HID: playstation: sanity check DualSense calibration data.
[platform/kernel/linux-starfive.git] / drivers / acpi / acpi_lpss.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ACPI support for Intel Lynxpoint LPSS.
4  *
5  * Copyright (C) 2013, Intel Corporation
6  * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7  *          Rafael J. Wysocki <rafael.j.wysocki@intel.com>
8  */
9
10 #include <linux/acpi.h>
11 #include <linux/clkdev.h>
12 #include <linux/clk-provider.h>
13 #include <linux/dmi.h>
14 #include <linux/err.h>
15 #include <linux/io.h>
16 #include <linux/mutex.h>
17 #include <linux/pci.h>
18 #include <linux/platform_device.h>
19 #include <linux/platform_data/x86/clk-lpss.h>
20 #include <linux/platform_data/x86/pmc_atom.h>
21 #include <linux/pm_domain.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pwm.h>
24 #include <linux/pxa2xx_ssp.h>
25 #include <linux/suspend.h>
26 #include <linux/delay.h>
27
28 #include "internal.h"
29
30 #ifdef CONFIG_X86_INTEL_LPSS
31
32 #include <asm/cpu_device_id.h>
33 #include <asm/intel-family.h>
34 #include <asm/iosf_mbi.h>
35
36 #define LPSS_ADDR(desc) ((unsigned long)&desc)
37
38 #define LPSS_CLK_SIZE   0x04
39 #define LPSS_LTR_SIZE   0x18
40
41 /* Offsets relative to LPSS_PRIVATE_OFFSET */
42 #define LPSS_CLK_DIVIDER_DEF_MASK       (BIT(1) | BIT(16))
43 #define LPSS_RESETS                     0x04
44 #define LPSS_RESETS_RESET_FUNC          BIT(0)
45 #define LPSS_RESETS_RESET_APB           BIT(1)
46 #define LPSS_GENERAL                    0x08
47 #define LPSS_GENERAL_LTR_MODE_SW        BIT(2)
48 #define LPSS_GENERAL_UART_RTS_OVRD      BIT(3)
49 #define LPSS_SW_LTR                     0x10
50 #define LPSS_AUTO_LTR                   0x14
51 #define LPSS_LTR_SNOOP_REQ              BIT(15)
52 #define LPSS_LTR_SNOOP_MASK             0x0000FFFF
53 #define LPSS_LTR_SNOOP_LAT_1US          0x800
54 #define LPSS_LTR_SNOOP_LAT_32US         0xC00
55 #define LPSS_LTR_SNOOP_LAT_SHIFT        5
56 #define LPSS_LTR_SNOOP_LAT_CUTOFF       3000
57 #define LPSS_LTR_MAX_VAL                0x3FF
58 #define LPSS_TX_INT                     0x20
59 #define LPSS_TX_INT_MASK                BIT(1)
60
61 #define LPSS_PRV_REG_COUNT              9
62
63 /* LPSS Flags */
64 #define LPSS_CLK                        BIT(0)
65 #define LPSS_CLK_GATE                   BIT(1)
66 #define LPSS_CLK_DIVIDER                BIT(2)
67 #define LPSS_LTR                        BIT(3)
68 #define LPSS_SAVE_CTX                   BIT(4)
69 /*
70  * For some devices the DSDT AML code for another device turns off the device
71  * before our suspend handler runs, causing us to read/save all 1-s (0xffffffff)
72  * as ctx register values.
73  * Luckily these devices always use the same ctx register values, so we can
74  * work around this by saving the ctx registers once on activation.
75  */
76 #define LPSS_SAVE_CTX_ONCE              BIT(5)
77 #define LPSS_NO_D3_DELAY                BIT(6)
78
79 struct lpss_private_data;
80
81 struct lpss_device_desc {
82         unsigned int flags;
83         const char *clk_con_id;
84         unsigned int prv_offset;
85         size_t prv_size_override;
86         const struct property_entry *properties;
87         void (*setup)(struct lpss_private_data *pdata);
88         bool resume_from_noirq;
89 };
90
91 static const struct lpss_device_desc lpss_dma_desc = {
92         .flags = LPSS_CLK,
93 };
94
95 struct lpss_private_data {
96         struct acpi_device *adev;
97         void __iomem *mmio_base;
98         resource_size_t mmio_size;
99         unsigned int fixed_clk_rate;
100         struct clk *clk;
101         const struct lpss_device_desc *dev_desc;
102         u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
103 };
104
105 /* Devices which need to be in D3 before lpss_iosf_enter_d3_state() proceeds */
106 static u32 pmc_atom_d3_mask = 0xfe000ffe;
107
108 /* LPSS run time quirks */
109 static unsigned int lpss_quirks;
110
111 /*
112  * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
113  *
114  * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
115  * it can be powered off automatically whenever the last LPSS device goes down.
116  * In case of no power any access to the DMA controller will hang the system.
117  * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
118  * well as on ASuS T100TA transformer.
119  *
120  * This quirk overrides power state of entire LPSS island to keep DMA powered
121  * on whenever we have at least one other device in use.
122  */
123 #define LPSS_QUIRK_ALWAYS_POWER_ON      BIT(0)
124
125 /* UART Component Parameter Register */
126 #define LPSS_UART_CPR                   0xF4
127 #define LPSS_UART_CPR_AFCE              BIT(4)
128
129 static void lpss_uart_setup(struct lpss_private_data *pdata)
130 {
131         unsigned int offset;
132         u32 val;
133
134         offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
135         val = readl(pdata->mmio_base + offset);
136         writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
137
138         val = readl(pdata->mmio_base + LPSS_UART_CPR);
139         if (!(val & LPSS_UART_CPR_AFCE)) {
140                 offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
141                 val = readl(pdata->mmio_base + offset);
142                 val |= LPSS_GENERAL_UART_RTS_OVRD;
143                 writel(val, pdata->mmio_base + offset);
144         }
145 }
146
147 static void lpss_deassert_reset(struct lpss_private_data *pdata)
148 {
149         unsigned int offset;
150         u32 val;
151
152         offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
153         val = readl(pdata->mmio_base + offset);
154         val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
155         writel(val, pdata->mmio_base + offset);
156 }
157
158 /*
159  * BYT PWM used for backlight control by the i915 driver on systems without
160  * the Crystal Cove PMIC.
161  */
162 static struct pwm_lookup byt_pwm_lookup[] = {
163         PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
164                                "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
165                                "pwm-lpss-platform"),
166 };
167
168 static void byt_pwm_setup(struct lpss_private_data *pdata)
169 {
170         u64 uid;
171
172         /* Only call pwm_add_table for the first PWM controller */
173         if (acpi_dev_uid_to_integer(pdata->adev, &uid) || uid != 1)
174                 return;
175
176         pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
177 }
178
179 #define LPSS_I2C_ENABLE                 0x6c
180
181 static void byt_i2c_setup(struct lpss_private_data *pdata)
182 {
183         acpi_handle handle = pdata->adev->handle;
184         unsigned long long shared_host = 0;
185         acpi_status status;
186         u64 uid;
187
188         /* Expected to always be successfull, but better safe then sorry */
189         if (!acpi_dev_uid_to_integer(pdata->adev, &uid) && uid) {
190                 /* Detect I2C bus shared with PUNIT and ignore its d3 status */
191                 status = acpi_evaluate_integer(handle, "_SEM", NULL, &shared_host);
192                 if (ACPI_SUCCESS(status) && shared_host)
193                         pmc_atom_d3_mask &= ~(BIT_LPSS2_F1_I2C1 << (uid - 1));
194         }
195
196         lpss_deassert_reset(pdata);
197
198         if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
199                 pdata->fixed_clk_rate = 133000000;
200
201         writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
202 }
203
204 /* BSW PWM used for backlight control by the i915 driver */
205 static struct pwm_lookup bsw_pwm_lookup[] = {
206         PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
207                                "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
208                                "pwm-lpss-platform"),
209 };
210
211 static void bsw_pwm_setup(struct lpss_private_data *pdata)
212 {
213         u64 uid;
214
215         /* Only call pwm_add_table for the first PWM controller */
216         if (acpi_dev_uid_to_integer(pdata->adev, &uid) || uid != 1)
217                 return;
218
219         pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
220 }
221
222 static const struct property_entry lpt_spi_properties[] = {
223         PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_LPT_SSP),
224         { }
225 };
226
227 static const struct lpss_device_desc lpt_spi_dev_desc = {
228         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
229                         | LPSS_SAVE_CTX,
230         .prv_offset = 0x800,
231         .properties = lpt_spi_properties,
232 };
233
234 static const struct lpss_device_desc lpt_i2c_dev_desc = {
235         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR | LPSS_SAVE_CTX,
236         .prv_offset = 0x800,
237 };
238
239 static struct property_entry uart_properties[] = {
240         PROPERTY_ENTRY_U32("reg-io-width", 4),
241         PROPERTY_ENTRY_U32("reg-shift", 2),
242         PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
243         { },
244 };
245
246 static const struct lpss_device_desc lpt_uart_dev_desc = {
247         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
248                         | LPSS_SAVE_CTX,
249         .clk_con_id = "baudclk",
250         .prv_offset = 0x800,
251         .setup = lpss_uart_setup,
252         .properties = uart_properties,
253 };
254
255 static const struct lpss_device_desc lpt_sdio_dev_desc = {
256         .flags = LPSS_LTR,
257         .prv_offset = 0x1000,
258         .prv_size_override = 0x1018,
259 };
260
261 static const struct lpss_device_desc byt_pwm_dev_desc = {
262         .flags = LPSS_SAVE_CTX,
263         .prv_offset = 0x800,
264         .setup = byt_pwm_setup,
265 };
266
267 static const struct lpss_device_desc bsw_pwm_dev_desc = {
268         .flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY,
269         .prv_offset = 0x800,
270         .setup = bsw_pwm_setup,
271         .resume_from_noirq = true,
272 };
273
274 static const struct lpss_device_desc byt_uart_dev_desc = {
275         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
276         .clk_con_id = "baudclk",
277         .prv_offset = 0x800,
278         .setup = lpss_uart_setup,
279         .properties = uart_properties,
280 };
281
282 static const struct lpss_device_desc bsw_uart_dev_desc = {
283         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
284                         | LPSS_NO_D3_DELAY,
285         .clk_con_id = "baudclk",
286         .prv_offset = 0x800,
287         .setup = lpss_uart_setup,
288         .properties = uart_properties,
289 };
290
291 static const struct property_entry byt_spi_properties[] = {
292         PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_BYT_SSP),
293         { }
294 };
295
296 static const struct lpss_device_desc byt_spi_dev_desc = {
297         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
298         .prv_offset = 0x400,
299         .properties = byt_spi_properties,
300 };
301
302 static const struct lpss_device_desc byt_sdio_dev_desc = {
303         .flags = LPSS_CLK,
304 };
305
306 static const struct lpss_device_desc byt_i2c_dev_desc = {
307         .flags = LPSS_CLK | LPSS_SAVE_CTX,
308         .prv_offset = 0x800,
309         .setup = byt_i2c_setup,
310         .resume_from_noirq = true,
311 };
312
313 static const struct lpss_device_desc bsw_i2c_dev_desc = {
314         .flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
315         .prv_offset = 0x800,
316         .setup = byt_i2c_setup,
317         .resume_from_noirq = true,
318 };
319
320 static const struct property_entry bsw_spi_properties[] = {
321         PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_BSW_SSP),
322         { }
323 };
324
325 static const struct lpss_device_desc bsw_spi_dev_desc = {
326         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
327                         | LPSS_NO_D3_DELAY,
328         .prv_offset = 0x400,
329         .setup = lpss_deassert_reset,
330         .properties = bsw_spi_properties,
331 };
332
333 static const struct x86_cpu_id lpss_cpu_ids[] = {
334         X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT,     NULL),
335         X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT,        NULL),
336         {}
337 };
338
339 #else
340
341 #define LPSS_ADDR(desc) (0UL)
342
343 #endif /* CONFIG_X86_INTEL_LPSS */
344
345 static const struct acpi_device_id acpi_lpss_device_ids[] = {
346         /* Generic LPSS devices */
347         { "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
348
349         /* Lynxpoint LPSS devices */
350         { "INT33C0", LPSS_ADDR(lpt_spi_dev_desc) },
351         { "INT33C1", LPSS_ADDR(lpt_spi_dev_desc) },
352         { "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
353         { "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
354         { "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
355         { "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
356         { "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
357         { "INT33C7", },
358
359         /* BayTrail LPSS devices */
360         { "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
361         { "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
362         { "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
363         { "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
364         { "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
365         { "INT33B2", },
366         { "INT33FC", },
367
368         /* Braswell LPSS devices */
369         { "80862286", LPSS_ADDR(lpss_dma_desc) },
370         { "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
371         { "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
372         { "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
373         { "808622C0", LPSS_ADDR(lpss_dma_desc) },
374         { "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
375
376         /* Broadwell LPSS devices */
377         { "INT3430", LPSS_ADDR(lpt_spi_dev_desc) },
378         { "INT3431", LPSS_ADDR(lpt_spi_dev_desc) },
379         { "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
380         { "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
381         { "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
382         { "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
383         { "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
384         { "INT3437", },
385
386         /* Wildcat Point LPSS devices */
387         { "INT3438", LPSS_ADDR(lpt_spi_dev_desc) },
388
389         { }
390 };
391
392 #ifdef CONFIG_X86_INTEL_LPSS
393
394 /* LPSS main clock device. */
395 static struct platform_device *lpss_clk_dev;
396
397 static inline void lpt_register_clock_device(void)
398 {
399         lpss_clk_dev = platform_device_register_simple("clk-lpss-atom",
400                                                        PLATFORM_DEVID_NONE,
401                                                        NULL, 0);
402 }
403
404 static int register_device_clock(struct acpi_device *adev,
405                                  struct lpss_private_data *pdata)
406 {
407         const struct lpss_device_desc *dev_desc = pdata->dev_desc;
408         const char *devname = dev_name(&adev->dev);
409         struct clk *clk;
410         struct lpss_clk_data *clk_data;
411         const char *parent, *clk_name;
412         void __iomem *prv_base;
413
414         if (!lpss_clk_dev)
415                 lpt_register_clock_device();
416
417         if (IS_ERR(lpss_clk_dev))
418                 return PTR_ERR(lpss_clk_dev);
419
420         clk_data = platform_get_drvdata(lpss_clk_dev);
421         if (!clk_data)
422                 return -ENODEV;
423         clk = clk_data->clk;
424
425         if (!pdata->mmio_base
426             || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
427                 return -ENODATA;
428
429         parent = clk_data->name;
430         prv_base = pdata->mmio_base + dev_desc->prv_offset;
431
432         if (pdata->fixed_clk_rate) {
433                 clk = clk_register_fixed_rate(NULL, devname, parent, 0,
434                                               pdata->fixed_clk_rate);
435                 goto out;
436         }
437
438         if (dev_desc->flags & LPSS_CLK_GATE) {
439                 clk = clk_register_gate(NULL, devname, parent, 0,
440                                         prv_base, 0, 0, NULL);
441                 parent = devname;
442         }
443
444         if (dev_desc->flags & LPSS_CLK_DIVIDER) {
445                 /* Prevent division by zero */
446                 if (!readl(prv_base))
447                         writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
448
449                 clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
450                 if (!clk_name)
451                         return -ENOMEM;
452                 clk = clk_register_fractional_divider(NULL, clk_name, parent,
453                                                       CLK_FRAC_DIVIDER_POWER_OF_TWO_PS,
454                                                       prv_base, 1, 15, 16, 15, 0, NULL);
455                 parent = clk_name;
456
457                 clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
458                 if (!clk_name) {
459                         kfree(parent);
460                         return -ENOMEM;
461                 }
462                 clk = clk_register_gate(NULL, clk_name, parent,
463                                         CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
464                                         prv_base, 31, 0, NULL);
465                 kfree(parent);
466                 kfree(clk_name);
467         }
468 out:
469         if (IS_ERR(clk))
470                 return PTR_ERR(clk);
471
472         pdata->clk = clk;
473         clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
474         return 0;
475 }
476
477 struct lpss_device_links {
478         const char *supplier_hid;
479         const char *supplier_uid;
480         const char *consumer_hid;
481         const char *consumer_uid;
482         u32 flags;
483         const struct dmi_system_id *dep_missing_ids;
484 };
485
486 /* Please keep this list sorted alphabetically by vendor and model */
487 static const struct dmi_system_id i2c1_dep_missing_dmi_ids[] = {
488         {
489                 .matches = {
490                         DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
491                         DMI_MATCH(DMI_PRODUCT_NAME, "T200TA"),
492                 },
493         },
494         {}
495 };
496
497 /*
498  * The _DEP method is used to identify dependencies but instead of creating
499  * device links for every handle in _DEP, only links in the following list are
500  * created. That is necessary because, in the general case, _DEP can refer to
501  * devices that might not have drivers, or that are on different buses, or where
502  * the supplier is not enumerated until after the consumer is probed.
503  */
504 static const struct lpss_device_links lpss_device_links[] = {
505         /* CHT External sdcard slot controller depends on PMIC I2C ctrl */
506         {"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME},
507         /* CHT iGPU depends on PMIC I2C controller */
508         {"808622C1", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
509         /* BYT iGPU depends on the Embedded Controller I2C controller (UID 1) */
510         {"80860F41", "1", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME,
511          i2c1_dep_missing_dmi_ids},
512         /* BYT CR iGPU depends on PMIC I2C controller (UID 5 on CR) */
513         {"80860F41", "5", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
514         /* BYT iGPU depends on PMIC I2C controller (UID 7 on non CR) */
515         {"80860F41", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
516 };
517
518 static bool acpi_lpss_is_supplier(struct acpi_device *adev,
519                                   const struct lpss_device_links *link)
520 {
521         return acpi_dev_hid_uid_match(adev, link->supplier_hid, link->supplier_uid);
522 }
523
524 static bool acpi_lpss_is_consumer(struct acpi_device *adev,
525                                   const struct lpss_device_links *link)
526 {
527         return acpi_dev_hid_uid_match(adev, link->consumer_hid, link->consumer_uid);
528 }
529
530 struct hid_uid {
531         const char *hid;
532         const char *uid;
533 };
534
535 static int match_hid_uid(struct device *dev, const void *data)
536 {
537         struct acpi_device *adev = ACPI_COMPANION(dev);
538         const struct hid_uid *id = data;
539
540         if (!adev)
541                 return 0;
542
543         return acpi_dev_hid_uid_match(adev, id->hid, id->uid);
544 }
545
546 static struct device *acpi_lpss_find_device(const char *hid, const char *uid)
547 {
548         struct device *dev;
549
550         struct hid_uid data = {
551                 .hid = hid,
552                 .uid = uid,
553         };
554
555         dev = bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid);
556         if (dev)
557                 return dev;
558
559         return bus_find_device(&pci_bus_type, NULL, &data, match_hid_uid);
560 }
561
562 static bool acpi_lpss_dep(struct acpi_device *adev, acpi_handle handle)
563 {
564         struct acpi_handle_list dep_devices;
565         acpi_status status;
566         int i;
567
568         if (!acpi_has_method(adev->handle, "_DEP"))
569                 return false;
570
571         status = acpi_evaluate_reference(adev->handle, "_DEP", NULL,
572                                          &dep_devices);
573         if (ACPI_FAILURE(status)) {
574                 dev_dbg(&adev->dev, "Failed to evaluate _DEP.\n");
575                 return false;
576         }
577
578         for (i = 0; i < dep_devices.count; i++) {
579                 if (dep_devices.handles[i] == handle)
580                         return true;
581         }
582
583         return false;
584 }
585
586 static void acpi_lpss_link_consumer(struct device *dev1,
587                                     const struct lpss_device_links *link)
588 {
589         struct device *dev2;
590
591         dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid);
592         if (!dev2)
593                 return;
594
595         if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
596             || acpi_lpss_dep(ACPI_COMPANION(dev2), ACPI_HANDLE(dev1)))
597                 device_link_add(dev2, dev1, link->flags);
598
599         put_device(dev2);
600 }
601
602 static void acpi_lpss_link_supplier(struct device *dev1,
603                                     const struct lpss_device_links *link)
604 {
605         struct device *dev2;
606
607         dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid);
608         if (!dev2)
609                 return;
610
611         if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
612             || acpi_lpss_dep(ACPI_COMPANION(dev1), ACPI_HANDLE(dev2)))
613                 device_link_add(dev1, dev2, link->flags);
614
615         put_device(dev2);
616 }
617
618 static void acpi_lpss_create_device_links(struct acpi_device *adev,
619                                           struct platform_device *pdev)
620 {
621         int i;
622
623         for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) {
624                 const struct lpss_device_links *link = &lpss_device_links[i];
625
626                 if (acpi_lpss_is_supplier(adev, link))
627                         acpi_lpss_link_consumer(&pdev->dev, link);
628
629                 if (acpi_lpss_is_consumer(adev, link))
630                         acpi_lpss_link_supplier(&pdev->dev, link);
631         }
632 }
633
634 static int acpi_lpss_create_device(struct acpi_device *adev,
635                                    const struct acpi_device_id *id)
636 {
637         const struct lpss_device_desc *dev_desc;
638         struct lpss_private_data *pdata;
639         struct resource_entry *rentry;
640         struct list_head resource_list;
641         struct platform_device *pdev;
642         int ret;
643
644         dev_desc = (const struct lpss_device_desc *)id->driver_data;
645         if (!dev_desc) {
646                 pdev = acpi_create_platform_device(adev, NULL);
647                 return IS_ERR_OR_NULL(pdev) ? PTR_ERR(pdev) : 1;
648         }
649         pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
650         if (!pdata)
651                 return -ENOMEM;
652
653         INIT_LIST_HEAD(&resource_list);
654         ret = acpi_dev_get_memory_resources(adev, &resource_list);
655         if (ret < 0)
656                 goto err_out;
657
658         rentry = list_first_entry_or_null(&resource_list, struct resource_entry, node);
659         if (rentry) {
660                 if (dev_desc->prv_size_override)
661                         pdata->mmio_size = dev_desc->prv_size_override;
662                 else
663                         pdata->mmio_size = resource_size(rentry->res);
664                 pdata->mmio_base = ioremap(rentry->res->start, pdata->mmio_size);
665         }
666
667         acpi_dev_free_resource_list(&resource_list);
668
669         if (!pdata->mmio_base) {
670                 /* Avoid acpi_bus_attach() instantiating a pdev for this dev. */
671                 adev->pnp.type.platform_id = 0;
672                 goto out_free;
673         }
674
675         pdata->adev = adev;
676         pdata->dev_desc = dev_desc;
677
678         if (dev_desc->setup)
679                 dev_desc->setup(pdata);
680
681         if (dev_desc->flags & LPSS_CLK) {
682                 ret = register_device_clock(adev, pdata);
683                 if (ret)
684                         goto out_free;
685         }
686
687         /*
688          * This works around a known issue in ACPI tables where LPSS devices
689          * have _PS0 and _PS3 without _PSC (and no power resources), so
690          * acpi_bus_init_power() will assume that the BIOS has put them into D0.
691          */
692         acpi_device_fix_up_power(adev);
693
694         adev->driver_data = pdata;
695         pdev = acpi_create_platform_device(adev, dev_desc->properties);
696         if (IS_ERR_OR_NULL(pdev)) {
697                 adev->driver_data = NULL;
698                 ret = PTR_ERR(pdev);
699                 goto err_out;
700         }
701
702         acpi_lpss_create_device_links(adev, pdev);
703         return 1;
704
705 out_free:
706         /* Skip the device, but continue the namespace scan */
707         ret = 0;
708 err_out:
709         kfree(pdata);
710         return ret;
711 }
712
713 static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
714 {
715         return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
716 }
717
718 static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
719                              unsigned int reg)
720 {
721         writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
722 }
723
724 static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
725 {
726         struct acpi_device *adev = ACPI_COMPANION(dev);
727         struct lpss_private_data *pdata;
728         unsigned long flags;
729         int ret;
730
731         if (WARN_ON(!adev))
732                 return -ENODEV;
733
734         spin_lock_irqsave(&dev->power.lock, flags);
735         if (pm_runtime_suspended(dev)) {
736                 ret = -EAGAIN;
737                 goto out;
738         }
739         pdata = acpi_driver_data(adev);
740         if (WARN_ON(!pdata || !pdata->mmio_base)) {
741                 ret = -ENODEV;
742                 goto out;
743         }
744         *val = __lpss_reg_read(pdata, reg);
745         ret = 0;
746
747  out:
748         spin_unlock_irqrestore(&dev->power.lock, flags);
749         return ret;
750 }
751
752 static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
753                              char *buf)
754 {
755         u32 ltr_value = 0;
756         unsigned int reg;
757         int ret;
758
759         reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
760         ret = lpss_reg_read(dev, reg, &ltr_value);
761         if (ret)
762                 return ret;
763
764         return sysfs_emit(buf, "%08x\n", ltr_value);
765 }
766
767 static ssize_t lpss_ltr_mode_show(struct device *dev,
768                                   struct device_attribute *attr, char *buf)
769 {
770         u32 ltr_mode = 0;
771         char *outstr;
772         int ret;
773
774         ret = lpss_reg_read(dev, LPSS_GENERAL, &ltr_mode);
775         if (ret)
776                 return ret;
777
778         outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
779         return sprintf(buf, "%s\n", outstr);
780 }
781
782 static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
783 static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
784 static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
785
786 static struct attribute *lpss_attrs[] = {
787         &dev_attr_auto_ltr.attr,
788         &dev_attr_sw_ltr.attr,
789         &dev_attr_ltr_mode.attr,
790         NULL,
791 };
792
793 static const struct attribute_group lpss_attr_group = {
794         .attrs = lpss_attrs,
795         .name = "lpss_ltr",
796 };
797
798 static void acpi_lpss_set_ltr(struct device *dev, s32 val)
799 {
800         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
801         u32 ltr_mode, ltr_val;
802
803         ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
804         if (val < 0) {
805                 if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
806                         ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
807                         __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
808                 }
809                 return;
810         }
811         ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
812         if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
813                 ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
814                 val = LPSS_LTR_MAX_VAL;
815         } else if (val > LPSS_LTR_MAX_VAL) {
816                 ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
817                 val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
818         } else {
819                 ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
820         }
821         ltr_val |= val;
822         __lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
823         if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
824                 ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
825                 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
826         }
827 }
828
829 #ifdef CONFIG_PM
830 /**
831  * acpi_lpss_save_ctx() - Save the private registers of LPSS device
832  * @dev: LPSS device
833  * @pdata: pointer to the private data of the LPSS device
834  *
835  * Most LPSS devices have private registers which may loose their context when
836  * the device is powered down. acpi_lpss_save_ctx() saves those registers into
837  * prv_reg_ctx array.
838  */
839 static void acpi_lpss_save_ctx(struct device *dev,
840                                struct lpss_private_data *pdata)
841 {
842         unsigned int i;
843
844         for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
845                 unsigned long offset = i * sizeof(u32);
846
847                 pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
848                 dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
849                         pdata->prv_reg_ctx[i], offset);
850         }
851 }
852
853 /**
854  * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
855  * @dev: LPSS device
856  * @pdata: pointer to the private data of the LPSS device
857  *
858  * Restores the registers that were previously stored with acpi_lpss_save_ctx().
859  */
860 static void acpi_lpss_restore_ctx(struct device *dev,
861                                   struct lpss_private_data *pdata)
862 {
863         unsigned int i;
864
865         for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
866                 unsigned long offset = i * sizeof(u32);
867
868                 __lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
869                 dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
870                         pdata->prv_reg_ctx[i], offset);
871         }
872 }
873
874 static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
875 {
876         /*
877          * The following delay is needed or the subsequent write operations may
878          * fail. The LPSS devices are actually PCI devices and the PCI spec
879          * expects 10ms delay before the device can be accessed after D3 to D0
880          * transition. However some platforms like BSW does not need this delay.
881          */
882         unsigned int delay = 10;        /* default 10ms delay */
883
884         if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
885                 delay = 0;
886
887         msleep(delay);
888 }
889
890 static int acpi_lpss_activate(struct device *dev)
891 {
892         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
893         int ret;
894
895         ret = acpi_dev_resume(dev);
896         if (ret)
897                 return ret;
898
899         acpi_lpss_d3_to_d0_delay(pdata);
900
901         /*
902          * This is called only on ->probe() stage where a device is either in
903          * known state defined by BIOS or most likely powered off. Due to this
904          * we have to deassert reset line to be sure that ->probe() will
905          * recognize the device.
906          */
907         if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
908                 lpss_deassert_reset(pdata);
909
910 #ifdef CONFIG_PM
911         if (pdata->dev_desc->flags & LPSS_SAVE_CTX_ONCE)
912                 acpi_lpss_save_ctx(dev, pdata);
913 #endif
914
915         return 0;
916 }
917
918 static void acpi_lpss_dismiss(struct device *dev)
919 {
920         acpi_dev_suspend(dev, false);
921 }
922
923 /* IOSF SB for LPSS island */
924 #define LPSS_IOSF_UNIT_LPIOEP           0xA0
925 #define LPSS_IOSF_UNIT_LPIO1            0xAB
926 #define LPSS_IOSF_UNIT_LPIO2            0xAC
927
928 #define LPSS_IOSF_PMCSR                 0x84
929 #define LPSS_PMCSR_D0                   0
930 #define LPSS_PMCSR_D3hot                3
931 #define LPSS_PMCSR_Dx_MASK              GENMASK(1, 0)
932
933 #define LPSS_IOSF_GPIODEF0              0x154
934 #define LPSS_GPIODEF0_DMA1_D3           BIT(2)
935 #define LPSS_GPIODEF0_DMA2_D3           BIT(3)
936 #define LPSS_GPIODEF0_DMA_D3_MASK       GENMASK(3, 2)
937 #define LPSS_GPIODEF0_DMA_LLP           BIT(13)
938
939 static DEFINE_MUTEX(lpss_iosf_mutex);
940 static bool lpss_iosf_d3_entered = true;
941
942 static void lpss_iosf_enter_d3_state(void)
943 {
944         u32 value1 = 0;
945         u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
946         u32 value2 = LPSS_PMCSR_D3hot;
947         u32 mask2 = LPSS_PMCSR_Dx_MASK;
948         /*
949          * PMC provides an information about actual status of the LPSS devices.
950          * Here we read the values related to LPSS power island, i.e. LPSS
951          * devices, excluding both LPSS DMA controllers, along with SCC domain.
952          */
953         u32 func_dis, d3_sts_0, pmc_status;
954         int ret;
955
956         ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
957         if (ret)
958                 return;
959
960         mutex_lock(&lpss_iosf_mutex);
961
962         ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
963         if (ret)
964                 goto exit;
965
966         /*
967          * Get the status of entire LPSS power island per device basis.
968          * Shutdown both LPSS DMA controllers if and only if all other devices
969          * are already in D3hot.
970          */
971         pmc_status = (~(d3_sts_0 | func_dis)) & pmc_atom_d3_mask;
972         if (pmc_status)
973                 goto exit;
974
975         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
976                         LPSS_IOSF_PMCSR, value2, mask2);
977
978         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
979                         LPSS_IOSF_PMCSR, value2, mask2);
980
981         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
982                         LPSS_IOSF_GPIODEF0, value1, mask1);
983
984         lpss_iosf_d3_entered = true;
985
986 exit:
987         mutex_unlock(&lpss_iosf_mutex);
988 }
989
990 static void lpss_iosf_exit_d3_state(void)
991 {
992         u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
993                      LPSS_GPIODEF0_DMA_LLP;
994         u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
995         u32 value2 = LPSS_PMCSR_D0;
996         u32 mask2 = LPSS_PMCSR_Dx_MASK;
997
998         mutex_lock(&lpss_iosf_mutex);
999
1000         if (!lpss_iosf_d3_entered)
1001                 goto exit;
1002
1003         lpss_iosf_d3_entered = false;
1004
1005         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
1006                         LPSS_IOSF_GPIODEF0, value1, mask1);
1007
1008         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
1009                         LPSS_IOSF_PMCSR, value2, mask2);
1010
1011         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
1012                         LPSS_IOSF_PMCSR, value2, mask2);
1013
1014 exit:
1015         mutex_unlock(&lpss_iosf_mutex);
1016 }
1017
1018 static int acpi_lpss_suspend(struct device *dev, bool wakeup)
1019 {
1020         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1021         int ret;
1022
1023         if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
1024                 acpi_lpss_save_ctx(dev, pdata);
1025
1026         ret = acpi_dev_suspend(dev, wakeup);
1027
1028         /*
1029          * This call must be last in the sequence, otherwise PMC will return
1030          * wrong status for devices being about to be powered off. See
1031          * lpss_iosf_enter_d3_state() for further information.
1032          */
1033         if (acpi_target_system_state() == ACPI_STATE_S0 &&
1034             lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1035                 lpss_iosf_enter_d3_state();
1036
1037         return ret;
1038 }
1039
1040 static int acpi_lpss_resume(struct device *dev)
1041 {
1042         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1043         int ret;
1044
1045         /*
1046          * This call is kept first to be in symmetry with
1047          * acpi_lpss_runtime_suspend() one.
1048          */
1049         if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1050                 lpss_iosf_exit_d3_state();
1051
1052         ret = acpi_dev_resume(dev);
1053         if (ret)
1054                 return ret;
1055
1056         acpi_lpss_d3_to_d0_delay(pdata);
1057
1058         if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
1059                 acpi_lpss_restore_ctx(dev, pdata);
1060
1061         return 0;
1062 }
1063
1064 #ifdef CONFIG_PM_SLEEP
1065 static int acpi_lpss_do_suspend_late(struct device *dev)
1066 {
1067         int ret;
1068
1069         if (dev_pm_skip_suspend(dev))
1070                 return 0;
1071
1072         ret = pm_generic_suspend_late(dev);
1073         return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1074 }
1075
1076 static int acpi_lpss_suspend_late(struct device *dev)
1077 {
1078         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1079
1080         if (pdata->dev_desc->resume_from_noirq)
1081                 return 0;
1082
1083         return acpi_lpss_do_suspend_late(dev);
1084 }
1085
1086 static int acpi_lpss_suspend_noirq(struct device *dev)
1087 {
1088         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1089         int ret;
1090
1091         if (pdata->dev_desc->resume_from_noirq) {
1092                 /*
1093                  * The driver's ->suspend_late callback will be invoked by
1094                  * acpi_lpss_do_suspend_late(), with the assumption that the
1095                  * driver really wanted to run that code in ->suspend_noirq, but
1096                  * it could not run after acpi_dev_suspend() and the driver
1097                  * expected the latter to be called in the "late" phase.
1098                  */
1099                 ret = acpi_lpss_do_suspend_late(dev);
1100                 if (ret)
1101                         return ret;
1102         }
1103
1104         return acpi_subsys_suspend_noirq(dev);
1105 }
1106
1107 static int acpi_lpss_do_resume_early(struct device *dev)
1108 {
1109         int ret = acpi_lpss_resume(dev);
1110
1111         return ret ? ret : pm_generic_resume_early(dev);
1112 }
1113
1114 static int acpi_lpss_resume_early(struct device *dev)
1115 {
1116         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1117
1118         if (pdata->dev_desc->resume_from_noirq)
1119                 return 0;
1120
1121         if (dev_pm_skip_resume(dev))
1122                 return 0;
1123
1124         return acpi_lpss_do_resume_early(dev);
1125 }
1126
1127 static int acpi_lpss_resume_noirq(struct device *dev)
1128 {
1129         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1130         int ret;
1131
1132         /* Follow acpi_subsys_resume_noirq(). */
1133         if (dev_pm_skip_resume(dev))
1134                 return 0;
1135
1136         ret = pm_generic_resume_noirq(dev);
1137         if (ret)
1138                 return ret;
1139
1140         if (!pdata->dev_desc->resume_from_noirq)
1141                 return 0;
1142
1143         /*
1144          * The driver's ->resume_early callback will be invoked by
1145          * acpi_lpss_do_resume_early(), with the assumption that the driver
1146          * really wanted to run that code in ->resume_noirq, but it could not
1147          * run before acpi_dev_resume() and the driver expected the latter to be
1148          * called in the "early" phase.
1149          */
1150         return acpi_lpss_do_resume_early(dev);
1151 }
1152
1153 static int acpi_lpss_do_restore_early(struct device *dev)
1154 {
1155         int ret = acpi_lpss_resume(dev);
1156
1157         return ret ? ret : pm_generic_restore_early(dev);
1158 }
1159
1160 static int acpi_lpss_restore_early(struct device *dev)
1161 {
1162         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1163
1164         if (pdata->dev_desc->resume_from_noirq)
1165                 return 0;
1166
1167         return acpi_lpss_do_restore_early(dev);
1168 }
1169
1170 static int acpi_lpss_restore_noirq(struct device *dev)
1171 {
1172         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1173         int ret;
1174
1175         ret = pm_generic_restore_noirq(dev);
1176         if (ret)
1177                 return ret;
1178
1179         if (!pdata->dev_desc->resume_from_noirq)
1180                 return 0;
1181
1182         /* This is analogous to what happens in acpi_lpss_resume_noirq(). */
1183         return acpi_lpss_do_restore_early(dev);
1184 }
1185
1186 static int acpi_lpss_do_poweroff_late(struct device *dev)
1187 {
1188         int ret = pm_generic_poweroff_late(dev);
1189
1190         return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1191 }
1192
1193 static int acpi_lpss_poweroff_late(struct device *dev)
1194 {
1195         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1196
1197         if (dev_pm_skip_suspend(dev))
1198                 return 0;
1199
1200         if (pdata->dev_desc->resume_from_noirq)
1201                 return 0;
1202
1203         return acpi_lpss_do_poweroff_late(dev);
1204 }
1205
1206 static int acpi_lpss_poweroff_noirq(struct device *dev)
1207 {
1208         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1209
1210         if (dev_pm_skip_suspend(dev))
1211                 return 0;
1212
1213         if (pdata->dev_desc->resume_from_noirq) {
1214                 /* This is analogous to the acpi_lpss_suspend_noirq() case. */
1215                 int ret = acpi_lpss_do_poweroff_late(dev);
1216
1217                 if (ret)
1218                         return ret;
1219         }
1220
1221         return pm_generic_poweroff_noirq(dev);
1222 }
1223 #endif /* CONFIG_PM_SLEEP */
1224
1225 static int acpi_lpss_runtime_suspend(struct device *dev)
1226 {
1227         int ret = pm_generic_runtime_suspend(dev);
1228
1229         return ret ? ret : acpi_lpss_suspend(dev, true);
1230 }
1231
1232 static int acpi_lpss_runtime_resume(struct device *dev)
1233 {
1234         int ret = acpi_lpss_resume(dev);
1235
1236         return ret ? ret : pm_generic_runtime_resume(dev);
1237 }
1238 #endif /* CONFIG_PM */
1239
1240 static struct dev_pm_domain acpi_lpss_pm_domain = {
1241 #ifdef CONFIG_PM
1242         .activate = acpi_lpss_activate,
1243         .dismiss = acpi_lpss_dismiss,
1244 #endif
1245         .ops = {
1246 #ifdef CONFIG_PM
1247 #ifdef CONFIG_PM_SLEEP
1248                 .prepare = acpi_subsys_prepare,
1249                 .complete = acpi_subsys_complete,
1250                 .suspend = acpi_subsys_suspend,
1251                 .suspend_late = acpi_lpss_suspend_late,
1252                 .suspend_noirq = acpi_lpss_suspend_noirq,
1253                 .resume_noirq = acpi_lpss_resume_noirq,
1254                 .resume_early = acpi_lpss_resume_early,
1255                 .freeze = acpi_subsys_freeze,
1256                 .poweroff = acpi_subsys_poweroff,
1257                 .poweroff_late = acpi_lpss_poweroff_late,
1258                 .poweroff_noirq = acpi_lpss_poweroff_noirq,
1259                 .restore_noirq = acpi_lpss_restore_noirq,
1260                 .restore_early = acpi_lpss_restore_early,
1261 #endif
1262                 .runtime_suspend = acpi_lpss_runtime_suspend,
1263                 .runtime_resume = acpi_lpss_runtime_resume,
1264 #endif
1265         },
1266 };
1267
1268 static int acpi_lpss_platform_notify(struct notifier_block *nb,
1269                                      unsigned long action, void *data)
1270 {
1271         struct platform_device *pdev = to_platform_device(data);
1272         struct lpss_private_data *pdata;
1273         struct acpi_device *adev;
1274         const struct acpi_device_id *id;
1275
1276         id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
1277         if (!id || !id->driver_data)
1278                 return 0;
1279
1280         adev = ACPI_COMPANION(&pdev->dev);
1281         if (!adev)
1282                 return 0;
1283
1284         pdata = acpi_driver_data(adev);
1285         if (!pdata)
1286                 return 0;
1287
1288         if (pdata->mmio_base &&
1289             pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
1290                 dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
1291                 return 0;
1292         }
1293
1294         switch (action) {
1295         case BUS_NOTIFY_BIND_DRIVER:
1296                 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1297                 break;
1298         case BUS_NOTIFY_DRIVER_NOT_BOUND:
1299         case BUS_NOTIFY_UNBOUND_DRIVER:
1300                 dev_pm_domain_set(&pdev->dev, NULL);
1301                 break;
1302         case BUS_NOTIFY_ADD_DEVICE:
1303                 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1304                 if (pdata->dev_desc->flags & LPSS_LTR)
1305                         return sysfs_create_group(&pdev->dev.kobj,
1306                                                   &lpss_attr_group);
1307                 break;
1308         case BUS_NOTIFY_DEL_DEVICE:
1309                 if (pdata->dev_desc->flags & LPSS_LTR)
1310                         sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
1311                 dev_pm_domain_set(&pdev->dev, NULL);
1312                 break;
1313         default:
1314                 break;
1315         }
1316
1317         return 0;
1318 }
1319
1320 static struct notifier_block acpi_lpss_nb = {
1321         .notifier_call = acpi_lpss_platform_notify,
1322 };
1323
1324 static void acpi_lpss_bind(struct device *dev)
1325 {
1326         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1327
1328         if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
1329                 return;
1330
1331         if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
1332                 dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
1333         else
1334                 dev_err(dev, "MMIO size insufficient to access LTR\n");
1335 }
1336
1337 static void acpi_lpss_unbind(struct device *dev)
1338 {
1339         dev->power.set_latency_tolerance = NULL;
1340 }
1341
1342 static struct acpi_scan_handler lpss_handler = {
1343         .ids = acpi_lpss_device_ids,
1344         .attach = acpi_lpss_create_device,
1345         .bind = acpi_lpss_bind,
1346         .unbind = acpi_lpss_unbind,
1347 };
1348
1349 void __init acpi_lpss_init(void)
1350 {
1351         const struct x86_cpu_id *id;
1352         int ret;
1353
1354         ret = lpss_atom_clk_init();
1355         if (ret)
1356                 return;
1357
1358         id = x86_match_cpu(lpss_cpu_ids);
1359         if (id)
1360                 lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
1361
1362         bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
1363         acpi_scan_add_handler(&lpss_handler);
1364 }
1365
1366 #else
1367
1368 static struct acpi_scan_handler lpss_handler = {
1369         .ids = acpi_lpss_device_ids,
1370 };
1371
1372 void __init acpi_lpss_init(void)
1373 {
1374         acpi_scan_add_handler(&lpss_handler);
1375 }
1376
1377 #endif /* CONFIG_X86_INTEL_LPSS */