
curl_easy_perform(3) libcurl Manual curl_easy_perform(3)

NAME
curl_easy_perform - perform a blocking file transfer

SYNOPSIS
#include <curl/curl.h>

CURLcode curl_easy_perform(CURL *easy_handle);

DESCRIPTION
Invoke this function aftercurl_easy_init(3) and all thecurl_easy_setopt(3) calls are made, and will perform
the transfer as described in the options. It must be called with the sameeasy_handle as input as the
curl_easy_init(3) call returned.

curl_easy_perform(3) performs the entire request in a blocking manner and returns when done, or if it
failed. For non-blocking behavior, seecurl_multi_perform(3).

You can do any amount of calls tocurl_easy_perform(3) while using the sameeasy_handle. If you intend
to transfer more than one file, you are even encouraged to do so. libcurl will then attempt to re-use the same
connection for the following transfers, thus making the operations faster, less CPU intense and using less
network resources. Just note that you will have to use curl_easy_setopt(3) between the invokes to set
options for the following curl_easy_perform.

You must never call this function simultaneously from two places using the sameeasy_handle. Let the
function return first before invoking it another time. If you want parallel transfers, you must use several curl
easy_handles.

While theeasy_handle is added to a multi handle, it cannot be used bycurl_easy_perform(3).

RETURN VALUE
CURLE_OK (0) means everything was ok, non-zero means an error occurred as<curl/curl.h> defines - see
libcurl-errors(3). If theCURLOPT_ERRORBUFFER(3) was set with curl_easy_setopt(3) there will be a
readable error message in the error buffer when non-zero is returned.

EXAMPLE
CURL *curl = curl_easy_init();
if(curl) {
CURLcode res;
curl_easy_setopt(curl, CURLOPT_URL, "http://example.com");
res = curl_easy_perform(curl);
curl_easy_cleanup(curl);

}

SEE ALSO
curl_easy_init(3), curl_easy_setopt(3), curl_multi_add_handle(3), curl_multi_perform(3), libcurl-
errors(3),

libcurl 7.7 5 Mar 2001 1


