drivers: media: imx519: Add V4L2_CID_LINK_FREQ control
[platform/kernel/linux-rpi.git] / drivers / acpi / acpi_lpss.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ACPI support for Intel Lynxpoint LPSS.
4  *
5  * Copyright (C) 2013, Intel Corporation
6  * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7  *          Rafael J. Wysocki <rafael.j.wysocki@intel.com>
8  */
9
10 #include <linux/acpi.h>
11 #include <linux/clkdev.h>
12 #include <linux/clk-provider.h>
13 #include <linux/dmi.h>
14 #include <linux/err.h>
15 #include <linux/io.h>
16 #include <linux/mutex.h>
17 #include <linux/pci.h>
18 #include <linux/platform_device.h>
19 #include <linux/platform_data/x86/clk-lpss.h>
20 #include <linux/platform_data/x86/pmc_atom.h>
21 #include <linux/pm_domain.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pwm.h>
24 #include <linux/pxa2xx_ssp.h>
25 #include <linux/suspend.h>
26 #include <linux/delay.h>
27
28 #include "internal.h"
29
30 #ifdef CONFIG_X86_INTEL_LPSS
31
32 #include <asm/cpu_device_id.h>
33 #include <asm/intel-family.h>
34 #include <asm/iosf_mbi.h>
35
36 #define LPSS_ADDR(desc) ((unsigned long)&desc)
37
38 #define LPSS_CLK_SIZE   0x04
39 #define LPSS_LTR_SIZE   0x18
40
41 /* Offsets relative to LPSS_PRIVATE_OFFSET */
42 #define LPSS_CLK_DIVIDER_DEF_MASK       (BIT(1) | BIT(16))
43 #define LPSS_RESETS                     0x04
44 #define LPSS_RESETS_RESET_FUNC          BIT(0)
45 #define LPSS_RESETS_RESET_APB           BIT(1)
46 #define LPSS_GENERAL                    0x08
47 #define LPSS_GENERAL_LTR_MODE_SW        BIT(2)
48 #define LPSS_GENERAL_UART_RTS_OVRD      BIT(3)
49 #define LPSS_SW_LTR                     0x10
50 #define LPSS_AUTO_LTR                   0x14
51 #define LPSS_LTR_SNOOP_REQ              BIT(15)
52 #define LPSS_LTR_SNOOP_MASK             0x0000FFFF
53 #define LPSS_LTR_SNOOP_LAT_1US          0x800
54 #define LPSS_LTR_SNOOP_LAT_32US         0xC00
55 #define LPSS_LTR_SNOOP_LAT_SHIFT        5
56 #define LPSS_LTR_SNOOP_LAT_CUTOFF       3000
57 #define LPSS_LTR_MAX_VAL                0x3FF
58 #define LPSS_TX_INT                     0x20
59 #define LPSS_TX_INT_MASK                BIT(1)
60
61 #define LPSS_PRV_REG_COUNT              9
62
63 /* LPSS Flags */
64 #define LPSS_CLK                        BIT(0)
65 #define LPSS_CLK_GATE                   BIT(1)
66 #define LPSS_CLK_DIVIDER                BIT(2)
67 #define LPSS_LTR                        BIT(3)
68 #define LPSS_SAVE_CTX                   BIT(4)
69 /*
70  * For some devices the DSDT AML code for another device turns off the device
71  * before our suspend handler runs, causing us to read/save all 1-s (0xffffffff)
72  * as ctx register values.
73  * Luckily these devices always use the same ctx register values, so we can
74  * work around this by saving the ctx registers once on activation.
75  */
76 #define LPSS_SAVE_CTX_ONCE              BIT(5)
77 #define LPSS_NO_D3_DELAY                BIT(6)
78
79 struct lpss_private_data;
80
81 struct lpss_device_desc {
82         unsigned int flags;
83         const char *clk_con_id;
84         unsigned int prv_offset;
85         size_t prv_size_override;
86         const struct property_entry *properties;
87         void (*setup)(struct lpss_private_data *pdata);
88         bool resume_from_noirq;
89 };
90
91 static const struct lpss_device_desc lpss_dma_desc = {
92         .flags = LPSS_CLK,
93 };
94
95 struct lpss_private_data {
96         struct acpi_device *adev;
97         void __iomem *mmio_base;
98         resource_size_t mmio_size;
99         unsigned int fixed_clk_rate;
100         struct clk *clk;
101         const struct lpss_device_desc *dev_desc;
102         u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
103 };
104
105 /* Devices which need to be in D3 before lpss_iosf_enter_d3_state() proceeds */
106 static u32 pmc_atom_d3_mask = 0xfe000ffe;
107
108 /* LPSS run time quirks */
109 static unsigned int lpss_quirks;
110
111 /*
112  * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
113  *
114  * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
115  * it can be powered off automatically whenever the last LPSS device goes down.
116  * In case of no power any access to the DMA controller will hang the system.
117  * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
118  * well as on ASuS T100TA transformer.
119  *
120  * This quirk overrides power state of entire LPSS island to keep DMA powered
121  * on whenever we have at least one other device in use.
122  */
123 #define LPSS_QUIRK_ALWAYS_POWER_ON      BIT(0)
124
125 /* UART Component Parameter Register */
126 #define LPSS_UART_CPR                   0xF4
127 #define LPSS_UART_CPR_AFCE              BIT(4)
128
129 static void lpss_uart_setup(struct lpss_private_data *pdata)
130 {
131         unsigned int offset;
132         u32 val;
133
134         offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
135         val = readl(pdata->mmio_base + offset);
136         writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
137
138         val = readl(pdata->mmio_base + LPSS_UART_CPR);
139         if (!(val & LPSS_UART_CPR_AFCE)) {
140                 offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
141                 val = readl(pdata->mmio_base + offset);
142                 val |= LPSS_GENERAL_UART_RTS_OVRD;
143                 writel(val, pdata->mmio_base + offset);
144         }
145 }
146
147 static void lpss_deassert_reset(struct lpss_private_data *pdata)
148 {
149         unsigned int offset;
150         u32 val;
151
152         offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
153         val = readl(pdata->mmio_base + offset);
154         val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
155         writel(val, pdata->mmio_base + offset);
156 }
157
158 /*
159  * BYT PWM used for backlight control by the i915 driver on systems without
160  * the Crystal Cove PMIC.
161  */
162 static struct pwm_lookup byt_pwm_lookup[] = {
163         PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
164                                "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
165                                "pwm-lpss-platform"),
166 };
167
168 static void byt_pwm_setup(struct lpss_private_data *pdata)
169 {
170         u64 uid;
171
172         /* Only call pwm_add_table for the first PWM controller */
173         if (acpi_dev_uid_to_integer(pdata->adev, &uid) || uid != 1)
174                 return;
175
176         pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
177 }
178
179 #define LPSS_I2C_ENABLE                 0x6c
180
181 static void byt_i2c_setup(struct lpss_private_data *pdata)
182 {
183         acpi_handle handle = pdata->adev->handle;
184         unsigned long long shared_host = 0;
185         acpi_status status;
186         u64 uid;
187
188         /* Expected to always be successfull, but better safe then sorry */
189         if (!acpi_dev_uid_to_integer(pdata->adev, &uid) && uid) {
190                 /* Detect I2C bus shared with PUNIT and ignore its d3 status */
191                 status = acpi_evaluate_integer(handle, "_SEM", NULL, &shared_host);
192                 if (ACPI_SUCCESS(status) && shared_host)
193                         pmc_atom_d3_mask &= ~(BIT_LPSS2_F1_I2C1 << (uid - 1));
194         }
195
196         lpss_deassert_reset(pdata);
197
198         if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
199                 pdata->fixed_clk_rate = 133000000;
200
201         writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
202 }
203
204 /*
205  * BSW PWM1 is used for backlight control by the i915 driver
206  * BSW PWM2 is used for backlight control for fixed (etched into the glass)
207  * touch controls on some models. These touch-controls have specialized
208  * drivers which know they need the "pwm_soc_lpss_2" con-id.
209  */
210 static struct pwm_lookup bsw_pwm_lookup[] = {
211         PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
212                                "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
213                                "pwm-lpss-platform"),
214         PWM_LOOKUP_WITH_MODULE("80862289:00", 0, NULL,
215                                "pwm_soc_lpss_2", 0, PWM_POLARITY_NORMAL,
216                                "pwm-lpss-platform"),
217 };
218
219 static void bsw_pwm_setup(struct lpss_private_data *pdata)
220 {
221         u64 uid;
222
223         /* Only call pwm_add_table for the first PWM controller */
224         if (acpi_dev_uid_to_integer(pdata->adev, &uid) || uid != 1)
225                 return;
226
227         pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
228 }
229
230 static const struct property_entry lpt_spi_properties[] = {
231         PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_LPT_SSP),
232         { }
233 };
234
235 static const struct lpss_device_desc lpt_spi_dev_desc = {
236         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
237                         | LPSS_SAVE_CTX,
238         .prv_offset = 0x800,
239         .properties = lpt_spi_properties,
240 };
241
242 static const struct lpss_device_desc lpt_i2c_dev_desc = {
243         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR | LPSS_SAVE_CTX,
244         .prv_offset = 0x800,
245 };
246
247 static struct property_entry uart_properties[] = {
248         PROPERTY_ENTRY_U32("reg-io-width", 4),
249         PROPERTY_ENTRY_U32("reg-shift", 2),
250         PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
251         { },
252 };
253
254 static const struct lpss_device_desc lpt_uart_dev_desc = {
255         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
256                         | LPSS_SAVE_CTX,
257         .clk_con_id = "baudclk",
258         .prv_offset = 0x800,
259         .setup = lpss_uart_setup,
260         .properties = uart_properties,
261 };
262
263 static const struct lpss_device_desc lpt_sdio_dev_desc = {
264         .flags = LPSS_LTR,
265         .prv_offset = 0x1000,
266         .prv_size_override = 0x1018,
267 };
268
269 static const struct lpss_device_desc byt_pwm_dev_desc = {
270         .flags = LPSS_SAVE_CTX,
271         .prv_offset = 0x800,
272         .setup = byt_pwm_setup,
273 };
274
275 static const struct lpss_device_desc bsw_pwm_dev_desc = {
276         .flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY,
277         .prv_offset = 0x800,
278         .setup = bsw_pwm_setup,
279         .resume_from_noirq = true,
280 };
281
282 static const struct lpss_device_desc bsw_pwm2_dev_desc = {
283         .flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY,
284         .prv_offset = 0x800,
285         .resume_from_noirq = true,
286 };
287
288 static const struct lpss_device_desc byt_uart_dev_desc = {
289         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
290         .clk_con_id = "baudclk",
291         .prv_offset = 0x800,
292         .setup = lpss_uart_setup,
293         .properties = uart_properties,
294 };
295
296 static const struct lpss_device_desc bsw_uart_dev_desc = {
297         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
298                         | LPSS_NO_D3_DELAY,
299         .clk_con_id = "baudclk",
300         .prv_offset = 0x800,
301         .setup = lpss_uart_setup,
302         .properties = uart_properties,
303 };
304
305 static const struct property_entry byt_spi_properties[] = {
306         PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_BYT_SSP),
307         { }
308 };
309
310 static const struct lpss_device_desc byt_spi_dev_desc = {
311         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
312         .prv_offset = 0x400,
313         .properties = byt_spi_properties,
314 };
315
316 static const struct lpss_device_desc byt_sdio_dev_desc = {
317         .flags = LPSS_CLK,
318 };
319
320 static const struct lpss_device_desc byt_i2c_dev_desc = {
321         .flags = LPSS_CLK | LPSS_SAVE_CTX,
322         .prv_offset = 0x800,
323         .setup = byt_i2c_setup,
324         .resume_from_noirq = true,
325 };
326
327 static const struct lpss_device_desc bsw_i2c_dev_desc = {
328         .flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
329         .prv_offset = 0x800,
330         .setup = byt_i2c_setup,
331         .resume_from_noirq = true,
332 };
333
334 static const struct property_entry bsw_spi_properties[] = {
335         PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_BSW_SSP),
336         { }
337 };
338
339 static const struct lpss_device_desc bsw_spi_dev_desc = {
340         .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
341                         | LPSS_NO_D3_DELAY,
342         .prv_offset = 0x400,
343         .setup = lpss_deassert_reset,
344         .properties = bsw_spi_properties,
345 };
346
347 static const struct x86_cpu_id lpss_cpu_ids[] = {
348         X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT,     NULL),
349         X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT,        NULL),
350         {}
351 };
352
353 #else
354
355 #define LPSS_ADDR(desc) (0UL)
356
357 #endif /* CONFIG_X86_INTEL_LPSS */
358
359 static const struct acpi_device_id acpi_lpss_device_ids[] = {
360         /* Generic LPSS devices */
361         { "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
362
363         /* Lynxpoint LPSS devices */
364         { "INT33C0", LPSS_ADDR(lpt_spi_dev_desc) },
365         { "INT33C1", LPSS_ADDR(lpt_spi_dev_desc) },
366         { "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
367         { "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
368         { "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
369         { "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
370         { "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
371         { "INT33C7", },
372
373         /* BayTrail LPSS devices */
374         { "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
375         { "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
376         { "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
377         { "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
378         { "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
379         { "INT33B2", },
380         { "INT33FC", },
381
382         /* Braswell LPSS devices */
383         { "80862286", LPSS_ADDR(lpss_dma_desc) },
384         { "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
385         { "80862289", LPSS_ADDR(bsw_pwm2_dev_desc) },
386         { "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
387         { "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
388         { "808622C0", LPSS_ADDR(lpss_dma_desc) },
389         { "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
390
391         /* Broadwell LPSS devices */
392         { "INT3430", LPSS_ADDR(lpt_spi_dev_desc) },
393         { "INT3431", LPSS_ADDR(lpt_spi_dev_desc) },
394         { "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
395         { "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
396         { "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
397         { "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
398         { "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
399         { "INT3437", },
400
401         /* Wildcat Point LPSS devices */
402         { "INT3438", LPSS_ADDR(lpt_spi_dev_desc) },
403
404         { }
405 };
406
407 #ifdef CONFIG_X86_INTEL_LPSS
408
409 /* LPSS main clock device. */
410 static struct platform_device *lpss_clk_dev;
411
412 static inline void lpt_register_clock_device(void)
413 {
414         lpss_clk_dev = platform_device_register_simple("clk-lpss-atom",
415                                                        PLATFORM_DEVID_NONE,
416                                                        NULL, 0);
417 }
418
419 static int register_device_clock(struct acpi_device *adev,
420                                  struct lpss_private_data *pdata)
421 {
422         const struct lpss_device_desc *dev_desc = pdata->dev_desc;
423         const char *devname = dev_name(&adev->dev);
424         struct clk *clk;
425         struct lpss_clk_data *clk_data;
426         const char *parent, *clk_name;
427         void __iomem *prv_base;
428
429         if (!lpss_clk_dev)
430                 lpt_register_clock_device();
431
432         if (IS_ERR(lpss_clk_dev))
433                 return PTR_ERR(lpss_clk_dev);
434
435         clk_data = platform_get_drvdata(lpss_clk_dev);
436         if (!clk_data)
437                 return -ENODEV;
438         clk = clk_data->clk;
439
440         if (!pdata->mmio_base
441             || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
442                 return -ENODATA;
443
444         parent = clk_data->name;
445         prv_base = pdata->mmio_base + dev_desc->prv_offset;
446
447         if (pdata->fixed_clk_rate) {
448                 clk = clk_register_fixed_rate(NULL, devname, parent, 0,
449                                               pdata->fixed_clk_rate);
450                 goto out;
451         }
452
453         if (dev_desc->flags & LPSS_CLK_GATE) {
454                 clk = clk_register_gate(NULL, devname, parent, 0,
455                                         prv_base, 0, 0, NULL);
456                 parent = devname;
457         }
458
459         if (dev_desc->flags & LPSS_CLK_DIVIDER) {
460                 /* Prevent division by zero */
461                 if (!readl(prv_base))
462                         writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
463
464                 clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
465                 if (!clk_name)
466                         return -ENOMEM;
467                 clk = clk_register_fractional_divider(NULL, clk_name, parent,
468                                                       0, prv_base, 1, 15, 16, 15,
469                                                       CLK_FRAC_DIVIDER_POWER_OF_TWO_PS,
470                                                       NULL);
471                 parent = clk_name;
472
473                 clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
474                 if (!clk_name) {
475                         kfree(parent);
476                         return -ENOMEM;
477                 }
478                 clk = clk_register_gate(NULL, clk_name, parent,
479                                         CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
480                                         prv_base, 31, 0, NULL);
481                 kfree(parent);
482                 kfree(clk_name);
483         }
484 out:
485         if (IS_ERR(clk))
486                 return PTR_ERR(clk);
487
488         pdata->clk = clk;
489         clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
490         return 0;
491 }
492
493 struct lpss_device_links {
494         const char *supplier_hid;
495         const char *supplier_uid;
496         const char *consumer_hid;
497         const char *consumer_uid;
498         u32 flags;
499         const struct dmi_system_id *dep_missing_ids;
500 };
501
502 /* Please keep this list sorted alphabetically by vendor and model */
503 static const struct dmi_system_id i2c1_dep_missing_dmi_ids[] = {
504         {
505                 .matches = {
506                         DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
507                         DMI_MATCH(DMI_PRODUCT_NAME, "T200TA"),
508                 },
509         },
510         {}
511 };
512
513 /*
514  * The _DEP method is used to identify dependencies but instead of creating
515  * device links for every handle in _DEP, only links in the following list are
516  * created. That is necessary because, in the general case, _DEP can refer to
517  * devices that might not have drivers, or that are on different buses, or where
518  * the supplier is not enumerated until after the consumer is probed.
519  */
520 static const struct lpss_device_links lpss_device_links[] = {
521         /* CHT External sdcard slot controller depends on PMIC I2C ctrl */
522         {"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME},
523         /* CHT iGPU depends on PMIC I2C controller */
524         {"808622C1", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
525         /* BYT iGPU depends on the Embedded Controller I2C controller (UID 1) */
526         {"80860F41", "1", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME,
527          i2c1_dep_missing_dmi_ids},
528         /* BYT CR iGPU depends on PMIC I2C controller (UID 5 on CR) */
529         {"80860F41", "5", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
530         /* BYT iGPU depends on PMIC I2C controller (UID 7 on non CR) */
531         {"80860F41", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
532 };
533
534 static bool acpi_lpss_is_supplier(struct acpi_device *adev,
535                                   const struct lpss_device_links *link)
536 {
537         return acpi_dev_hid_uid_match(adev, link->supplier_hid, link->supplier_uid);
538 }
539
540 static bool acpi_lpss_is_consumer(struct acpi_device *adev,
541                                   const struct lpss_device_links *link)
542 {
543         return acpi_dev_hid_uid_match(adev, link->consumer_hid, link->consumer_uid);
544 }
545
546 struct hid_uid {
547         const char *hid;
548         const char *uid;
549 };
550
551 static int match_hid_uid(struct device *dev, const void *data)
552 {
553         struct acpi_device *adev = ACPI_COMPANION(dev);
554         const struct hid_uid *id = data;
555
556         if (!adev)
557                 return 0;
558
559         return acpi_dev_hid_uid_match(adev, id->hid, id->uid);
560 }
561
562 static struct device *acpi_lpss_find_device(const char *hid, const char *uid)
563 {
564         struct device *dev;
565
566         struct hid_uid data = {
567                 .hid = hid,
568                 .uid = uid,
569         };
570
571         dev = bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid);
572         if (dev)
573                 return dev;
574
575         return bus_find_device(&pci_bus_type, NULL, &data, match_hid_uid);
576 }
577
578 static bool acpi_lpss_dep(struct acpi_device *adev, acpi_handle handle)
579 {
580         struct acpi_handle_list dep_devices;
581         acpi_status status;
582         int i;
583
584         if (!acpi_has_method(adev->handle, "_DEP"))
585                 return false;
586
587         status = acpi_evaluate_reference(adev->handle, "_DEP", NULL,
588                                          &dep_devices);
589         if (ACPI_FAILURE(status)) {
590                 dev_dbg(&adev->dev, "Failed to evaluate _DEP.\n");
591                 return false;
592         }
593
594         for (i = 0; i < dep_devices.count; i++) {
595                 if (dep_devices.handles[i] == handle)
596                         return true;
597         }
598
599         return false;
600 }
601
602 static void acpi_lpss_link_consumer(struct device *dev1,
603                                     const struct lpss_device_links *link)
604 {
605         struct device *dev2;
606
607         dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid);
608         if (!dev2)
609                 return;
610
611         if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
612             || acpi_lpss_dep(ACPI_COMPANION(dev2), ACPI_HANDLE(dev1)))
613                 device_link_add(dev2, dev1, link->flags);
614
615         put_device(dev2);
616 }
617
618 static void acpi_lpss_link_supplier(struct device *dev1,
619                                     const struct lpss_device_links *link)
620 {
621         struct device *dev2;
622
623         dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid);
624         if (!dev2)
625                 return;
626
627         if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
628             || acpi_lpss_dep(ACPI_COMPANION(dev1), ACPI_HANDLE(dev2)))
629                 device_link_add(dev1, dev2, link->flags);
630
631         put_device(dev2);
632 }
633
634 static void acpi_lpss_create_device_links(struct acpi_device *adev,
635                                           struct platform_device *pdev)
636 {
637         int i;
638
639         for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) {
640                 const struct lpss_device_links *link = &lpss_device_links[i];
641
642                 if (acpi_lpss_is_supplier(adev, link))
643                         acpi_lpss_link_consumer(&pdev->dev, link);
644
645                 if (acpi_lpss_is_consumer(adev, link))
646                         acpi_lpss_link_supplier(&pdev->dev, link);
647         }
648 }
649
650 static int acpi_lpss_create_device(struct acpi_device *adev,
651                                    const struct acpi_device_id *id)
652 {
653         const struct lpss_device_desc *dev_desc;
654         struct lpss_private_data *pdata;
655         struct resource_entry *rentry;
656         struct list_head resource_list;
657         struct platform_device *pdev;
658         int ret;
659
660         dev_desc = (const struct lpss_device_desc *)id->driver_data;
661         if (!dev_desc) {
662                 pdev = acpi_create_platform_device(adev, NULL);
663                 return IS_ERR_OR_NULL(pdev) ? PTR_ERR(pdev) : 1;
664         }
665         pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
666         if (!pdata)
667                 return -ENOMEM;
668
669         INIT_LIST_HEAD(&resource_list);
670         ret = acpi_dev_get_memory_resources(adev, &resource_list);
671         if (ret < 0)
672                 goto err_out;
673
674         rentry = list_first_entry_or_null(&resource_list, struct resource_entry, node);
675         if (rentry) {
676                 if (dev_desc->prv_size_override)
677                         pdata->mmio_size = dev_desc->prv_size_override;
678                 else
679                         pdata->mmio_size = resource_size(rentry->res);
680                 pdata->mmio_base = ioremap(rentry->res->start, pdata->mmio_size);
681         }
682
683         acpi_dev_free_resource_list(&resource_list);
684
685         if (!pdata->mmio_base) {
686                 /* Avoid acpi_bus_attach() instantiating a pdev for this dev. */
687                 adev->pnp.type.platform_id = 0;
688                 goto out_free;
689         }
690
691         pdata->adev = adev;
692         pdata->dev_desc = dev_desc;
693
694         if (dev_desc->setup)
695                 dev_desc->setup(pdata);
696
697         if (dev_desc->flags & LPSS_CLK) {
698                 ret = register_device_clock(adev, pdata);
699                 if (ret)
700                         goto out_free;
701         }
702
703         /*
704          * This works around a known issue in ACPI tables where LPSS devices
705          * have _PS0 and _PS3 without _PSC (and no power resources), so
706          * acpi_bus_init_power() will assume that the BIOS has put them into D0.
707          */
708         acpi_device_fix_up_power(adev);
709
710         adev->driver_data = pdata;
711         pdev = acpi_create_platform_device(adev, dev_desc->properties);
712         if (IS_ERR_OR_NULL(pdev)) {
713                 adev->driver_data = NULL;
714                 ret = PTR_ERR(pdev);
715                 goto err_out;
716         }
717
718         acpi_lpss_create_device_links(adev, pdev);
719         return 1;
720
721 out_free:
722         /* Skip the device, but continue the namespace scan */
723         ret = 0;
724 err_out:
725         kfree(pdata);
726         return ret;
727 }
728
729 static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
730 {
731         return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
732 }
733
734 static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
735                              unsigned int reg)
736 {
737         writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
738 }
739
740 static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
741 {
742         struct acpi_device *adev = ACPI_COMPANION(dev);
743         struct lpss_private_data *pdata;
744         unsigned long flags;
745         int ret;
746
747         if (WARN_ON(!adev))
748                 return -ENODEV;
749
750         spin_lock_irqsave(&dev->power.lock, flags);
751         if (pm_runtime_suspended(dev)) {
752                 ret = -EAGAIN;
753                 goto out;
754         }
755         pdata = acpi_driver_data(adev);
756         if (WARN_ON(!pdata || !pdata->mmio_base)) {
757                 ret = -ENODEV;
758                 goto out;
759         }
760         *val = __lpss_reg_read(pdata, reg);
761         ret = 0;
762
763  out:
764         spin_unlock_irqrestore(&dev->power.lock, flags);
765         return ret;
766 }
767
768 static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
769                              char *buf)
770 {
771         u32 ltr_value = 0;
772         unsigned int reg;
773         int ret;
774
775         reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
776         ret = lpss_reg_read(dev, reg, &ltr_value);
777         if (ret)
778                 return ret;
779
780         return sysfs_emit(buf, "%08x\n", ltr_value);
781 }
782
783 static ssize_t lpss_ltr_mode_show(struct device *dev,
784                                   struct device_attribute *attr, char *buf)
785 {
786         u32 ltr_mode = 0;
787         char *outstr;
788         int ret;
789
790         ret = lpss_reg_read(dev, LPSS_GENERAL, &ltr_mode);
791         if (ret)
792                 return ret;
793
794         outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
795         return sprintf(buf, "%s\n", outstr);
796 }
797
798 static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
799 static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
800 static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
801
802 static struct attribute *lpss_attrs[] = {
803         &dev_attr_auto_ltr.attr,
804         &dev_attr_sw_ltr.attr,
805         &dev_attr_ltr_mode.attr,
806         NULL,
807 };
808
809 static const struct attribute_group lpss_attr_group = {
810         .attrs = lpss_attrs,
811         .name = "lpss_ltr",
812 };
813
814 static void acpi_lpss_set_ltr(struct device *dev, s32 val)
815 {
816         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
817         u32 ltr_mode, ltr_val;
818
819         ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
820         if (val < 0) {
821                 if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
822                         ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
823                         __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
824                 }
825                 return;
826         }
827         ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
828         if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
829                 ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
830                 val = LPSS_LTR_MAX_VAL;
831         } else if (val > LPSS_LTR_MAX_VAL) {
832                 ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
833                 val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
834         } else {
835                 ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
836         }
837         ltr_val |= val;
838         __lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
839         if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
840                 ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
841                 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
842         }
843 }
844
845 #ifdef CONFIG_PM
846 /**
847  * acpi_lpss_save_ctx() - Save the private registers of LPSS device
848  * @dev: LPSS device
849  * @pdata: pointer to the private data of the LPSS device
850  *
851  * Most LPSS devices have private registers which may loose their context when
852  * the device is powered down. acpi_lpss_save_ctx() saves those registers into
853  * prv_reg_ctx array.
854  */
855 static void acpi_lpss_save_ctx(struct device *dev,
856                                struct lpss_private_data *pdata)
857 {
858         unsigned int i;
859
860         for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
861                 unsigned long offset = i * sizeof(u32);
862
863                 pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
864                 dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
865                         pdata->prv_reg_ctx[i], offset);
866         }
867 }
868
869 /**
870  * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
871  * @dev: LPSS device
872  * @pdata: pointer to the private data of the LPSS device
873  *
874  * Restores the registers that were previously stored with acpi_lpss_save_ctx().
875  */
876 static void acpi_lpss_restore_ctx(struct device *dev,
877                                   struct lpss_private_data *pdata)
878 {
879         unsigned int i;
880
881         for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
882                 unsigned long offset = i * sizeof(u32);
883
884                 __lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
885                 dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
886                         pdata->prv_reg_ctx[i], offset);
887         }
888 }
889
890 static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
891 {
892         /*
893          * The following delay is needed or the subsequent write operations may
894          * fail. The LPSS devices are actually PCI devices and the PCI spec
895          * expects 10ms delay before the device can be accessed after D3 to D0
896          * transition. However some platforms like BSW does not need this delay.
897          */
898         unsigned int delay = 10;        /* default 10ms delay */
899
900         if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
901                 delay = 0;
902
903         msleep(delay);
904 }
905
906 static int acpi_lpss_activate(struct device *dev)
907 {
908         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
909         int ret;
910
911         ret = acpi_dev_resume(dev);
912         if (ret)
913                 return ret;
914
915         acpi_lpss_d3_to_d0_delay(pdata);
916
917         /*
918          * This is called only on ->probe() stage where a device is either in
919          * known state defined by BIOS or most likely powered off. Due to this
920          * we have to deassert reset line to be sure that ->probe() will
921          * recognize the device.
922          */
923         if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
924                 lpss_deassert_reset(pdata);
925
926 #ifdef CONFIG_PM
927         if (pdata->dev_desc->flags & LPSS_SAVE_CTX_ONCE)
928                 acpi_lpss_save_ctx(dev, pdata);
929 #endif
930
931         return 0;
932 }
933
934 static void acpi_lpss_dismiss(struct device *dev)
935 {
936         acpi_dev_suspend(dev, false);
937 }
938
939 /* IOSF SB for LPSS island */
940 #define LPSS_IOSF_UNIT_LPIOEP           0xA0
941 #define LPSS_IOSF_UNIT_LPIO1            0xAB
942 #define LPSS_IOSF_UNIT_LPIO2            0xAC
943
944 #define LPSS_IOSF_PMCSR                 0x84
945 #define LPSS_PMCSR_D0                   0
946 #define LPSS_PMCSR_D3hot                3
947 #define LPSS_PMCSR_Dx_MASK              GENMASK(1, 0)
948
949 #define LPSS_IOSF_GPIODEF0              0x154
950 #define LPSS_GPIODEF0_DMA1_D3           BIT(2)
951 #define LPSS_GPIODEF0_DMA2_D3           BIT(3)
952 #define LPSS_GPIODEF0_DMA_D3_MASK       GENMASK(3, 2)
953 #define LPSS_GPIODEF0_DMA_LLP           BIT(13)
954
955 static DEFINE_MUTEX(lpss_iosf_mutex);
956 static bool lpss_iosf_d3_entered = true;
957
958 static void lpss_iosf_enter_d3_state(void)
959 {
960         u32 value1 = 0;
961         u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
962         u32 value2 = LPSS_PMCSR_D3hot;
963         u32 mask2 = LPSS_PMCSR_Dx_MASK;
964         /*
965          * PMC provides an information about actual status of the LPSS devices.
966          * Here we read the values related to LPSS power island, i.e. LPSS
967          * devices, excluding both LPSS DMA controllers, along with SCC domain.
968          */
969         u32 func_dis, d3_sts_0, pmc_status;
970         int ret;
971
972         ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
973         if (ret)
974                 return;
975
976         mutex_lock(&lpss_iosf_mutex);
977
978         ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
979         if (ret)
980                 goto exit;
981
982         /*
983          * Get the status of entire LPSS power island per device basis.
984          * Shutdown both LPSS DMA controllers if and only if all other devices
985          * are already in D3hot.
986          */
987         pmc_status = (~(d3_sts_0 | func_dis)) & pmc_atom_d3_mask;
988         if (pmc_status)
989                 goto exit;
990
991         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
992                         LPSS_IOSF_PMCSR, value2, mask2);
993
994         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
995                         LPSS_IOSF_PMCSR, value2, mask2);
996
997         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
998                         LPSS_IOSF_GPIODEF0, value1, mask1);
999
1000         lpss_iosf_d3_entered = true;
1001
1002 exit:
1003         mutex_unlock(&lpss_iosf_mutex);
1004 }
1005
1006 static void lpss_iosf_exit_d3_state(void)
1007 {
1008         u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
1009                      LPSS_GPIODEF0_DMA_LLP;
1010         u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
1011         u32 value2 = LPSS_PMCSR_D0;
1012         u32 mask2 = LPSS_PMCSR_Dx_MASK;
1013
1014         mutex_lock(&lpss_iosf_mutex);
1015
1016         if (!lpss_iosf_d3_entered)
1017                 goto exit;
1018
1019         lpss_iosf_d3_entered = false;
1020
1021         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
1022                         LPSS_IOSF_GPIODEF0, value1, mask1);
1023
1024         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
1025                         LPSS_IOSF_PMCSR, value2, mask2);
1026
1027         iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
1028                         LPSS_IOSF_PMCSR, value2, mask2);
1029
1030 exit:
1031         mutex_unlock(&lpss_iosf_mutex);
1032 }
1033
1034 static int acpi_lpss_suspend(struct device *dev, bool wakeup)
1035 {
1036         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1037         int ret;
1038
1039         if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
1040                 acpi_lpss_save_ctx(dev, pdata);
1041
1042         ret = acpi_dev_suspend(dev, wakeup);
1043
1044         /*
1045          * This call must be last in the sequence, otherwise PMC will return
1046          * wrong status for devices being about to be powered off. See
1047          * lpss_iosf_enter_d3_state() for further information.
1048          */
1049         if (acpi_target_system_state() == ACPI_STATE_S0 &&
1050             lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1051                 lpss_iosf_enter_d3_state();
1052
1053         return ret;
1054 }
1055
1056 static int acpi_lpss_resume(struct device *dev)
1057 {
1058         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1059         int ret;
1060
1061         /*
1062          * This call is kept first to be in symmetry with
1063          * acpi_lpss_runtime_suspend() one.
1064          */
1065         if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1066                 lpss_iosf_exit_d3_state();
1067
1068         ret = acpi_dev_resume(dev);
1069         if (ret)
1070                 return ret;
1071
1072         acpi_lpss_d3_to_d0_delay(pdata);
1073
1074         if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
1075                 acpi_lpss_restore_ctx(dev, pdata);
1076
1077         return 0;
1078 }
1079
1080 #ifdef CONFIG_PM_SLEEP
1081 static int acpi_lpss_do_suspend_late(struct device *dev)
1082 {
1083         int ret;
1084
1085         if (dev_pm_skip_suspend(dev))
1086                 return 0;
1087
1088         ret = pm_generic_suspend_late(dev);
1089         return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1090 }
1091
1092 static int acpi_lpss_suspend_late(struct device *dev)
1093 {
1094         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1095
1096         if (pdata->dev_desc->resume_from_noirq)
1097                 return 0;
1098
1099         return acpi_lpss_do_suspend_late(dev);
1100 }
1101
1102 static int acpi_lpss_suspend_noirq(struct device *dev)
1103 {
1104         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1105         int ret;
1106
1107         if (pdata->dev_desc->resume_from_noirq) {
1108                 /*
1109                  * The driver's ->suspend_late callback will be invoked by
1110                  * acpi_lpss_do_suspend_late(), with the assumption that the
1111                  * driver really wanted to run that code in ->suspend_noirq, but
1112                  * it could not run after acpi_dev_suspend() and the driver
1113                  * expected the latter to be called in the "late" phase.
1114                  */
1115                 ret = acpi_lpss_do_suspend_late(dev);
1116                 if (ret)
1117                         return ret;
1118         }
1119
1120         return acpi_subsys_suspend_noirq(dev);
1121 }
1122
1123 static int acpi_lpss_do_resume_early(struct device *dev)
1124 {
1125         int ret = acpi_lpss_resume(dev);
1126
1127         return ret ? ret : pm_generic_resume_early(dev);
1128 }
1129
1130 static int acpi_lpss_resume_early(struct device *dev)
1131 {
1132         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1133
1134         if (pdata->dev_desc->resume_from_noirq)
1135                 return 0;
1136
1137         if (dev_pm_skip_resume(dev))
1138                 return 0;
1139
1140         return acpi_lpss_do_resume_early(dev);
1141 }
1142
1143 static int acpi_lpss_resume_noirq(struct device *dev)
1144 {
1145         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1146         int ret;
1147
1148         /* Follow acpi_subsys_resume_noirq(). */
1149         if (dev_pm_skip_resume(dev))
1150                 return 0;
1151
1152         ret = pm_generic_resume_noirq(dev);
1153         if (ret)
1154                 return ret;
1155
1156         if (!pdata->dev_desc->resume_from_noirq)
1157                 return 0;
1158
1159         /*
1160          * The driver's ->resume_early callback will be invoked by
1161          * acpi_lpss_do_resume_early(), with the assumption that the driver
1162          * really wanted to run that code in ->resume_noirq, but it could not
1163          * run before acpi_dev_resume() and the driver expected the latter to be
1164          * called in the "early" phase.
1165          */
1166         return acpi_lpss_do_resume_early(dev);
1167 }
1168
1169 static int acpi_lpss_do_restore_early(struct device *dev)
1170 {
1171         int ret = acpi_lpss_resume(dev);
1172
1173         return ret ? ret : pm_generic_restore_early(dev);
1174 }
1175
1176 static int acpi_lpss_restore_early(struct device *dev)
1177 {
1178         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1179
1180         if (pdata->dev_desc->resume_from_noirq)
1181                 return 0;
1182
1183         return acpi_lpss_do_restore_early(dev);
1184 }
1185
1186 static int acpi_lpss_restore_noirq(struct device *dev)
1187 {
1188         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1189         int ret;
1190
1191         ret = pm_generic_restore_noirq(dev);
1192         if (ret)
1193                 return ret;
1194
1195         if (!pdata->dev_desc->resume_from_noirq)
1196                 return 0;
1197
1198         /* This is analogous to what happens in acpi_lpss_resume_noirq(). */
1199         return acpi_lpss_do_restore_early(dev);
1200 }
1201
1202 static int acpi_lpss_do_poweroff_late(struct device *dev)
1203 {
1204         int ret = pm_generic_poweroff_late(dev);
1205
1206         return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1207 }
1208
1209 static int acpi_lpss_poweroff_late(struct device *dev)
1210 {
1211         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1212
1213         if (dev_pm_skip_suspend(dev))
1214                 return 0;
1215
1216         if (pdata->dev_desc->resume_from_noirq)
1217                 return 0;
1218
1219         return acpi_lpss_do_poweroff_late(dev);
1220 }
1221
1222 static int acpi_lpss_poweroff_noirq(struct device *dev)
1223 {
1224         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1225
1226         if (dev_pm_skip_suspend(dev))
1227                 return 0;
1228
1229         if (pdata->dev_desc->resume_from_noirq) {
1230                 /* This is analogous to the acpi_lpss_suspend_noirq() case. */
1231                 int ret = acpi_lpss_do_poweroff_late(dev);
1232
1233                 if (ret)
1234                         return ret;
1235         }
1236
1237         return pm_generic_poweroff_noirq(dev);
1238 }
1239 #endif /* CONFIG_PM_SLEEP */
1240
1241 static int acpi_lpss_runtime_suspend(struct device *dev)
1242 {
1243         int ret = pm_generic_runtime_suspend(dev);
1244
1245         return ret ? ret : acpi_lpss_suspend(dev, true);
1246 }
1247
1248 static int acpi_lpss_runtime_resume(struct device *dev)
1249 {
1250         int ret = acpi_lpss_resume(dev);
1251
1252         return ret ? ret : pm_generic_runtime_resume(dev);
1253 }
1254 #endif /* CONFIG_PM */
1255
1256 static struct dev_pm_domain acpi_lpss_pm_domain = {
1257 #ifdef CONFIG_PM
1258         .activate = acpi_lpss_activate,
1259         .dismiss = acpi_lpss_dismiss,
1260 #endif
1261         .ops = {
1262 #ifdef CONFIG_PM
1263 #ifdef CONFIG_PM_SLEEP
1264                 .prepare = acpi_subsys_prepare,
1265                 .complete = acpi_subsys_complete,
1266                 .suspend = acpi_subsys_suspend,
1267                 .suspend_late = acpi_lpss_suspend_late,
1268                 .suspend_noirq = acpi_lpss_suspend_noirq,
1269                 .resume_noirq = acpi_lpss_resume_noirq,
1270                 .resume_early = acpi_lpss_resume_early,
1271                 .freeze = acpi_subsys_freeze,
1272                 .poweroff = acpi_subsys_poweroff,
1273                 .poweroff_late = acpi_lpss_poweroff_late,
1274                 .poweroff_noirq = acpi_lpss_poweroff_noirq,
1275                 .restore_noirq = acpi_lpss_restore_noirq,
1276                 .restore_early = acpi_lpss_restore_early,
1277 #endif
1278                 .runtime_suspend = acpi_lpss_runtime_suspend,
1279                 .runtime_resume = acpi_lpss_runtime_resume,
1280 #endif
1281         },
1282 };
1283
1284 static int acpi_lpss_platform_notify(struct notifier_block *nb,
1285                                      unsigned long action, void *data)
1286 {
1287         struct platform_device *pdev = to_platform_device(data);
1288         struct lpss_private_data *pdata;
1289         struct acpi_device *adev;
1290         const struct acpi_device_id *id;
1291
1292         id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
1293         if (!id || !id->driver_data)
1294                 return 0;
1295
1296         adev = ACPI_COMPANION(&pdev->dev);
1297         if (!adev)
1298                 return 0;
1299
1300         pdata = acpi_driver_data(adev);
1301         if (!pdata)
1302                 return 0;
1303
1304         if (pdata->mmio_base &&
1305             pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
1306                 dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
1307                 return 0;
1308         }
1309
1310         switch (action) {
1311         case BUS_NOTIFY_BIND_DRIVER:
1312                 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1313                 break;
1314         case BUS_NOTIFY_DRIVER_NOT_BOUND:
1315         case BUS_NOTIFY_UNBOUND_DRIVER:
1316                 dev_pm_domain_set(&pdev->dev, NULL);
1317                 break;
1318         case BUS_NOTIFY_ADD_DEVICE:
1319                 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1320                 if (pdata->dev_desc->flags & LPSS_LTR)
1321                         return sysfs_create_group(&pdev->dev.kobj,
1322                                                   &lpss_attr_group);
1323                 break;
1324         case BUS_NOTIFY_DEL_DEVICE:
1325                 if (pdata->dev_desc->flags & LPSS_LTR)
1326                         sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
1327                 dev_pm_domain_set(&pdev->dev, NULL);
1328                 break;
1329         default:
1330                 break;
1331         }
1332
1333         return 0;
1334 }
1335
1336 static struct notifier_block acpi_lpss_nb = {
1337         .notifier_call = acpi_lpss_platform_notify,
1338 };
1339
1340 static void acpi_lpss_bind(struct device *dev)
1341 {
1342         struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1343
1344         if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
1345                 return;
1346
1347         if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
1348                 dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
1349         else
1350                 dev_err(dev, "MMIO size insufficient to access LTR\n");
1351 }
1352
1353 static void acpi_lpss_unbind(struct device *dev)
1354 {
1355         dev->power.set_latency_tolerance = NULL;
1356 }
1357
1358 static struct acpi_scan_handler lpss_handler = {
1359         .ids = acpi_lpss_device_ids,
1360         .attach = acpi_lpss_create_device,
1361         .bind = acpi_lpss_bind,
1362         .unbind = acpi_lpss_unbind,
1363 };
1364
1365 void __init acpi_lpss_init(void)
1366 {
1367         const struct x86_cpu_id *id;
1368         int ret;
1369
1370         ret = lpss_atom_clk_init();
1371         if (ret)
1372                 return;
1373
1374         id = x86_match_cpu(lpss_cpu_ids);
1375         if (id)
1376                 lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
1377
1378         bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
1379         acpi_scan_add_handler(&lpss_handler);
1380 }
1381
1382 #else
1383
1384 static struct acpi_scan_handler lpss_handler = {
1385         .ids = acpi_lpss_device_ids,
1386 };
1387
1388 void __init acpi_lpss_init(void)
1389 {
1390         acpi_scan_add_handler(&lpss_handler);
1391 }
1392
1393 #endif /* CONFIG_X86_INTEL_LPSS */