
curl_multi_socket_action(3) libcurl Manual curl_multi_socket_action(3)

NAME
curl_multi_socket_action − reads/writes available data given an action

SYNOPSIS
#include <curl/curl.h>

CURLMcode curl_multi_socket_action(CURLM * multi_handle,

curl_socket_t sockfd,

int ev_bitmask,

int *running_handles);

DESCRIPTION
When the application has detected action on a socket handled by libcurl, it should call

curl_multi_socket_action(3) with the sockfd argument set to the socket with the action. When the events on

a socket are known, they can be passed as an events bitmask ev_bitmask by first setting ev_bitmask to 0,

and then adding using bitwise OR (|) any combination of events to be chosen from CURL_CSELECT_IN,

CURL_CSELECT_OUT or CURL_CSELECT_ERR. When the events on a socket are unknown, pass 0

instead, and libcurl will test the descriptor internally. It is also permissible to pass CURL_SOCKET_TIME-

OUT to the sockfd parameter in order to initiate the whole process or when a timeout occurs.

At return, running_handles points to the number of running easy handles within the multi handle. When

this number reaches zero, all transfers are complete/done. When you call curl_multi_socket_action(3) on a

specific socket and the counter decreases by one, it DOES NOT necessarily mean that this exact

socket/transfer is the one that completed. Use curl_multi_info_read(3) to figure out which easy handle that

completed.

The curl_multi_socket_action(3) functions inform the application about updates in the socket (file descrip-

tor) status by doing none, one, or multiple calls to the socket callback function set with the CURL-

MOPT_SOCKETFUNCTION(3) option to curl_multi_setopt(3). They update the status with changes since

the previous time the callback was called.

Get the timeout time by setting the CURLMOPT_TIMERFUNCTION(3) option with curl_multi_setopt(3).

Your application will then get called with information on how long to wait for socket actions at most before

doing the timeout action: call the curl_multi_socket_action(3) function with the sockfd argument set to

CURL_SOCKET_TIMEOUT. You can also use the curl_multi_timeout(3) function to poll the value at any

given time, but for an event-based system using the callback is far better than relying on polling the timeout

value.

CALLBACK DETAILS
The socket callback function uses a prototype like this

int curl_socket_callback(CURL *easy, /* easy handle */

curl_socket_t s, /* socket */

int action, /* see values below */

void *userp, /* private callback pointer */

void *socketp); /* private socket pointer,

NULL if not

previously assigned with

curl_multi_assign(3) */

The callback MUST return 0.

The easy argument is a pointer to the easy handle that deals with this particular socket. Note that a single

handle may work with several sockets simultaneously.

The s argument is the actual socket value as you use it within your system.

libcurl 7.16.0 9 Jul 2006 1



curl_multi_socket_action(3) libcurl Manual curl_multi_socket_action(3)

The action argument to the callback has one of five values:

CURL_POLL_NONE (0)

register, not interested in readiness (yet)

CURL_POLL_IN (1)

register, interested in read readiness

CURL_POLL_OUT (2)

register, interested in write readiness

CURL_POLL_INOUT (3)

register, interested in both read and write readiness

CURL_POLL_REMOVE (4)

unregister

The socketp argument is a private pointer you have previously set with curl_multi_assign(3) to be associ-

ated with the s socket. If no pointer has been set, socketp will be NULL. This argument is of course a ser-

vice to applications that want to keep certain data or structs that are strictly associated to the given socket.

The userp argument is a private pointer you have previously set with curl_multi_setopt(3) and the CURL-

MOPT_SOCKETDAT A option.

RETURN VALUE
CURLMcode type, general libcurl multi interface error code.

Before version 7.20.0: If you receive CURLM_CALL_MULTI_PERFORM, this basically means that you

should call curl_multi_socket_action(3) again before you wait for more actions on libcurl’s sockets. You

don’t hav e to do it immediately, but the return code means that libcurl may have more data available to

return or that there may be more data to send off before it is "satisfied".

The return code from this function is for the whole multi stack. Problems still might have occurred on indi-

vidual transfers even when one of these functions return OK.

TYPICAL USAGE
1. Create a multi handle

2. Set the socket callback with CURLMOPT_SOCKETFUNCTION

3. Set the timeout callback with CURLMOPT_TIMERFUNCTION, to get to know what timeout value to

use when waiting for socket activities.

4. Add easy handles with curl_multi_add_handle()

5. Provide some means to manage the sockets libcurl is using, so you can check them for activity. This can

be done through your application code, or by way of an external library such as libevent or glib.

6. Call curl_multi_socket_action(..., CURL_SOCKET_TIMEOUT, 0, ...) to kickstart everything. To get

one or more callbacks called.

7. Wait for activity on any of libcurl’s sockets, use the timeout value your callback has been told.

8, When activity is detected, call curl_multi_socket_action() for the socket(s) that got action. If no activity

is detected and the timeout expires, call curl_multi_socket_action(3) with CURL_SOCKET_TIMEOUT.

AV AILABILITY
This function was added in libcurl 7.15.4, and is deemed stable since 7.16.0.

libcurl 7.16.0 9 Jul 2006 2



curl_multi_socket_action(3) libcurl Manual curl_multi_socket_action(3)

SEE ALSO
curl_multi_cleanup(3), curl_multi_init(3), curl_multi_fdset(3), curl_multi_info_read(3), the hiper-

fifo.c example

libcurl 7.16.0 9 Jul 2006 3


