1 // SPDX-License-Identifier: GPL-2.0-only
3 * ACPI support for Intel Lynxpoint LPSS.
5 * Copyright (C) 2013, Intel Corporation
6 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7 * Rafael J. Wysocki <rafael.j.wysocki@intel.com>
10 #include <linux/acpi.h>
11 #include <linux/clkdev.h>
12 #include <linux/clk-provider.h>
13 #include <linux/dmi.h>
14 #include <linux/err.h>
16 #include <linux/mutex.h>
17 #include <linux/pci.h>
18 #include <linux/platform_device.h>
19 #include <linux/platform_data/x86/clk-lpss.h>
20 #include <linux/platform_data/x86/pmc_atom.h>
21 #include <linux/pm_domain.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pwm.h>
24 #include <linux/pxa2xx_ssp.h>
25 #include <linux/suspend.h>
26 #include <linux/delay.h>
30 #ifdef CONFIG_X86_INTEL_LPSS
32 #include <asm/cpu_device_id.h>
33 #include <asm/intel-family.h>
34 #include <asm/iosf_mbi.h>
36 #define LPSS_ADDR(desc) ((unsigned long)&desc)
38 #define LPSS_CLK_SIZE 0x04
39 #define LPSS_LTR_SIZE 0x18
41 /* Offsets relative to LPSS_PRIVATE_OFFSET */
42 #define LPSS_CLK_DIVIDER_DEF_MASK (BIT(1) | BIT(16))
43 #define LPSS_RESETS 0x04
44 #define LPSS_RESETS_RESET_FUNC BIT(0)
45 #define LPSS_RESETS_RESET_APB BIT(1)
46 #define LPSS_GENERAL 0x08
47 #define LPSS_GENERAL_LTR_MODE_SW BIT(2)
48 #define LPSS_GENERAL_UART_RTS_OVRD BIT(3)
49 #define LPSS_SW_LTR 0x10
50 #define LPSS_AUTO_LTR 0x14
51 #define LPSS_LTR_SNOOP_REQ BIT(15)
52 #define LPSS_LTR_SNOOP_MASK 0x0000FFFF
53 #define LPSS_LTR_SNOOP_LAT_1US 0x800
54 #define LPSS_LTR_SNOOP_LAT_32US 0xC00
55 #define LPSS_LTR_SNOOP_LAT_SHIFT 5
56 #define LPSS_LTR_SNOOP_LAT_CUTOFF 3000
57 #define LPSS_LTR_MAX_VAL 0x3FF
58 #define LPSS_TX_INT 0x20
59 #define LPSS_TX_INT_MASK BIT(1)
61 #define LPSS_PRV_REG_COUNT 9
64 #define LPSS_CLK BIT(0)
65 #define LPSS_CLK_GATE BIT(1)
66 #define LPSS_CLK_DIVIDER BIT(2)
67 #define LPSS_LTR BIT(3)
68 #define LPSS_SAVE_CTX BIT(4)
70 * For some devices the DSDT AML code for another device turns off the device
71 * before our suspend handler runs, causing us to read/save all 1-s (0xffffffff)
72 * as ctx register values.
73 * Luckily these devices always use the same ctx register values, so we can
74 * work around this by saving the ctx registers once on activation.
76 #define LPSS_SAVE_CTX_ONCE BIT(5)
77 #define LPSS_NO_D3_DELAY BIT(6)
79 struct lpss_private_data;
81 struct lpss_device_desc {
83 const char *clk_con_id;
84 unsigned int prv_offset;
85 size_t prv_size_override;
86 const struct property_entry *properties;
87 void (*setup)(struct lpss_private_data *pdata);
88 bool resume_from_noirq;
91 static const struct lpss_device_desc lpss_dma_desc = {
95 struct lpss_private_data {
96 struct acpi_device *adev;
97 void __iomem *mmio_base;
98 resource_size_t mmio_size;
99 unsigned int fixed_clk_rate;
101 const struct lpss_device_desc *dev_desc;
102 u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
105 /* Devices which need to be in D3 before lpss_iosf_enter_d3_state() proceeds */
106 static u32 pmc_atom_d3_mask = 0xfe000ffe;
108 /* LPSS run time quirks */
109 static unsigned int lpss_quirks;
112 * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
114 * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
115 * it can be powered off automatically whenever the last LPSS device goes down.
116 * In case of no power any access to the DMA controller will hang the system.
117 * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
118 * well as on ASuS T100TA transformer.
120 * This quirk overrides power state of entire LPSS island to keep DMA powered
121 * on whenever we have at least one other device in use.
123 #define LPSS_QUIRK_ALWAYS_POWER_ON BIT(0)
125 /* UART Component Parameter Register */
126 #define LPSS_UART_CPR 0xF4
127 #define LPSS_UART_CPR_AFCE BIT(4)
129 static void lpss_uart_setup(struct lpss_private_data *pdata)
134 offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
135 val = readl(pdata->mmio_base + offset);
136 writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
138 val = readl(pdata->mmio_base + LPSS_UART_CPR);
139 if (!(val & LPSS_UART_CPR_AFCE)) {
140 offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
141 val = readl(pdata->mmio_base + offset);
142 val |= LPSS_GENERAL_UART_RTS_OVRD;
143 writel(val, pdata->mmio_base + offset);
147 static void lpss_deassert_reset(struct lpss_private_data *pdata)
152 offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
153 val = readl(pdata->mmio_base + offset);
154 val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
155 writel(val, pdata->mmio_base + offset);
159 * BYT PWM used for backlight control by the i915 driver on systems without
160 * the Crystal Cove PMIC.
162 static struct pwm_lookup byt_pwm_lookup[] = {
163 PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
164 "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
165 "pwm-lpss-platform"),
168 static void byt_pwm_setup(struct lpss_private_data *pdata)
172 /* Only call pwm_add_table for the first PWM controller */
173 if (acpi_dev_uid_to_integer(pdata->adev, &uid) || uid != 1)
176 pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
179 #define LPSS_I2C_ENABLE 0x6c
181 static void byt_i2c_setup(struct lpss_private_data *pdata)
183 acpi_handle handle = pdata->adev->handle;
184 unsigned long long shared_host = 0;
188 /* Expected to always be successfull, but better safe then sorry */
189 if (!acpi_dev_uid_to_integer(pdata->adev, &uid) && uid) {
190 /* Detect I2C bus shared with PUNIT and ignore its d3 status */
191 status = acpi_evaluate_integer(handle, "_SEM", NULL, &shared_host);
192 if (ACPI_SUCCESS(status) && shared_host)
193 pmc_atom_d3_mask &= ~(BIT_LPSS2_F1_I2C1 << (uid - 1));
196 lpss_deassert_reset(pdata);
198 if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
199 pdata->fixed_clk_rate = 133000000;
201 writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
204 /* BSW PWM used for backlight control by the i915 driver */
205 static struct pwm_lookup bsw_pwm_lookup[] = {
206 PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
207 "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
208 "pwm-lpss-platform"),
211 static void bsw_pwm_setup(struct lpss_private_data *pdata)
215 /* Only call pwm_add_table for the first PWM controller */
216 if (acpi_dev_uid_to_integer(pdata->adev, &uid) || uid != 1)
219 pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
222 static const struct property_entry lpt_spi_properties[] = {
223 PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_LPT_SSP),
227 static const struct lpss_device_desc lpt_spi_dev_desc = {
228 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
231 .properties = lpt_spi_properties,
234 static const struct lpss_device_desc lpt_i2c_dev_desc = {
235 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR | LPSS_SAVE_CTX,
239 static struct property_entry uart_properties[] = {
240 PROPERTY_ENTRY_U32("reg-io-width", 4),
241 PROPERTY_ENTRY_U32("reg-shift", 2),
242 PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
246 static const struct lpss_device_desc lpt_uart_dev_desc = {
247 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
249 .clk_con_id = "baudclk",
251 .setup = lpss_uart_setup,
252 .properties = uart_properties,
255 static const struct lpss_device_desc lpt_sdio_dev_desc = {
257 .prv_offset = 0x1000,
258 .prv_size_override = 0x1018,
261 static const struct lpss_device_desc byt_pwm_dev_desc = {
262 .flags = LPSS_SAVE_CTX,
264 .setup = byt_pwm_setup,
267 static const struct lpss_device_desc bsw_pwm_dev_desc = {
268 .flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY,
270 .setup = bsw_pwm_setup,
271 .resume_from_noirq = true,
274 static const struct lpss_device_desc byt_uart_dev_desc = {
275 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
276 .clk_con_id = "baudclk",
278 .setup = lpss_uart_setup,
279 .properties = uart_properties,
282 static const struct lpss_device_desc bsw_uart_dev_desc = {
283 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
285 .clk_con_id = "baudclk",
287 .setup = lpss_uart_setup,
288 .properties = uart_properties,
291 static const struct property_entry byt_spi_properties[] = {
292 PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_BYT_SSP),
296 static const struct lpss_device_desc byt_spi_dev_desc = {
297 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
299 .properties = byt_spi_properties,
302 static const struct lpss_device_desc byt_sdio_dev_desc = {
306 static const struct lpss_device_desc byt_i2c_dev_desc = {
307 .flags = LPSS_CLK | LPSS_SAVE_CTX,
309 .setup = byt_i2c_setup,
310 .resume_from_noirq = true,
313 static const struct lpss_device_desc bsw_i2c_dev_desc = {
314 .flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
316 .setup = byt_i2c_setup,
317 .resume_from_noirq = true,
320 static const struct property_entry bsw_spi_properties[] = {
321 PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_BSW_SSP),
325 static const struct lpss_device_desc bsw_spi_dev_desc = {
326 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
329 .setup = lpss_deassert_reset,
330 .properties = bsw_spi_properties,
333 static const struct x86_cpu_id lpss_cpu_ids[] = {
334 X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT, NULL),
335 X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT, NULL),
341 #define LPSS_ADDR(desc) (0UL)
343 #endif /* CONFIG_X86_INTEL_LPSS */
345 static const struct acpi_device_id acpi_lpss_device_ids[] = {
346 /* Generic LPSS devices */
347 { "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
349 /* Lynxpoint LPSS devices */
350 { "INT33C0", LPSS_ADDR(lpt_spi_dev_desc) },
351 { "INT33C1", LPSS_ADDR(lpt_spi_dev_desc) },
352 { "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
353 { "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
354 { "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
355 { "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
356 { "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
359 /* BayTrail LPSS devices */
360 { "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
361 { "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
362 { "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
363 { "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
364 { "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
368 /* Braswell LPSS devices */
369 { "80862286", LPSS_ADDR(lpss_dma_desc) },
370 { "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
371 { "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
372 { "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
373 { "808622C0", LPSS_ADDR(lpss_dma_desc) },
374 { "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
376 /* Broadwell LPSS devices */
377 { "INT3430", LPSS_ADDR(lpt_spi_dev_desc) },
378 { "INT3431", LPSS_ADDR(lpt_spi_dev_desc) },
379 { "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
380 { "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
381 { "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
382 { "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
383 { "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
386 /* Wildcat Point LPSS devices */
387 { "INT3438", LPSS_ADDR(lpt_spi_dev_desc) },
392 #ifdef CONFIG_X86_INTEL_LPSS
394 /* LPSS main clock device. */
395 static struct platform_device *lpss_clk_dev;
397 static inline void lpt_register_clock_device(void)
399 lpss_clk_dev = platform_device_register_simple("clk-lpss-atom",
404 static int register_device_clock(struct acpi_device *adev,
405 struct lpss_private_data *pdata)
407 const struct lpss_device_desc *dev_desc = pdata->dev_desc;
408 const char *devname = dev_name(&adev->dev);
410 struct lpss_clk_data *clk_data;
411 const char *parent, *clk_name;
412 void __iomem *prv_base;
415 lpt_register_clock_device();
417 if (IS_ERR(lpss_clk_dev))
418 return PTR_ERR(lpss_clk_dev);
420 clk_data = platform_get_drvdata(lpss_clk_dev);
425 if (!pdata->mmio_base
426 || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
429 parent = clk_data->name;
430 prv_base = pdata->mmio_base + dev_desc->prv_offset;
432 if (pdata->fixed_clk_rate) {
433 clk = clk_register_fixed_rate(NULL, devname, parent, 0,
434 pdata->fixed_clk_rate);
438 if (dev_desc->flags & LPSS_CLK_GATE) {
439 clk = clk_register_gate(NULL, devname, parent, 0,
440 prv_base, 0, 0, NULL);
444 if (dev_desc->flags & LPSS_CLK_DIVIDER) {
445 /* Prevent division by zero */
446 if (!readl(prv_base))
447 writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
449 clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
452 clk = clk_register_fractional_divider(NULL, clk_name, parent,
453 CLK_FRAC_DIVIDER_POWER_OF_TWO_PS,
454 prv_base, 1, 15, 16, 15, 0, NULL);
457 clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
462 clk = clk_register_gate(NULL, clk_name, parent,
463 CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
464 prv_base, 31, 0, NULL);
473 clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
477 struct lpss_device_links {
478 const char *supplier_hid;
479 const char *supplier_uid;
480 const char *consumer_hid;
481 const char *consumer_uid;
483 const struct dmi_system_id *dep_missing_ids;
486 /* Please keep this list sorted alphabetically by vendor and model */
487 static const struct dmi_system_id i2c1_dep_missing_dmi_ids[] = {
490 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
491 DMI_MATCH(DMI_PRODUCT_NAME, "T200TA"),
498 * The _DEP method is used to identify dependencies but instead of creating
499 * device links for every handle in _DEP, only links in the following list are
500 * created. That is necessary because, in the general case, _DEP can refer to
501 * devices that might not have drivers, or that are on different buses, or where
502 * the supplier is not enumerated until after the consumer is probed.
504 static const struct lpss_device_links lpss_device_links[] = {
505 /* CHT External sdcard slot controller depends on PMIC I2C ctrl */
506 {"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME},
507 /* CHT iGPU depends on PMIC I2C controller */
508 {"808622C1", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
509 /* BYT iGPU depends on the Embedded Controller I2C controller (UID 1) */
510 {"80860F41", "1", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME,
511 i2c1_dep_missing_dmi_ids},
512 /* BYT CR iGPU depends on PMIC I2C controller (UID 5 on CR) */
513 {"80860F41", "5", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
514 /* BYT iGPU depends on PMIC I2C controller (UID 7 on non CR) */
515 {"80860F41", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
518 static bool acpi_lpss_is_supplier(struct acpi_device *adev,
519 const struct lpss_device_links *link)
521 return acpi_dev_hid_uid_match(adev, link->supplier_hid, link->supplier_uid);
524 static bool acpi_lpss_is_consumer(struct acpi_device *adev,
525 const struct lpss_device_links *link)
527 return acpi_dev_hid_uid_match(adev, link->consumer_hid, link->consumer_uid);
535 static int match_hid_uid(struct device *dev, const void *data)
537 struct acpi_device *adev = ACPI_COMPANION(dev);
538 const struct hid_uid *id = data;
543 return acpi_dev_hid_uid_match(adev, id->hid, id->uid);
546 static struct device *acpi_lpss_find_device(const char *hid, const char *uid)
550 struct hid_uid data = {
555 dev = bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid);
559 return bus_find_device(&pci_bus_type, NULL, &data, match_hid_uid);
562 static bool acpi_lpss_dep(struct acpi_device *adev, acpi_handle handle)
564 struct acpi_handle_list dep_devices;
568 if (!acpi_has_method(adev->handle, "_DEP"))
571 status = acpi_evaluate_reference(adev->handle, "_DEP", NULL,
573 if (ACPI_FAILURE(status)) {
574 dev_dbg(&adev->dev, "Failed to evaluate _DEP.\n");
578 for (i = 0; i < dep_devices.count; i++) {
579 if (dep_devices.handles[i] == handle)
586 static void acpi_lpss_link_consumer(struct device *dev1,
587 const struct lpss_device_links *link)
591 dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid);
595 if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
596 || acpi_lpss_dep(ACPI_COMPANION(dev2), ACPI_HANDLE(dev1)))
597 device_link_add(dev2, dev1, link->flags);
602 static void acpi_lpss_link_supplier(struct device *dev1,
603 const struct lpss_device_links *link)
607 dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid);
611 if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
612 || acpi_lpss_dep(ACPI_COMPANION(dev1), ACPI_HANDLE(dev2)))
613 device_link_add(dev1, dev2, link->flags);
618 static void acpi_lpss_create_device_links(struct acpi_device *adev,
619 struct platform_device *pdev)
623 for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) {
624 const struct lpss_device_links *link = &lpss_device_links[i];
626 if (acpi_lpss_is_supplier(adev, link))
627 acpi_lpss_link_consumer(&pdev->dev, link);
629 if (acpi_lpss_is_consumer(adev, link))
630 acpi_lpss_link_supplier(&pdev->dev, link);
634 static int acpi_lpss_create_device(struct acpi_device *adev,
635 const struct acpi_device_id *id)
637 const struct lpss_device_desc *dev_desc;
638 struct lpss_private_data *pdata;
639 struct resource_entry *rentry;
640 struct list_head resource_list;
641 struct platform_device *pdev;
644 dev_desc = (const struct lpss_device_desc *)id->driver_data;
646 pdev = acpi_create_platform_device(adev, NULL);
647 return IS_ERR_OR_NULL(pdev) ? PTR_ERR(pdev) : 1;
649 pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
653 INIT_LIST_HEAD(&resource_list);
654 ret = acpi_dev_get_memory_resources(adev, &resource_list);
658 rentry = list_first_entry_or_null(&resource_list, struct resource_entry, node);
660 if (dev_desc->prv_size_override)
661 pdata->mmio_size = dev_desc->prv_size_override;
663 pdata->mmio_size = resource_size(rentry->res);
664 pdata->mmio_base = ioremap(rentry->res->start, pdata->mmio_size);
667 acpi_dev_free_resource_list(&resource_list);
669 if (!pdata->mmio_base) {
670 /* Avoid acpi_bus_attach() instantiating a pdev for this dev. */
671 adev->pnp.type.platform_id = 0;
676 pdata->dev_desc = dev_desc;
679 dev_desc->setup(pdata);
681 if (dev_desc->flags & LPSS_CLK) {
682 ret = register_device_clock(adev, pdata);
688 * This works around a known issue in ACPI tables where LPSS devices
689 * have _PS0 and _PS3 without _PSC (and no power resources), so
690 * acpi_bus_init_power() will assume that the BIOS has put them into D0.
692 acpi_device_fix_up_power(adev);
694 adev->driver_data = pdata;
695 pdev = acpi_create_platform_device(adev, dev_desc->properties);
696 if (IS_ERR_OR_NULL(pdev)) {
697 adev->driver_data = NULL;
702 acpi_lpss_create_device_links(adev, pdev);
706 /* Skip the device, but continue the namespace scan */
713 static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
715 return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
718 static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
721 writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
724 static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
726 struct acpi_device *adev = ACPI_COMPANION(dev);
727 struct lpss_private_data *pdata;
734 spin_lock_irqsave(&dev->power.lock, flags);
735 if (pm_runtime_suspended(dev)) {
739 pdata = acpi_driver_data(adev);
740 if (WARN_ON(!pdata || !pdata->mmio_base)) {
744 *val = __lpss_reg_read(pdata, reg);
748 spin_unlock_irqrestore(&dev->power.lock, flags);
752 static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
759 reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
760 ret = lpss_reg_read(dev, reg, <r_value);
764 return sysfs_emit(buf, "%08x\n", ltr_value);
767 static ssize_t lpss_ltr_mode_show(struct device *dev,
768 struct device_attribute *attr, char *buf)
774 ret = lpss_reg_read(dev, LPSS_GENERAL, <r_mode);
778 outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
779 return sprintf(buf, "%s\n", outstr);
782 static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
783 static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
784 static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
786 static struct attribute *lpss_attrs[] = {
787 &dev_attr_auto_ltr.attr,
788 &dev_attr_sw_ltr.attr,
789 &dev_attr_ltr_mode.attr,
793 static const struct attribute_group lpss_attr_group = {
798 static void acpi_lpss_set_ltr(struct device *dev, s32 val)
800 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
801 u32 ltr_mode, ltr_val;
803 ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
805 if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
806 ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
807 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
811 ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
812 if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
813 ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
814 val = LPSS_LTR_MAX_VAL;
815 } else if (val > LPSS_LTR_MAX_VAL) {
816 ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
817 val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
819 ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
822 __lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
823 if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
824 ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
825 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
831 * acpi_lpss_save_ctx() - Save the private registers of LPSS device
833 * @pdata: pointer to the private data of the LPSS device
835 * Most LPSS devices have private registers which may loose their context when
836 * the device is powered down. acpi_lpss_save_ctx() saves those registers into
839 static void acpi_lpss_save_ctx(struct device *dev,
840 struct lpss_private_data *pdata)
844 for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
845 unsigned long offset = i * sizeof(u32);
847 pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
848 dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
849 pdata->prv_reg_ctx[i], offset);
854 * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
856 * @pdata: pointer to the private data of the LPSS device
858 * Restores the registers that were previously stored with acpi_lpss_save_ctx().
860 static void acpi_lpss_restore_ctx(struct device *dev,
861 struct lpss_private_data *pdata)
865 for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
866 unsigned long offset = i * sizeof(u32);
868 __lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
869 dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
870 pdata->prv_reg_ctx[i], offset);
874 static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
877 * The following delay is needed or the subsequent write operations may
878 * fail. The LPSS devices are actually PCI devices and the PCI spec
879 * expects 10ms delay before the device can be accessed after D3 to D0
880 * transition. However some platforms like BSW does not need this delay.
882 unsigned int delay = 10; /* default 10ms delay */
884 if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
890 static int acpi_lpss_activate(struct device *dev)
892 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
895 ret = acpi_dev_resume(dev);
899 acpi_lpss_d3_to_d0_delay(pdata);
902 * This is called only on ->probe() stage where a device is either in
903 * known state defined by BIOS or most likely powered off. Due to this
904 * we have to deassert reset line to be sure that ->probe() will
905 * recognize the device.
907 if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
908 lpss_deassert_reset(pdata);
911 if (pdata->dev_desc->flags & LPSS_SAVE_CTX_ONCE)
912 acpi_lpss_save_ctx(dev, pdata);
918 static void acpi_lpss_dismiss(struct device *dev)
920 acpi_dev_suspend(dev, false);
923 /* IOSF SB for LPSS island */
924 #define LPSS_IOSF_UNIT_LPIOEP 0xA0
925 #define LPSS_IOSF_UNIT_LPIO1 0xAB
926 #define LPSS_IOSF_UNIT_LPIO2 0xAC
928 #define LPSS_IOSF_PMCSR 0x84
929 #define LPSS_PMCSR_D0 0
930 #define LPSS_PMCSR_D3hot 3
931 #define LPSS_PMCSR_Dx_MASK GENMASK(1, 0)
933 #define LPSS_IOSF_GPIODEF0 0x154
934 #define LPSS_GPIODEF0_DMA1_D3 BIT(2)
935 #define LPSS_GPIODEF0_DMA2_D3 BIT(3)
936 #define LPSS_GPIODEF0_DMA_D3_MASK GENMASK(3, 2)
937 #define LPSS_GPIODEF0_DMA_LLP BIT(13)
939 static DEFINE_MUTEX(lpss_iosf_mutex);
940 static bool lpss_iosf_d3_entered = true;
942 static void lpss_iosf_enter_d3_state(void)
945 u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
946 u32 value2 = LPSS_PMCSR_D3hot;
947 u32 mask2 = LPSS_PMCSR_Dx_MASK;
949 * PMC provides an information about actual status of the LPSS devices.
950 * Here we read the values related to LPSS power island, i.e. LPSS
951 * devices, excluding both LPSS DMA controllers, along with SCC domain.
953 u32 func_dis, d3_sts_0, pmc_status;
956 ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
960 mutex_lock(&lpss_iosf_mutex);
962 ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
967 * Get the status of entire LPSS power island per device basis.
968 * Shutdown both LPSS DMA controllers if and only if all other devices
969 * are already in D3hot.
971 pmc_status = (~(d3_sts_0 | func_dis)) & pmc_atom_d3_mask;
975 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
976 LPSS_IOSF_PMCSR, value2, mask2);
978 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
979 LPSS_IOSF_PMCSR, value2, mask2);
981 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
982 LPSS_IOSF_GPIODEF0, value1, mask1);
984 lpss_iosf_d3_entered = true;
987 mutex_unlock(&lpss_iosf_mutex);
990 static void lpss_iosf_exit_d3_state(void)
992 u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
993 LPSS_GPIODEF0_DMA_LLP;
994 u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
995 u32 value2 = LPSS_PMCSR_D0;
996 u32 mask2 = LPSS_PMCSR_Dx_MASK;
998 mutex_lock(&lpss_iosf_mutex);
1000 if (!lpss_iosf_d3_entered)
1003 lpss_iosf_d3_entered = false;
1005 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
1006 LPSS_IOSF_GPIODEF0, value1, mask1);
1008 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
1009 LPSS_IOSF_PMCSR, value2, mask2);
1011 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
1012 LPSS_IOSF_PMCSR, value2, mask2);
1015 mutex_unlock(&lpss_iosf_mutex);
1018 static int acpi_lpss_suspend(struct device *dev, bool wakeup)
1020 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1023 if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
1024 acpi_lpss_save_ctx(dev, pdata);
1026 ret = acpi_dev_suspend(dev, wakeup);
1029 * This call must be last in the sequence, otherwise PMC will return
1030 * wrong status for devices being about to be powered off. See
1031 * lpss_iosf_enter_d3_state() for further information.
1033 if (acpi_target_system_state() == ACPI_STATE_S0 &&
1034 lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1035 lpss_iosf_enter_d3_state();
1040 static int acpi_lpss_resume(struct device *dev)
1042 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1046 * This call is kept first to be in symmetry with
1047 * acpi_lpss_runtime_suspend() one.
1049 if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1050 lpss_iosf_exit_d3_state();
1052 ret = acpi_dev_resume(dev);
1056 acpi_lpss_d3_to_d0_delay(pdata);
1058 if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
1059 acpi_lpss_restore_ctx(dev, pdata);
1064 #ifdef CONFIG_PM_SLEEP
1065 static int acpi_lpss_do_suspend_late(struct device *dev)
1069 if (dev_pm_skip_suspend(dev))
1072 ret = pm_generic_suspend_late(dev);
1073 return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1076 static int acpi_lpss_suspend_late(struct device *dev)
1078 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1080 if (pdata->dev_desc->resume_from_noirq)
1083 return acpi_lpss_do_suspend_late(dev);
1086 static int acpi_lpss_suspend_noirq(struct device *dev)
1088 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1091 if (pdata->dev_desc->resume_from_noirq) {
1093 * The driver's ->suspend_late callback will be invoked by
1094 * acpi_lpss_do_suspend_late(), with the assumption that the
1095 * driver really wanted to run that code in ->suspend_noirq, but
1096 * it could not run after acpi_dev_suspend() and the driver
1097 * expected the latter to be called in the "late" phase.
1099 ret = acpi_lpss_do_suspend_late(dev);
1104 return acpi_subsys_suspend_noirq(dev);
1107 static int acpi_lpss_do_resume_early(struct device *dev)
1109 int ret = acpi_lpss_resume(dev);
1111 return ret ? ret : pm_generic_resume_early(dev);
1114 static int acpi_lpss_resume_early(struct device *dev)
1116 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1118 if (pdata->dev_desc->resume_from_noirq)
1121 if (dev_pm_skip_resume(dev))
1124 return acpi_lpss_do_resume_early(dev);
1127 static int acpi_lpss_resume_noirq(struct device *dev)
1129 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1132 /* Follow acpi_subsys_resume_noirq(). */
1133 if (dev_pm_skip_resume(dev))
1136 ret = pm_generic_resume_noirq(dev);
1140 if (!pdata->dev_desc->resume_from_noirq)
1144 * The driver's ->resume_early callback will be invoked by
1145 * acpi_lpss_do_resume_early(), with the assumption that the driver
1146 * really wanted to run that code in ->resume_noirq, but it could not
1147 * run before acpi_dev_resume() and the driver expected the latter to be
1148 * called in the "early" phase.
1150 return acpi_lpss_do_resume_early(dev);
1153 static int acpi_lpss_do_restore_early(struct device *dev)
1155 int ret = acpi_lpss_resume(dev);
1157 return ret ? ret : pm_generic_restore_early(dev);
1160 static int acpi_lpss_restore_early(struct device *dev)
1162 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1164 if (pdata->dev_desc->resume_from_noirq)
1167 return acpi_lpss_do_restore_early(dev);
1170 static int acpi_lpss_restore_noirq(struct device *dev)
1172 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1175 ret = pm_generic_restore_noirq(dev);
1179 if (!pdata->dev_desc->resume_from_noirq)
1182 /* This is analogous to what happens in acpi_lpss_resume_noirq(). */
1183 return acpi_lpss_do_restore_early(dev);
1186 static int acpi_lpss_do_poweroff_late(struct device *dev)
1188 int ret = pm_generic_poweroff_late(dev);
1190 return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1193 static int acpi_lpss_poweroff_late(struct device *dev)
1195 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1197 if (dev_pm_skip_suspend(dev))
1200 if (pdata->dev_desc->resume_from_noirq)
1203 return acpi_lpss_do_poweroff_late(dev);
1206 static int acpi_lpss_poweroff_noirq(struct device *dev)
1208 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1210 if (dev_pm_skip_suspend(dev))
1213 if (pdata->dev_desc->resume_from_noirq) {
1214 /* This is analogous to the acpi_lpss_suspend_noirq() case. */
1215 int ret = acpi_lpss_do_poweroff_late(dev);
1221 return pm_generic_poweroff_noirq(dev);
1223 #endif /* CONFIG_PM_SLEEP */
1225 static int acpi_lpss_runtime_suspend(struct device *dev)
1227 int ret = pm_generic_runtime_suspend(dev);
1229 return ret ? ret : acpi_lpss_suspend(dev, true);
1232 static int acpi_lpss_runtime_resume(struct device *dev)
1234 int ret = acpi_lpss_resume(dev);
1236 return ret ? ret : pm_generic_runtime_resume(dev);
1238 #endif /* CONFIG_PM */
1240 static struct dev_pm_domain acpi_lpss_pm_domain = {
1242 .activate = acpi_lpss_activate,
1243 .dismiss = acpi_lpss_dismiss,
1247 #ifdef CONFIG_PM_SLEEP
1248 .prepare = acpi_subsys_prepare,
1249 .complete = acpi_subsys_complete,
1250 .suspend = acpi_subsys_suspend,
1251 .suspend_late = acpi_lpss_suspend_late,
1252 .suspend_noirq = acpi_lpss_suspend_noirq,
1253 .resume_noirq = acpi_lpss_resume_noirq,
1254 .resume_early = acpi_lpss_resume_early,
1255 .freeze = acpi_subsys_freeze,
1256 .poweroff = acpi_subsys_poweroff,
1257 .poweroff_late = acpi_lpss_poweroff_late,
1258 .poweroff_noirq = acpi_lpss_poweroff_noirq,
1259 .restore_noirq = acpi_lpss_restore_noirq,
1260 .restore_early = acpi_lpss_restore_early,
1262 .runtime_suspend = acpi_lpss_runtime_suspend,
1263 .runtime_resume = acpi_lpss_runtime_resume,
1268 static int acpi_lpss_platform_notify(struct notifier_block *nb,
1269 unsigned long action, void *data)
1271 struct platform_device *pdev = to_platform_device(data);
1272 struct lpss_private_data *pdata;
1273 struct acpi_device *adev;
1274 const struct acpi_device_id *id;
1276 id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
1277 if (!id || !id->driver_data)
1280 adev = ACPI_COMPANION(&pdev->dev);
1284 pdata = acpi_driver_data(adev);
1288 if (pdata->mmio_base &&
1289 pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
1290 dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
1295 case BUS_NOTIFY_BIND_DRIVER:
1296 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1298 case BUS_NOTIFY_DRIVER_NOT_BOUND:
1299 case BUS_NOTIFY_UNBOUND_DRIVER:
1300 dev_pm_domain_set(&pdev->dev, NULL);
1302 case BUS_NOTIFY_ADD_DEVICE:
1303 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1304 if (pdata->dev_desc->flags & LPSS_LTR)
1305 return sysfs_create_group(&pdev->dev.kobj,
1308 case BUS_NOTIFY_DEL_DEVICE:
1309 if (pdata->dev_desc->flags & LPSS_LTR)
1310 sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
1311 dev_pm_domain_set(&pdev->dev, NULL);
1320 static struct notifier_block acpi_lpss_nb = {
1321 .notifier_call = acpi_lpss_platform_notify,
1324 static void acpi_lpss_bind(struct device *dev)
1326 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1328 if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
1331 if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
1332 dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
1334 dev_err(dev, "MMIO size insufficient to access LTR\n");
1337 static void acpi_lpss_unbind(struct device *dev)
1339 dev->power.set_latency_tolerance = NULL;
1342 static struct acpi_scan_handler lpss_handler = {
1343 .ids = acpi_lpss_device_ids,
1344 .attach = acpi_lpss_create_device,
1345 .bind = acpi_lpss_bind,
1346 .unbind = acpi_lpss_unbind,
1349 void __init acpi_lpss_init(void)
1351 const struct x86_cpu_id *id;
1354 ret = lpss_atom_clk_init();
1358 id = x86_match_cpu(lpss_cpu_ids);
1360 lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
1362 bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
1363 acpi_scan_add_handler(&lpss_handler);
1368 static struct acpi_scan_handler lpss_handler = {
1369 .ids = acpi_lpss_device_ids,
1372 void __init acpi_lpss_init(void)
1374 acpi_scan_add_handler(&lpss_handler);
1377 #endif /* CONFIG_X86_INTEL_LPSS */