libcurl(3) libcurl overview libcurl(3)

NAME
libcurl - client-side URL transfers

DESCRIPTION
This is a short werview on how to use libcurl in your C programs. There are specific man pages for each
function mentioned in here. There are alsolitheurl-easy(3)man page, thébcurl-multi(3) man page, the
libcurl-share(3)man page and thécurl-tutorial(3) man page for in-depth understanding owho pro-
gram with libcurl.

There are manbindings aailable that bring libcurl access to yowvturite language. Look elsewhere for
documentation on those.

libcurl has a global constant environment that you must set up and maintain while using [ibGsirl.
essentially means you callirl_global_init(3) at the start of your program awedrl_global_cleanup(3at
the end. Se6&LOBAL CONSTANTS below for details.

To transfer files, you create an "easy handle" usimg easy init(3)for a single individual transfer (in
either direction). Wu then set your desired set of options in that handleauitheasy setopt(30ptions
you set withcurl_easy_setopt(33tick. The will be used on wery repeated use of this handle until you
either change the option, or you reset them all witth easy_reset(3)

To actually transfer data you ta the option of using the "easy" interface, or the "multi" interface.

The easy interface is a synchronous interface with which yowwdlleasy perform(3and let it perform
the transferWhen it is completed, the function returns and you can continue. More details are found in the
libcurl-easy(3)man page.

The multi interce on the other hand is an asynchronous interface, that you call and that performs only a
little piece of the transfer on eachvake. It is perfect if you want to do things while the transfer is in
progress, or similaiThe multi interface allows you to select() on libcurl action, aresh ¢o easily davn-

load multiple files simultaneously using a single thread. See further detaildibtthiemulti(3) man page.

You can hae nultiple easy handles share certain datanéf they are used in dferent threads. This magic
is setup using the share interface, as described libthel-share(3)man page.

There is also a series of other helpful functions to use, including these:

curl_version_info()
gets detailed libcurl (and other used libraries) version info

curl_getdate()
converts a date string to time_t

curl_easy_getinfo()
get information about a performed transfer

curl_formadd()
helps building an HTTP form POST

curl_formfree()
free a list built withcurl_formadd(3)

curl_slist_append()
builds a linked list

curl_slist_free_all()
frees a whole curl_slist

libcurl 7.9.6 19 March 2002 1



libcurl(3) libcurl overview libcurl(3)

LINKING WITH LIBCURL
On unix-like machines, there’a bol named curl-config that gets installed with the rest of the cufl stuf
when 'male install’ is performed.

curl-config is added to makit easier for applications to link with libcurl and\dopers to learn about
libcurl and haev to use it.

Run ’curl-config --libs’ to get the (additional) linker options you need to link with the particular version of
libcurl you've installed. See theurl-config(1)man page for further details.

Unix-like ogperating system that ship libcurl as part of their distributions oftert dawide the curl-config
tool, but simply install the library and headers in the common path for this purpose.

Many Linux and similar sytems use pkg-config to providéddoand link options about libraries and libcurl
supports that as well.

LIBCURL SYMBOL NAMES
All public functions in the libcurl intedce are prefixed with 'curl ' (with a lowercase c). You can find
other functions in the library source code, but other prefixes indicate that the functionsateeapd may
change without further notice in the next release.

Only use documented functions and functionality!

PORTABILITY
libcurl worksexactly the same, on gof the platforms it compiles and builds on.

THREADS
Never ever call curl-functions simultaneously using the same handle framraethreads. libcurl is thread-
safe and can be used inyamumber of threads, but you must use separate curl handles ifgmtutavuse
libcurl in more than one thread simultaneously.

The global environment functions are not thread-safe.Gig@BAL CONSTANT S belaw for details.

PERSISTENT CONNECTIONS
Persistent connections means that libcurl can re-use the same connectivarébitrsmsfers, if the condi-
tions are right.

libcurl will always attempt to use persistent connections. Whemgou usecurl_easy_perform(3pr

curl_multi_perform(3)etc, libcurl will attempt to use an existing connection to do the tramsi@if none
exists it'll open a ne one that will be subject for re-use on a possible ¥alg call to curl_easy per-
form(3)or curl_multi_perform(3)

To dlow libcurl to tale full advantage of persistent connections, you should do ay ofaour file trans-
fers as possible using the same handle.

If you use the easy interface, and you call_easy cleanup(3HI the possibly open connections held by
libcurl will be closed and forgotten.

When youve aeated a multi handle and are using the multi interface, the connection pool is instead kept in
the multi handle so closing and creatingvreasy handles to do transfers will not affect them. Instead all
added easy handles candaklvantage of the single shared pool.

GLOBAL CONSTANTS
There are aariety of constants that libcurl uses, mainly through its internal use of other libraries, which are
too complicated for the library loader to set up. Therefore, a program must call a library function after the
program is loaded and running to finish setting up the library cBdeexample, when libcurl is built for

libcurl 7.9.6 19 March 2002 2



libcurl(3) libcurl overview libcurl(3)

SSL capability via the GNU TLS librarthere is an elaborate tree inside that library that describes the SSL
protocol.

curl_global_init(3)is the function that you must callhis may allocate resources (e.g. the memory for the
GNU TLS tree mentioned albe), so the companion functiaurl_global_cleanup(3jeleases them.

The basic rule for constructing a program that uses libcurl is this: dddllglobal_init(3) with a
CURL_GLOBAL_ALlagument, immediately after the program starts, while it is still only one thread and
before it uses libcurl at allCall curl_global_cleanup(3)mmediately before the programties, when the
program is again only one thread and after its last use of libcurl.

You can call both of these multiple times, as long as all calls meet these requirements and the number of
calls to each is the same.

It isn’t actually required that the functions be called at the beginning and end of the prograns jushat’
usually the easiest way to do it.is required that the functions be called when no other thread in the pro-
gram is running.

These global constant functions a thread safeso you must not call them whenyother thread in the
program is running. It ish'good enough that no other thread is using libcurl at the time, because these
functions internally call similar functions of other libraries, and those functions are similarly thread-unsafe.
You can't generally knav what these libraries are, or whether other threads are using them.

The global constant situation merits special consideration when the code you are writing to use libcurl is
not the main program, but rather a modular piece of a program, e.g. another lksaaynodule, your

code doesit’know about other parts of the program -- it doésmion whether thg use libcurl or not.And

its code doeshhnecessarily run at the start and end of the whole program.

A module like this must hae dobal constant functions of its own, justdilcurl_global_init(3) and
curl_global_cleanup(3) The module thus has control at thgin@ing and end of the program and has a
place to call the libcurl functions. Note that if multiple modules in the program use libcyrklitiveill
separately call the libcurl functions, and teaDK because only the firsturl_global_init(3)and the last
curl_global_cleanup(3in a program change wing. (libcurluses a reference count in static memory).

In a C++ module, it is common to deal with the global constant situation by defining a special class that
represents the global constant environment of the modufgogram alvays has exactly one object of the
class, in static storage. Thatyythe program automatically calls the constructor of the object as the pro-
gram starts up and the destructor as it terminates. As the author of this libcurl-using module, yotecan mak
the constructor calturl_global_init(3)and the destructor catlurl_global_cleanup(3and satisfy libcurb
requirements without your user having to think about it.

curl_global_init(3)has an ayjument that tells what particular parts of the global constant environment to set
up. Inorder to successfully useyamalue except CURL_GLOBAL_ALL(which says to set up the whole
thing), you must hae gecific knowledge of internal workings of libcurl and all other parts of the program
of which it is part.

A special part of the global constant veonment is the identity of the memory allocator
curl_global_init(3)selects the system default memory allogatat you can useurl_global_init_ mem(3)
to supply one of yourwan. However, there is no way to useurl_global_init._ mem(3jn a modular pro-
gram -- all modules in the program that might use libcurl wowe iaagree on one allocator.

There is a failsafe in libcurl that mekit usable in simple situations without you having to worry about the

global constant environment at adlurl_easy_init(3)sets up the environment itself if it haisheen done
yet. Theresources it acquires to do so get released by the operating system automatically when the

libcurl 7.9.6 19 March 2002 3



libcurl(3) libcurl overview libcurl(3)

program exits.

This failsafe feature exists mainly for badad compatibility because there was a time when the global
functions didnt exist. Becausét is suficient only in the simplest of programs, it is not recommended for

ary program to rely on it.

libcurl 7.9.6 19 March 2002 4



