tsks[ps_tsk_num] = NULL;
241         }
242 }
243
244 static void set_power_saving_task_num(unsigned int num)
245 {
246         if (num > ps_tsk_num) {
247                 while (ps_tsk_num < num) {
248                         if (create_power_saving_task())
249                                 return;
250                 }
251         } else if (num < ps_tsk_num) {
252                 while (ps_tsk_num > num)
253                         destroy_power_saving_task();
254         }
255 }
256
257 static void acpi_pad_idle_cpus(unsigned int num_cpus)
258 {
259         cpus_read_lock();
260
261         num_cpus = min_t(unsigned int, num_cpus, num_online_cpus());
262         set_power_saving_task_num(num_cpus);
263
264         cpus_read_unlock();
265 }
266
267 static uint32_t acpi_pad_idle_cpus_num(void)
268 {
269         return ps_tsk_num;
270 }
271
272 static ssize_t rrtime_store(struct device *dev,
273         struct device_attribute *attr, const char *buf, size_t count)
274 {
275         unsigned long num;
276
277         if (kstrtoul(buf, 0, &num))
278                 return -EINVAL;
279         if (num < 1 || num >= 100)
280                 return -EINVAL;
281         mutex_lock(&isolated_cpus_lock);
282         round_robin_time = num;
283         mutex_unlock(&isolated_cpus_lock);
284         return count;
285 }
286
287 static ssize_t rrtime_show(struct device *dev,
288         struct device_attribute *attr, char *buf)
289 {
290         return scnprintf(buf, PAGE_SIZE, "%d\n", round_robin_time);
291 }
292 static DEVICE_ATTR_RW(rrtime);
293
294 static ssize_t idlepct_store(struct device *dev,
295         struct device_attribute *attr, const char *buf, size_t count)
296 {
297         unsigned long num;
298
299         if (kstrtoul(buf, 0, &num))
300                 return -EINVAL;
301         if (num < 1 || num >= 100)
302                 return -EINVAL;
303         mutex_lock(&isolated_cpus_lock);
304         idle_pct = num;
305         mutex_unlock(&isolated_cpus_lock);
306         return count;
307 }
308
309 static ssize_t idlepct_show(struct device *dev,
310         struct device_attribute *attr, char *buf)
311 {
312         return scnprintf(buf, PAGE_SIZE, "%d\n", idle_pct);
313 }
314 static DEVICE_ATTR_RW(idlepct);
315
316 static ssize_t idlecpus_store(struct device *dev,
317         struct device_attribute *attr, const char *buf, size_t count)
318 {
319         unsigned long num;
320
321         if (kstrtoul(buf, 0, &num))
322                 return -EINVAL;
323         mutex_lock(&isolated_cpus_lock);
324         acpi_pad_idle_cpus(num);
325         mutex_unlock(&isolated_cpus_lock);
326         return count;
327 }
328
329 static ssize_t idlecpus_show(struct device *dev,
330         struct device_attribute *attr, char *buf)
331 {
332         return cpumap_print_to_pagebuf(false, buf,
333                                        to_cpumask(pad_busy_cpus_bits));
334 }
335
336 static DEVICE_ATTR_RW(idlecpus);
337
338 static int acpi_pad_add_sysfs(struct acpi_device *device)
339 {
340         int result;
341
342         result = device_create_file(&device->dev, &dev_attr_idlecpus);
343         if (result)
344                 return -ENODEV;
345         result = device_create_file(&device->dev, &dev_attr_idlepct);
346         if (result) {
347                 device_remove_file(&device->dev, &dev_attr_idlecpus);
348                 return -ENODEV;
349         }
350         result = device_create_file(&device->dev, &dev_attr_rrtime);
351         if (result) {
352                 device_remove_file(&device->dev, &dev_attr_idlecpus);
353                 device_remove_file(&device->dev, &dev_attr_idlepct);
354                 return -ENODEV;
355         }
356         return 0;
357 }
358
359 static void acpi_pad_remove_sysfs(struct acpi_device *device)
360 {
361         device_remove_file(&device->dev, &dev_attr_idlecpus);
362         device_remove_file(&device->dev, &dev_attr_idlepct);
363         device_remove_file(&device->dev, &dev_attr_rrtime);
364 }
365
366 /*
367  * Query firmware how many CPUs should be idle
368  * return -1 on failure
369  */
370 static int acpi_pad_pur(acpi_handle handle)
371 {
372         struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
373         union acpi_object *package;
374         int num = -1;
375
376         if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PUR", NULL, &buffer)))
377                 return num;
378
379         if (!buffer.length || !buffer.pointer)
380                 return num;
381
382         package = buffer.pointer;
383
384         if (package->type == ACPI_TYPE_PACKAGE &&
385                 package->package.count == 2 &&
386                 package->package.elements[0].integer.value == 1) /* rev 1 */
387
388                 num = package->package.elements[1].integer.value;
389
390         kfree(buffer.pointer);
391         return num;
392 }
393
394 static void acpi_pad_handle_notify(acpi_handle handle)
395 {
396         int num_cpus;
397         uint32_t idle_cpus;
398         struct acpi_buffer param = {
399                 .length = 4,
400                 .pointer = (void *)&idle_cpus,
401         };
402
403         mutex_lock(&isolated_cpus_lock);
404         num_cpus = acpi_pad_pur(handle);
405         if (num_cpus < 0) {
406                 mutex_unlock(&isolated_cpus_lock);
407                 return;
408         }
409         acpi_pad_idle_cpus(num_cpus);
410         idle_cpus = acpi_pad_idle_cpus_num();
411         acpi_evaluate_ost(handle, ACPI_PROCESSOR_AGGREGATOR_NOTIFY, 0, &param);
412         mutex_unlock(&isolated_cpus_lock);
413 }
414
415 static void acpi_pad_notify(acpi_handle handle, u32 event,
416         void *data)
417 {
418         struct acpi_device *device = data;
419
420         switch (event) {
421         case ACPI_PROCESSOR_AGGREGATOR_NOTIFY:
422                 acpi_pad_handle_notify(handle);
423                 acpi_bus_generate_netlink_event(device->pnp.device_class,
424                         dev_name(&device->dev), event, 0);
425                 break;
426         default:
427                 pr_warn("Unsupported event [0x%x]\n", event);
428                 break;
429         }
430 }
431
432 static int acpi_pad_add(struct acpi_device *device)
433 {
434         acpi_status status;
435
436         strcpy(acpi_device_name(device), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME);
437         strcpy(acpi_device_class(device), ACPI_PROCESSOR_AGGREGATOR_CLASS);
438
439         if (acpi_pad_add_sysfs(device))
440                 return -ENODEV;
441
442         status = acpi_install_notify_handler(device->handle,
443                 ACPI_DEVICE_NOTIFY, acpi_pad_notify, device);
444         if (ACPI_FAILURE(status)) {
445                 acpi_pad_remove_sysfs(device);
446                 return -ENODEV;
447         }
448
449         return 0;
450 }
451
452 static int acpi_pad_remove(struct acpi_device *device)
453 {
454         mutex_lock(&isolated_cpus_lock);
455         acpi_pad_idle_cpus(0);
456         mutex_unlock(&isolated_cpus_lock);
457
458         acpi_remove_notify_handler(device->handle,
459                 ACPI_DEVICE_NOTIFY, acpi_pad_notify);
460         acpi_pad_remove_sysfs(device);
461         return 0;
462 }
463
464 static const struct acpi_device_id pad_device_ids[] = {
465         {"ACPI000C", 0},
466         {"", 0},
467 };
468 MODULE_DEVICE_TABLE(acpi, pad_device_ids);
469
470 static struct acpi_driver acpi_pad_driver = {
471         .name = "processor_aggregator",
472         .class = ACPI_PROCESSOR_AGGREGATOR_CLASS,
473         .ids = pad_device_ids,
474         .ops = {
475                 .add = acpi_pad_add,
476                 .remove = acpi_pad_remove,
477         },
478 };
479
480 static int __init acpi_pad_init(void)
481 {
482         /* Xen ACPI PAD is used when running as Xen Dom0. */
483         if (xen_initial_domain())
484                 return -ENODEV;
485
486         power_saving_mwait_init();
487         if (power_saving_mwait_eax == 0)
488                 return -EINVAL;
489
490         return acpi_bus_register_driver(&acpi_pad_driver);
491 }
492
493 static void __exit acpi_pad_exit(void)
494 {
495         acpi_bus_unregister_driver(&acpi_pad_driver);
496 }
497
498 module_init(acpi_pad_init);
499 module_exit(acpi_pad_exit);
500 MODULE_AUTHOR("Shaohua Li<shaohua.li@intel.com>");
501 MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
502 MODULE_LICENSE("GPL");