spi: spi-fsl-qspi: Use devm_platform_ioremap_resource_byname()
[platform/kernel/linux-starfive.git] / drivers / acpi / acpi_lpss.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ACPI support for Intel Lynxpoint LPSS.
4  *
5  * Copyright (C) 2013, Intel Corporation
6  * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7  *          Rafael J. Wysocki <rafael.j.wysocki@intel.com>
8  */
9
10 #include <linux/acpi.h>
11 #include <linux/clkdev.h>
12 #include <linux/clk-provider.h>
13 #include <linux/dmi.h>
14 #include <linux/err.h>
15 #include <linux/io.h>
16 #include <linux/mutex.h>
17 #include <linux/pci.h>
18 #include <linux/platform_device.h>
19 #include <linux/platform_data/x86/clk-lpss.h>
20 #include <linux/platform_data/x86/pmc_atom.h>
21 #include <linux/pm_domain.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pwm.h>
24 #include <linux/pxa2xx_ssp.h>
25 #include <linux/suspend.h>
26 #include <linux/delay.h>
27
28 #include "internal.h"
29
30 #ifdef CONFIG_X86_INTEL_LPSS
31
32 #include <asm/cpu_device_id.h>
33 #include <asm/intel-family.h>
34 #include <asm/iosf_mbi.h>
35
36 #define LPSS_ADDR(desc) ((unsigned long)&desc)
37
38 #define LPSS_CLK_SIZE   0x04
39 #define LPSS_LTR_SIZE   0x18
40
41 /* Offsets relative to LPSS_PRIVATE_OFFSET */
42 #define LPSS_CLK_DIVIDER_DEF_MASK       (BIT(1) | BIT(16))
43 #define LPSS_RESETS                     0x04
44 #define LPSS_RESETS_RESET_FUNC          BIT(0)
45 #define LPSS_RESETS_RESET_APB           BIT(1)
46 #define LPSS_GENERAL                    0x08
47 #define LPSS_GENERAL_LTR_MODE_SW        BIT(2)
48 #define LPSS_GENERAL_UART_RTS_OVRD      BIT(3)
49 #define LPSS_SW_LTR                     0x10
50 #define LPSS_AUTO_LTR                   0x14
51 #define LPSS_LTR_SNOOP_REQ              BIT(15)
52 #define LPSS_LTR_SNOOP_MASK             0x0000FFFF
53 #define LPSS_LTR_SNOOP_LAT_1US          0x800
54 #define LPSS_LTR_SNOOP_LAT_32US         0xC00
55 #define LPSS_LTR_SNOOP_LAT_SHIFT        5
56 #define LPSS_LTR_SNOOP_LAT_CUTOFF       3000
57 #define LPSS_LTR_MAX_VAL                0x3FF
58 #define LPSS_TX_INT                     0x20
59 #define LPSS_TX_INT_MASK                BIT(1)
60
61 #define LPSS_PRV_REG_COUNT              9
62
63 /* LPSS Flags */
64 #define LPSS_CLK                        BIT(0)
65 #define LPSS_CLK_GATE                   BIT(1)
66 #define LPSS_CLK_DIVIDER                BIT(2)
67 #define LPSS_LTR                        BIT(3)
68 #define LPSS_SAVE_CTX                   BIT(4)
69 /*
70  * For some devices the DSDT AML code for another device turns off the device
71  * before our suspend handler runs, causing us to read/save all 1-s (0xffffffff)
72  * as ctx register values.
73  * Luckily these devices always use the same ctx register values, so we can
74  * work around this by saving the ctx registers once on activation.
75  */
76 #define LPSS_SAVE_CTX_ONCE              BIT(5)
77 #define LPSS_NO_D3_DELAY                BIT(6)
78
79 struct lpss_private_data;
80
81 struct lpss_device_desc {
82         unsigned int flags;
83         const char *clk_con_id;
84         unsigned int prv_offset;
85         size_t prv_size_override;
86         const struct property_entry *properties;
87         void (*setup)(struct lpss_private_data *pdata);
88         bool resume_from_noirq;
89 };
90
91 static const struct lpss_device_desc lpss_dma_desc = {
92         .flags = LPSS_CLK,
93 };
94
95 struct lpss_private_data {
96         struct acpi_device *adev;
97         void __iomem *mmio_base;
98         resource_size_t mmio_size;
99         unsigned int fixed_clk_rate;
100         struct clk *clk;
101         const struct lpss_device_desc *dev_desc;
102         u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
103 };
104
105 /* Devices which need to be in D3 before lpss_iosf_enter_d3_state() proceeds */
106 static u32 pmc_atom_d3_mask = 0xfe000ffe;
107
108 /* LPSS run time quirks */
109 static unsigned int lpss_quirks;
110
111 /*
112  * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
113  *
114  * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
115  * it can be powered off automatically whenever the last LPSS device goes down.
116  * In case of no power any access to the DMA controller will hang the system.
117  * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
118  * well as on ASuS T100TA transformer.
119  *
120  * This quirk overrides power state of entire LPSS island to keep DMA powered
121  * on whenever we have at least one other device in use.
122  */
123 #define LPSS_QUIRK_ALWAYS_POWER_ON      BIT(0)
124
125 /* UART Component Parameter Register */
126 #define LPSS_UART_CPR                   0xF4
127 #define LPSS_UART_CPR_AFCE              BIT(4)
128
129 static void lpss_uart_setup(struct lpss_private_data *pdata)
130 {
131         unsigned int offset;
132         u32 val;
133
134         offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
135         val = readl(pdata->mmio_base + offset);
136         writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
137
138         val = readl(pdata->mmio_base + LPSS_UART_CPR);
139         if (!(val & LPSS_UART_CPR_AFCE)) {
140                 offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
141                 val = readl(pdata->mmio_base + offset);
142                 val |= LPSS_GENERAL_UART_RTS_OVRD;
143                 writel(val, pdata->mmio_base + offset);
144         }
145 }
146
147 static void lpss_deassert_reset(struct lpss_private_data *pdata)
148 {
149         unsigned int offset;
150         u32 val;
151
152         offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
153         val = readl(pdata->mmio_base + offset);
154         val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
155         writel(val, pdata->mmio_base + offset);
156 }
157
158 /*
159  * BYT PWM used for backlight control by the i915 driver on systems without
160  * the Crystal Cove PMIC.
161  */
162 static struct pwm_lookup byt_pwm_lookup[] = {
163         PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
164                                "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
165                                "pwm-lpss-platform"),
166 };
167
168 static void byt_pwm_setup(struct lpss_private_data *pdata)
169 {
170         struct acpi_device *adev = pdata->adev;
171
172         /* Only call pwm_add_table for the first PWM controller */
173         if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
174                 return;
175
176         pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
177 }
178
179 #define LPSS_I2C_ENABLE                 0x6c
180
181 static void byt_i2c_setup(struct lpss_private_data *pdata)
182 {
183         const char *uid_str = acpi_device_uid(pdata->adev);
184         acpi_handle handle = pdata->adev->handle;
185         unsigned long long shared_host = 0;
186         acpi_status status;
187         long uid = 0;
188
189         /* Expected to always be true, but better safe then sorry */
190         if (uid_str && !kstrtol(uid_str, 10, &uid) && uid) {
191                 /* Detect I2C bus shared with PUNIT and ignore its d3 status */
192                 status = acpi_evaluate_integer(handle, "_SEM", NULL, &shared_host);
193                 if (ACPI_SUCCESS(status) && shared_host)
194                         pmc_atom_d3_mask &= ~(BIT_LPSS2_F1_I2C1 << (uid - 1));
195         }
196
197         lpss_deassert_reset(pdata);
198
199         if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
200                 pdata->fixed_clk_rate = 133000000;
201
202         writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
203 }
204
205 /* BSW PWM used for backlight control by the i915 driver */
206 static struct pwm_lookup bsw_pwm_lookup[] = {
207         PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
208                                "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
209                                "pwm-lpss-platform"),
210 };
211
212 static void bsw_pwm_setup(struct lpss_private_data *pdata)
213 {
214         struct acpi_device *adev = pdata->adev;
215
216         /* Only call pwm_add_table for the first PWM controller */
217         if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
218                 return;
219
220         pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
221 }
222
223 static const struct property_entry lpt_spi_properties[] = {
224         PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_LPT_SSP),
225         { }
226 };
227
228 static const struct lpss_device_desc lpt_spi_dev_desc = {
229         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
230                         | LPSS_SAVE_CTX,
231         .prv_offset = 0x800,
232         .properties = lpt_spi_properties,
233 };
234
235 static const struct lpss_device_desc lpt_i2c_dev_desc = {
236         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR | LPSS_SAVE_CTX,
237         .prv_offset = 0x800,
238 };
239
240 static struct property_entry uart_properties[] = {
241         PROPERTY_ENTRY_U32("reg-io-width", 4),
242         PROPERTY_ENTRY_U32("reg-shift", 2),
243         PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
244         { },
245 };
246
247 static const struct lpss_device_desc lpt_uart_dev_desc = {
248         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
249                         | LPSS_SAVE_CTX,
250         .clk_con_id = "baudclk",
251         .prv_offset = 0x800,
252         .setup = lpss_uart_setup,
253         .properties = uart_properties,
254 };
255
256 static const struct lpss_device_desc lpt_sdio_dev_desc = {
257         .flags = LPSS_LTR,
258         .prv_offset = 0x1000,
259         .prv_size_override = 0x1018,
260 };
261
262 static const struct lpss_device_desc byt_pwm_dev_desc = {
263         .flags = LPSS_SAVE_CTX,
264         .prv_offset = 0x800,
265         .setup = byt_pwm_setup,
266 };
267
268 static const struct lpss_device_desc bsw_pwm_dev_desc = {
269         .flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY,
270         .prv_offset = 0x800,
271         .setup = bsw_pwm_setup,
272         .resume_from_noirq = true,
273 };
274
275 static const struct lpss_device_desc byt_uart_dev_desc = {
276         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
277         .clk_con_id = "baudclk",
278         .prv_offset = 0x800,
279         .setup = lpss_uart_setup,
280         .properties = uart_properties,
281 };
282
283 static const struct lpss_device_desc bsw_uart_dev_desc = {
284         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
285                         | LPSS_NO_D3_DELAY,
286         .clk_con_id = "baudclk",
287         .prv_offset = 0x800,
288         .setup = lpss_uart_setup,
289         .properties = uart_properties,
290 };
291
292 static const struct property_entry byt_spi_properties[] = {
293         PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_BYT_SSP),
294         { }
295 };
296
297 static const struct lpss_device_desc byt_spi_dev_desc = {
298         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
299         .prv_offset = 0x400,
300         .properties = byt_spi_properties,
301 };
302
303 static const struct lpss_device_desc byt_sdio_dev_desc = {
304         .flags = LPSS_CLK,
305 };
306
307 static const struct lpss_device_desc byt_i2c_dev_desc = {
308         .flags = LPSS_CLK | LPSS_SAVE_CTX,
309         .prv_offset = 0x800,
310         .setup = byt_i2c_setup,
311         .resume_from_noirq = true,
312 };
313
314 static const struct lpss_device_desc bsw_i2c_dev_desc = {
315         .flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
316         .prv_offset = 0x800,
317         .setup = byt_i2c_setup,
318         .resume_from_noirq = true,
319 };
320
321 static const struct property_entry bsw_spi_properties[] = {
322         PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_BSW_SSP),
323         { }
324 };
325
326 static const struct lpss_device_desc bsw_spi_dev_desc = {
327         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
328                         | LPSS_NO_D3_DELAY,
329         .prv_offset = 0x400,
330         .setup = lpss_deassert_reset,
331         .properties = bsw_spi_properties,
332 };
333
334 static const struct x86_cpu_id lpss_cpu_ids[] = {
335         X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT,     NULL),
336         X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT,        NULL),
337         {}
338 };
339
340 #else
341
342 #define LPSS_ADDR(desc) (0UL)
343
344 #endif /* CONFIG_X86_INTEL_LPSS */
345
346 static const struct acpi_device_id acpi_lpss_device_ids[] = {
347         /* Generic LPSS devices */
348         { "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
349
350         /* Lynxpoint LPSS devices */
351         { "INT33C0", LPSS_ADDR(lpt_spi_dev_desc) },
352         { "INT33C1", LPSS_ADDR(lpt_spi_dev_desc) },
353         { "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
354         { "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
355         { "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
356         { "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
357         { "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
358         { "INT33C7", },
359
360         /* BayTrail LPSS devices */
361         { "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
362         { "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
363         { "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
364         { "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
365         { "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
366         { "INT33B2", },
367         { "INT33FC", },
368
369         /* Braswell LPSS devices */
370         { "80862286", LPSS_ADDR(lpss_dma_desc) },
371         { "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
372         { "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
373         { "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
374         { "808622C0", LPSS_ADDR(lpss_dma_desc) },
375         { "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
376
377         /* Broadwell LPSS devices */
378         { "INT3430", LPSS_ADDR(lpt_spi_dev_desc) },
379         { "INT3431", LPSS_ADDR(lpt_spi_dev_desc) },
380         { "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
381         { "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
382         { "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
383         { "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
384         { "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
385         { "INT3437", },
386
387         /* Wildcat Point LPSS devices */
388         { "INT3438", LPSS_ADDR(lpt_spi_dev_desc) },
389
390         { }
391 };
392
393 #ifdef CONFIG_X86_INTEL_LPSS
394
395 static int is_memory(struct acpi_resource *res, void *not_used)
396 {
397         struct resource r;
398
399         return !acpi_dev_resource_memory(res, &r);
400 }
401
402 /* LPSS main clock device. */
403 static struct platform_device *lpss_clk_dev;
404
405 static inline void lpt_register_clock_device(void)
406 {
407         lpss_clk_dev = platform_device_register_simple("clk-lpss-atom",
408                                                        PLATFORM_DEVID_NONE,
409                                                        NULL, 0);
410 }
411
412 static int register_device_clock(struct acpi_device *adev,
413                                  struct lpss_private_data *pdata)
414 {
415         const struct lpss_device_desc *dev_desc = pdata->dev_desc;
416         const char *devname = dev_name(&adev->dev);
417         struct clk *clk;
418         struct lpss_clk_data *clk_data;
419         const char *parent, *clk_name;
420         void __iomem *prv_base;
421
422         if (!lpss_clk_dev)
423                 lpt_register_clock_device();
424
425         if (IS_ERR(lpss_clk_dev))
426                 return PTR_ERR(lpss_clk_dev);
427
428         clk_data = platform_get_drvdata(lpss_clk_dev);
429         if (!clk_data)
430                 return -ENODEV;
431         clk = clk_data->clk;
432
433         if (!pdata->mmio_base
434             || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
435                 return -ENODATA;
436
437         parent = clk_data->name;
438         prv_base = pdata->mmio_base + dev_desc->prv_offset;
439
440         if (pdata->fixed_clk_rate) {
441                 clk = clk_register_fixed_rate(NULL, devname, parent, 0,
442                                               pdata->fixed_clk_rate);
443                 goto out;
444         }
445
446         if (dev_desc->flags & LPSS_CLK_GATE) {
447                 clk = clk_register_gate(NULL, devname, parent, 0,
448                                         prv_base, 0, 0, NULL);
449                 parent = devname;
450         }
451
452         if (dev_desc->flags & LPSS_CLK_DIVIDER) {
453                 /* Prevent division by zero */
454                 if (!readl(prv_base))
455                         writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
456
457                 clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
458                 if (!clk_name)
459                         return -ENOMEM;
460                 clk = clk_register_fractional_divider(NULL, clk_name, parent,
461                                                       CLK_FRAC_DIVIDER_POWER_OF_TWO_PS,
462                                                       prv_base, 1, 15, 16, 15, 0, NULL);
463                 parent = clk_name;
464
465                 clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
466                 if (!clk_name) {
467                         kfree(parent);
468                         return -ENOMEM;
469                 }
470                 clk = clk_register_gate(NULL, clk_name, parent,
471                                         CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
472                                         prv_base, 31, 0, NULL);
473                 kfree(parent);
474                 kfree(clk_name);
475         }
476 out:
477         if (IS_ERR(clk))
478                 return PTR_ERR(clk);
479
480         pdata->clk = clk;
481         clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
482         return 0;
483 }
484
485 struct lpss_device_links {
486         const char *supplier_hid;
487         const char *supplier_uid;
488         const char *consumer_hid;
489         const char *consumer_uid;
490         u32 flags;
491         const struct dmi_system_id *dep_missing_ids;
492 };
493
494 /* Please keep this list sorted alphabetically by vendor and model */
495 static const struct dmi_system_id i2c1_dep_missing_dmi_ids[] = {
496         {
497                 .matches = {
498                         DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
499                         DMI_MATCH(DMI_PRODUCT_NAME, "T200TA"),
500                 },
501         },
502         {}
503 };
504
505 /*
506  * The _DEP method is used to identify dependencies but instead of creating
507  * device links for every handle in _DEP, only links in the following list are
508  * created. That is necessary because, in the general case, _DEP can refer to
509  * devices that might not have drivers, or that are on different buses, or where
510  * the supplier is not enumerated until after the consumer is probed.
511  */
512 static const struct lpss_device_links lpss_device_links[] = {
513         /* CHT External sdcard slot controller depends on PMIC I2C ctrl */
514         {"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME},
515         /* CHT iGPU depends on PMIC I2C controller */
516         {"808622C1", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
517         /* BYT iGPU depends on the Embedded Controller I2C controller (UID 1) */
518         {"80860F41", "1", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME,
519          i2c1_dep_missing_dmi_ids},
520         /* BYT CR iGPU depends on PMIC I2C controller (UID 5 on CR) */
521         {"80860F41", "5", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
522         /* BYT iGPU depends on PMIC I2C controller (UID 7 on non CR) */
523         {"80860F41", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
524 };
525
526 static bool acpi_lpss_is_supplier(struct acpi_device *adev,
527                                   const struct lpss_device_links *link)
528 {
529         return acpi_dev_hid_uid_match(adev, link->supplier_hid, link->supplier_uid);
530 }
531
532 static bool acpi_lpss_is_consumer(struct acpi_device *adev,
533                                   const struct lpss_device_links *link)
534 {
535         return acpi_dev_hid_uid_match(adev, link->consumer_hid, link->consumer_uid);
536 }
537
538 struct hid_uid {
539         const char *hid;
540         const char *uid;
541 };
542
543 static int match_hid_uid(struct device *dev, const void *data)
544 {
545         struct acpi_device *adev = ACPI_COMPANION(dev);
546         const struct hid_uid *id = data;
547
548         if (!adev)
549                 return 0;
550
551         return acpi_dev_hid_uid_match(adev, id->hid, id->uid);
552 }
553
554 static struct device *acpi_lpss_find_device(const char *hid, const char *uid)
555 {
556         struct device *dev;
557
558         struct hid_uid data = {
559                 .hid = hid,
560                 .uid = uid,
561         };
562
563         dev = bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid);
564         if (dev)
565                 return dev;
566
567         return bus_find_device(&pci_bus_type, NULL, &data, match_hid_uid);
568 }
569
570 static bool acpi_lpss_dep(struct acpi_device *adev, acpi_handle handle)
571 {
572         struct acpi_handle_list dep_devices;
573         acpi_status status;
574         int i;
575
576         if (!acpi_has_method(adev->handle, "_DEP"))
577                 return false;
578
579         status = acpi_evaluate_reference(adev->handle, "_DEP", NULL,
580                                          &dep_devices);
581         if (ACPI_FAILURE(status)) {
582                 dev_dbg(&adev->dev, "Failed to evaluate _DEP.\n");
583                 return false;
584         }
585
586         for (i = 0; i < dep_devices.count; i++) {
587                 if (dep_devices.handles[i] == handle)
588                         return true;
589         }
590
591         return false;
592 }
593
594 static void acpi_lpss_link_consumer(struct device *dev1,
595                                     const struct lpss_device_links *link)
596 {
597         struct device *dev2;
598
599         dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid);
600         if (!dev2)
601                 return;
602
603         if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
604             || acpi_lpss_dep(ACPI_COMPANION(dev2), ACPI_HANDLE(dev1)))
605                 device_link_add(dev2, dev1, link->flags);
606
607         put_device(dev2);
608 }
609
610 static void acpi_lpss_link_supplier(struct device *dev1,
611                                     const struct lpss_device_links *link)
612 {
613         struct device *dev2;
614
615         dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid);
616         if (!dev2)
617                 return;
618
619         if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
620             || acpi_lpss_dep(ACPI_COMPANION(dev1), ACPI_HANDLE(dev2)))
621                 device_link_add(dev1, dev2, link->flags);
622
623         put_device(dev2);
624 }
625
626 static void acpi_lpss_create_device_links(struct acpi_device *adev,
627                                           struct platform_device *pdev)
628 {
629         int i;
630
631         for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) {
632                 const struct lpss_device_links *link = &lpss_device_links[i];
633
634                 if (acpi_lpss_is_supplier(adev, link))
635                         acpi_lpss_link_consumer(&pdev->dev, link);
636
637                 if (acpi_lpss_is_consumer(adev, link))
638                         acpi_lpss_link_supplier(&pdev->dev, link);
639         }
640 }
641
642 static int acpi_lpss_create_device(struct acpi_device *adev,
643                                    const struct acpi_device_id *id)
644 {
645         const struct lpss_device_desc *dev_desc;
646         struct lpss_private_data *pdata;
647         struct resource_entry *rentry;
648         struct list_head resource_list;
649         struct platform_device *pdev;
650         int ret;
651
652         dev_desc = (const struct lpss_device_desc *)id->driver_data;
653         if (!dev_desc) {
654                 pdev = acpi_create_platform_device(adev, NULL);
655                 return IS_ERR_OR_NULL(pdev) ? PTR_ERR(pdev) : 1;
656         }
657         pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
658         if (!pdata)
659                 return -ENOMEM;
660
661         INIT_LIST_HEAD(&resource_list);
662         ret = acpi_dev_get_resources(adev, &resource_list, is_memory, NULL);
663         if (ret < 0)
664                 goto err_out;
665
666         list_for_each_entry(rentry, &resource_list, node)
667                 if (resource_type(rentry->res) == IORESOURCE_MEM) {
668                         if (dev_desc->prv_size_override)
669                                 pdata->mmio_size = dev_desc->prv_size_override;
670                         else
671                                 pdata->mmio_size = resource_size(rentry->res);
672                         pdata->mmio_base = ioremap(rentry->res->start,
673                                                    pdata->mmio_size);
674                         break;
675                 }
676
677         acpi_dev_free_resource_list(&resource_list);
678
679         if (!pdata->mmio_base) {
680                 /* Avoid acpi_bus_attach() instantiating a pdev for this dev. */
681                 adev->pnp.type.platform_id = 0;
682                 /* Skip the device, but continue the namespace scan. */
683                 ret = 0;
684                 goto err_out;
685         }
686
687         pdata->adev = adev;
688         pdata->dev_desc = dev_desc;
689
690         if (dev_desc->setup)
691                 dev_desc->setup(pdata);
692
693         if (dev_desc->flags & LPSS_CLK) {
694                 ret = register_device_clock(adev, pdata);
695                 if (ret) {
696                         /* Skip the device, but continue the namespace scan. */
697                         ret = 0;
698                         goto err_out;
699                 }
700         }
701
702         /*
703          * This works around a known issue in ACPI tables where LPSS devices
704          * have _PS0 and _PS3 without _PSC (and no power resources), so
705          * acpi_bus_init_power() will assume that the BIOS has put them into D0.
706          */
707         acpi_device_fix_up_power(adev);
708
709         adev->driver_data = pdata;
710         pdev = acpi_create_platform_device(adev, dev_desc->properties);
711         if (!IS_ERR_OR_NULL(pdev)) {
712                 acpi_lpss_create_device_links(adev, pdev);
713                 return 1;
714         }
715
716         ret = PTR_ERR(pdev);
717         adev->driver_data = NULL;
718
719  err_out:
720         kfree(pdata);
721         return ret;
722 }
723
724 static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
725 {
726         return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
727 }
728
729 static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
730                              unsigned int reg)
731 {
732         writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
733 }
734
735 static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
736 {
737         struct acpi_device *adev = ACPI_COMPANION(dev);
738         struct lpss_private_data *pdata;
739         unsigned long flags;
740         int ret;
741
742         if (WARN_ON(!adev))
743                 return -ENODEV;
744
745         spin_lock_irqsave(&dev->power.lock, flags);
746         if (pm_runtime_suspended(dev)) {
747                 ret = -EAGAIN;
748                 goto out;
749         }
750         pdata = acpi_driver_data(adev);
751         if (WARN_ON(!pdata || !pdata->mmio_base)) {
752                 ret = -ENODEV;
753                 goto out;
754         }
755         *val = __lpss_reg_read(pdata, reg);
756         ret = 0;
757
758  out:
759         spin_unlock_irqrestore(&dev->power.lock, flags);
760         return ret;
761 }
762
763 static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
764                              char *buf)
765 {
766         u32 ltr_value = 0;
767         unsigned int reg;
768         int ret;
769
770         reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
771         ret = lpss_reg_read(dev, reg, &ltr_value);
772         if (ret)
773                 return ret;
774
775         return sysfs_emit(buf, "%08x\n", ltr_value);
776 }
777
778 static ssize_t lpss_ltr_mode_show(struct device *dev,
779                                   struct device_attribute *attr, char *buf)
780 {
781         u32 ltr_mode = 0;
782         char *outstr;
783         int ret;
784
785         ret = lpss_reg_read(dev, LPSS_GENERAL, &ltr_mode);
786         if (ret)
787                 return ret;
788
789         outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
790         return sprintf(buf, "%s\n", outstr);
791 }
792
793 static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
794 static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
795 static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
796
797 static struct attribute *lpss_attrs[] = {
798         &dev_attr_auto_ltr.attr,
799         &dev_attr_sw_ltr.attr,
800         &dev_attr_ltr_mode.attr,
801         NULL,
802 };
803
804 static const struct attribute_group lpss_attr_group = {
805         .attrs = lpss_attrs,
806         .name = "lpss_ltr",
807 };
808
809 static void acpi_lpss_set_ltr(struct device *dev, s32 val)
810 {
811         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
812         u32 ltr_mode, ltr_val;
813
814         ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
815         if (val < 0) {
816                 if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
817                         ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
818                         __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
819                 }
820                 return;
821         }
822         ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
823         if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
824                 ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
825                 val = LPSS_LTR_MAX_VAL;
826         } else if (val > LPSS_LTR_MAX_VAL) {
827                 ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
828                 val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
829         } else {
830                 ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
831         }
832         ltr_val |= val;
833         __lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
834         if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
835                 ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
836                 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
837         }
838 }
839
840 #ifdef CONFIG_PM
841 /**
842  * acpi_lpss_save_ctx() - Save the private registers of LPSS device
843  * @dev: LPSS device
844  * @pdata: pointer to the private data of the LPSS device
845  *
846  * Most LPSS devices have private registers which may loose their context when
847  * the device is powered down. acpi_lpss_save_ctx() saves those registers into
848  * prv_reg_ctx array.
849  */
850 static void acpi_lpss_save_ctx(struct device *dev,
851                                struct lpss_private_data *pdata)
852 {
853         unsigned int i;
854
855         for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
856                 unsigned long offset = i * sizeof(u32);
857
858                 pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
859                 dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
860                         pdata->prv_reg_ctx[i], offset);
861         }
862 }
863
864 /**
865  * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
866  * @dev: LPSS device
867  * @pdata: pointer to the private data of the LPSS device
868  *
869  * Restores the registers that were previously stored with acpi_lpss_save_ctx().
870  */
871 static void acpi_lpss_restore_ctx(struct device *dev,
872                                   struct lpss_private_data *pdata)
873 {
874         unsigned int i;
875
876         for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
877                 unsigned long offset = i * sizeof(u32);
878
879                 __lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
880                 dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
881                         pdata->prv_reg_ctx[i], offset);
882         }
883 }
884
885 static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
886 {
887         /*
888          * The following delay is needed or the subsequent write operations may
889          * fail. The LPSS devices are actually PCI devices and the PCI spec
890          * expects 10ms delay before the device can be accessed after D3 to D0
891          * transition. However some platforms like BSW does not need this delay.
892          */
893         unsigned int delay = 10;        /* default 10ms delay */
894
895         if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
896                 delay = 0;
897
898         msleep(delay);
899 }
900
901 static int acpi_lpss_activate(struct device *dev)
902 {
903         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
904         int ret;
905
906         ret = acpi_dev_resume(dev);
907         if (ret)
908                 return ret;
909
910         acpi_lpss_d3_to_d0_delay(pdata);
911
912         /*
913          * This is called only on ->probe() stage where a device is either in
914          * known state defined by BIOS or most likely powered off. Due to this
915          * we have to deassert reset line to be sure that ->probe() will
916          * recognize the device.
917          */
918         if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
919                 lpss_deassert_reset(pdata);
920
921 #ifdef CONFIG_PM
922         if (pdata->dev_desc->flags & LPSS_SAVE_CTX_ONCE)
923                 acpi_lpss_save_ctx(dev, pdata);
924 #endif
925
926         return 0;
927 }
928
929 static void acpi_lpss_dismiss(struct device *dev)
930 {
931         acpi_dev_suspend(dev, false);
932 }
933
934 /* IOSF SB for LPSS island */
935 #define LPSS_IOSF_UNIT_LPIOEP           0xA0
936 #define LPSS_IOSF_UNIT_LPIO1            0xAB
937 #define LPSS_IOSF_UNIT_LPIO2            0xAC
938
939 #define LPSS_IOSF_PMCSR                 0x84
940 #define LPSS_PMCSR_D0                   0
941 #define LPSS_PMCSR_D3hot                3
942 #define LPSS_PMCSR_Dx_MASK              GENMASK(1, 0)
943
944 #define LPSS_IOSF_GPIODEF0              0x154
945 #define LPSS_GPIODEF0_DMA1_D3           BIT(2)
946 #define LPSS_GPIODEF0_DMA2_D3           BIT(3)
947 #define LPSS_GPIODEF0_DMA_D3_MASK       GENMASK(3, 2)
948 #define LPSS_GPIODEF0_DMA_LLP           BIT(13)
949
950 static DEFINE_MUTEX(lpss_iosf_mutex);
951 static bool lpss_iosf_d3_entered = true;
952
953 static void lpss_iosf_enter_d3_state(void)
954 {
955         u32 value1 = 0;
956         u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
957         u32 value2 = LPSS_PMCSR_D3hot;
958         u32 mask2 = LPSS_PMCSR_Dx_MASK;
959         /*
960          * PMC provides an information about actual status of the LPSS devices.
961          * Here we read the values related to LPSS power island, i.e. LPSS
962          * devices, excluding both LPSS DMA controllers, along with SCC domain.
963          */
964         u32 func_dis, d3_sts_0, pmc_status;
965         int ret;
966
967         ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
968         if (ret)
969                 return;
970
971         mutex_lock(&lpss_iosf_mutex);
972
973         ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
974         if (ret)
975                 goto exit;
976
977         /*
978          * Get the status of entire LPSS power island per device basis.
979          * Shutdown both LPSS DMA controllers if and only if all other devices
980          * are already in D3hot.
981          */
982         pmc_status = (~(d3_sts_0 | func_dis)) & pmc_atom_d3_mask;
983         if (pmc_status)
984                 goto exit;
985
986         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
987                         LPSS_IOSF_PMCSR, value2, mask2);
988
989         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
990                         LPSS_IOSF_PMCSR, value2, mask2);
991
992         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
993                         LPSS_IOSF_GPIODEF0, value1, mask1);
994
995         lpss_iosf_d3_entered = true;
996
997 exit:
998         mutex_unlock(&lpss_iosf_mutex);
999 }
1000
1001 static void lpss_iosf_exit_d3_state(void)
1002 {
1003         u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
1004                      LPSS_GPIODEF0_DMA_LLP;
1005         u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
1006         u32 value2 = LPSS_PMCSR_D0;
1007         u32 mask2 = LPSS_PMCSR_Dx_MASK;
1008
1009         mutex_lock(&lpss_iosf_mutex);
1010
1011         if (!lpss_iosf_d3_entered)
1012                 goto exit;
1013
1014         lpss_iosf_d3_entered = false;
1015
1016         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
1017                         LPSS_IOSF_GPIODEF0, value1, mask1);
1018
1019         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
1020                         LPSS_IOSF_PMCSR, value2, mask2);
1021
1022         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
1023                         LPSS_IOSF_PMCSR, value2, mask2);
1024
1025 exit:
1026         mutex_unlock(&lpss_iosf_mutex);
1027 }
1028
1029 static int acpi_lpss_suspend(struct device *dev, bool wakeup)
1030 {
1031         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1032         int ret;
1033
1034         if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
1035                 acpi_lpss_save_ctx(dev, pdata);
1036
1037         ret = acpi_dev_suspend(dev, wakeup);
1038
1039         /*
1040          * This call must be last in the sequence, otherwise PMC will return
1041          * wrong status for devices being about to be powered off. See
1042          * lpss_iosf_enter_d3_state() for further information.
1043          */
1044         if (acpi_target_system_state() == ACPI_STATE_S0 &&
1045             lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1046                 lpss_iosf_enter_d3_state();
1047
1048         return ret;
1049 }
1050
1051 static int acpi_lpss_resume(struct device *dev)
1052 {
1053         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1054         int ret;
1055
1056         /*
1057          * This call is kept first to be in symmetry with
1058          * acpi_lpss_runtime_suspend() one.
1059          */
1060         if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1061                 lpss_iosf_exit_d3_state();
1062
1063         ret = acpi_dev_resume(dev);
1064         if (ret)
1065                 return ret;
1066
1067         acpi_lpss_d3_to_d0_delay(pdata);
1068
1069         if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
1070                 acpi_lpss_restore_ctx(dev, pdata);
1071
1072         return 0;
1073 }
1074
1075 #ifdef CONFIG_PM_SLEEP
1076 static int acpi_lpss_do_suspend_late(struct device *dev)
1077 {
1078         int ret;
1079
1080         if (dev_pm_skip_suspend(dev))
1081                 return 0;
1082
1083         ret = pm_generic_suspend_late(dev);
1084         return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1085 }
1086
1087 static int acpi_lpss_suspend_late(struct device *dev)
1088 {
1089         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1090
1091         if (pdata->dev_desc->resume_from_noirq)
1092                 return 0;
1093
1094         return acpi_lpss_do_suspend_late(dev);
1095 }
1096
1097 static int acpi_lpss_suspend_noirq(struct device *dev)
1098 {
1099         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1100         int ret;
1101
1102         if (pdata->dev_desc->resume_from_noirq) {
1103                 /*
1104                  * The driver's ->suspend_late callback will be invoked by
1105                  * acpi_lpss_do_suspend_late(), with the assumption that the
1106                  * driver really wanted to run that code in ->suspend_noirq, but
1107                  * it could not run after acpi_dev_suspend() and the driver
1108                  * expected the latter to be called in the "late" phase.
1109                  */
1110                 ret = acpi_lpss_do_suspend_late(dev);
1111                 if (ret)
1112                         return ret;
1113         }
1114
1115         return acpi_subsys_suspend_noirq(dev);
1116 }
1117
1118 static int acpi_lpss_do_resume_early(struct device *dev)
1119 {
1120         int ret = acpi_lpss_resume(dev);
1121
1122         return ret ? ret : pm_generic_resume_early(dev);
1123 }
1124
1125 static int acpi_lpss_resume_early(struct device *dev)
1126 {
1127         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1128
1129         if (pdata->dev_desc->resume_from_noirq)
1130                 return 0;
1131
1132         if (dev_pm_skip_resume(dev))
1133                 return 0;
1134
1135         return acpi_lpss_do_resume_early(dev);
1136 }
1137
1138 static int acpi_lpss_resume_noirq(struct device *dev)
1139 {
1140         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1141         int ret;
1142
1143         /* Follow acpi_subsys_resume_noirq(). */
1144         if (dev_pm_skip_resume(dev))
1145                 return 0;
1146
1147         ret = pm_generic_resume_noirq(dev);
1148         if (ret)
1149                 return ret;
1150
1151         if (!pdata->dev_desc->resume_from_noirq)
1152                 return 0;
1153
1154         /*
1155          * The driver's ->resume_early callback will be invoked by
1156          * acpi_lpss_do_resume_early(), with the assumption that the driver
1157          * really wanted to run that code in ->resume_noirq, but it could not
1158          * run before acpi_dev_resume() and the driver expected the latter to be
1159          * called in the "early" phase.
1160          */
1161         return acpi_lpss_do_resume_early(dev);
1162 }
1163
1164 static int acpi_lpss_do_restore_early(struct device *dev)
1165 {
1166         int ret = acpi_lpss_resume(dev);
1167
1168         return ret ? ret : pm_generic_restore_early(dev);
1169 }
1170
1171 static int acpi_lpss_restore_early(struct device *dev)
1172 {
1173         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1174
1175         if (pdata->dev_desc->resume_from_noirq)
1176                 return 0;
1177
1178         return acpi_lpss_do_restore_early(dev);
1179 }
1180
1181 static int acpi_lpss_restore_noirq(struct device *dev)
1182 {
1183         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1184         int ret;
1185
1186         ret = pm_generic_restore_noirq(dev);
1187         if (ret)
1188                 return ret;
1189
1190         if (!pdata->dev_desc->resume_from_noirq)
1191                 return 0;
1192
1193         /* This is analogous to what happens in acpi_lpss_resume_noirq(). */
1194         return acpi_lpss_do_restore_early(dev);
1195 }
1196
1197 static int acpi_lpss_do_poweroff_late(struct device *dev)
1198 {
1199         int ret = pm_generic_poweroff_late(dev);
1200
1201         return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1202 }
1203
1204 static int acpi_lpss_poweroff_late(struct device *dev)
1205 {
1206         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1207
1208         if (dev_pm_skip_suspend(dev))
1209                 return 0;
1210
1211         if (pdata->dev_desc->resume_from_noirq)
1212                 return 0;
1213
1214         return acpi_lpss_do_poweroff_late(dev);
1215 }
1216
1217 static int acpi_lpss_poweroff_noirq(struct device *dev)
1218 {
1219         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1220
1221         if (dev_pm_skip_suspend(dev))
1222                 return 0;
1223
1224         if (pdata->dev_desc->resume_from_noirq) {
1225                 /* This is analogous to the acpi_lpss_suspend_noirq() case. */
1226                 int ret = acpi_lpss_do_poweroff_late(dev);
1227
1228                 if (ret)
1229                         return ret;
1230         }
1231
1232         return pm_generic_poweroff_noirq(dev);
1233 }
1234 #endif /* CONFIG_PM_SLEEP */
1235
1236 static int acpi_lpss_runtime_suspend(struct device *dev)
1237 {
1238         int ret = pm_generic_runtime_suspend(dev);
1239
1240         return ret ? ret : acpi_lpss_suspend(dev, true);
1241 }
1242
1243 static int acpi_lpss_runtime_resume(struct device *dev)
1244 {
1245         int ret = acpi_lpss_resume(dev);
1246
1247         return ret ? ret : pm_generic_runtime_resume(dev);
1248 }
1249 #endif /* CONFIG_PM */
1250
1251 static struct dev_pm_domain acpi_lpss_pm_domain = {
1252 #ifdef CONFIG_PM
1253         .activate = acpi_lpss_activate,
1254         .dismiss = acpi_lpss_dismiss,
1255 #endif
1256         .ops = {
1257 #ifdef CONFIG_PM
1258 #ifdef CONFIG_PM_SLEEP
1259                 .prepare = acpi_subsys_prepare,
1260                 .complete = acpi_subsys_complete,
1261                 .suspend = acpi_subsys_suspend,
1262                 .suspend_late = acpi_lpss_suspend_late,
1263                 .suspend_noirq = acpi_lpss_suspend_noirq,
1264                 .resume_noirq = acpi_lpss_resume_noirq,
1265                 .resume_early = acpi_lpss_resume_early,
1266                 .freeze = acpi_subsys_freeze,
1267                 .poweroff = acpi_subsys_poweroff,
1268                 .poweroff_late = acpi_lpss_poweroff_late,
1269                 .poweroff_noirq = acpi_lpss_poweroff_noirq,
1270                 .restore_noirq = acpi_lpss_restore_noirq,
1271                 .restore_early = acpi_lpss_restore_early,
1272 #endif
1273                 .runtime_suspend = acpi_lpss_runtime_suspend,
1274                 .runtime_resume = acpi_lpss_runtime_resume,
1275 #endif
1276         },
1277 };
1278
1279 static int acpi_lpss_platform_notify(struct notifier_block *nb,
1280                                      unsigned long action, void *data)
1281 {
1282         struct platform_device *pdev = to_platform_device(data);
1283         struct lpss_private_data *pdata;
1284         struct acpi_device *adev;
1285         const struct acpi_device_id *id;
1286
1287         id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
1288         if (!id || !id->driver_data)
1289                 return 0;
1290
1291         adev = ACPI_COMPANION(&pdev->dev);
1292         if (!adev)
1293                 return 0;
1294
1295         pdata = acpi_driver_data(adev);
1296         if (!pdata)
1297                 return 0;
1298
1299         if (pdata->mmio_base &&
1300             pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
1301                 dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
1302                 return 0;
1303         }
1304
1305         switch (action) {
1306         case BUS_NOTIFY_BIND_DRIVER:
1307                 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1308                 break;
1309         case BUS_NOTIFY_DRIVER_NOT_BOUND:
1310         case BUS_NOTIFY_UNBOUND_DRIVER:
1311                 dev_pm_domain_set(&pdev->dev, NULL);
1312                 break;
1313         case BUS_NOTIFY_ADD_DEVICE:
1314                 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1315                 if (pdata->dev_desc->flags & LPSS_LTR)
1316                         return sysfs_create_group(&pdev->dev.kobj,
1317                                                   &lpss_attr_group);
1318                 break;
1319         case BUS_NOTIFY_DEL_DEVICE:
1320                 if (pdata->dev_desc->flags & LPSS_LTR)
1321                         sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
1322                 dev_pm_domain_set(&pdev->dev, NULL);
1323                 break;
1324         default:
1325                 break;
1326         }
1327
1328         return 0;
1329 }
1330
1331 static struct notifier_block acpi_lpss_nb = {
1332         .notifier_call = acpi_lpss_platform_notify,
1333 };
1334
1335 static void acpi_lpss_bind(struct device *dev)
1336 {
1337         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1338
1339         if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
1340                 return;
1341
1342         if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
1343                 dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
1344         else
1345                 dev_err(dev, "MMIO size insufficient to access LTR\n");
1346 }
1347
1348 static void acpi_lpss_unbind(struct device *dev)
1349 {
1350         dev->power.set_latency_tolerance = NULL;
1351 }
1352
1353 static struct acpi_scan_handler lpss_handler = {
1354         .ids = acpi_lpss_device_ids,
1355         .attach = acpi_lpss_create_device,
1356         .bind = acpi_lpss_bind,
1357         .unbind = acpi_lpss_unbind,
1358 };
1359
1360 void __init acpi_lpss_init(void)
1361 {
1362         const struct x86_cpu_id *id;
1363         int ret;
1364
1365         ret = lpss_atom_clk_init();
1366         if (ret)
1367                 return;
1368
1369         id = x86_match_cpu(lpss_cpu_ids);
1370         if (id)
1371                 lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
1372
1373         bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
1374         acpi_scan_add_handler(&lpss_handler);
1375 }
1376
1377 #else
1378
1379 static struct acpi_scan_handler lpss_handler = {
1380         .ids = acpi_lpss_device_ids,
1381 };
1382
1383 void __init acpi_lpss_init(void)
1384 {
1385         acpi_scan_add_handler(&lpss_handler);
1386 }
1387
1388 #endif /* CONFIG_X86_INTEL_LPSS */