
libcurl-thread(3) libcurl thread safety libcurl-thread(3)

NAME
libcurl-thread − libcurl thread safety

Multi-threading with libcurl
libcurl is thread safe but has no internal thread synchronization. You may have to provide your own locking

should you meet any of the thread safety exceptions below.

Handles. You must never share the same handle in multiple threads. You can pass the handles around

among threads, but you must never use a single handle from more than one thread at any giv en time.

Shared objects. You can share certain data between multiple handles by using the share interface but you

must provide your own locking and set curl_share_setopt(3) CURLSHOPT_LOCKFUNC and CURL-

SHOPT_UNLOCKFUNC.

TLS
If you are accessing HTTPS or FTPS URLs in a multi-threaded manner, you are then of course using the

underlying SSL library multi-threaded and those libs might have their own requirements on this issue. You

may need to provide one or two functions to allow it to function properly:

OpenSSL

https://www.openssl.org/docs/crypto/threads.html#DESCRIPTION

https://curl.haxx.se/libcurl/c/opensslthreadlock.html

GnuTLS

http://gnutls.org/manual/html_node/Thread-safety.html

NSS thread-safe already without anything required.

PolarSSL

Required actions unknown.

yassl Required actions unknown.

axTLS Required actions unknown.

Secure-Transport

The engine is used by libcurl in a way that is fully thread-safe.

WinSSL

The engine is used by libcurl in a way that is fully thread-safe.

wolfSSL

The engine is used by libcurl in a way that is fully thread-safe.

Other areas of caution
Signals Signals are used for timing out name resolves (during DNS lookup) - when built without using

either the c-ares or threaded resolver backends. When using multiple threads you should set the

CURLOPT_NOSIGNAL(3) option to 1L for all handles. Everything will or might work fine except

that timeouts are not honored during the DNS lookup - which you can work around by building

libcurl with c-ares support. c-ares is a library that provides asynchronous name resolves. On some

platforms, libcurl simply will not function properly multi-threaded unless this option is set.

Name resolving

gethostby* functions and other system calls. These functions, provided by your operating sys-

tem, must be thread safe. It is very important that libcurl can find and use thread safe versions of

these and other system calls, as otherwise it can’t function fully thread safe. Some operating sys-

tems are known to have faulty thread implementations. We hav e previously received problem

reports on *BSD (at least in the past, they may be working fine these days). Some operating sys-

tems that are known to have solid and working thread support are Linux, Solaris and Windows.

libcurl 13 Jul 2015 1



libcurl-thread(3) libcurl thread safety libcurl-thread(3)

curl_global_* functions

These functions are not thread safe. If you are using libcurl with multiple threads it is especially

important that before use you call curl_global_init(3) or curl_global_init_mem(3) to explicitly ini-

tialize the library and its dependents, rather than rely on the "lazy" fail-safe initialization that takes

place the first time curl_easy_init(3) is called. For an in-depth explanation refer to libcurl(3) sec-

tion GLOBAL CONSTANTS.

Memory functions

These functions, provided either by your operating system or your own replacements, must be

thread safe. You can use curl_global_init_mem(3) to set your own replacement memory functions.

Non-safe functions

CURLOPT_DNS_USE_GLOBAL_CACHE(3) is not thread-safe.

libcurl 13 Jul 2015 2


