arm_compute v17.12
[platform/upstream/armcl.git] / docs / 01_library.dox
1 namespace arm_compute
2 {
3 /**
4 @page architecture Library architecture
5
6 @tableofcontents
7
8 @section S4_1 Core vs Runtime libraries
9
10 The Core library is a low level collection of algorithms implementations, it is designed to be embedded in existing projects and applications:
11
12 - It doesn't allocate any memory (All the memory allocations/mappings have to be handled by the caller).
13 - It doesn't perform any kind of multi-threading (but provide information to the caller about how the workload can be split).
14
15 The Runtime library is a very basic wrapper around the Core library which can be used for quick prototyping, it is basic in the sense that:
16
17 - It allocates images and tensors by using standard malloc().
18 - It multi-threads NEON code in a very basic way using a very simple pool of threads.
19 - For OpenCL it uses the default CLScheduler command queue for all mapping operations and kernels.
20
21 For maximum performance, it is expected that the users would re-implement an equivalent to the runtime library which suits better their needs (With a more clever multi-threading strategy, load-balancing between NEON and OpenCL, etc.)
22
23 @section S4_2_windows_kernels_mt_functions Windows, kernels, multi-threading and functions
24
25 @subsection S4_2_1_windows Windows
26
27 A @ref Window represents a workload to execute, it can handle up to @ref Coordinates::num_max_dimensions dimensions.
28 Each dimension is defined by a start, end and step.
29
30 It can split into subwindows as long as *all* the following rules remain true for all the dimensions:
31
32 - max[n].start() <= sub[n].start() < max[n].end()
33 - sub[n].start() < sub[n].end() <= max[n].end()
34 - max[n].step() == sub[n].step()
35 - (sub[n].start() - max[n].start()) % max[n].step() == 0
36 - (sub[n].end() - sub[n].start()) % max[n].step() == 0
37
38 @subsection S4_2_2 Kernels
39
40 Each implementation of the @ref IKernel interface (base class of all the kernels in the core library) works in the same way:
41
42 OpenCL kernels:
43
44 @code{.cpp}
45 // Initialize the CLScheduler with the default context and default command queue
46 // Implicitly initializes the CLKernelLibrary to use ./cl_kernels as location for OpenCL kernels files and sets a default device for which OpenCL programs are built.
47 CLScheduler::get().default_init();
48
49 cl::CommandQueue q = CLScheduler::get().queue();
50 //Create a kernel object:
51 MyKernel kernel;
52 // Initialize the kernel with the input/output and options you want to use:
53 kernel.configure( input, output, option0, option1);
54 // Retrieve the execution window of the kernel:
55 const Window& max_window = kernel.window();
56 // Run the whole kernel in the current thread:
57 kernel.run( q, max_window ); // Enqueue the kernel to process the full window on the default queue
58
59 // Wait for the processing to complete:
60 q.finish();
61 @endcode
62
63 NEON / CPP kernels:
64
65 @code{.cpp}
66 //Create a kernel object:
67 MyKernel kernel;
68 // Initialize the kernel with the input/output and options you want to use:
69 kernel.configure( input, output, option0, option1);
70 // Retrieve the execution window of the kernel:
71 const Window& max_window = kernel.window();
72 // Run the whole kernel in the current thread:
73 kernel.run( max_window ); // Run the kernel on the full window
74 @endcode
75
76 @subsection S4_2_3 Multi-threading
77
78 The previous section shows how to run a NEON / CPP kernel in the current thread, however if your system has several CPU cores, you will probably want the kernel to use several cores. Here is how this can be done:
79
80 @snippet src/runtime/CPP/CPPScheduler.cpp Scheduler example
81
82 This is the very basic implementation used in the NEON runtime library by all the NEON functions.
83
84 @sa CPPScheduler.
85
86 @note Some kernels like for example @ref NEHistogramKernel need some local temporary buffer to perform their calculations. In order to avoid memory corruption between threads, the local buffer must be of size: ```memory_needed_per_thread * num_threads``` and a unique thread_id between 0 and num_threads must be assigned to the @ref ThreadInfo object passed to the ```run``` function.
87
88 @subsection S4_2_4 Functions
89
90 Functions will automatically allocate the temporary buffers mentioned above, and will automatically multi-thread kernels' executions using the very basic scheduler described in the previous section.
91
92 Simple functions only call a single kernel (e.g @ref NEConvolution3x3), while more complex ones consist of several kernels pipelined together (e.g @ref NEGaussianPyramid, @ref NEHarrisCorners). Check their documentation to find out which kernels are used by each function.
93
94 @code{.cpp}
95 //Create a function object:
96 MyFunction function;
97 // Initialize the function with the input/output and options you want to use:
98 function.configure( input, output, option0, option1);
99 // Execute the function:
100 function.run();
101 @endcode
102
103 @warning The Compute Library requires Mali OpenCL DDK r8p0 or higher (OpenCL kernels are compiled using the -cl-arm-non-uniform-work-group-size flag)
104
105 @note All OpenCL functions and objects in the runtime library use the command queue associated with CLScheduler for all operations, a real implementation would be expected to use different queues for mapping operations and kernels in order to reach a better GPU utilization.
106
107 @subsection S4_4_1_cl_scheduler OpenCL Scheduler and kernel library
108
109 The Compute Library runtime uses a single command queue and context for all the operations.
110
111 The user can get / set this context and command queue through CLScheduler's interface.
112
113 The user can get / set the target GPU device through the CLScheduler's interface.
114
115 @attention Make sure the application is using the same context as the library as in OpenCL it is forbidden to share objects across contexts. This is done by calling @ref CLScheduler::init() or @ref CLScheduler::default_init() at the beginning of your application.
116
117 @attention Make sure the scheduler's target is not changed after function classes are created.
118
119 All OpenCL kernels used by the library are built and stored in @ref CLKernelLibrary.
120 If the library is compiled with embed_kernels=0 the application can set the path to the OpenCL kernels by calling @ref CLKernelLibrary::init(), by default the path is set to "./cl_kernels"
121
122 @subsection S4_4_2_events_sync OpenCL events and synchronization
123
124 In order to block until all the jobs in the CLScheduler's command queue are done executing the user can call @ref CLScheduler::sync() or create a sync event using @ref CLScheduler::enqueue_sync_event()
125
126 For example:
127 @snippet cl_events.cpp OpenCL events
128
129 @subsection S4_4_2_cl_neon OpenCL / NEON interoperability
130
131 You can mix OpenCL and NEON kernels and functions. However it is the user's responsibility to handle the mapping/unmapping of OpenCL objects, for example:
132
133 @snippet neoncl_scale_median_gaussian.cpp NEON / OpenCL Interop
134
135 @sa main_neoncl_scale_median_gaussian
136
137 @section S4_5_algorithms Algorithms
138
139 All computer vision algorithms in this library have been implemented following the [OpenVX 1.1 specifications](https://www.khronos.org/registry/vx/specs/1.1/html/). Please refer to the Khronos documentation for more information.
140
141 @section S4_6_images_tensors Images, padding, border modes and tensors
142
143 Most kernels and functions in the library process images, however, in order to be future proof most of the kernels actually accept tensors. See below for more information about how they are related.
144
145 @attention Each memory object can be written by only one kernel, however it can be read by several kernels. Writing to the same object from several kernels will result in undefined behavior. The kernel writing to an object must be configured before the kernel(s) reading from it.
146
147 @subsection S4_6_1_padding_and_border Padding and border modes
148
149 Several algorithms require a neighborhood around the current pixel to compute it's value. This means the algorithm will not be able to process the borders of the image unless you give it more information about how those border pixels should be processed. The @ref BorderMode enum is used for this purpose.
150
151 You have 3 types of @ref BorderMode :
152
153 - @ref BorderMode::UNDEFINED : Neighbor pixels outside of the image are treated as undefined. As a result all the pixels which are on the border will have a value which is undefined.
154 - @ref BorderMode::REPLICATE : Neighbor pixels outside of the image are treated as having the same value as the closest valid pixel.
155 - @ref BorderMode::CONSTANT : Neighbor pixels outside of the image are treated as having the same constant value. (The user can choose what this value should be).
156
157 Moreover both OpenCL and NEON use vector loads and stores instructions to access the data in buffers, so in order to avoid having special cases to handle for the borders all the images and tensors used in this library must be padded.
158
159 @subsubsection padding Padding
160
161 There are different ways padding can be calculated:
162
163 - Accurate padding:
164
165 @snippet neon_convolution.cpp Accurate padding
166
167 @note It's important to call allocate @b after the function is configured: if the image / tensor is already allocated then the function will shrink its execution window instead of increasing the padding. (See below for more details).
168
169 - Manual padding / no padding / auto padding: You can allocate your images / tensors up front (before configuring your functions). In that case the function will use whatever padding is available and will shrink its execution window if there isn't enough padding available (which translates into a smaller valid region for the output). See also @ref valid_region).
170 If you don't want to manually set the padding but still want to allocate your objects upfront then you can use auto_padding. It guarantees that the allocation will have enough padding to run any of the provided functions.
171
172 @code{.cpp}
173 Image     src, dst;
174
175 // Use auto padding for the input:
176 src.info()->init_auto_padding(TensorShape(640u,480u), Format::U8);
177
178 // Use manual padding for the destination image
179 dst.info()->init(src.info()->tensor_shape(), Format::U8, strides_in_bytes, offset_first_element_in_bytes, total_size_in_bytes);
180
181 // Allocate all the images
182 src.allocator()->allocate();
183 dst.allocator()->allocate();
184 // Fill the input image with the content of the PPM image if a filename was provided:
185 fill_image(src);
186
187 NEGaussian3x3 gauss;
188
189 // Apply a Gaussian 3x3 filter to the source image (Note: if the padding provided is not enough then the execution window and valid region of the output will be shrunk)
190 gauss.configure(&src, &dst, BorderMode::UNDEFINED);
191
192 //Execute the functions:
193 gauss.run();
194 @endcode
195
196 @warning Some kernels need up to 3 neighbor values to calculate the value of a given pixel. Therefore, to be safe, we use a 4-pixel padding all around the image. In addition, some kernels read and write up to 32 pixels at the same time. To cover that case as well we add an extra 32 pixels of padding at the end of each row. As a result auto padded buffers waste a lot of memory and are less cache friendly. It is therefore recommended to use accurate padding or manual padding wherever possible.
197
198 @subsubsection valid_region Valid regions
199
200 Some kernels (like edge detectors for example) need to read values of neighboring pixels to calculate the value of a given pixel, it is therefore not possible to calculate the values of the pixels on the edges.
201
202 Another case is: if a kernel processes 8 pixels per iteration and the image's dimensions are not a multiple of 8 and not enough padding is available then the kernel will not be able to process the pixels near the right edge. As a result these pixels will be left undefined.
203
204 In order to know which pixels have been calculated, each kernel sets a valid region for each output image or tensor. See also @ref TensorInfo::valid_region(), @ref ValidRegion
205
206 @subsection S4_6_2_tensors Tensors
207
208 Tensors are multi-dimensional arrays with a maximum of @ref Coordinates::num_max_dimensions dimensions.
209
210 Depending on the number of dimensions tensors can be interpreted as various objects. A scalar can be represented as a zero-dimensional tensor and a vector of numbers can be represented as an one-dimensional tensor. Further, an image is actually just a 2D tensor, a 3D tensor can be seen as an array of images and a 4D tensor as a 2D array of images, etc.
211
212 @note Most algorithms process images (i.e a 2D slice of the tensor), therefore only padding along the X and Y axes is required (2D slices can be stored contiguously in memory).
213
214 @subsection S4_6_3_description_conventions Images and Tensors description conventions
215
216 Image objects are defined by a @ref Format and dimensions expressed as [width, height, batch]
217
218 Tensors are defined by a @ref DataType plus a number of channels (Always expected to be 1 for now) and their dimensions are expressed as [width, height, feature_maps, batch].
219
220 In other words, the lower three dimensions of a tensor specify a single input in [width, height, feature_maps], while any other specified dimension represents a batch in the appropriate dimension space.
221 For example, a tensor with dimensions [128, 128, 64, 16] represents a 1D batch space with 16 batches of 128 elements in width and height and 64 feature maps each.
222 Each kernel specifies the expected layout of each of its tensors in its documentation.
223
224 @note Unless specified otherwise in the kernel's or function's documentation all tensors and images parameters passed must have identical dimensions.
225
226 @note Unless specified otherwise in the kernel's or function's documentation the number of channels for tensors is expected to be 1 (For images, the number of channels is inferred from the @ref Format).
227
228 @attention Regardless of the @ref DataType used by a tensor the @ref ITensor::buffer() method will always return a uint8_t pointer, and all the metadata in @ref TensorInfo will be expressed in bytes. It is the user's responsibility to cast the pointer to the correct type.
229
230 For example, to read the element located at the coordinates (x,y) of a float tensor:
231
232 @code{.cpp}
233 float value = *reinterpret_cast<float*>(input.buffer() + input.info()->offset_element_in_bytes(Coordinates(x,y)));
234 @endcode
235
236 @subsection S4_6_4_working_with_objects Working with Images and Tensors using iterators
237
238 The library provides some iterators to access objects' data.
239 Iterators are created by associating a data object (An image or a tensor for example) with an iteration window.
240
241 Iteration windows are defined by an array of dimensions, each of which consists of a start, end and step.
242
243 The @ref execute_window_loop function takes an execution window, a lambda function and one or more iterators.
244 It will iterate through every element of the execution window and for each element it will update the iterators accordingly and call the lambda function.
245
246 Here are a couple of examples of how to use the iterators to fill / read tensors:
247
248 @snippet examples/neon_copy_objects.cpp Copy objects example
249
250 @section S4_7_memory_manager MemoryManager
251
252 @ref IMemoryManager is a memory managing interface that can be used to reduce the memory requirements of a given pipeline by recycling temporary buffers.
253
254 @subsection S4_7_1_memory_manager_components MemoryGroup, MemoryPool and MemoryManager Components
255
256 @subsubsection S4_7_1_1_memory_group MemoryGroup
257
258 @ref IMemoryGroup defines the memory managing granularity.
259
260 MemoryGroup binds a number of objects to a bucket of memory requirements that need to be fulfilled in order for an operation or list of operations to be executed.
261
262 Requesting backing memory for a specific group can be done using @ref IMemoryGroup::acquire and releasing the memory back using @ref IMemoryGroup::release.
263
264 @note Two types of memory groups are currently implemented:
265 - @ref MemoryGroup that manages @ref Tensor objects
266 - @ref CLMemoryGroup that manages @ref CLTensor objects.
267
268 @subsubsection S4_7_1_2_memory_pool MemoryPool
269
270 @ref IMemoryPool defines a pool of memory that can be used to provide backing memory to a memory group.
271
272 @note @ref BlobMemoryPool is currently implemented which models the memory requirements as a vector of distinct memory blobs.
273
274 @subsubsection S4_7_1_2_memory_manager_components MemoryManager Components
275
276 @ref IMemoryManager consists of two components:
277 - @ref ILifetimeManager that keeps track of the lifetime of the registered objects of the memory groups and given an @ref IAllocator creates an appropriate memory pool that fulfils the memory requirements of all the registered memory groups.
278 - @ref IPoolManager that safely manages the registered memory pools.
279
280 @note @ref IMemoryManager::finalize should be called once the configuration of all the memory groups, kernels and functions is done, so that the memory manager can allocate the appropriate backing memory.
281
282 @note @ref BlobLifetimeManager is currently implemented which models the memory requirements as a vector of distinct memory blobs.
283
284 @subsection S4_7_2_working_with_memory_manager Working with the Memory Manager
285 Using a memory manager to reduce the memory requirements of a pipeline can be summed in the following steps:
286
287 Initially a memory manager must be set-up:
288 @code{.cpp}
289 Allocator  allocator{};                                                               // Create an allocator to use for the backing memory allocation
290 auto lifetime_mgr  = std::make_shared<BlobLifetimeManager>();                         // Create Lifetime Manager
291 auto pool_mgr      = std::make_shared<PoolManager>();                                 // Create Pool Manager
292 auto mm            = std::make_shared<MemoryManagerOnDemand>(lifetime_mgr, pool_mgr); // Create Memory Manager
293 @endcode
294
295 Once done, memory groups can be registered to use the memory manager:
296 @code{.cpp}
297 MemoryGroup memory_group(mm); // Create a memory group and set the memory manager to use
298 @endcode
299
300 @note If a memory manager is not specified then all allocation will be immediate instead of deferred through the memory manager.
301
302 Next step is to set objects to be managed by the memory group. It is important though to note that the lifetime of an object is tracked from the @ref MemoryGroup::manage() and the @ref TensorAllocator::allocate calls.
303 @ref MemoryGroup::manage flags that the object will be needed starting now and when @ref TensorAllocator::allocate is called it signals the end of the object lifetime.
304 @code{.cpp}
305 Tensor tmp1, tmp2, tmp3;            // Create example tensors
306 memory_group.manage(&tmp1);         // Start managing object tmp1 and start its lifetime
307 memory_group.manage(&tmp2);         // Start managing object tmp2 and start its lifetime
308
309 operation1.configure(&tmp1, &tmp2); // Configure a function/kernel using tmp1 and tmp2
310
311 tmp1.allocator()->allocate();       // Flag that the lifetime of object tmp1 has ended
312
313 memory_group.manage(&tmp3);         // Start managing object tmp3 and start its lifetime
314
315 operation2.configure(&tmp2, &tmp3); // Configure a function/kernel using tmp2 and tmp3
316
317 tmp2.allocator()->allocate();       // Flag that the lifetime of object tmp2 has ended
318 tmp3.allocator()->allocate();       // Flag that the lifetime of object tmp3 has ended
319 @endcode
320
321 @warning The configuration step should be done sequentially by a single thread so that all the lifetimes are captured correclty.
322
323 When configuration of all the operations is finished then the memory manager have to be finalized:
324 @code{.cpp}
325 mm->set_allocator(&allocator); // Set allocator to use
326 mm->set_set_num_pools(2);      // Set number of pools to create in case parallel operations can be run
327 mm->finalize();                // Finalize memory manager (Object lifetime check, Memory pool creation etc)
328 @endcode
329
330 Finally, during execution of the pipeline the memory of the appropriate memory group should be requested before running:
331 @code{.cpp}
332 memory_group.acquire(); // Request memory for the group
333
334 operation1.run();       // Run operation1
335 operation2.run();       // Run operation2
336
337 memory_group.release(); // Release memory so that it can be reused
338 @endcode
339 @note Execution of a pipeline can be done in a multi-threading environment as memory acquisition/release are thread safe.
340
341 @subsection S4_7_3_memory_manager_function_support Function support
342
343 Most of the library's function have been ported to use @ref IMemoryManager for their internal temporary buffers.
344
345 If that is the case, a memory manager can be passed to them during construction to reuse memory among these functions.
346 @code{.cpp}
347 // Setup Memory Manager
348 CLBufferAllocator  allocator{};                                                       // Create an allocator to use for the backing memory allocation
349 auto lifetime_mgr  = std::make_shared<BlobLifetimeManager>();                         // Create Lifetime Manager
350 auto pool_mgr      = std::make_shared<PoolManager>();                                 // Create Pool Manager
351 auto mm            = std::make_shared<MemoryManagerOnDemand>(lifetime_mgr, pool_mgr); // Create Memory Manager
352
353 // Create two convolution layers and use the memory manager to manager their internal temporary buffers
354 CLConvolutionLayer conv1(mm), conv2(mm);
355
356 // Configure layers
357 conv1.configure(...);
358 conv2.configure(...);
359
360 // Finalize memory manager
361 mm->set_allocator(&allocator); // Set allocator to use
362 mm->set_set_num_pools(1);      // Set number of pools to create in case parallel operations can be run
363 mm->finalize();                // Finalize memory manager (Object lifetime check, Memory pool creation etc)
364
365 // Run layers (Memory will be recycled for internal buffers for conv1 and conv2
366 conv1.run();
367 conv2.run();
368 @endcode
369 */
370 } // namespace arm_compute