Merge tag 'hsi-for-6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/sre/linux-hsi
[platform/kernel/linux-rpi.git] / drivers / acpi / acpi_lpss.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ACPI support for Intel Lynxpoint LPSS.
4  *
5  * Copyright (C) 2013, Intel Corporation
6  * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7  *          Rafael J. Wysocki <rafael.j.wysocki@intel.com>
8  */
9
10 #include <linux/acpi.h>
11 #include <linux/clkdev.h>
12 #include <linux/clk-provider.h>
13 #include <linux/dmi.h>
14 #include <linux/err.h>
15 #include <linux/io.h>
16 #include <linux/mutex.h>
17 #include <linux/pci.h>
18 #include <linux/platform_device.h>
19 #include <linux/platform_data/x86/clk-lpss.h>
20 #include <linux/platform_data/x86/pmc_atom.h>
21 #include <linux/pm_domain.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pwm.h>
24 #include <linux/pxa2xx_ssp.h>
25 #include <linux/suspend.h>
26 #include <linux/delay.h>
27
28 #include "internal.h"
29
30 #ifdef CONFIG_X86_INTEL_LPSS
31
32 #include <asm/cpu_device_id.h>
33 #include <asm/intel-family.h>
34 #include <asm/iosf_mbi.h>
35
36 #define LPSS_ADDR(desc) ((unsigned long)&desc)
37
38 #define LPSS_CLK_SIZE   0x04
39 #define LPSS_LTR_SIZE   0x18
40
41 /* Offsets relative to LPSS_PRIVATE_OFFSET */
42 #define LPSS_CLK_DIVIDER_DEF_MASK       (BIT(1) | BIT(16))
43 #define LPSS_RESETS                     0x04
44 #define LPSS_RESETS_RESET_FUNC          BIT(0)
45 #define LPSS_RESETS_RESET_APB           BIT(1)
46 #define LPSS_GENERAL                    0x08
47 #define LPSS_GENERAL_LTR_MODE_SW        BIT(2)
48 #define LPSS_GENERAL_UART_RTS_OVRD      BIT(3)
49 #define LPSS_SW_LTR                     0x10
50 #define LPSS_AUTO_LTR                   0x14
51 #define LPSS_LTR_SNOOP_REQ              BIT(15)
52 #define LPSS_LTR_SNOOP_MASK             0x0000FFFF
53 #define LPSS_LTR_SNOOP_LAT_1US          0x800
54 #define LPSS_LTR_SNOOP_LAT_32US         0xC00
55 #define LPSS_LTR_SNOOP_LAT_SHIFT        5
56 #define LPSS_LTR_SNOOP_LAT_CUTOFF       3000
57 #define LPSS_LTR_MAX_VAL                0x3FF
58 #define LPSS_TX_INT                     0x20
59 #define LPSS_TX_INT_MASK                BIT(1)
60
61 #define LPSS_PRV_REG_COUNT              9
62
63 /* LPSS Flags */
64 #define LPSS_CLK                        BIT(0)
65 #define LPSS_CLK_GATE                   BIT(1)
66 #define LPSS_CLK_DIVIDER                BIT(2)
67 #define LPSS_LTR                        BIT(3)
68 #define LPSS_SAVE_CTX                   BIT(4)
69 /*
70  * For some devices the DSDT AML code for another device turns off the device
71  * before our suspend handler runs, causing us to read/save all 1-s (0xffffffff)
72  * as ctx register values.
73  * Luckily these devices always use the same ctx register values, so we can
74  * work around this by saving the ctx registers once on activation.
75  */
76 #define LPSS_SAVE_CTX_ONCE              BIT(5)
77 #define LPSS_NO_D3_DELAY                BIT(6)
78
79 struct lpss_private_data;
80
81 struct lpss_device_desc {
82         unsigned int flags;
83         const char *clk_con_id;
84         unsigned int prv_offset;
85         size_t prv_size_override;
86         const struct property_entry *properties;
87         void (*setup)(struct lpss_private_data *pdata);
88         bool resume_from_noirq;
89 };
90
91 static const struct lpss_device_desc lpss_dma_desc = {
92         .flags = LPSS_CLK,
93 };
94
95 struct lpss_private_data {
96         struct acpi_device *adev;
97         void __iomem *mmio_base;
98         resource_size_t mmio_size;
99         unsigned int fixed_clk_rate;
100         struct clk *clk;
101         const struct lpss_device_desc *dev_desc;
102         u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
103 };
104
105 /* Devices which need to be in D3 before lpss_iosf_enter_d3_state() proceeds */
106 static u32 pmc_atom_d3_mask = 0xfe000ffe;
107
108 /* LPSS run time quirks */
109 static unsigned int lpss_quirks;
110
111 /*
112  * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
113  *
114  * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
115  * it can be powered off automatically whenever the last LPSS device goes down.
116  * In case of no power any access to the DMA controller will hang the system.
117  * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
118  * well as on ASuS T100TA transformer.
119  *
120  * This quirk overrides power state of entire LPSS island to keep DMA powered
121  * on whenever we have at least one other device in use.
122  */
123 #define LPSS_QUIRK_ALWAYS_POWER_ON      BIT(0)
124
125 /* UART Component Parameter Register */
126 #define LPSS_UART_CPR                   0xF4
127 #define LPSS_UART_CPR_AFCE              BIT(4)
128
129 static void lpss_uart_setup(struct lpss_private_data *pdata)
130 {
131         unsigned int offset;
132         u32 val;
133
134         offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
135         val = readl(pdata->mmio_base + offset);
136         writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
137
138         val = readl(pdata->mmio_base + LPSS_UART_CPR);
139         if (!(val & LPSS_UART_CPR_AFCE)) {
140                 offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
141                 val = readl(pdata->mmio_base + offset);
142                 val |= LPSS_GENERAL_UART_RTS_OVRD;
143                 writel(val, pdata->mmio_base + offset);
144         }
145 }
146
147 static void lpss_deassert_reset(struct lpss_private_data *pdata)
148 {
149         unsigned int offset;
150         u32 val;
151
152         offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
153         val = readl(pdata->mmio_base + offset);
154         val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
155         writel(val, pdata->mmio_base + offset);
156 }
157
158 /*
159  * BYT PWM used for backlight control by the i915 driver on systems without
160  * the Crystal Cove PMIC.
161  */
162 static struct pwm_lookup byt_pwm_lookup[] = {
163         PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
164                                "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
165                                "pwm-lpss-platform"),
166 };
167
168 static void byt_pwm_setup(struct lpss_private_data *pdata)
169 {
170         u64 uid;
171
172         /* Only call pwm_add_table for the first PWM controller */
173         if (acpi_dev_uid_to_integer(pdata->adev, &uid) || uid != 1)
174                 return;
175
176         pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
177 }
178
179 #define LPSS_I2C_ENABLE                 0x6c
180
181 static void byt_i2c_setup(struct lpss_private_data *pdata)
182 {
183         acpi_handle handle = pdata->adev->handle;
184         unsigned long long shared_host = 0;
185         acpi_status status;
186         u64 uid;
187
188         /* Expected to always be successfull, but better safe then sorry */
189         if (!acpi_dev_uid_to_integer(pdata->adev, &uid) && uid) {
190                 /* Detect I2C bus shared with PUNIT and ignore its d3 status */
191                 status = acpi_evaluate_integer(handle, "_SEM", NULL, &shared_host);
192                 if (ACPI_SUCCESS(status) && shared_host)
193                         pmc_atom_d3_mask &= ~(BIT_LPSS2_F1_I2C1 << (uid - 1));
194         }
195
196         lpss_deassert_reset(pdata);
197
198         if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
199                 pdata->fixed_clk_rate = 133000000;
200
201         writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
202 }
203
204 /*
205  * BSW PWM1 is used for backlight control by the i915 driver
206  * BSW PWM2 is used for backlight control for fixed (etched into the glass)
207  * touch controls on some models. These touch-controls have specialized
208  * drivers which know they need the "pwm_soc_lpss_2" con-id.
209  */
210 static struct pwm_lookup bsw_pwm_lookup[] = {
211         PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
212                                "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
213                                "pwm-lpss-platform"),
214         PWM_LOOKUP_WITH_MODULE("80862289:00", 0, NULL,
215                                "pwm_soc_lpss_2", 0, PWM_POLARITY_NORMAL,
216                                "pwm-lpss-platform"),
217 };
218
219 static void bsw_pwm_setup(struct lpss_private_data *pdata)
220 {
221         u64 uid;
222
223         /* Only call pwm_add_table for the first PWM controller */
224         if (acpi_dev_uid_to_integer(pdata->adev, &uid) || uid != 1)
225                 return;
226
227         pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
228 }
229
230 static const struct property_entry lpt_spi_properties[] = {
231         PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_LPT_SSP),
232         { }
233 };
234
235 static const struct lpss_device_desc lpt_spi_dev_desc = {
236         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
237                         | LPSS_SAVE_CTX,
238         .prv_offset = 0x800,
239         .properties = lpt_spi_properties,
240 };
241
242 static const struct lpss_device_desc lpt_i2c_dev_desc = {
243         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR | LPSS_SAVE_CTX,
244         .prv_offset = 0x800,
245 };
246
247 static struct property_entry uart_properties[] = {
248         PROPERTY_ENTRY_U32("reg-io-width", 4),
249         PROPERTY_ENTRY_U32("reg-shift", 2),
250         PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
251         { },
252 };
253
254 static const struct lpss_device_desc lpt_uart_dev_desc = {
255         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
256                         | LPSS_SAVE_CTX,
257         .clk_con_id = "baudclk",
258         .prv_offset = 0x800,
259         .setup = lpss_uart_setup,
260         .properties = uart_properties,
261 };
262
263 static const struct lpss_device_desc lpt_sdio_dev_desc = {
264         .flags = LPSS_LTR,
265         .prv_offset = 0x1000,
266         .prv_size_override = 0x1018,
267 };
268
269 static const struct lpss_device_desc byt_pwm_dev_desc = {
270         .flags = LPSS_SAVE_CTX,
271         .prv_offset = 0x800,
272         .setup = byt_pwm_setup,
273 };
274
275 static const struct lpss_device_desc bsw_pwm_dev_desc = {
276         .flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY,
277         .prv_offset = 0x800,
278         .setup = bsw_pwm_setup,
279         .resume_from_noirq = true,
280 };
281
282 static const struct lpss_device_desc bsw_pwm2_dev_desc = {
283         .flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY,
284         .prv_offset = 0x800,
285         .resume_from_noirq = true,
286 };
287
288 static const struct lpss_device_desc byt_uart_dev_desc = {
289         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
290         .clk_con_id = "baudclk",
291         .prv_offset = 0x800,
292         .setup = lpss_uart_setup,
293         .properties = uart_properties,
294 };
295
296 static const struct lpss_device_desc bsw_uart_dev_desc = {
297         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
298                         | LPSS_NO_D3_DELAY,
299         .clk_con_id = "baudclk",
300         .prv_offset = 0x800,
301         .setup = lpss_uart_setup,
302         .properties = uart_properties,
303 };
304
305 static const struct property_entry byt_spi_properties[] = {
306         PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_BYT_SSP),
307         { }
308 };
309
310 static const struct lpss_device_desc byt_spi_dev_desc = {
311         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
312         .prv_offset = 0x400,
313         .properties = byt_spi_properties,
314 };
315
316 static const struct lpss_device_desc byt_sdio_dev_desc = {
317         .flags = LPSS_CLK,
318 };
319
320 static const struct lpss_device_desc byt_i2c_dev_desc = {
321         .flags = LPSS_CLK | LPSS_SAVE_CTX,
322         .prv_offset = 0x800,
323         .setup = byt_i2c_setup,
324         .resume_from_noirq = true,
325 };
326
327 static const struct lpss_device_desc bsw_i2c_dev_desc = {
328         .flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
329         .prv_offset = 0x800,
330         .setup = byt_i2c_setup,
331         .resume_from_noirq = true,
332 };
333
334 static const struct property_entry bsw_spi_properties[] = {
335         PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_BSW_SSP),
336         { }
337 };
338
339 static const struct lpss_device_desc bsw_spi_dev_desc = {
340         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
341                         | LPSS_NO_D3_DELAY,
342         .prv_offset = 0x400,
343         .setup = lpss_deassert_reset,
344         .properties = bsw_spi_properties,
345 };
346
347 static const struct x86_cpu_id lpss_cpu_ids[] = {
348         X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT,     NULL),
349         X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT,        NULL),
350         {}
351 };
352
353 #else
354
355 #define LPSS_ADDR(desc) (0UL)
356
357 #endif /* CONFIG_X86_INTEL_LPSS */
358
359 static const struct acpi_device_id acpi_lpss_device_ids[] = {
360         /* Generic LPSS devices */
361         { "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
362
363         /* Lynxpoint LPSS devices */
364         { "INT33C0", LPSS_ADDR(lpt_spi_dev_desc) },
365         { "INT33C1", LPSS_ADDR(lpt_spi_dev_desc) },
366         { "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
367         { "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
368         { "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
369         { "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
370         { "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
371         { "INT33C7", },
372
373         /* BayTrail LPSS devices */
374         { "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
375         { "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
376         { "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
377         { "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
378         { "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
379         { "INT33B2", },
380         { "INT33FC", },
381
382         /* Braswell LPSS devices */
383         { "80862286", LPSS_ADDR(lpss_dma_desc) },
384         { "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
385         { "80862289", LPSS_ADDR(bsw_pwm2_dev_desc) },
386         { "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
387         { "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
388         { "808622C0", LPSS_ADDR(lpss_dma_desc) },
389         { "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
390
391         /* Broadwell LPSS devices */
392         { "INT3430", LPSS_ADDR(lpt_spi_dev_desc) },
393         { "INT3431", LPSS_ADDR(lpt_spi_dev_desc) },
394         { "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
395         { "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
396         { "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
397         { "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
398         { "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
399         { "INT3437", },
400
401         /* Wildcat Point LPSS devices */
402         { "INT3438", LPSS_ADDR(lpt_spi_dev_desc) },
403
404         { }
405 };
406
407 #ifdef CONFIG_X86_INTEL_LPSS
408
409 /* LPSS main clock device. */
410 static struct platform_device *lpss_clk_dev;
411
412 static inline void lpt_register_clock_device(void)
413 {
414         lpss_clk_dev = platform_device_register_simple("clk-lpss-atom",
415                                                        PLATFORM_DEVID_NONE,
416                                                        NULL, 0);
417 }
418
419 static int register_device_clock(struct acpi_device *adev,
420                                  struct lpss_private_data *pdata)
421 {
422         const struct lpss_device_desc *dev_desc = pdata->dev_desc;
423         const char *devname = dev_name(&adev->dev);
424         struct clk *clk;
425         struct lpss_clk_data *clk_data;
426         const char *parent, *clk_name;
427         void __iomem *prv_base;
428
429         if (!lpss_clk_dev)
430                 lpt_register_clock_device();
431
432         if (IS_ERR(lpss_clk_dev))
433                 return PTR_ERR(lpss_clk_dev);
434
435         clk_data = platform_get_drvdata(lpss_clk_dev);
436         if (!clk_data)
437                 return -ENODEV;
438         clk = clk_data->clk;
439
440         if (!pdata->mmio_base
441             || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
442                 return -ENODATA;
443
444         parent = clk_data->name;
445         prv_base = pdata->mmio_base + dev_desc->prv_offset;
446
447         if (pdata->fixed_clk_rate) {
448                 clk = clk_register_fixed_rate(NULL, devname, parent, 0,
449                                               pdata->fixed_clk_rate);
450                 goto out;
451         }
452
453         if (dev_desc->flags & LPSS_CLK_GATE) {
454                 clk = clk_register_gate(NULL, devname, parent, 0,
455                                         prv_base, 0, 0, NULL);
456                 parent = devname;
457         }
458
459         if (dev_desc->flags & LPSS_CLK_DIVIDER) {
460                 /* Prevent division by zero */
461                 if (!readl(prv_base))
462                         writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
463
464                 clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
465                 if (!clk_name)
466                         return -ENOMEM;
467                 clk = clk_register_fractional_divider(NULL, clk_name, parent,
468                                                       CLK_FRAC_DIVIDER_POWER_OF_TWO_PS,
469                                                       prv_base, 1, 15, 16, 15, 0, NULL);
470                 parent = clk_name;
471
472                 clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
473                 if (!clk_name) {
474                         kfree(parent);
475                         return -ENOMEM;
476                 }
477                 clk = clk_register_gate(NULL, clk_name, parent,
478                                         CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
479                                         prv_base, 31, 0, NULL);
480                 kfree(parent);
481                 kfree(clk_name);
482         }
483 out:
484         if (IS_ERR(clk))
485                 return PTR_ERR(clk);
486
487         pdata->clk = clk;
488         clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
489         return 0;
490 }
491
492 struct lpss_device_links {
493         const char *supplier_hid;
494         const char *supplier_uid;
495         const char *consumer_hid;
496         const char *consumer_uid;
497         u32 flags;
498         const struct dmi_system_id *dep_missing_ids;
499 };
500
501 /* Please keep this list sorted alphabetically by vendor and model */
502 static const struct dmi_system_id i2c1_dep_missing_dmi_ids[] = {
503         {
504                 .matches = {
505                         DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
506                         DMI_MATCH(DMI_PRODUCT_NAME, "T200TA"),
507                 },
508         },
509         {}
510 };
511
512 /*
513  * The _DEP method is used to identify dependencies but instead of creating
514  * device links for every handle in _DEP, only links in the following list are
515  * created. That is necessary because, in the general case, _DEP can refer to
516  * devices that might not have drivers, or that are on different buses, or where
517  * the supplier is not enumerated until after the consumer is probed.
518  */
519 static const struct lpss_device_links lpss_device_links[] = {
520         /* CHT External sdcard slot controller depends on PMIC I2C ctrl */
521         {"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME},
522         /* CHT iGPU depends on PMIC I2C controller */
523         {"808622C1", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
524         /* BYT iGPU depends on the Embedded Controller I2C controller (UID 1) */
525         {"80860F41", "1", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME,
526          i2c1_dep_missing_dmi_ids},
527         /* BYT CR iGPU depends on PMIC I2C controller (UID 5 on CR) */
528         {"80860F41", "5", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
529         /* BYT iGPU depends on PMIC I2C controller (UID 7 on non CR) */
530         {"80860F41", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
531 };
532
533 static bool acpi_lpss_is_supplier(struct acpi_device *adev,
534                                   const struct lpss_device_links *link)
535 {
536         return acpi_dev_hid_uid_match(adev, link->supplier_hid, link->supplier_uid);
537 }
538
539 static bool acpi_lpss_is_consumer(struct acpi_device *adev,
540                                   const struct lpss_device_links *link)
541 {
542         return acpi_dev_hid_uid_match(adev, link->consumer_hid, link->consumer_uid);
543 }
544
545 struct hid_uid {
546         const char *hid;
547         const char *uid;
548 };
549
550 static int match_hid_uid(struct device *dev, const void *data)
551 {
552         struct acpi_device *adev = ACPI_COMPANION(dev);
553         const struct hid_uid *id = data;
554
555         if (!adev)
556                 return 0;
557
558         return acpi_dev_hid_uid_match(adev, id->hid, id->uid);
559 }
560
561 static struct device *acpi_lpss_find_device(const char *hid, const char *uid)
562 {
563         struct device *dev;
564
565         struct hid_uid data = {
566                 .hid = hid,
567                 .uid = uid,
568         };
569
570         dev = bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid);
571         if (dev)
572                 return dev;
573
574         return bus_find_device(&pci_bus_type, NULL, &data, match_hid_uid);
575 }
576
577 static bool acpi_lpss_dep(struct acpi_device *adev, acpi_handle handle)
578 {
579         struct acpi_handle_list dep_devices;
580         acpi_status status;
581         int i;
582
583         if (!acpi_has_method(adev->handle, "_DEP"))
584                 return false;
585
586         status = acpi_evaluate_reference(adev->handle, "_DEP", NULL,
587                                          &dep_devices);
588         if (ACPI_FAILURE(status)) {
589                 dev_dbg(&adev->dev, "Failed to evaluate _DEP.\n");
590                 return false;
591         }
592
593         for (i = 0; i < dep_devices.count; i++) {
594                 if (dep_devices.handles[i] == handle)
595                         return true;
596         }
597
598         return false;
599 }
600
601 static void acpi_lpss_link_consumer(struct device *dev1,
602                                     const struct lpss_device_links *link)
603 {
604         struct device *dev2;
605
606         dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid);
607         if (!dev2)
608                 return;
609
610         if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
611             || acpi_lpss_dep(ACPI_COMPANION(dev2), ACPI_HANDLE(dev1)))
612                 device_link_add(dev2, dev1, link->flags);
613
614         put_device(dev2);
615 }
616
617 static void acpi_lpss_link_supplier(struct device *dev1,
618                                     const struct lpss_device_links *link)
619 {
620         struct device *dev2;
621
622         dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid);
623         if (!dev2)
624                 return;
625
626         if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
627             || acpi_lpss_dep(ACPI_COMPANION(dev1), ACPI_HANDLE(dev2)))
628                 device_link_add(dev1, dev2, link->flags);
629
630         put_device(dev2);
631 }
632
633 static void acpi_lpss_create_device_links(struct acpi_device *adev,
634                                           struct platform_device *pdev)
635 {
636         int i;
637
638         for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) {
639                 const struct lpss_device_links *link = &lpss_device_links[i];
640
641                 if (acpi_lpss_is_supplier(adev, link))
642                         acpi_lpss_link_consumer(&pdev->dev, link);
643
644                 if (acpi_lpss_is_consumer(adev, link))
645                         acpi_lpss_link_supplier(&pdev->dev, link);
646         }
647 }
648
649 static int acpi_lpss_create_device(struct acpi_device *adev,
650                                    const struct acpi_device_id *id)
651 {
652         const struct lpss_device_desc *dev_desc;
653         struct lpss_private_data *pdata;
654         struct resource_entry *rentry;
655         struct list_head resource_list;
656         struct platform_device *pdev;
657         int ret;
658
659         dev_desc = (const struct lpss_device_desc *)id->driver_data;
660         if (!dev_desc) {
661                 pdev = acpi_create_platform_device(adev, NULL);
662                 return IS_ERR_OR_NULL(pdev) ? PTR_ERR(pdev) : 1;
663         }
664         pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
665         if (!pdata)
666                 return -ENOMEM;
667
668         INIT_LIST_HEAD(&resource_list);
669         ret = acpi_dev_get_memory_resources(adev, &resource_list);
670         if (ret < 0)
671                 goto err_out;
672
673         rentry = list_first_entry_or_null(&resource_list, struct resource_entry, node);
674         if (rentry) {
675                 if (dev_desc->prv_size_override)
676                         pdata->mmio_size = dev_desc->prv_size_override;
677                 else
678                         pdata->mmio_size = resource_size(rentry->res);
679                 pdata->mmio_base = ioremap(rentry->res->start, pdata->mmio_size);
680         }
681
682         acpi_dev_free_resource_list(&resource_list);
683
684         if (!pdata->mmio_base) {
685                 /* Avoid acpi_bus_attach() instantiating a pdev for this dev. */
686                 adev->pnp.type.platform_id = 0;
687                 goto out_free;
688         }
689
690         pdata->adev = adev;
691         pdata->dev_desc = dev_desc;
692
693         if (dev_desc->setup)
694                 dev_desc->setup(pdata);
695
696         if (dev_desc->flags & LPSS_CLK) {
697                 ret = register_device_clock(adev, pdata);
698                 if (ret)
699                         goto out_free;
700         }
701
702         /*
703          * This works around a known issue in ACPI tables where LPSS devices
704          * have _PS0 and _PS3 without _PSC (and no power resources), so
705          * acpi_bus_init_power() will assume that the BIOS has put them into D0.
706          */
707         acpi_device_fix_up_power(adev);
708
709         adev->driver_data = pdata;
710         pdev = acpi_create_platform_device(adev, dev_desc->properties);
711         if (IS_ERR_OR_NULL(pdev)) {
712                 adev->driver_data = NULL;
713                 ret = PTR_ERR(pdev);
714                 goto err_out;
715         }
716
717         acpi_lpss_create_device_links(adev, pdev);
718         return 1;
719
720 out_free:
721         /* Skip the device, but continue the namespace scan */
722         ret = 0;
723 err_out:
724         kfree(pdata);
725         return ret;
726 }
727
728 static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
729 {
730         return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
731 }
732
733 static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
734                              unsigned int reg)
735 {
736         writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
737 }
738
739 static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
740 {
741         struct acpi_device *adev = ACPI_COMPANION(dev);
742         struct lpss_private_data *pdata;
743         unsigned long flags;
744         int ret;
745
746         if (WARN_ON(!adev))
747                 return -ENODEV;
748
749         spin_lock_irqsave(&dev->power.lock, flags);
750         if (pm_runtime_suspended(dev)) {
751                 ret = -EAGAIN;
752                 goto out;
753         }
754         pdata = acpi_driver_data(adev);
755         if (WARN_ON(!pdata || !pdata->mmio_base)) {
756                 ret = -ENODEV;
757                 goto out;
758         }
759         *val = __lpss_reg_read(pdata, reg);
760         ret = 0;
761
762  out:
763         spin_unlock_irqrestore(&dev->power.lock, flags);
764         return ret;
765 }
766
767 static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
768                              char *buf)
769 {
770         u32 ltr_value = 0;
771         unsigned int reg;
772         int ret;
773
774         reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
775         ret = lpss_reg_read(dev, reg, &ltr_value);
776         if (ret)
777                 return ret;
778
779         return sysfs_emit(buf, "%08x\n", ltr_value);
780 }
781
782 static ssize_t lpss_ltr_mode_show(struct device *dev,
783                                   struct device_attribute *attr, char *buf)
784 {
785         u32 ltr_mode = 0;
786         char *outstr;
787         int ret;
788
789         ret = lpss_reg_read(dev, LPSS_GENERAL, &ltr_mode);
790         if (ret)
791                 return ret;
792
793         outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
794         return sprintf(buf, "%s\n", outstr);
795 }
796
797 static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
798 static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
799 static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
800
801 static struct attribute *lpss_attrs[] = {
802         &dev_attr_auto_ltr.attr,
803         &dev_attr_sw_ltr.attr,
804         &dev_attr_ltr_mode.attr,
805         NULL,
806 };
807
808 static const struct attribute_group lpss_attr_group = {
809         .attrs = lpss_attrs,
810         .name = "lpss_ltr",
811 };
812
813 static void acpi_lpss_set_ltr(struct device *dev, s32 val)
814 {
815         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
816         u32 ltr_mode, ltr_val;
817
818         ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
819         if (val < 0) {
820                 if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
821                         ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
822                         __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
823                 }
824                 return;
825         }
826         ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
827         if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
828                 ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
829                 val = LPSS_LTR_MAX_VAL;
830         } else if (val > LPSS_LTR_MAX_VAL) {
831                 ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
832                 val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
833         } else {
834                 ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
835         }
836         ltr_val |= val;
837         __lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
838         if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
839                 ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
840                 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
841         }
842 }
843
844 #ifdef CONFIG_PM
845 /**
846  * acpi_lpss_save_ctx() - Save the private registers of LPSS device
847  * @dev: LPSS device
848  * @pdata: pointer to the private data of the LPSS device
849  *
850  * Most LPSS devices have private registers which may loose their context when
851  * the device is powered down. acpi_lpss_save_ctx() saves those registers into
852  * prv_reg_ctx array.
853  */
854 static void acpi_lpss_save_ctx(struct device *dev,
855                                struct lpss_private_data *pdata)
856 {
857         unsigned int i;
858
859         for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
860                 unsigned long offset = i * sizeof(u32);
861
862                 pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
863                 dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
864                         pdata->prv_reg_ctx[i], offset);
865         }
866 }
867
868 /**
869  * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
870  * @dev: LPSS device
871  * @pdata: pointer to the private data of the LPSS device
872  *
873  * Restores the registers that were previously stored with acpi_lpss_save_ctx().
874  */
875 static void acpi_lpss_restore_ctx(struct device *dev,
876                                   struct lpss_private_data *pdata)
877 {
878         unsigned int i;
879
880         for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
881                 unsigned long offset = i * sizeof(u32);
882
883                 __lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
884                 dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
885                         pdata->prv_reg_ctx[i], offset);
886         }
887 }
888
889 static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
890 {
891         /*
892          * The following delay is needed or the subsequent write operations may
893          * fail. The LPSS devices are actually PCI devices and the PCI spec
894          * expects 10ms delay before the device can be accessed after D3 to D0
895          * transition. However some platforms like BSW does not need this delay.
896          */
897         unsigned int delay = 10;        /* default 10ms delay */
898
899         if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
900                 delay = 0;
901
902         msleep(delay);
903 }
904
905 static int acpi_lpss_activate(struct device *dev)
906 {
907         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
908         int ret;
909
910         ret = acpi_dev_resume(dev);
911         if (ret)
912                 return ret;
913
914         acpi_lpss_d3_to_d0_delay(pdata);
915
916         /*
917          * This is called only on ->probe() stage where a device is either in
918          * known state defined by BIOS or most likely powered off. Due to this
919          * we have to deassert reset line to be sure that ->probe() will
920          * recognize the device.
921          */
922         if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
923                 lpss_deassert_reset(pdata);
924
925 #ifdef CONFIG_PM
926         if (pdata->dev_desc->flags & LPSS_SAVE_CTX_ONCE)
927                 acpi_lpss_save_ctx(dev, pdata);
928 #endif
929
930         return 0;
931 }
932
933 static void acpi_lpss_dismiss(struct device *dev)
934 {
935         acpi_dev_suspend(dev, false);
936 }
937
938 /* IOSF SB for LPSS island */
939 #define LPSS_IOSF_UNIT_LPIOEP           0xA0
940 #define LPSS_IOSF_UNIT_LPIO1            0xAB
941 #define LPSS_IOSF_UNIT_LPIO2            0xAC
942
943 #define LPSS_IOSF_PMCSR                 0x84
944 #define LPSS_PMCSR_D0                   0
945 #define LPSS_PMCSR_D3hot                3
946 #define LPSS_PMCSR_Dx_MASK              GENMASK(1, 0)
947
948 #define LPSS_IOSF_GPIODEF0              0x154
949 #define LPSS_GPIODEF0_DMA1_D3           BIT(2)
950 #define LPSS_GPIODEF0_DMA2_D3           BIT(3)
951 #define LPSS_GPIODEF0_DMA_D3_MASK       GENMASK(3, 2)
952 #define LPSS_GPIODEF0_DMA_LLP           BIT(13)
953
954 static DEFINE_MUTEX(lpss_iosf_mutex);
955 static bool lpss_iosf_d3_entered = true;
956
957 static void lpss_iosf_enter_d3_state(void)
958 {
959         u32 value1 = 0;
960         u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
961         u32 value2 = LPSS_PMCSR_D3hot;
962         u32 mask2 = LPSS_PMCSR_Dx_MASK;
963         /*
964          * PMC provides an information about actual status of the LPSS devices.
965          * Here we read the values related to LPSS power island, i.e. LPSS
966          * devices, excluding both LPSS DMA controllers, along with SCC domain.
967          */
968         u32 func_dis, d3_sts_0, pmc_status;
969         int ret;
970
971         ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
972         if (ret)
973                 return;
974
975         mutex_lock(&lpss_iosf_mutex);
976
977         ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
978         if (ret)
979                 goto exit;
980
981         /*
982          * Get the status of entire LPSS power island per device basis.
983          * Shutdown both LPSS DMA controllers if and only if all other devices
984          * are already in D3hot.
985          */
986         pmc_status = (~(d3_sts_0 | func_dis)) & pmc_atom_d3_mask;
987         if (pmc_status)
988                 goto exit;
989
990         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
991                         LPSS_IOSF_PMCSR, value2, mask2);
992
993         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
994                         LPSS_IOSF_PMCSR, value2, mask2);
995
996         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
997                         LPSS_IOSF_GPIODEF0, value1, mask1);
998
999         lpss_iosf_d3_entered = true;
1000
1001 exit:
1002         mutex_unlock(&lpss_iosf_mutex);
1003 }
1004
1005 static void lpss_iosf_exit_d3_state(void)
1006 {
1007         u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
1008                      LPSS_GPIODEF0_DMA_LLP;
1009         u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
1010         u32 value2 = LPSS_PMCSR_D0;
1011         u32 mask2 = LPSS_PMCSR_Dx_MASK;
1012
1013         mutex_lock(&lpss_iosf_mutex);
1014
1015         if (!lpss_iosf_d3_entered)
1016                 goto exit;
1017
1018         lpss_iosf_d3_entered = false;
1019
1020         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
1021                         LPSS_IOSF_GPIODEF0, value1, mask1);
1022
1023         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
1024                         LPSS_IOSF_PMCSR, value2, mask2);
1025
1026         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
1027                         LPSS_IOSF_PMCSR, value2, mask2);
1028
1029 exit:
1030         mutex_unlock(&lpss_iosf_mutex);
1031 }
1032
1033 static int acpi_lpss_suspend(struct device *dev, bool wakeup)
1034 {
1035         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1036         int ret;
1037
1038         if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
1039                 acpi_lpss_save_ctx(dev, pdata);
1040
1041         ret = acpi_dev_suspend(dev, wakeup);
1042
1043         /*
1044          * This call must be last in the sequence, otherwise PMC will return
1045          * wrong status for devices being about to be powered off. See
1046          * lpss_iosf_enter_d3_state() for further information.
1047          */
1048         if (acpi_target_system_state() == ACPI_STATE_S0 &&
1049             lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1050                 lpss_iosf_enter_d3_state();
1051
1052         return ret;
1053 }
1054
1055 static int acpi_lpss_resume(struct device *dev)
1056 {
1057         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1058         int ret;
1059
1060         /*
1061          * This call is kept first to be in symmetry with
1062          * acpi_lpss_runtime_suspend() one.
1063          */
1064         if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1065                 lpss_iosf_exit_d3_state();
1066
1067         ret = acpi_dev_resume(dev);
1068         if (ret)
1069                 return ret;
1070
1071         acpi_lpss_d3_to_d0_delay(pdata);
1072
1073         if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
1074                 acpi_lpss_restore_ctx(dev, pdata);
1075
1076         return 0;
1077 }
1078
1079 #ifdef CONFIG_PM_SLEEP
1080 static int acpi_lpss_do_suspend_late(struct device *dev)
1081 {
1082         int ret;
1083
1084         if (dev_pm_skip_suspend(dev))
1085                 return 0;
1086
1087         ret = pm_generic_suspend_late(dev);
1088         return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1089 }
1090
1091 static int acpi_lpss_suspend_late(struct device *dev)
1092 {
1093         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1094
1095         if (pdata->dev_desc->resume_from_noirq)
1096                 return 0;
1097
1098         return acpi_lpss_do_suspend_late(dev);
1099 }
1100
1101 static int acpi_lpss_suspend_noirq(struct device *dev)
1102 {
1103         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1104         int ret;
1105
1106         if (pdata->dev_desc->resume_from_noirq) {
1107                 /*
1108                  * The driver's ->suspend_late callback will be invoked by
1109                  * acpi_lpss_do_suspend_late(), with the assumption that the
1110                  * driver really wanted to run that code in ->suspend_noirq, but
1111                  * it could not run after acpi_dev_suspend() and the driver
1112                  * expected the latter to be called in the "late" phase.
1113                  */
1114                 ret = acpi_lpss_do_suspend_late(dev);
1115                 if (ret)
1116                         return ret;
1117         }
1118
1119         return acpi_subsys_suspend_noirq(dev);
1120 }
1121
1122 static int acpi_lpss_do_resume_early(struct device *dev)
1123 {
1124         int ret = acpi_lpss_resume(dev);
1125
1126         return ret ? ret : pm_generic_resume_early(dev);
1127 }
1128
1129 static int acpi_lpss_resume_early(struct device *dev)
1130 {
1131         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1132
1133         if (pdata->dev_desc->resume_from_noirq)
1134                 return 0;
1135
1136         if (dev_pm_skip_resume(dev))
1137                 return 0;
1138
1139         return acpi_lpss_do_resume_early(dev);
1140 }
1141
1142 static int acpi_lpss_resume_noirq(struct device *dev)
1143 {
1144         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1145         int ret;
1146
1147         /* Follow acpi_subsys_resume_noirq(). */
1148         if (dev_pm_skip_resume(dev))
1149                 return 0;
1150
1151         ret = pm_generic_resume_noirq(dev);
1152         if (ret)
1153                 return ret;
1154
1155         if (!pdata->dev_desc->resume_from_noirq)
1156                 return 0;
1157
1158         /*
1159          * The driver's ->resume_early callback will be invoked by
1160          * acpi_lpss_do_resume_early(), with the assumption that the driver
1161          * really wanted to run that code in ->resume_noirq, but it could not
1162          * run before acpi_dev_resume() and the driver expected the latter to be
1163          * called in the "early" phase.
1164          */
1165         return acpi_lpss_do_resume_early(dev);
1166 }
1167
1168 static int acpi_lpss_do_restore_early(struct device *dev)
1169 {
1170         int ret = acpi_lpss_resume(dev);
1171
1172         return ret ? ret : pm_generic_restore_early(dev);
1173 }
1174
1175 static int acpi_lpss_restore_early(struct device *dev)
1176 {
1177         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1178
1179         if (pdata->dev_desc->resume_from_noirq)
1180                 return 0;
1181
1182         return acpi_lpss_do_restore_early(dev);
1183 }
1184
1185 static int acpi_lpss_restore_noirq(struct device *dev)
1186 {
1187         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1188         int ret;
1189
1190         ret = pm_generic_restore_noirq(dev);
1191         if (ret)
1192                 return ret;
1193
1194         if (!pdata->dev_desc->resume_from_noirq)
1195                 return 0;
1196
1197         /* This is analogous to what happens in acpi_lpss_resume_noirq(). */
1198         return acpi_lpss_do_restore_early(dev);
1199 }
1200
1201 static int acpi_lpss_do_poweroff_late(struct device *dev)
1202 {
1203         int ret = pm_generic_poweroff_late(dev);
1204
1205         return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1206 }
1207
1208 static int acpi_lpss_poweroff_late(struct device *dev)
1209 {
1210         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1211
1212         if (dev_pm_skip_suspend(dev))
1213                 return 0;
1214
1215         if (pdata->dev_desc->resume_from_noirq)
1216                 return 0;
1217
1218         return acpi_lpss_do_poweroff_late(dev);
1219 }
1220
1221 static int acpi_lpss_poweroff_noirq(struct device *dev)
1222 {
1223         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1224
1225         if (dev_pm_skip_suspend(dev))
1226                 return 0;
1227
1228         if (pdata->dev_desc->resume_from_noirq) {
1229                 /* This is analogous to the acpi_lpss_suspend_noirq() case. */
1230                 int ret = acpi_lpss_do_poweroff_late(dev);
1231
1232                 if (ret)
1233                         return ret;
1234         }
1235
1236         return pm_generic_poweroff_noirq(dev);
1237 }
1238 #endif /* CONFIG_PM_SLEEP */
1239
1240 static int acpi_lpss_runtime_suspend(struct device *dev)
1241 {
1242         int ret = pm_generic_runtime_suspend(dev);
1243
1244         return ret ? ret : acpi_lpss_suspend(dev, true);
1245 }
1246
1247 static int acpi_lpss_runtime_resume(struct device *dev)
1248 {
1249         int ret = acpi_lpss_resume(dev);
1250
1251         return ret ? ret : pm_generic_runtime_resume(dev);
1252 }
1253 #endif /* CONFIG_PM */
1254
1255 static struct dev_pm_domain acpi_lpss_pm_domain = {
1256 #ifdef CONFIG_PM
1257         .activate = acpi_lpss_activate,
1258         .dismiss = acpi_lpss_dismiss,
1259 #endif
1260         .ops = {
1261 #ifdef CONFIG_PM
1262 #ifdef CONFIG_PM_SLEEP
1263                 .prepare = acpi_subsys_prepare,
1264                 .complete = acpi_subsys_complete,
1265                 .suspend = acpi_subsys_suspend,
1266                 .suspend_late = acpi_lpss_suspend_late,
1267                 .suspend_noirq = acpi_lpss_suspend_noirq,
1268                 .resume_noirq = acpi_lpss_resume_noirq,
1269                 .resume_early = acpi_lpss_resume_early,
1270                 .freeze = acpi_subsys_freeze,
1271                 .poweroff = acpi_subsys_poweroff,
1272                 .poweroff_late = acpi_lpss_poweroff_late,
1273                 .poweroff_noirq = acpi_lpss_poweroff_noirq,
1274                 .restore_noirq = acpi_lpss_restore_noirq,
1275                 .restore_early = acpi_lpss_restore_early,
1276 #endif
1277                 .runtime_suspend = acpi_lpss_runtime_suspend,
1278                 .runtime_resume = acpi_lpss_runtime_resume,
1279 #endif
1280         },
1281 };
1282
1283 static int acpi_lpss_platform_notify(struct notifier_block *nb,
1284                                      unsigned long action, void *data)
1285 {
1286         struct platform_device *pdev = to_platform_device(data);
1287         struct lpss_private_data *pdata;
1288         struct acpi_device *adev;
1289         const struct acpi_device_id *id;
1290
1291         id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
1292         if (!id || !id->driver_data)
1293                 return 0;
1294
1295         adev = ACPI_COMPANION(&pdev->dev);
1296         if (!adev)
1297                 return 0;
1298
1299         pdata = acpi_driver_data(adev);
1300         if (!pdata)
1301                 return 0;
1302
1303         if (pdata->mmio_base &&
1304             pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
1305                 dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
1306                 return 0;
1307         }
1308
1309         switch (action) {
1310         case BUS_NOTIFY_BIND_DRIVER:
1311                 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1312                 break;
1313         case BUS_NOTIFY_DRIVER_NOT_BOUND:
1314         case BUS_NOTIFY_UNBOUND_DRIVER:
1315                 dev_pm_domain_set(&pdev->dev, NULL);
1316                 break;
1317         case BUS_NOTIFY_ADD_DEVICE:
1318                 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1319                 if (pdata->dev_desc->flags & LPSS_LTR)
1320                         return sysfs_create_group(&pdev->dev.kobj,
1321                                                   &lpss_attr_group);
1322                 break;
1323         case BUS_NOTIFY_DEL_DEVICE:
1324                 if (pdata->dev_desc->flags & LPSS_LTR)
1325                         sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
1326                 dev_pm_domain_set(&pdev->dev, NULL);
1327                 break;
1328         default:
1329                 break;
1330         }
1331
1332         return 0;
1333 }
1334
1335 static struct notifier_block acpi_lpss_nb = {
1336         .notifier_call = acpi_lpss_platform_notify,
1337 };
1338
1339 static void acpi_lpss_bind(struct device *dev)
1340 {
1341         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1342
1343         if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
1344                 return;
1345
1346         if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
1347                 dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
1348         else
1349                 dev_err(dev, "MMIO size insufficient to access LTR\n");
1350 }
1351
1352 static void acpi_lpss_unbind(struct device *dev)
1353 {
1354         dev->power.set_latency_tolerance = NULL;
1355 }
1356
1357 static struct acpi_scan_handler lpss_handler = {
1358         .ids = acpi_lpss_device_ids,
1359         .attach = acpi_lpss_create_device,
1360         .bind = acpi_lpss_bind,
1361         .unbind = acpi_lpss_unbind,
1362 };
1363
1364 void __init acpi_lpss_init(void)
1365 {
1366         const struct x86_cpu_id *id;
1367         int ret;
1368
1369         ret = lpss_atom_clk_init();
1370         if (ret)
1371                 return;
1372
1373         id = x86_match_cpu(lpss_cpu_ids);
1374         if (id)
1375                 lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
1376
1377         bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
1378         acpi_scan_add_handler(&lpss_handler);
1379 }
1380
1381 #else
1382
1383 static struct acpi_scan_handler lpss_handler = {
1384         .ids = acpi_lpss_device_ids,
1385 };
1386
1387 void __init acpi_lpss_init(void)
1388 {
1389         acpi_scan_add_handler(&lpss_handler);
1390 }
1391
1392 #endif /* CONFIG_X86_INTEL_LPSS */