3 C<isl> is a thread-safe C library for manipulating
4 sets and relations of integer points bounded by affine constraints.
5 The descriptions of the sets and relations may involve
6 both parameters and existentially quantified variables.
7 All computations are performed in exact integer arithmetic
9 The C<isl> library offers functionality that is similar
10 to that offered by the C<Omega> and C<Omega+> libraries,
11 but the underlying algorithms are in most cases completely different.
13 The library is by no means complete and some fairly basic
14 functionality is still missing.
15 Still, even in its current form, the library has been successfully
16 used as a backend polyhedral library for the polyhedral
17 scanner C<CLooG> and as part of an equivalence checker of
18 static affine programs.
19 For bug reports, feature requests and questions,
20 visit the the discussion group at
21 L<http://groups.google.com/group/isl-development>.
23 =head2 Backward Incompatible Changes
25 =head3 Changes since isl-0.02
29 =item * The old printing functions have been deprecated
30 and replaced by C<isl_printer> functions, see L<Input and Output>.
32 =item * Most functions related to dependence analysis have acquired
33 an extra C<must> argument. To obtain the old behavior, this argument
34 should be given the value 1. See L<Dependence Analysis>.
38 =head3 Changes since isl-0.03
42 =item * The function C<isl_pw_qpolynomial_fold_add> has been
43 renamed to C<isl_pw_qpolynomial_fold_fold>.
44 Similarly, C<isl_union_pw_qpolynomial_fold_add> has been
45 renamed to C<isl_union_pw_qpolynomial_fold_fold>.
49 =head3 Changes since isl-0.04
53 =item * All header files have been renamed from C<isl_header.h>
58 =head3 Changes since isl-0.05
62 =item * The functions C<isl_printer_print_basic_set> and
63 C<isl_printer_print_basic_map> no longer print a newline.
65 =item * The functions C<isl_flow_get_no_source>
66 and C<isl_union_map_compute_flow> now return
67 the accesses for which no source could be found instead of
68 the iterations where those accesses occur.
70 =item * The functions C<isl_basic_map_identity> and
71 C<isl_map_identity> now take a B<map> space as input. An old call
72 C<isl_map_identity(space)> can be rewritten to
73 C<isl_map_identity(isl_space_map_from_set(space))>.
75 =item * The function C<isl_map_power> no longer takes
76 a parameter position as input. Instead, the exponent
77 is now expressed as the domain of the resulting relation.
81 =head3 Changes since isl-0.06
85 =item * The format of C<isl_printer_print_qpolynomial>'s
86 C<ISL_FORMAT_ISL> output has changed.
87 Use C<ISL_FORMAT_C> to obtain the old output.
89 =item * The C<*_fast_*> functions have been renamed to C<*_plain_*>.
90 Some of the old names have been kept for backward compatibility,
91 but they will be removed in the future.
95 =head3 Changes since isl-0.07
99 =item * The function C<isl_pw_aff_max> has been renamed to
100 C<isl_pw_aff_union_max>.
101 Similarly, the function C<isl_pw_aff_add> has been renamed to
102 C<isl_pw_aff_union_add>.
104 =item * The C<isl_dim> type has been renamed to C<isl_space>
105 along with the associated functions.
106 Some of the old names have been kept for backward compatibility,
107 but they will be removed in the future.
109 =item * Spaces of maps, sets and parameter domains are now
110 treated differently. The distinction between map spaces and set spaces
111 has always been made on a conceptual level, but proper use of such spaces
112 was never checked. Furthermore, up until isl-0.07 there was no way
113 of explicitly creating a parameter space. These can now be created
114 directly using C<isl_space_params_alloc> or from other spaces using
117 =item * The space in which C<isl_aff>, C<isl_pw_aff>, C<isl_qpolynomial>,
118 C<isl_pw_qpolynomial>, C<isl_qpolynomial_fold> and C<isl_pw_qpolynomial_fold>
119 objects live is now a map space
120 instead of a set space. This means, for example, that the dimensions
121 of the domain of an C<isl_aff> are now considered to be of type
122 C<isl_dim_in> instead of C<isl_dim_set>. Extra functions have been
123 added to obtain the domain space. Some of the constructors still
124 take a domain space and have therefore been renamed.
126 =item * The functions C<isl_equality_alloc> and C<isl_inequality_alloc>
127 now take an C<isl_local_space> instead of an C<isl_space>.
128 An C<isl_local_space> can be created from an C<isl_space>
129 using C<isl_local_space_from_space>.
131 =item * The C<isl_div> type has been removed. Functions that used
132 to return an C<isl_div> now return an C<isl_aff>.
133 Note that the space of an C<isl_aff> is that of relation.
134 When replacing a call to C<isl_div_get_coefficient> by a call to
135 C<isl_aff_get_coefficient> any C<isl_dim_set> argument needs
136 to be replaced by C<isl_dim_in>.
137 A call to C<isl_aff_from_div> can be replaced by a call
139 A call to C<isl_qpolynomial_div(div)> call be replaced by
142 isl_qpolynomial_from_aff(isl_aff_floor(div))
144 The function C<isl_constraint_div> has also been renamed
145 to C<isl_constraint_get_div>.
147 =item * The C<nparam> argument has been removed from
148 C<isl_map_read_from_str> and similar functions.
149 When reading input in the original PolyLib format,
150 the result will have no parameters.
151 If parameters are expected, the caller may want to perform
152 dimension manipulation on the result.
156 =head3 Changes since isl-0.09
160 =item * The C<schedule_split_parallel> option has been replaced
161 by the C<schedule_split_scaled> option.
167 The source of C<isl> can be obtained either as a tarball
168 or from the git repository. Both are available from
169 L<http://freshmeat.net/projects/isl/>.
170 The installation process depends on how you obtained
173 =head2 Installation from the git repository
177 =item 1 Clone or update the repository
179 The first time the source is obtained, you need to clone
182 git clone git://repo.or.cz/isl.git
184 To obtain updates, you need to pull in the latest changes
188 =item 2 Generate C<configure>
194 After performing the above steps, continue
195 with the L<Common installation instructions>.
197 =head2 Common installation instructions
201 =item 1 Obtain C<GMP>
203 Building C<isl> requires C<GMP>, including its headers files.
204 Your distribution may not provide these header files by default
205 and you may need to install a package called C<gmp-devel> or something
206 similar. Alternatively, C<GMP> can be built from
207 source, available from L<http://gmplib.org/>.
211 C<isl> uses the standard C<autoconf> C<configure> script.
216 optionally followed by some configure options.
217 A complete list of options can be obtained by running
221 Below we discuss some of the more common options.
223 C<isl> can optionally use C<piplib>, but no
224 C<piplib> functionality is currently used by default.
225 The C<--with-piplib> option can
226 be used to specify which C<piplib>
227 library to use, either an installed version (C<system>),
228 an externally built version (C<build>)
229 or no version (C<no>). The option C<build> is mostly useful
230 in C<configure> scripts of larger projects that bundle both C<isl>
237 Installation prefix for C<isl>
239 =item C<--with-gmp-prefix>
241 Installation prefix for C<GMP> (architecture-independent files).
243 =item C<--with-gmp-exec-prefix>
245 Installation prefix for C<GMP> (architecture-dependent files).
247 =item C<--with-piplib>
249 Which copy of C<piplib> to use, either C<no> (default), C<system> or C<build>.
251 =item C<--with-piplib-prefix>
253 Installation prefix for C<system> C<piplib> (architecture-independent files).
255 =item C<--with-piplib-exec-prefix>
257 Installation prefix for C<system> C<piplib> (architecture-dependent files).
259 =item C<--with-piplib-builddir>
261 Location where C<build> C<piplib> was built.
269 =item 4 Install (optional)
277 =head2 Initialization
279 All manipulations of integer sets and relations occur within
280 the context of an C<isl_ctx>.
281 A given C<isl_ctx> can only be used within a single thread.
282 All arguments of a function are required to have been allocated
283 within the same context.
284 There are currently no functions available for moving an object
285 from one C<isl_ctx> to another C<isl_ctx>. This means that
286 there is currently no way of safely moving an object from one
287 thread to another, unless the whole C<isl_ctx> is moved.
289 An C<isl_ctx> can be allocated using C<isl_ctx_alloc> and
290 freed using C<isl_ctx_free>.
291 All objects allocated within an C<isl_ctx> should be freed
292 before the C<isl_ctx> itself is freed.
294 isl_ctx *isl_ctx_alloc();
295 void isl_ctx_free(isl_ctx *ctx);
299 All operations on integers, mainly the coefficients
300 of the constraints describing the sets and relations,
301 are performed in exact integer arithmetic using C<GMP>.
302 However, to allow future versions of C<isl> to optionally
303 support fixed integer arithmetic, all calls to C<GMP>
304 are wrapped inside C<isl> specific macros.
305 The basic type is C<isl_int> and the operations below
306 are available on this type.
307 The meanings of these operations are essentially the same
308 as their C<GMP> C<mpz_> counterparts.
309 As always with C<GMP> types, C<isl_int>s need to be
310 initialized with C<isl_int_init> before they can be used
311 and they need to be released with C<isl_int_clear>
313 The user should not assume that an C<isl_int> is represented
314 as a C<mpz_t>, but should instead explicitly convert between
315 C<mpz_t>s and C<isl_int>s using C<isl_int_set_gmp> and
316 C<isl_int_get_gmp> whenever a C<mpz_t> is required.
320 =item isl_int_init(i)
322 =item isl_int_clear(i)
324 =item isl_int_set(r,i)
326 =item isl_int_set_si(r,i)
328 =item isl_int_set_gmp(r,g)
330 =item isl_int_get_gmp(i,g)
332 =item isl_int_abs(r,i)
334 =item isl_int_neg(r,i)
336 =item isl_int_swap(i,j)
338 =item isl_int_swap_or_set(i,j)
340 =item isl_int_add_ui(r,i,j)
342 =item isl_int_sub_ui(r,i,j)
344 =item isl_int_add(r,i,j)
346 =item isl_int_sub(r,i,j)
348 =item isl_int_mul(r,i,j)
350 =item isl_int_mul_ui(r,i,j)
352 =item isl_int_addmul(r,i,j)
354 =item isl_int_submul(r,i,j)
356 =item isl_int_gcd(r,i,j)
358 =item isl_int_lcm(r,i,j)
360 =item isl_int_divexact(r,i,j)
362 =item isl_int_cdiv_q(r,i,j)
364 =item isl_int_fdiv_q(r,i,j)
366 =item isl_int_fdiv_r(r,i,j)
368 =item isl_int_fdiv_q_ui(r,i,j)
370 =item isl_int_read(r,s)
372 =item isl_int_print(out,i,width)
376 =item isl_int_cmp(i,j)
378 =item isl_int_cmp_si(i,si)
380 =item isl_int_eq(i,j)
382 =item isl_int_ne(i,j)
384 =item isl_int_lt(i,j)
386 =item isl_int_le(i,j)
388 =item isl_int_gt(i,j)
390 =item isl_int_ge(i,j)
392 =item isl_int_abs_eq(i,j)
394 =item isl_int_abs_ne(i,j)
396 =item isl_int_abs_lt(i,j)
398 =item isl_int_abs_gt(i,j)
400 =item isl_int_abs_ge(i,j)
402 =item isl_int_is_zero(i)
404 =item isl_int_is_one(i)
406 =item isl_int_is_negone(i)
408 =item isl_int_is_pos(i)
410 =item isl_int_is_neg(i)
412 =item isl_int_is_nonpos(i)
414 =item isl_int_is_nonneg(i)
416 =item isl_int_is_divisible_by(i,j)
420 =head2 Sets and Relations
422 C<isl> uses six types of objects for representing sets and relations,
423 C<isl_basic_set>, C<isl_basic_map>, C<isl_set>, C<isl_map>,
424 C<isl_union_set> and C<isl_union_map>.
425 C<isl_basic_set> and C<isl_basic_map> represent sets and relations that
426 can be described as a conjunction of affine constraints, while
427 C<isl_set> and C<isl_map> represent unions of
428 C<isl_basic_set>s and C<isl_basic_map>s, respectively.
429 However, all C<isl_basic_set>s or C<isl_basic_map>s in the union need
430 to live in the same space. C<isl_union_set>s and C<isl_union_map>s
431 represent unions of C<isl_set>s or C<isl_map>s in I<different> spaces,
432 where spaces are considered different if they have a different number
433 of dimensions and/or different names (see L<"Spaces">).
434 The difference between sets and relations (maps) is that sets have
435 one set of variables, while relations have two sets of variables,
436 input variables and output variables.
438 =head2 Memory Management
440 Since a high-level operation on sets and/or relations usually involves
441 several substeps and since the user is usually not interested in
442 the intermediate results, most functions that return a new object
443 will also release all the objects passed as arguments.
444 If the user still wants to use one or more of these arguments
445 after the function call, she should pass along a copy of the
446 object rather than the object itself.
447 The user is then responsible for making sure that the original
448 object gets used somewhere else or is explicitly freed.
450 The arguments and return values of all documented functions are
451 annotated to make clear which arguments are released and which
452 arguments are preserved. In particular, the following annotations
459 C<__isl_give> means that a new object is returned.
460 The user should make sure that the returned pointer is
461 used exactly once as a value for an C<__isl_take> argument.
462 In between, it can be used as a value for as many
463 C<__isl_keep> arguments as the user likes.
464 There is one exception, and that is the case where the
465 pointer returned is C<NULL>. Is this case, the user
466 is free to use it as an C<__isl_take> argument or not.
470 C<__isl_take> means that the object the argument points to
471 is taken over by the function and may no longer be used
472 by the user as an argument to any other function.
473 The pointer value must be one returned by a function
474 returning an C<__isl_give> pointer.
475 If the user passes in a C<NULL> value, then this will
476 be treated as an error in the sense that the function will
477 not perform its usual operation. However, it will still
478 make sure that all the other C<__isl_take> arguments
483 C<__isl_keep> means that the function will only use the object
484 temporarily. After the function has finished, the user
485 can still use it as an argument to other functions.
486 A C<NULL> value will be treated in the same way as
487 a C<NULL> value for an C<__isl_take> argument.
491 =head2 Error Handling
493 C<isl> supports different ways to react in case a runtime error is triggered.
494 Runtime errors arise, e.g., if a function such as C<isl_map_intersect> is called
495 with two maps that have incompatible spaces. There are three possible ways
496 to react on error: to warn, to continue or to abort.
498 The default behavior is to warn. In this mode, C<isl> prints a warning, stores
499 the last error in the corresponding C<isl_ctx> and the function in which the
500 error was triggered returns C<NULL>. An error does not corrupt internal state,
501 such that isl can continue to be used. C<isl> also provides functions to
502 read the last error and to reset the memory that stores the last error. The
503 last error is only stored for information purposes. Its presence does not
504 change the behavior of C<isl>. Hence, resetting an error is not required to
505 continue to use isl, but only to observe new errors.
508 enum isl_error isl_ctx_last_error(isl_ctx *ctx);
509 void isl_ctx_reset_error(isl_ctx *ctx);
511 Another option is to continue on error. This is similar to warn on error mode,
512 except that C<isl> does not print any warning. This allows a program to
513 implement its own error reporting.
515 The last option is to directly abort the execution of the program from within
516 the isl library. This makes it obviously impossible to recover from an error,
517 but it allows to directly spot the error location. By aborting on error,
518 debuggers break at the location the error occurred and can provide a stack
519 trace. Other tools that automatically provide stack traces on abort or that do
520 not want to continue execution after an error was triggered may also prefer to
523 The on error behavior of isl can be specified by calling
524 C<isl_options_set_on_error> or by setting the command line option
525 C<--isl-on-error>. Valid arguments for the function call are
526 C<ISL_ON_ERROR_WARN>, C<ISL_ON_ERROR_CONTINUE> and C<ISL_ON_ERROR_ABORT>. The
527 choices for the command line option are C<warn>, C<continue> and C<abort>.
528 It is also possible to query the current error mode.
530 #include <isl/options.h>
531 int isl_options_set_on_error(isl_ctx *ctx, int val);
532 int isl_options_get_on_error(isl_ctx *ctx);
536 Identifiers are used to identify both individual dimensions
537 and tuples of dimensions. They consist of a name and an optional
538 pointer. Identifiers with the same name but different pointer values
539 are considered to be distinct.
540 Identifiers can be constructed, copied, freed, inspected and printed
541 using the following functions.
544 __isl_give isl_id *isl_id_alloc(isl_ctx *ctx,
545 __isl_keep const char *name, void *user);
546 __isl_give isl_id *isl_id_copy(isl_id *id);
547 void *isl_id_free(__isl_take isl_id *id);
549 isl_ctx *isl_id_get_ctx(__isl_keep isl_id *id);
550 void *isl_id_get_user(__isl_keep isl_id *id);
551 __isl_keep const char *isl_id_get_name(__isl_keep isl_id *id);
553 __isl_give isl_printer *isl_printer_print_id(
554 __isl_take isl_printer *p, __isl_keep isl_id *id);
556 Note that C<isl_id_get_name> returns a pointer to some internal
557 data structure, so the result can only be used while the
558 corresponding C<isl_id> is alive.
562 Whenever a new set or relation is created from scratch,
563 the space in which it lives needs to be specified using an C<isl_space>.
565 #include <isl/space.h>
566 __isl_give isl_space *isl_space_alloc(isl_ctx *ctx,
567 unsigned nparam, unsigned n_in, unsigned n_out);
568 __isl_give isl_space *isl_space_params_alloc(isl_ctx *ctx,
570 __isl_give isl_space *isl_space_set_alloc(isl_ctx *ctx,
571 unsigned nparam, unsigned dim);
572 __isl_give isl_space *isl_space_copy(__isl_keep isl_space *space);
573 void isl_space_free(__isl_take isl_space *space);
574 unsigned isl_space_dim(__isl_keep isl_space *space,
575 enum isl_dim_type type);
577 The space used for creating a parameter domain
578 needs to be created using C<isl_space_params_alloc>.
579 For other sets, the space
580 needs to be created using C<isl_space_set_alloc>, while
581 for a relation, the space
582 needs to be created using C<isl_space_alloc>.
583 C<isl_space_dim> can be used
584 to find out the number of dimensions of each type in
585 a space, where type may be
586 C<isl_dim_param>, C<isl_dim_in> (only for relations),
587 C<isl_dim_out> (only for relations), C<isl_dim_set>
588 (only for sets) or C<isl_dim_all>.
590 To check whether a given space is that of a set or a map
591 or whether it is a parameter space, use these functions:
593 #include <isl/space.h>
594 int isl_space_is_params(__isl_keep isl_space *space);
595 int isl_space_is_set(__isl_keep isl_space *space);
597 It is often useful to create objects that live in the
598 same space as some other object. This can be accomplished
599 by creating the new objects
600 (see L<Creating New Sets and Relations> or
601 L<Creating New (Piecewise) Quasipolynomials>) based on the space
602 of the original object.
605 __isl_give isl_space *isl_basic_set_get_space(
606 __isl_keep isl_basic_set *bset);
607 __isl_give isl_space *isl_set_get_space(__isl_keep isl_set *set);
609 #include <isl/union_set.h>
610 __isl_give isl_space *isl_union_set_get_space(
611 __isl_keep isl_union_set *uset);
614 __isl_give isl_space *isl_basic_map_get_space(
615 __isl_keep isl_basic_map *bmap);
616 __isl_give isl_space *isl_map_get_space(__isl_keep isl_map *map);
618 #include <isl/union_map.h>
619 __isl_give isl_space *isl_union_map_get_space(
620 __isl_keep isl_union_map *umap);
622 #include <isl/constraint.h>
623 __isl_give isl_space *isl_constraint_get_space(
624 __isl_keep isl_constraint *constraint);
626 #include <isl/polynomial.h>
627 __isl_give isl_space *isl_qpolynomial_get_domain_space(
628 __isl_keep isl_qpolynomial *qp);
629 __isl_give isl_space *isl_qpolynomial_get_space(
630 __isl_keep isl_qpolynomial *qp);
631 __isl_give isl_space *isl_qpolynomial_fold_get_space(
632 __isl_keep isl_qpolynomial_fold *fold);
633 __isl_give isl_space *isl_pw_qpolynomial_get_domain_space(
634 __isl_keep isl_pw_qpolynomial *pwqp);
635 __isl_give isl_space *isl_pw_qpolynomial_get_space(
636 __isl_keep isl_pw_qpolynomial *pwqp);
637 __isl_give isl_space *isl_pw_qpolynomial_fold_get_domain_space(
638 __isl_keep isl_pw_qpolynomial_fold *pwf);
639 __isl_give isl_space *isl_pw_qpolynomial_fold_get_space(
640 __isl_keep isl_pw_qpolynomial_fold *pwf);
641 __isl_give isl_space *isl_union_pw_qpolynomial_get_space(
642 __isl_keep isl_union_pw_qpolynomial *upwqp);
643 __isl_give isl_space *isl_union_pw_qpolynomial_fold_get_space(
644 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
647 __isl_give isl_space *isl_aff_get_domain_space(
648 __isl_keep isl_aff *aff);
649 __isl_give isl_space *isl_aff_get_space(
650 __isl_keep isl_aff *aff);
651 __isl_give isl_space *isl_pw_aff_get_domain_space(
652 __isl_keep isl_pw_aff *pwaff);
653 __isl_give isl_space *isl_pw_aff_get_space(
654 __isl_keep isl_pw_aff *pwaff);
655 __isl_give isl_space *isl_multi_aff_get_space(
656 __isl_keep isl_multi_aff *maff);
657 __isl_give isl_space *isl_pw_multi_aff_get_domain_space(
658 __isl_keep isl_pw_multi_aff *pma);
659 __isl_give isl_space *isl_pw_multi_aff_get_space(
660 __isl_keep isl_pw_multi_aff *pma);
662 #include <isl/point.h>
663 __isl_give isl_space *isl_point_get_space(
664 __isl_keep isl_point *pnt);
666 The identifiers or names of the individual dimensions may be set or read off
667 using the following functions.
669 #include <isl/space.h>
670 __isl_give isl_space *isl_space_set_dim_id(
671 __isl_take isl_space *space,
672 enum isl_dim_type type, unsigned pos,
673 __isl_take isl_id *id);
674 int isl_space_has_dim_id(__isl_keep isl_space *space,
675 enum isl_dim_type type, unsigned pos);
676 __isl_give isl_id *isl_space_get_dim_id(
677 __isl_keep isl_space *space,
678 enum isl_dim_type type, unsigned pos);
679 __isl_give isl_space *isl_space_set_dim_name(__isl_take isl_space *space,
680 enum isl_dim_type type, unsigned pos,
681 __isl_keep const char *name);
682 __isl_keep const char *isl_space_get_dim_name(__isl_keep isl_space *space,
683 enum isl_dim_type type, unsigned pos);
685 Note that C<isl_space_get_name> returns a pointer to some internal
686 data structure, so the result can only be used while the
687 corresponding C<isl_space> is alive.
688 Also note that every function that operates on two sets or relations
689 requires that both arguments have the same parameters. This also
690 means that if one of the arguments has named parameters, then the
691 other needs to have named parameters too and the names need to match.
692 Pairs of C<isl_set>, C<isl_map>, C<isl_union_set> and/or C<isl_union_map>
693 arguments may have different parameters (as long as they are named),
694 in which case the result will have as parameters the union of the parameters of
697 Given the identifier or name of a dimension (typically a parameter),
698 its position can be obtained from the following function.
700 #include <isl/space.h>
701 int isl_space_find_dim_by_id(__isl_keep isl_space *space,
702 enum isl_dim_type type, __isl_keep isl_id *id);
703 int isl_space_find_dim_by_name(__isl_keep isl_space *space,
704 enum isl_dim_type type, const char *name);
706 The identifiers or names of entire spaces may be set or read off
707 using the following functions.
709 #include <isl/space.h>
710 __isl_give isl_space *isl_space_set_tuple_id(
711 __isl_take isl_space *space,
712 enum isl_dim_type type, __isl_take isl_id *id);
713 __isl_give isl_space *isl_space_reset_tuple_id(
714 __isl_take isl_space *space, enum isl_dim_type type);
715 int isl_space_has_tuple_id(__isl_keep isl_space *space,
716 enum isl_dim_type type);
717 __isl_give isl_id *isl_space_get_tuple_id(
718 __isl_keep isl_space *space, enum isl_dim_type type);
719 __isl_give isl_space *isl_space_set_tuple_name(
720 __isl_take isl_space *space,
721 enum isl_dim_type type, const char *s);
722 const char *isl_space_get_tuple_name(__isl_keep isl_space *space,
723 enum isl_dim_type type);
725 The C<type> argument needs to be one of C<isl_dim_in>, C<isl_dim_out>
726 or C<isl_dim_set>. As with C<isl_space_get_name>,
727 the C<isl_space_get_tuple_name> function returns a pointer to some internal
729 Binary operations require the corresponding spaces of their arguments
730 to have the same name.
732 Spaces can be nested. In particular, the domain of a set or
733 the domain or range of a relation can be a nested relation.
734 The following functions can be used to construct and deconstruct
737 #include <isl/space.h>
738 int isl_space_is_wrapping(__isl_keep isl_space *space);
739 __isl_give isl_space *isl_space_wrap(__isl_take isl_space *space);
740 __isl_give isl_space *isl_space_unwrap(__isl_take isl_space *space);
742 The input to C<isl_space_is_wrapping> and C<isl_space_unwrap> should
743 be the space of a set, while that of
744 C<isl_space_wrap> should be the space of a relation.
745 Conversely, the output of C<isl_space_unwrap> is the space
746 of a relation, while that of C<isl_space_wrap> is the space of a set.
748 Spaces can be created from other spaces
749 using the following functions.
751 __isl_give isl_space *isl_space_domain(__isl_take isl_space *space);
752 __isl_give isl_space *isl_space_from_domain(__isl_take isl_space *space);
753 __isl_give isl_space *isl_space_range(__isl_take isl_space *space);
754 __isl_give isl_space *isl_space_from_range(__isl_take isl_space *space);
755 __isl_give isl_space *isl_space_params(
756 __isl_take isl_space *space);
757 __isl_give isl_space *isl_space_set_from_params(
758 __isl_take isl_space *space);
759 __isl_give isl_space *isl_space_reverse(__isl_take isl_space *space);
760 __isl_give isl_space *isl_space_join(__isl_take isl_space *left,
761 __isl_take isl_space *right);
762 __isl_give isl_space *isl_space_align_params(
763 __isl_take isl_space *space1, __isl_take isl_space *space2)
764 __isl_give isl_space *isl_space_insert_dims(__isl_take isl_space *space,
765 enum isl_dim_type type, unsigned pos, unsigned n);
766 __isl_give isl_space *isl_space_add_dims(__isl_take isl_space *space,
767 enum isl_dim_type type, unsigned n);
768 __isl_give isl_space *isl_space_drop_dims(__isl_take isl_space *space,
769 enum isl_dim_type type, unsigned first, unsigned n);
770 __isl_give isl_space *isl_space_move_dims(__isl_take isl_space *space,
771 enum isl_dim_type dst_type, unsigned dst_pos,
772 enum isl_dim_type src_type, unsigned src_pos,
774 __isl_give isl_space *isl_space_map_from_set(
775 __isl_take isl_space *space);
776 __isl_give isl_space *isl_space_map_from_domain_and_range(
777 __isl_take isl_space *domain,
778 __isl_take isl_space *range);
779 __isl_give isl_space *isl_space_zip(__isl_take isl_space *space);
781 Note that if dimensions are added or removed from a space, then
782 the name and the internal structure are lost.
786 A local space is essentially a space with
787 zero or more existentially quantified variables.
788 The local space of a basic set or relation can be obtained
789 using the following functions.
792 __isl_give isl_local_space *isl_basic_set_get_local_space(
793 __isl_keep isl_basic_set *bset);
796 __isl_give isl_local_space *isl_basic_map_get_local_space(
797 __isl_keep isl_basic_map *bmap);
799 A new local space can be created from a space using
801 #include <isl/local_space.h>
802 __isl_give isl_local_space *isl_local_space_from_space(
803 __isl_take isl_space *space);
805 They can be inspected, modified, copied and freed using the following functions.
807 #include <isl/local_space.h>
808 isl_ctx *isl_local_space_get_ctx(
809 __isl_keep isl_local_space *ls);
810 int isl_local_space_is_set(__isl_keep isl_local_space *ls);
811 int isl_local_space_dim(__isl_keep isl_local_space *ls,
812 enum isl_dim_type type);
813 const char *isl_local_space_get_dim_name(
814 __isl_keep isl_local_space *ls,
815 enum isl_dim_type type, unsigned pos);
816 __isl_give isl_local_space *isl_local_space_set_dim_name(
817 __isl_take isl_local_space *ls,
818 enum isl_dim_type type, unsigned pos, const char *s);
819 __isl_give isl_local_space *isl_local_space_set_dim_id(
820 __isl_take isl_local_space *ls,
821 enum isl_dim_type type, unsigned pos,
822 __isl_take isl_id *id);
823 __isl_give isl_space *isl_local_space_get_space(
824 __isl_keep isl_local_space *ls);
825 __isl_give isl_aff *isl_local_space_get_div(
826 __isl_keep isl_local_space *ls, int pos);
827 __isl_give isl_local_space *isl_local_space_copy(
828 __isl_keep isl_local_space *ls);
829 void *isl_local_space_free(__isl_take isl_local_space *ls);
831 Two local spaces can be compared using
833 int isl_local_space_is_equal(__isl_keep isl_local_space *ls1,
834 __isl_keep isl_local_space *ls2);
836 Local spaces can be created from other local spaces
837 using the following functions.
839 __isl_give isl_local_space *isl_local_space_domain(
840 __isl_take isl_local_space *ls);
841 __isl_give isl_local_space *isl_local_space_range(
842 __isl_take isl_local_space *ls);
843 __isl_give isl_local_space *isl_local_space_from_domain(
844 __isl_take isl_local_space *ls);
845 __isl_give isl_local_space *isl_local_space_intersect(
846 __isl_take isl_local_space *ls1,
847 __isl_take isl_local_space *ls2);
848 __isl_give isl_local_space *isl_local_space_add_dims(
849 __isl_take isl_local_space *ls,
850 enum isl_dim_type type, unsigned n);
851 __isl_give isl_local_space *isl_local_space_insert_dims(
852 __isl_take isl_local_space *ls,
853 enum isl_dim_type type, unsigned first, unsigned n);
854 __isl_give isl_local_space *isl_local_space_drop_dims(
855 __isl_take isl_local_space *ls,
856 enum isl_dim_type type, unsigned first, unsigned n);
858 =head2 Input and Output
860 C<isl> supports its own input/output format, which is similar
861 to the C<Omega> format, but also supports the C<PolyLib> format
866 The C<isl> format is similar to that of C<Omega>, but has a different
867 syntax for describing the parameters and allows for the definition
868 of an existentially quantified variable as the integer division
869 of an affine expression.
870 For example, the set of integers C<i> between C<0> and C<n>
871 such that C<i % 10 <= 6> can be described as
873 [n] -> { [i] : exists (a = [i/10] : 0 <= i and i <= n and
876 A set or relation can have several disjuncts, separated
877 by the keyword C<or>. Each disjunct is either a conjunction
878 of constraints or a projection (C<exists>) of a conjunction
879 of constraints. The constraints are separated by the keyword
882 =head3 C<PolyLib> format
884 If the represented set is a union, then the first line
885 contains a single number representing the number of disjuncts.
886 Otherwise, a line containing the number C<1> is optional.
888 Each disjunct is represented by a matrix of constraints.
889 The first line contains two numbers representing
890 the number of rows and columns,
891 where the number of rows is equal to the number of constraints
892 and the number of columns is equal to two plus the number of variables.
893 The following lines contain the actual rows of the constraint matrix.
894 In each row, the first column indicates whether the constraint
895 is an equality (C<0>) or inequality (C<1>). The final column
896 corresponds to the constant term.
898 If the set is parametric, then the coefficients of the parameters
899 appear in the last columns before the constant column.
900 The coefficients of any existentially quantified variables appear
901 between those of the set variables and those of the parameters.
903 =head3 Extended C<PolyLib> format
905 The extended C<PolyLib> format is nearly identical to the
906 C<PolyLib> format. The only difference is that the line
907 containing the number of rows and columns of a constraint matrix
908 also contains four additional numbers:
909 the number of output dimensions, the number of input dimensions,
910 the number of local dimensions (i.e., the number of existentially
911 quantified variables) and the number of parameters.
912 For sets, the number of ``output'' dimensions is equal
913 to the number of set dimensions, while the number of ``input''
919 __isl_give isl_basic_set *isl_basic_set_read_from_file(
920 isl_ctx *ctx, FILE *input);
921 __isl_give isl_basic_set *isl_basic_set_read_from_str(
922 isl_ctx *ctx, const char *str);
923 __isl_give isl_set *isl_set_read_from_file(isl_ctx *ctx,
925 __isl_give isl_set *isl_set_read_from_str(isl_ctx *ctx,
929 __isl_give isl_basic_map *isl_basic_map_read_from_file(
930 isl_ctx *ctx, FILE *input);
931 __isl_give isl_basic_map *isl_basic_map_read_from_str(
932 isl_ctx *ctx, const char *str);
933 __isl_give isl_map *isl_map_read_from_file(
934 isl_ctx *ctx, FILE *input);
935 __isl_give isl_map *isl_map_read_from_str(isl_ctx *ctx,
938 #include <isl/union_set.h>
939 __isl_give isl_union_set *isl_union_set_read_from_file(
940 isl_ctx *ctx, FILE *input);
941 __isl_give isl_union_set *isl_union_set_read_from_str(
942 isl_ctx *ctx, const char *str);
944 #include <isl/union_map.h>
945 __isl_give isl_union_map *isl_union_map_read_from_file(
946 isl_ctx *ctx, FILE *input);
947 __isl_give isl_union_map *isl_union_map_read_from_str(
948 isl_ctx *ctx, const char *str);
950 The input format is autodetected and may be either the C<PolyLib> format
951 or the C<isl> format.
955 Before anything can be printed, an C<isl_printer> needs to
958 __isl_give isl_printer *isl_printer_to_file(isl_ctx *ctx,
960 __isl_give isl_printer *isl_printer_to_str(isl_ctx *ctx);
961 void isl_printer_free(__isl_take isl_printer *printer);
962 __isl_give char *isl_printer_get_str(
963 __isl_keep isl_printer *printer);
965 The behavior of the printer can be modified in various ways
967 __isl_give isl_printer *isl_printer_set_output_format(
968 __isl_take isl_printer *p, int output_format);
969 __isl_give isl_printer *isl_printer_set_indent(
970 __isl_take isl_printer *p, int indent);
971 __isl_give isl_printer *isl_printer_indent(
972 __isl_take isl_printer *p, int indent);
973 __isl_give isl_printer *isl_printer_set_prefix(
974 __isl_take isl_printer *p, const char *prefix);
975 __isl_give isl_printer *isl_printer_set_suffix(
976 __isl_take isl_printer *p, const char *suffix);
978 The C<output_format> may be either C<ISL_FORMAT_ISL>, C<ISL_FORMAT_OMEGA>,
979 C<ISL_FORMAT_POLYLIB>, C<ISL_FORMAT_EXT_POLYLIB> or C<ISL_FORMAT_LATEX>
980 and defaults to C<ISL_FORMAT_ISL>.
981 Each line in the output is indented by C<indent> (set by
982 C<isl_printer_set_indent>) spaces
983 (default: 0), prefixed by C<prefix> and suffixed by C<suffix>.
984 In the C<PolyLib> format output,
985 the coefficients of the existentially quantified variables
986 appear between those of the set variables and those
988 The function C<isl_printer_indent> increases the indentation
989 by the specified amount (which may be negative).
991 To actually print something, use
994 __isl_give isl_printer *isl_printer_print_basic_set(
995 __isl_take isl_printer *printer,
996 __isl_keep isl_basic_set *bset);
997 __isl_give isl_printer *isl_printer_print_set(
998 __isl_take isl_printer *printer,
999 __isl_keep isl_set *set);
1001 #include <isl/map.h>
1002 __isl_give isl_printer *isl_printer_print_basic_map(
1003 __isl_take isl_printer *printer,
1004 __isl_keep isl_basic_map *bmap);
1005 __isl_give isl_printer *isl_printer_print_map(
1006 __isl_take isl_printer *printer,
1007 __isl_keep isl_map *map);
1009 #include <isl/union_set.h>
1010 __isl_give isl_printer *isl_printer_print_union_set(
1011 __isl_take isl_printer *p,
1012 __isl_keep isl_union_set *uset);
1014 #include <isl/union_map.h>
1015 __isl_give isl_printer *isl_printer_print_union_map(
1016 __isl_take isl_printer *p,
1017 __isl_keep isl_union_map *umap);
1019 When called on a file printer, the following function flushes
1020 the file. When called on a string printer, the buffer is cleared.
1022 __isl_give isl_printer *isl_printer_flush(
1023 __isl_take isl_printer *p);
1025 =head2 Creating New Sets and Relations
1027 C<isl> has functions for creating some standard sets and relations.
1031 =item * Empty sets and relations
1033 __isl_give isl_basic_set *isl_basic_set_empty(
1034 __isl_take isl_space *space);
1035 __isl_give isl_basic_map *isl_basic_map_empty(
1036 __isl_take isl_space *space);
1037 __isl_give isl_set *isl_set_empty(
1038 __isl_take isl_space *space);
1039 __isl_give isl_map *isl_map_empty(
1040 __isl_take isl_space *space);
1041 __isl_give isl_union_set *isl_union_set_empty(
1042 __isl_take isl_space *space);
1043 __isl_give isl_union_map *isl_union_map_empty(
1044 __isl_take isl_space *space);
1046 For C<isl_union_set>s and C<isl_union_map>s, the space
1047 is only used to specify the parameters.
1049 =item * Universe sets and relations
1051 __isl_give isl_basic_set *isl_basic_set_universe(
1052 __isl_take isl_space *space);
1053 __isl_give isl_basic_map *isl_basic_map_universe(
1054 __isl_take isl_space *space);
1055 __isl_give isl_set *isl_set_universe(
1056 __isl_take isl_space *space);
1057 __isl_give isl_map *isl_map_universe(
1058 __isl_take isl_space *space);
1059 __isl_give isl_union_set *isl_union_set_universe(
1060 __isl_take isl_union_set *uset);
1061 __isl_give isl_union_map *isl_union_map_universe(
1062 __isl_take isl_union_map *umap);
1064 The sets and relations constructed by the functions above
1065 contain all integer values, while those constructed by the
1066 functions below only contain non-negative values.
1068 __isl_give isl_basic_set *isl_basic_set_nat_universe(
1069 __isl_take isl_space *space);
1070 __isl_give isl_basic_map *isl_basic_map_nat_universe(
1071 __isl_take isl_space *space);
1072 __isl_give isl_set *isl_set_nat_universe(
1073 __isl_take isl_space *space);
1074 __isl_give isl_map *isl_map_nat_universe(
1075 __isl_take isl_space *space);
1077 =item * Identity relations
1079 __isl_give isl_basic_map *isl_basic_map_identity(
1080 __isl_take isl_space *space);
1081 __isl_give isl_map *isl_map_identity(
1082 __isl_take isl_space *space);
1084 The number of input and output dimensions in C<space> needs
1087 =item * Lexicographic order
1089 __isl_give isl_map *isl_map_lex_lt(
1090 __isl_take isl_space *set_space);
1091 __isl_give isl_map *isl_map_lex_le(
1092 __isl_take isl_space *set_space);
1093 __isl_give isl_map *isl_map_lex_gt(
1094 __isl_take isl_space *set_space);
1095 __isl_give isl_map *isl_map_lex_ge(
1096 __isl_take isl_space *set_space);
1097 __isl_give isl_map *isl_map_lex_lt_first(
1098 __isl_take isl_space *space, unsigned n);
1099 __isl_give isl_map *isl_map_lex_le_first(
1100 __isl_take isl_space *space, unsigned n);
1101 __isl_give isl_map *isl_map_lex_gt_first(
1102 __isl_take isl_space *space, unsigned n);
1103 __isl_give isl_map *isl_map_lex_ge_first(
1104 __isl_take isl_space *space, unsigned n);
1106 The first four functions take a space for a B<set>
1107 and return relations that express that the elements in the domain
1108 are lexicographically less
1109 (C<isl_map_lex_lt>), less or equal (C<isl_map_lex_le>),
1110 greater (C<isl_map_lex_gt>) or greater or equal (C<isl_map_lex_ge>)
1111 than the elements in the range.
1112 The last four functions take a space for a map
1113 and return relations that express that the first C<n> dimensions
1114 in the domain are lexicographically less
1115 (C<isl_map_lex_lt_first>), less or equal (C<isl_map_lex_le_first>),
1116 greater (C<isl_map_lex_gt_first>) or greater or equal (C<isl_map_lex_ge_first>)
1117 than the first C<n> dimensions in the range.
1121 A basic set or relation can be converted to a set or relation
1122 using the following functions.
1124 __isl_give isl_set *isl_set_from_basic_set(
1125 __isl_take isl_basic_set *bset);
1126 __isl_give isl_map *isl_map_from_basic_map(
1127 __isl_take isl_basic_map *bmap);
1129 Sets and relations can be converted to union sets and relations
1130 using the following functions.
1132 __isl_give isl_union_map *isl_union_map_from_map(
1133 __isl_take isl_map *map);
1134 __isl_give isl_union_set *isl_union_set_from_set(
1135 __isl_take isl_set *set);
1137 The inverse conversions below can only be used if the input
1138 union set or relation is known to contain elements in exactly one
1141 __isl_give isl_set *isl_set_from_union_set(
1142 __isl_take isl_union_set *uset);
1143 __isl_give isl_map *isl_map_from_union_map(
1144 __isl_take isl_union_map *umap);
1146 A zero-dimensional set can be constructed on a given parameter domain
1147 using the following function.
1149 __isl_give isl_set *isl_set_from_params(
1150 __isl_take isl_set *set);
1152 Sets and relations can be copied and freed again using the following
1155 __isl_give isl_basic_set *isl_basic_set_copy(
1156 __isl_keep isl_basic_set *bset);
1157 __isl_give isl_set *isl_set_copy(__isl_keep isl_set *set);
1158 __isl_give isl_union_set *isl_union_set_copy(
1159 __isl_keep isl_union_set *uset);
1160 __isl_give isl_basic_map *isl_basic_map_copy(
1161 __isl_keep isl_basic_map *bmap);
1162 __isl_give isl_map *isl_map_copy(__isl_keep isl_map *map);
1163 __isl_give isl_union_map *isl_union_map_copy(
1164 __isl_keep isl_union_map *umap);
1165 void isl_basic_set_free(__isl_take isl_basic_set *bset);
1166 void isl_set_free(__isl_take isl_set *set);
1167 void *isl_union_set_free(__isl_take isl_union_set *uset);
1168 void isl_basic_map_free(__isl_take isl_basic_map *bmap);
1169 void isl_map_free(__isl_take isl_map *map);
1170 void *isl_union_map_free(__isl_take isl_union_map *umap);
1172 Other sets and relations can be constructed by starting
1173 from a universe set or relation, adding equality and/or
1174 inequality constraints and then projecting out the
1175 existentially quantified variables, if any.
1176 Constraints can be constructed, manipulated and
1177 added to (or removed from) (basic) sets and relations
1178 using the following functions.
1180 #include <isl/constraint.h>
1181 __isl_give isl_constraint *isl_equality_alloc(
1182 __isl_take isl_local_space *ls);
1183 __isl_give isl_constraint *isl_inequality_alloc(
1184 __isl_take isl_local_space *ls);
1185 __isl_give isl_constraint *isl_constraint_set_constant(
1186 __isl_take isl_constraint *constraint, isl_int v);
1187 __isl_give isl_constraint *isl_constraint_set_constant_si(
1188 __isl_take isl_constraint *constraint, int v);
1189 __isl_give isl_constraint *isl_constraint_set_coefficient(
1190 __isl_take isl_constraint *constraint,
1191 enum isl_dim_type type, int pos, isl_int v);
1192 __isl_give isl_constraint *isl_constraint_set_coefficient_si(
1193 __isl_take isl_constraint *constraint,
1194 enum isl_dim_type type, int pos, int v);
1195 __isl_give isl_basic_map *isl_basic_map_add_constraint(
1196 __isl_take isl_basic_map *bmap,
1197 __isl_take isl_constraint *constraint);
1198 __isl_give isl_basic_set *isl_basic_set_add_constraint(
1199 __isl_take isl_basic_set *bset,
1200 __isl_take isl_constraint *constraint);
1201 __isl_give isl_map *isl_map_add_constraint(
1202 __isl_take isl_map *map,
1203 __isl_take isl_constraint *constraint);
1204 __isl_give isl_set *isl_set_add_constraint(
1205 __isl_take isl_set *set,
1206 __isl_take isl_constraint *constraint);
1207 __isl_give isl_basic_set *isl_basic_set_drop_constraint(
1208 __isl_take isl_basic_set *bset,
1209 __isl_take isl_constraint *constraint);
1211 For example, to create a set containing the even integers
1212 between 10 and 42, you would use the following code.
1215 isl_local_space *ls;
1217 isl_basic_set *bset;
1219 space = isl_space_set_alloc(ctx, 0, 2);
1220 bset = isl_basic_set_universe(isl_space_copy(space));
1221 ls = isl_local_space_from_space(space);
1223 c = isl_equality_alloc(isl_local_space_copy(ls));
1224 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1);
1225 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 1, 2);
1226 bset = isl_basic_set_add_constraint(bset, c);
1228 c = isl_inequality_alloc(isl_local_space_copy(ls));
1229 c = isl_constraint_set_constant_si(c, -10);
1230 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, 1);
1231 bset = isl_basic_set_add_constraint(bset, c);
1233 c = isl_inequality_alloc(ls);
1234 c = isl_constraint_set_constant_si(c, 42);
1235 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1);
1236 bset = isl_basic_set_add_constraint(bset, c);
1238 bset = isl_basic_set_project_out(bset, isl_dim_set, 1, 1);
1242 isl_basic_set *bset;
1243 bset = isl_basic_set_read_from_str(ctx,
1244 "{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}");
1246 A basic set or relation can also be constructed from two matrices
1247 describing the equalities and the inequalities.
1249 __isl_give isl_basic_set *isl_basic_set_from_constraint_matrices(
1250 __isl_take isl_space *space,
1251 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
1252 enum isl_dim_type c1,
1253 enum isl_dim_type c2, enum isl_dim_type c3,
1254 enum isl_dim_type c4);
1255 __isl_give isl_basic_map *isl_basic_map_from_constraint_matrices(
1256 __isl_take isl_space *space,
1257 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
1258 enum isl_dim_type c1,
1259 enum isl_dim_type c2, enum isl_dim_type c3,
1260 enum isl_dim_type c4, enum isl_dim_type c5);
1262 The C<isl_dim_type> arguments indicate the order in which
1263 different kinds of variables appear in the input matrices
1264 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
1265 C<isl_dim_set> and C<isl_dim_div> for sets and
1266 of C<isl_dim_cst>, C<isl_dim_param>,
1267 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div> for relations.
1269 A (basic) set or relation can also be constructed from a (piecewise)
1270 (multiple) affine expression
1271 or a list of affine expressions
1272 (See L<"Piecewise Quasi Affine Expressions"> and
1273 L<"Piecewise Multiple Quasi Affine Expressions">).
1275 __isl_give isl_basic_map *isl_basic_map_from_aff(
1276 __isl_take isl_aff *aff);
1277 __isl_give isl_set *isl_set_from_pw_aff(
1278 __isl_take isl_pw_aff *pwaff);
1279 __isl_give isl_map *isl_map_from_pw_aff(
1280 __isl_take isl_pw_aff *pwaff);
1281 __isl_give isl_basic_map *isl_basic_map_from_aff_list(
1282 __isl_take isl_space *domain_space,
1283 __isl_take isl_aff_list *list);
1284 __isl_give isl_basic_map *isl_basic_map_from_multi_aff(
1285 __isl_take isl_multi_aff *maff)
1286 __isl_give isl_set *isl_set_from_pw_multi_aff(
1287 __isl_take isl_pw_multi_aff *pma);
1288 __isl_give isl_map *isl_map_from_pw_multi_aff(
1289 __isl_take isl_pw_multi_aff *pma);
1291 The C<domain_dim> argument describes the domain of the resulting
1292 basic relation. It is required because the C<list> may consist
1293 of zero affine expressions.
1295 =head2 Inspecting Sets and Relations
1297 Usually, the user should not have to care about the actual constraints
1298 of the sets and maps, but should instead apply the abstract operations
1299 explained in the following sections.
1300 Occasionally, however, it may be required to inspect the individual
1301 coefficients of the constraints. This section explains how to do so.
1302 In these cases, it may also be useful to have C<isl> compute
1303 an explicit representation of the existentially quantified variables.
1305 __isl_give isl_set *isl_set_compute_divs(
1306 __isl_take isl_set *set);
1307 __isl_give isl_map *isl_map_compute_divs(
1308 __isl_take isl_map *map);
1309 __isl_give isl_union_set *isl_union_set_compute_divs(
1310 __isl_take isl_union_set *uset);
1311 __isl_give isl_union_map *isl_union_map_compute_divs(
1312 __isl_take isl_union_map *umap);
1314 This explicit representation defines the existentially quantified
1315 variables as integer divisions of the other variables, possibly
1316 including earlier existentially quantified variables.
1317 An explicitly represented existentially quantified variable therefore
1318 has a unique value when the values of the other variables are known.
1319 If, furthermore, the same existentials, i.e., existentials
1320 with the same explicit representations, should appear in the
1321 same order in each of the disjuncts of a set or map, then the user should call
1322 either of the following functions.
1324 __isl_give isl_set *isl_set_align_divs(
1325 __isl_take isl_set *set);
1326 __isl_give isl_map *isl_map_align_divs(
1327 __isl_take isl_map *map);
1329 Alternatively, the existentially quantified variables can be removed
1330 using the following functions, which compute an overapproximation.
1332 __isl_give isl_basic_set *isl_basic_set_remove_divs(
1333 __isl_take isl_basic_set *bset);
1334 __isl_give isl_basic_map *isl_basic_map_remove_divs(
1335 __isl_take isl_basic_map *bmap);
1336 __isl_give isl_set *isl_set_remove_divs(
1337 __isl_take isl_set *set);
1338 __isl_give isl_map *isl_map_remove_divs(
1339 __isl_take isl_map *map);
1341 To iterate over all the sets or maps in a union set or map, use
1343 int isl_union_set_foreach_set(__isl_keep isl_union_set *uset,
1344 int (*fn)(__isl_take isl_set *set, void *user),
1346 int isl_union_map_foreach_map(__isl_keep isl_union_map *umap,
1347 int (*fn)(__isl_take isl_map *map, void *user),
1350 The number of sets or maps in a union set or map can be obtained
1353 int isl_union_set_n_set(__isl_keep isl_union_set *uset);
1354 int isl_union_map_n_map(__isl_keep isl_union_map *umap);
1356 To extract the set or map in a given space from a union, use
1358 __isl_give isl_set *isl_union_set_extract_set(
1359 __isl_keep isl_union_set *uset,
1360 __isl_take isl_space *space);
1361 __isl_give isl_map *isl_union_map_extract_map(
1362 __isl_keep isl_union_map *umap,
1363 __isl_take isl_space *space);
1365 To iterate over all the basic sets or maps in a set or map, use
1367 int isl_set_foreach_basic_set(__isl_keep isl_set *set,
1368 int (*fn)(__isl_take isl_basic_set *bset, void *user),
1370 int isl_map_foreach_basic_map(__isl_keep isl_map *map,
1371 int (*fn)(__isl_take isl_basic_map *bmap, void *user),
1374 The callback function C<fn> should return 0 if successful and
1375 -1 if an error occurs. In the latter case, or if any other error
1376 occurs, the above functions will return -1.
1378 It should be noted that C<isl> does not guarantee that
1379 the basic sets or maps passed to C<fn> are disjoint.
1380 If this is required, then the user should call one of
1381 the following functions first.
1383 __isl_give isl_set *isl_set_make_disjoint(
1384 __isl_take isl_set *set);
1385 __isl_give isl_map *isl_map_make_disjoint(
1386 __isl_take isl_map *map);
1388 The number of basic sets in a set can be obtained
1391 int isl_set_n_basic_set(__isl_keep isl_set *set);
1393 To iterate over the constraints of a basic set or map, use
1395 #include <isl/constraint.h>
1397 int isl_basic_map_foreach_constraint(
1398 __isl_keep isl_basic_map *bmap,
1399 int (*fn)(__isl_take isl_constraint *c, void *user),
1401 void *isl_constraint_free(__isl_take isl_constraint *c);
1403 Again, the callback function C<fn> should return 0 if successful and
1404 -1 if an error occurs. In the latter case, or if any other error
1405 occurs, the above functions will return -1.
1406 The constraint C<c> represents either an equality or an inequality.
1407 Use the following function to find out whether a constraint
1408 represents an equality. If not, it represents an inequality.
1410 int isl_constraint_is_equality(
1411 __isl_keep isl_constraint *constraint);
1413 The coefficients of the constraints can be inspected using
1414 the following functions.
1416 void isl_constraint_get_constant(
1417 __isl_keep isl_constraint *constraint, isl_int *v);
1418 void isl_constraint_get_coefficient(
1419 __isl_keep isl_constraint *constraint,
1420 enum isl_dim_type type, int pos, isl_int *v);
1421 int isl_constraint_involves_dims(
1422 __isl_keep isl_constraint *constraint,
1423 enum isl_dim_type type, unsigned first, unsigned n);
1425 The explicit representations of the existentially quantified
1426 variables can be inspected using the following function.
1427 Note that the user is only allowed to use this function
1428 if the inspected set or map is the result of a call
1429 to C<isl_set_compute_divs> or C<isl_map_compute_divs>.
1430 The existentially quantified variable is equal to the floor
1431 of the returned affine expression. The affine expression
1432 itself can be inspected using the functions in
1433 L<"Piecewise Quasi Affine Expressions">.
1435 __isl_give isl_aff *isl_constraint_get_div(
1436 __isl_keep isl_constraint *constraint, int pos);
1438 To obtain the constraints of a basic set or map in matrix
1439 form, use the following functions.
1441 __isl_give isl_mat *isl_basic_set_equalities_matrix(
1442 __isl_keep isl_basic_set *bset,
1443 enum isl_dim_type c1, enum isl_dim_type c2,
1444 enum isl_dim_type c3, enum isl_dim_type c4);
1445 __isl_give isl_mat *isl_basic_set_inequalities_matrix(
1446 __isl_keep isl_basic_set *bset,
1447 enum isl_dim_type c1, enum isl_dim_type c2,
1448 enum isl_dim_type c3, enum isl_dim_type c4);
1449 __isl_give isl_mat *isl_basic_map_equalities_matrix(
1450 __isl_keep isl_basic_map *bmap,
1451 enum isl_dim_type c1,
1452 enum isl_dim_type c2, enum isl_dim_type c3,
1453 enum isl_dim_type c4, enum isl_dim_type c5);
1454 __isl_give isl_mat *isl_basic_map_inequalities_matrix(
1455 __isl_keep isl_basic_map *bmap,
1456 enum isl_dim_type c1,
1457 enum isl_dim_type c2, enum isl_dim_type c3,
1458 enum isl_dim_type c4, enum isl_dim_type c5);
1460 The C<isl_dim_type> arguments dictate the order in which
1461 different kinds of variables appear in the resulting matrix
1462 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
1463 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div>.
1465 The number of parameters, input, output or set dimensions can
1466 be obtained using the following functions.
1468 unsigned isl_basic_set_dim(__isl_keep isl_basic_set *bset,
1469 enum isl_dim_type type);
1470 unsigned isl_basic_map_dim(__isl_keep isl_basic_map *bmap,
1471 enum isl_dim_type type);
1472 unsigned isl_set_dim(__isl_keep isl_set *set,
1473 enum isl_dim_type type);
1474 unsigned isl_map_dim(__isl_keep isl_map *map,
1475 enum isl_dim_type type);
1477 To check whether the description of a set or relation depends
1478 on one or more given dimensions, it is not necessary to iterate over all
1479 constraints. Instead the following functions can be used.
1481 int isl_basic_set_involves_dims(
1482 __isl_keep isl_basic_set *bset,
1483 enum isl_dim_type type, unsigned first, unsigned n);
1484 int isl_set_involves_dims(__isl_keep isl_set *set,
1485 enum isl_dim_type type, unsigned first, unsigned n);
1486 int isl_basic_map_involves_dims(
1487 __isl_keep isl_basic_map *bmap,
1488 enum isl_dim_type type, unsigned first, unsigned n);
1489 int isl_map_involves_dims(__isl_keep isl_map *map,
1490 enum isl_dim_type type, unsigned first, unsigned n);
1492 Similarly, the following functions can be used to check whether
1493 a given dimension is involved in any lower or upper bound.
1495 int isl_set_dim_has_lower_bound(__isl_keep isl_set *set,
1496 enum isl_dim_type type, unsigned pos);
1497 int isl_set_dim_has_upper_bound(__isl_keep isl_set *set,
1498 enum isl_dim_type type, unsigned pos);
1500 The identifiers or names of the domain and range spaces of a set
1501 or relation can be read off or set using the following functions.
1503 __isl_give isl_set *isl_set_set_tuple_id(
1504 __isl_take isl_set *set, __isl_take isl_id *id);
1505 __isl_give isl_set *isl_set_reset_tuple_id(
1506 __isl_take isl_set *set);
1507 int isl_set_has_tuple_id(__isl_keep isl_set *set);
1508 __isl_give isl_id *isl_set_get_tuple_id(
1509 __isl_keep isl_set *set);
1510 __isl_give isl_map *isl_map_set_tuple_id(
1511 __isl_take isl_map *map, enum isl_dim_type type,
1512 __isl_take isl_id *id);
1513 __isl_give isl_map *isl_map_reset_tuple_id(
1514 __isl_take isl_map *map, enum isl_dim_type type);
1515 int isl_map_has_tuple_id(__isl_keep isl_map *map,
1516 enum isl_dim_type type);
1517 __isl_give isl_id *isl_map_get_tuple_id(
1518 __isl_keep isl_map *map, enum isl_dim_type type);
1520 const char *isl_basic_set_get_tuple_name(
1521 __isl_keep isl_basic_set *bset);
1522 __isl_give isl_basic_set *isl_basic_set_set_tuple_name(
1523 __isl_take isl_basic_set *set, const char *s);
1524 const char *isl_set_get_tuple_name(
1525 __isl_keep isl_set *set);
1526 const char *isl_basic_map_get_tuple_name(
1527 __isl_keep isl_basic_map *bmap,
1528 enum isl_dim_type type);
1529 __isl_give isl_basic_map *isl_basic_map_set_tuple_name(
1530 __isl_take isl_basic_map *bmap,
1531 enum isl_dim_type type, const char *s);
1532 const char *isl_map_get_tuple_name(
1533 __isl_keep isl_map *map,
1534 enum isl_dim_type type);
1536 As with C<isl_space_get_tuple_name>, the value returned points to
1537 an internal data structure.
1538 The identifiers, positions or names of individual dimensions can be
1539 read off using the following functions.
1541 __isl_give isl_set *isl_set_set_dim_id(
1542 __isl_take isl_set *set, enum isl_dim_type type,
1543 unsigned pos, __isl_take isl_id *id);
1544 int isl_set_has_dim_id(__isl_keep isl_set *set,
1545 enum isl_dim_type type, unsigned pos);
1546 __isl_give isl_id *isl_set_get_dim_id(
1547 __isl_keep isl_set *set, enum isl_dim_type type,
1549 int isl_basic_map_has_dim_id(
1550 __isl_keep isl_basic_map *bmap,
1551 enum isl_dim_type type, unsigned pos);
1552 __isl_give isl_map *isl_map_set_dim_id(
1553 __isl_take isl_map *map, enum isl_dim_type type,
1554 unsigned pos, __isl_take isl_id *id);
1555 int isl_map_has_dim_id(__isl_keep isl_map *map,
1556 enum isl_dim_type type, unsigned pos);
1557 __isl_give isl_id *isl_map_get_dim_id(
1558 __isl_keep isl_map *map, enum isl_dim_type type,
1561 int isl_set_find_dim_by_id(__isl_keep isl_set *set,
1562 enum isl_dim_type type, __isl_keep isl_id *id);
1563 int isl_map_find_dim_by_id(__isl_keep isl_map *map,
1564 enum isl_dim_type type, __isl_keep isl_id *id);
1565 int isl_set_find_dim_by_name(__isl_keep isl_set *set,
1566 enum isl_dim_type type, const char *name);
1567 int isl_map_find_dim_by_name(__isl_keep isl_map *map,
1568 enum isl_dim_type type, const char *name);
1570 const char *isl_constraint_get_dim_name(
1571 __isl_keep isl_constraint *constraint,
1572 enum isl_dim_type type, unsigned pos);
1573 const char *isl_basic_set_get_dim_name(
1574 __isl_keep isl_basic_set *bset,
1575 enum isl_dim_type type, unsigned pos);
1576 const char *isl_set_get_dim_name(
1577 __isl_keep isl_set *set,
1578 enum isl_dim_type type, unsigned pos);
1579 const char *isl_basic_map_get_dim_name(
1580 __isl_keep isl_basic_map *bmap,
1581 enum isl_dim_type type, unsigned pos);
1582 const char *isl_map_get_dim_name(
1583 __isl_keep isl_map *map,
1584 enum isl_dim_type type, unsigned pos);
1586 These functions are mostly useful to obtain the identifiers, positions
1587 or names of the parameters. Identifiers of individual dimensions are
1588 essentially only useful for printing. They are ignored by all other
1589 operations and may not be preserved across those operations.
1593 =head3 Unary Properties
1599 The following functions test whether the given set or relation
1600 contains any integer points. The ``plain'' variants do not perform
1601 any computations, but simply check if the given set or relation
1602 is already known to be empty.
1604 int isl_basic_set_plain_is_empty(__isl_keep isl_basic_set *bset);
1605 int isl_basic_set_is_empty(__isl_keep isl_basic_set *bset);
1606 int isl_set_plain_is_empty(__isl_keep isl_set *set);
1607 int isl_set_is_empty(__isl_keep isl_set *set);
1608 int isl_union_set_is_empty(__isl_keep isl_union_set *uset);
1609 int isl_basic_map_plain_is_empty(__isl_keep isl_basic_map *bmap);
1610 int isl_basic_map_is_empty(__isl_keep isl_basic_map *bmap);
1611 int isl_map_plain_is_empty(__isl_keep isl_map *map);
1612 int isl_map_is_empty(__isl_keep isl_map *map);
1613 int isl_union_map_is_empty(__isl_keep isl_union_map *umap);
1615 =item * Universality
1617 int isl_basic_set_is_universe(__isl_keep isl_basic_set *bset);
1618 int isl_basic_map_is_universe(__isl_keep isl_basic_map *bmap);
1619 int isl_set_plain_is_universe(__isl_keep isl_set *set);
1621 =item * Single-valuedness
1623 int isl_map_plain_is_single_valued(
1624 __isl_keep isl_map *map);
1625 int isl_map_is_single_valued(__isl_keep isl_map *map);
1626 int isl_union_map_is_single_valued(__isl_keep isl_union_map *umap);
1630 int isl_map_plain_is_injective(__isl_keep isl_map *map);
1631 int isl_map_is_injective(__isl_keep isl_map *map);
1632 int isl_union_map_plain_is_injective(
1633 __isl_keep isl_union_map *umap);
1634 int isl_union_map_is_injective(
1635 __isl_keep isl_union_map *umap);
1639 int isl_map_is_bijective(__isl_keep isl_map *map);
1640 int isl_union_map_is_bijective(__isl_keep isl_union_map *umap);
1644 int isl_basic_map_plain_is_fixed(
1645 __isl_keep isl_basic_map *bmap,
1646 enum isl_dim_type type, unsigned pos,
1648 int isl_set_plain_is_fixed(__isl_keep isl_set *set,
1649 enum isl_dim_type type, unsigned pos,
1651 int isl_map_plain_is_fixed(__isl_keep isl_map *map,
1652 enum isl_dim_type type, unsigned pos,
1655 Check if the relation obviously lies on a hyperplane where the given dimension
1656 has a fixed value and if so, return that value in C<*val>.
1660 To check whether a set is a parameter domain, use this function:
1662 int isl_set_is_params(__isl_keep isl_set *set);
1663 int isl_union_set_is_params(
1664 __isl_keep isl_union_set *uset);
1668 The following functions check whether the domain of the given
1669 (basic) set is a wrapped relation.
1671 int isl_basic_set_is_wrapping(
1672 __isl_keep isl_basic_set *bset);
1673 int isl_set_is_wrapping(__isl_keep isl_set *set);
1675 =item * Internal Product
1677 int isl_basic_map_can_zip(
1678 __isl_keep isl_basic_map *bmap);
1679 int isl_map_can_zip(__isl_keep isl_map *map);
1681 Check whether the product of domain and range of the given relation
1683 i.e., whether both domain and range are nested relations.
1687 =head3 Binary Properties
1693 int isl_set_plain_is_equal(__isl_keep isl_set *set1,
1694 __isl_keep isl_set *set2);
1695 int isl_set_is_equal(__isl_keep isl_set *set1,
1696 __isl_keep isl_set *set2);
1697 int isl_union_set_is_equal(
1698 __isl_keep isl_union_set *uset1,
1699 __isl_keep isl_union_set *uset2);
1700 int isl_basic_map_is_equal(
1701 __isl_keep isl_basic_map *bmap1,
1702 __isl_keep isl_basic_map *bmap2);
1703 int isl_map_is_equal(__isl_keep isl_map *map1,
1704 __isl_keep isl_map *map2);
1705 int isl_map_plain_is_equal(__isl_keep isl_map *map1,
1706 __isl_keep isl_map *map2);
1707 int isl_union_map_is_equal(
1708 __isl_keep isl_union_map *umap1,
1709 __isl_keep isl_union_map *umap2);
1711 =item * Disjointness
1713 int isl_set_plain_is_disjoint(__isl_keep isl_set *set1,
1714 __isl_keep isl_set *set2);
1718 int isl_set_is_subset(__isl_keep isl_set *set1,
1719 __isl_keep isl_set *set2);
1720 int isl_set_is_strict_subset(
1721 __isl_keep isl_set *set1,
1722 __isl_keep isl_set *set2);
1723 int isl_union_set_is_subset(
1724 __isl_keep isl_union_set *uset1,
1725 __isl_keep isl_union_set *uset2);
1726 int isl_union_set_is_strict_subset(
1727 __isl_keep isl_union_set *uset1,
1728 __isl_keep isl_union_set *uset2);
1729 int isl_basic_map_is_subset(
1730 __isl_keep isl_basic_map *bmap1,
1731 __isl_keep isl_basic_map *bmap2);
1732 int isl_basic_map_is_strict_subset(
1733 __isl_keep isl_basic_map *bmap1,
1734 __isl_keep isl_basic_map *bmap2);
1735 int isl_map_is_subset(
1736 __isl_keep isl_map *map1,
1737 __isl_keep isl_map *map2);
1738 int isl_map_is_strict_subset(
1739 __isl_keep isl_map *map1,
1740 __isl_keep isl_map *map2);
1741 int isl_union_map_is_subset(
1742 __isl_keep isl_union_map *umap1,
1743 __isl_keep isl_union_map *umap2);
1744 int isl_union_map_is_strict_subset(
1745 __isl_keep isl_union_map *umap1,
1746 __isl_keep isl_union_map *umap2);
1750 =head2 Unary Operations
1756 __isl_give isl_set *isl_set_complement(
1757 __isl_take isl_set *set);
1758 __isl_give isl_map *isl_map_complement(
1759 __isl_take isl_map *map);
1763 __isl_give isl_basic_map *isl_basic_map_reverse(
1764 __isl_take isl_basic_map *bmap);
1765 __isl_give isl_map *isl_map_reverse(
1766 __isl_take isl_map *map);
1767 __isl_give isl_union_map *isl_union_map_reverse(
1768 __isl_take isl_union_map *umap);
1772 __isl_give isl_basic_set *isl_basic_set_project_out(
1773 __isl_take isl_basic_set *bset,
1774 enum isl_dim_type type, unsigned first, unsigned n);
1775 __isl_give isl_basic_map *isl_basic_map_project_out(
1776 __isl_take isl_basic_map *bmap,
1777 enum isl_dim_type type, unsigned first, unsigned n);
1778 __isl_give isl_set *isl_set_project_out(__isl_take isl_set *set,
1779 enum isl_dim_type type, unsigned first, unsigned n);
1780 __isl_give isl_map *isl_map_project_out(__isl_take isl_map *map,
1781 enum isl_dim_type type, unsigned first, unsigned n);
1782 __isl_give isl_basic_set *isl_basic_set_params(
1783 __isl_take isl_basic_set *bset);
1784 __isl_give isl_basic_set *isl_basic_map_domain(
1785 __isl_take isl_basic_map *bmap);
1786 __isl_give isl_basic_set *isl_basic_map_range(
1787 __isl_take isl_basic_map *bmap);
1788 __isl_give isl_set *isl_set_params(__isl_take isl_set *set);
1789 __isl_give isl_set *isl_map_params(__isl_take isl_map *map);
1790 __isl_give isl_set *isl_map_domain(
1791 __isl_take isl_map *bmap);
1792 __isl_give isl_set *isl_map_range(
1793 __isl_take isl_map *map);
1794 __isl_give isl_set *isl_union_set_params(
1795 __isl_take isl_union_set *uset);
1796 __isl_give isl_set *isl_union_map_params(
1797 __isl_take isl_union_map *umap);
1798 __isl_give isl_union_set *isl_union_map_domain(
1799 __isl_take isl_union_map *umap);
1800 __isl_give isl_union_set *isl_union_map_range(
1801 __isl_take isl_union_map *umap);
1803 __isl_give isl_basic_map *isl_basic_map_domain_map(
1804 __isl_take isl_basic_map *bmap);
1805 __isl_give isl_basic_map *isl_basic_map_range_map(
1806 __isl_take isl_basic_map *bmap);
1807 __isl_give isl_map *isl_map_domain_map(__isl_take isl_map *map);
1808 __isl_give isl_map *isl_map_range_map(__isl_take isl_map *map);
1809 __isl_give isl_union_map *isl_union_map_domain_map(
1810 __isl_take isl_union_map *umap);
1811 __isl_give isl_union_map *isl_union_map_range_map(
1812 __isl_take isl_union_map *umap);
1814 The functions above construct a (basic, regular or union) relation
1815 that maps (a wrapped version of) the input relation to its domain or range.
1819 __isl_give isl_set *isl_set_eliminate(
1820 __isl_take isl_set *set, enum isl_dim_type type,
1821 unsigned first, unsigned n);
1822 __isl_give isl_basic_map *isl_basic_map_eliminate(
1823 __isl_take isl_basic_map *bmap,
1824 enum isl_dim_type type,
1825 unsigned first, unsigned n);
1826 __isl_give isl_map *isl_map_eliminate(
1827 __isl_take isl_map *map, enum isl_dim_type type,
1828 unsigned first, unsigned n);
1830 Eliminate the coefficients for the given dimensions from the constraints,
1831 without removing the dimensions.
1835 __isl_give isl_basic_set *isl_basic_set_fix(
1836 __isl_take isl_basic_set *bset,
1837 enum isl_dim_type type, unsigned pos,
1839 __isl_give isl_basic_set *isl_basic_set_fix_si(
1840 __isl_take isl_basic_set *bset,
1841 enum isl_dim_type type, unsigned pos, int value);
1842 __isl_give isl_set *isl_set_fix(__isl_take isl_set *set,
1843 enum isl_dim_type type, unsigned pos,
1845 __isl_give isl_set *isl_set_fix_si(__isl_take isl_set *set,
1846 enum isl_dim_type type, unsigned pos, int value);
1847 __isl_give isl_basic_map *isl_basic_map_fix_si(
1848 __isl_take isl_basic_map *bmap,
1849 enum isl_dim_type type, unsigned pos, int value);
1850 __isl_give isl_map *isl_map_fix_si(__isl_take isl_map *map,
1851 enum isl_dim_type type, unsigned pos, int value);
1853 Intersect the set or relation with the hyperplane where the given
1854 dimension has the fixed given value.
1856 __isl_give isl_basic_map *isl_basic_map_lower_bound_si(
1857 __isl_take isl_basic_map *bmap,
1858 enum isl_dim_type type, unsigned pos, int value);
1859 __isl_give isl_set *isl_set_lower_bound_si(
1860 __isl_take isl_set *set,
1861 enum isl_dim_type type, unsigned pos, int value);
1862 __isl_give isl_map *isl_map_lower_bound_si(
1863 __isl_take isl_map *map,
1864 enum isl_dim_type type, unsigned pos, int value);
1865 __isl_give isl_set *isl_set_upper_bound_si(
1866 __isl_take isl_set *set,
1867 enum isl_dim_type type, unsigned pos, int value);
1868 __isl_give isl_map *isl_map_upper_bound_si(
1869 __isl_take isl_map *map,
1870 enum isl_dim_type type, unsigned pos, int value);
1872 Intersect the set or relation with the half-space where the given
1873 dimension has a value bounded the fixed given value.
1875 __isl_give isl_set *isl_set_equate(__isl_take isl_set *set,
1876 enum isl_dim_type type1, int pos1,
1877 enum isl_dim_type type2, int pos2);
1878 __isl_give isl_map *isl_map_equate(__isl_take isl_map *map,
1879 enum isl_dim_type type1, int pos1,
1880 enum isl_dim_type type2, int pos2);
1882 Intersect the set or relation with the hyperplane where the given
1883 dimensions are equal to each other.
1885 __isl_give isl_map *isl_map_oppose(__isl_take isl_map *map,
1886 enum isl_dim_type type1, int pos1,
1887 enum isl_dim_type type2, int pos2);
1889 Intersect the relation with the hyperplane where the given
1890 dimensions have opposite values.
1894 __isl_give isl_map *isl_set_identity(
1895 __isl_take isl_set *set);
1896 __isl_give isl_union_map *isl_union_set_identity(
1897 __isl_take isl_union_set *uset);
1899 Construct an identity relation on the given (union) set.
1903 __isl_give isl_basic_set *isl_basic_map_deltas(
1904 __isl_take isl_basic_map *bmap);
1905 __isl_give isl_set *isl_map_deltas(__isl_take isl_map *map);
1906 __isl_give isl_union_set *isl_union_map_deltas(
1907 __isl_take isl_union_map *umap);
1909 These functions return a (basic) set containing the differences
1910 between image elements and corresponding domain elements in the input.
1912 __isl_give isl_basic_map *isl_basic_map_deltas_map(
1913 __isl_take isl_basic_map *bmap);
1914 __isl_give isl_map *isl_map_deltas_map(
1915 __isl_take isl_map *map);
1916 __isl_give isl_union_map *isl_union_map_deltas_map(
1917 __isl_take isl_union_map *umap);
1919 The functions above construct a (basic, regular or union) relation
1920 that maps (a wrapped version of) the input relation to its delta set.
1924 Simplify the representation of a set or relation by trying
1925 to combine pairs of basic sets or relations into a single
1926 basic set or relation.
1928 __isl_give isl_set *isl_set_coalesce(__isl_take isl_set *set);
1929 __isl_give isl_map *isl_map_coalesce(__isl_take isl_map *map);
1930 __isl_give isl_union_set *isl_union_set_coalesce(
1931 __isl_take isl_union_set *uset);
1932 __isl_give isl_union_map *isl_union_map_coalesce(
1933 __isl_take isl_union_map *umap);
1935 =item * Detecting equalities
1937 __isl_give isl_basic_set *isl_basic_set_detect_equalities(
1938 __isl_take isl_basic_set *bset);
1939 __isl_give isl_basic_map *isl_basic_map_detect_equalities(
1940 __isl_take isl_basic_map *bmap);
1941 __isl_give isl_set *isl_set_detect_equalities(
1942 __isl_take isl_set *set);
1943 __isl_give isl_map *isl_map_detect_equalities(
1944 __isl_take isl_map *map);
1945 __isl_give isl_union_set *isl_union_set_detect_equalities(
1946 __isl_take isl_union_set *uset);
1947 __isl_give isl_union_map *isl_union_map_detect_equalities(
1948 __isl_take isl_union_map *umap);
1950 Simplify the representation of a set or relation by detecting implicit
1953 =item * Removing redundant constraints
1955 __isl_give isl_basic_set *isl_basic_set_remove_redundancies(
1956 __isl_take isl_basic_set *bset);
1957 __isl_give isl_set *isl_set_remove_redundancies(
1958 __isl_take isl_set *set);
1959 __isl_give isl_basic_map *isl_basic_map_remove_redundancies(
1960 __isl_take isl_basic_map *bmap);
1961 __isl_give isl_map *isl_map_remove_redundancies(
1962 __isl_take isl_map *map);
1966 __isl_give isl_basic_set *isl_set_convex_hull(
1967 __isl_take isl_set *set);
1968 __isl_give isl_basic_map *isl_map_convex_hull(
1969 __isl_take isl_map *map);
1971 If the input set or relation has any existentially quantified
1972 variables, then the result of these operations is currently undefined.
1976 __isl_give isl_basic_set *isl_set_simple_hull(
1977 __isl_take isl_set *set);
1978 __isl_give isl_basic_map *isl_map_simple_hull(
1979 __isl_take isl_map *map);
1980 __isl_give isl_union_map *isl_union_map_simple_hull(
1981 __isl_take isl_union_map *umap);
1983 These functions compute a single basic set or relation
1984 that contains the whole input set or relation.
1985 In particular, the output is described by translates
1986 of the constraints describing the basic sets or relations in the input.
1990 (See \autoref{s:simple hull}.)
1996 __isl_give isl_basic_set *isl_basic_set_affine_hull(
1997 __isl_take isl_basic_set *bset);
1998 __isl_give isl_basic_set *isl_set_affine_hull(
1999 __isl_take isl_set *set);
2000 __isl_give isl_union_set *isl_union_set_affine_hull(
2001 __isl_take isl_union_set *uset);
2002 __isl_give isl_basic_map *isl_basic_map_affine_hull(
2003 __isl_take isl_basic_map *bmap);
2004 __isl_give isl_basic_map *isl_map_affine_hull(
2005 __isl_take isl_map *map);
2006 __isl_give isl_union_map *isl_union_map_affine_hull(
2007 __isl_take isl_union_map *umap);
2009 In case of union sets and relations, the affine hull is computed
2012 =item * Polyhedral hull
2014 __isl_give isl_basic_set *isl_set_polyhedral_hull(
2015 __isl_take isl_set *set);
2016 __isl_give isl_basic_map *isl_map_polyhedral_hull(
2017 __isl_take isl_map *map);
2018 __isl_give isl_union_set *isl_union_set_polyhedral_hull(
2019 __isl_take isl_union_set *uset);
2020 __isl_give isl_union_map *isl_union_map_polyhedral_hull(
2021 __isl_take isl_union_map *umap);
2023 These functions compute a single basic set or relation
2024 not involving any existentially quantified variables
2025 that contains the whole input set or relation.
2026 In case of union sets and relations, the polyhedral hull is computed
2031 __isl_give isl_basic_set *isl_basic_set_sample(
2032 __isl_take isl_basic_set *bset);
2033 __isl_give isl_basic_set *isl_set_sample(
2034 __isl_take isl_set *set);
2035 __isl_give isl_basic_map *isl_basic_map_sample(
2036 __isl_take isl_basic_map *bmap);
2037 __isl_give isl_basic_map *isl_map_sample(
2038 __isl_take isl_map *map);
2040 If the input (basic) set or relation is non-empty, then return
2041 a singleton subset of the input. Otherwise, return an empty set.
2043 =item * Optimization
2045 #include <isl/ilp.h>
2046 enum isl_lp_result isl_basic_set_max(
2047 __isl_keep isl_basic_set *bset,
2048 __isl_keep isl_aff *obj, isl_int *opt)
2049 enum isl_lp_result isl_set_min(__isl_keep isl_set *set,
2050 __isl_keep isl_aff *obj, isl_int *opt);
2051 enum isl_lp_result isl_set_max(__isl_keep isl_set *set,
2052 __isl_keep isl_aff *obj, isl_int *opt);
2054 Compute the minimum or maximum of the integer affine expression C<obj>
2055 over the points in C<set>, returning the result in C<opt>.
2056 The return value may be one of C<isl_lp_error>,
2057 C<isl_lp_ok>, C<isl_lp_unbounded> or C<isl_lp_empty>.
2059 =item * Parametric optimization
2061 __isl_give isl_pw_aff *isl_set_dim_min(
2062 __isl_take isl_set *set, int pos);
2063 __isl_give isl_pw_aff *isl_set_dim_max(
2064 __isl_take isl_set *set, int pos);
2065 __isl_give isl_pw_aff *isl_map_dim_max(
2066 __isl_take isl_map *map, int pos);
2068 Compute the minimum or maximum of the given set or output dimension
2069 as a function of the parameters (and input dimensions), but independently
2070 of the other set or output dimensions.
2071 For lexicographic optimization, see L<"Lexicographic Optimization">.
2075 The following functions compute either the set of (rational) coefficient
2076 values of valid constraints for the given set or the set of (rational)
2077 values satisfying the constraints with coefficients from the given set.
2078 Internally, these two sets of functions perform essentially the
2079 same operations, except that the set of coefficients is assumed to
2080 be a cone, while the set of values may be any polyhedron.
2081 The current implementation is based on the Farkas lemma and
2082 Fourier-Motzkin elimination, but this may change or be made optional
2083 in future. In particular, future implementations may use different
2084 dualization algorithms or skip the elimination step.
2086 __isl_give isl_basic_set *isl_basic_set_coefficients(
2087 __isl_take isl_basic_set *bset);
2088 __isl_give isl_basic_set *isl_set_coefficients(
2089 __isl_take isl_set *set);
2090 __isl_give isl_union_set *isl_union_set_coefficients(
2091 __isl_take isl_union_set *bset);
2092 __isl_give isl_basic_set *isl_basic_set_solutions(
2093 __isl_take isl_basic_set *bset);
2094 __isl_give isl_basic_set *isl_set_solutions(
2095 __isl_take isl_set *set);
2096 __isl_give isl_union_set *isl_union_set_solutions(
2097 __isl_take isl_union_set *bset);
2101 __isl_give isl_map *isl_map_power(__isl_take isl_map *map,
2103 __isl_give isl_union_map *isl_union_map_power(
2104 __isl_take isl_union_map *umap, int *exact);
2106 Compute a parametric representation for all positive powers I<k> of C<map>.
2107 The result maps I<k> to a nested relation corresponding to the
2108 I<k>th power of C<map>.
2109 The result may be an overapproximation. If the result is known to be exact,
2110 then C<*exact> is set to C<1>.
2112 =item * Transitive closure
2114 __isl_give isl_map *isl_map_transitive_closure(
2115 __isl_take isl_map *map, int *exact);
2116 __isl_give isl_union_map *isl_union_map_transitive_closure(
2117 __isl_take isl_union_map *umap, int *exact);
2119 Compute the transitive closure of C<map>.
2120 The result may be an overapproximation. If the result is known to be exact,
2121 then C<*exact> is set to C<1>.
2123 =item * Reaching path lengths
2125 __isl_give isl_map *isl_map_reaching_path_lengths(
2126 __isl_take isl_map *map, int *exact);
2128 Compute a relation that maps each element in the range of C<map>
2129 to the lengths of all paths composed of edges in C<map> that
2130 end up in the given element.
2131 The result may be an overapproximation. If the result is known to be exact,
2132 then C<*exact> is set to C<1>.
2133 To compute the I<maximal> path length, the resulting relation
2134 should be postprocessed by C<isl_map_lexmax>.
2135 In particular, if the input relation is a dependence relation
2136 (mapping sources to sinks), then the maximal path length corresponds
2137 to the free schedule.
2138 Note, however, that C<isl_map_lexmax> expects the maximum to be
2139 finite, so if the path lengths are unbounded (possibly due to
2140 the overapproximation), then you will get an error message.
2144 __isl_give isl_basic_set *isl_basic_map_wrap(
2145 __isl_take isl_basic_map *bmap);
2146 __isl_give isl_set *isl_map_wrap(
2147 __isl_take isl_map *map);
2148 __isl_give isl_union_set *isl_union_map_wrap(
2149 __isl_take isl_union_map *umap);
2150 __isl_give isl_basic_map *isl_basic_set_unwrap(
2151 __isl_take isl_basic_set *bset);
2152 __isl_give isl_map *isl_set_unwrap(
2153 __isl_take isl_set *set);
2154 __isl_give isl_union_map *isl_union_set_unwrap(
2155 __isl_take isl_union_set *uset);
2159 Remove any internal structure of domain (and range) of the given
2160 set or relation. If there is any such internal structure in the input,
2161 then the name of the space is also removed.
2163 __isl_give isl_basic_set *isl_basic_set_flatten(
2164 __isl_take isl_basic_set *bset);
2165 __isl_give isl_set *isl_set_flatten(
2166 __isl_take isl_set *set);
2167 __isl_give isl_basic_map *isl_basic_map_flatten_domain(
2168 __isl_take isl_basic_map *bmap);
2169 __isl_give isl_basic_map *isl_basic_map_flatten_range(
2170 __isl_take isl_basic_map *bmap);
2171 __isl_give isl_map *isl_map_flatten_range(
2172 __isl_take isl_map *map);
2173 __isl_give isl_map *isl_map_flatten_domain(
2174 __isl_take isl_map *map);
2175 __isl_give isl_basic_map *isl_basic_map_flatten(
2176 __isl_take isl_basic_map *bmap);
2177 __isl_give isl_map *isl_map_flatten(
2178 __isl_take isl_map *map);
2180 __isl_give isl_map *isl_set_flatten_map(
2181 __isl_take isl_set *set);
2183 The function above constructs a relation
2184 that maps the input set to a flattened version of the set.
2188 Lift the input set to a space with extra dimensions corresponding
2189 to the existentially quantified variables in the input.
2190 In particular, the result lives in a wrapped map where the domain
2191 is the original space and the range corresponds to the original
2192 existentially quantified variables.
2194 __isl_give isl_basic_set *isl_basic_set_lift(
2195 __isl_take isl_basic_set *bset);
2196 __isl_give isl_set *isl_set_lift(
2197 __isl_take isl_set *set);
2198 __isl_give isl_union_set *isl_union_set_lift(
2199 __isl_take isl_union_set *uset);
2201 Given a local space that contains the existentially quantified
2202 variables of a set, a basic relation that, when applied to
2203 a basic set, has essentially the same effect as C<isl_basic_set_lift>,
2204 can be constructed using the following function.
2206 #include <isl/local_space.h>
2207 __isl_give isl_basic_map *isl_local_space_lifting(
2208 __isl_take isl_local_space *ls);
2210 =item * Internal Product
2212 __isl_give isl_basic_map *isl_basic_map_zip(
2213 __isl_take isl_basic_map *bmap);
2214 __isl_give isl_map *isl_map_zip(
2215 __isl_take isl_map *map);
2216 __isl_give isl_union_map *isl_union_map_zip(
2217 __isl_take isl_union_map *umap);
2219 Given a relation with nested relations for domain and range,
2220 interchange the range of the domain with the domain of the range.
2222 =item * Aligning parameters
2224 __isl_give isl_set *isl_set_align_params(
2225 __isl_take isl_set *set,
2226 __isl_take isl_space *model);
2227 __isl_give isl_map *isl_map_align_params(
2228 __isl_take isl_map *map,
2229 __isl_take isl_space *model);
2231 Change the order of the parameters of the given set or relation
2232 such that the first parameters match those of C<model>.
2233 This may involve the introduction of extra parameters.
2234 All parameters need to be named.
2236 =item * Dimension manipulation
2238 __isl_give isl_set *isl_set_add_dims(
2239 __isl_take isl_set *set,
2240 enum isl_dim_type type, unsigned n);
2241 __isl_give isl_map *isl_map_add_dims(
2242 __isl_take isl_map *map,
2243 enum isl_dim_type type, unsigned n);
2244 __isl_give isl_set *isl_set_insert_dims(
2245 __isl_take isl_set *set,
2246 enum isl_dim_type type, unsigned pos, unsigned n);
2247 __isl_give isl_map *isl_map_insert_dims(
2248 __isl_take isl_map *map,
2249 enum isl_dim_type type, unsigned pos, unsigned n);
2250 __isl_give isl_basic_set *isl_basic_set_move_dims(
2251 __isl_take isl_basic_set *bset,
2252 enum isl_dim_type dst_type, unsigned dst_pos,
2253 enum isl_dim_type src_type, unsigned src_pos,
2255 __isl_give isl_basic_map *isl_basic_map_move_dims(
2256 __isl_take isl_basic_map *bmap,
2257 enum isl_dim_type dst_type, unsigned dst_pos,
2258 enum isl_dim_type src_type, unsigned src_pos,
2260 __isl_give isl_set *isl_set_move_dims(
2261 __isl_take isl_set *set,
2262 enum isl_dim_type dst_type, unsigned dst_pos,
2263 enum isl_dim_type src_type, unsigned src_pos,
2265 __isl_give isl_map *isl_map_move_dims(
2266 __isl_take isl_map *map,
2267 enum isl_dim_type dst_type, unsigned dst_pos,
2268 enum isl_dim_type src_type, unsigned src_pos,
2271 It is usually not advisable to directly change the (input or output)
2272 space of a set or a relation as this removes the name and the internal
2273 structure of the space. However, the above functions can be useful
2274 to add new parameters, assuming
2275 C<isl_set_align_params> and C<isl_map_align_params>
2280 =head2 Binary Operations
2282 The two arguments of a binary operation not only need to live
2283 in the same C<isl_ctx>, they currently also need to have
2284 the same (number of) parameters.
2286 =head3 Basic Operations
2290 =item * Intersection
2292 __isl_give isl_basic_set *isl_basic_set_intersect_params(
2293 __isl_take isl_basic_set *bset1,
2294 __isl_take isl_basic_set *bset2);
2295 __isl_give isl_basic_set *isl_basic_set_intersect(
2296 __isl_take isl_basic_set *bset1,
2297 __isl_take isl_basic_set *bset2);
2298 __isl_give isl_set *isl_set_intersect_params(
2299 __isl_take isl_set *set,
2300 __isl_take isl_set *params);
2301 __isl_give isl_set *isl_set_intersect(
2302 __isl_take isl_set *set1,
2303 __isl_take isl_set *set2);
2304 __isl_give isl_union_set *isl_union_set_intersect_params(
2305 __isl_take isl_union_set *uset,
2306 __isl_take isl_set *set);
2307 __isl_give isl_union_map *isl_union_map_intersect_params(
2308 __isl_take isl_union_map *umap,
2309 __isl_take isl_set *set);
2310 __isl_give isl_union_set *isl_union_set_intersect(
2311 __isl_take isl_union_set *uset1,
2312 __isl_take isl_union_set *uset2);
2313 __isl_give isl_basic_map *isl_basic_map_intersect_domain(
2314 __isl_take isl_basic_map *bmap,
2315 __isl_take isl_basic_set *bset);
2316 __isl_give isl_basic_map *isl_basic_map_intersect_range(
2317 __isl_take isl_basic_map *bmap,
2318 __isl_take isl_basic_set *bset);
2319 __isl_give isl_basic_map *isl_basic_map_intersect(
2320 __isl_take isl_basic_map *bmap1,
2321 __isl_take isl_basic_map *bmap2);
2322 __isl_give isl_map *isl_map_intersect_params(
2323 __isl_take isl_map *map,
2324 __isl_take isl_set *params);
2325 __isl_give isl_map *isl_map_intersect_domain(
2326 __isl_take isl_map *map,
2327 __isl_take isl_set *set);
2328 __isl_give isl_map *isl_map_intersect_range(
2329 __isl_take isl_map *map,
2330 __isl_take isl_set *set);
2331 __isl_give isl_map *isl_map_intersect(
2332 __isl_take isl_map *map1,
2333 __isl_take isl_map *map2);
2334 __isl_give isl_union_map *isl_union_map_intersect_domain(
2335 __isl_take isl_union_map *umap,
2336 __isl_take isl_union_set *uset);
2337 __isl_give isl_union_map *isl_union_map_intersect_range(
2338 __isl_take isl_union_map *umap,
2339 __isl_take isl_union_set *uset);
2340 __isl_give isl_union_map *isl_union_map_intersect(
2341 __isl_take isl_union_map *umap1,
2342 __isl_take isl_union_map *umap2);
2346 __isl_give isl_set *isl_basic_set_union(
2347 __isl_take isl_basic_set *bset1,
2348 __isl_take isl_basic_set *bset2);
2349 __isl_give isl_map *isl_basic_map_union(
2350 __isl_take isl_basic_map *bmap1,
2351 __isl_take isl_basic_map *bmap2);
2352 __isl_give isl_set *isl_set_union(
2353 __isl_take isl_set *set1,
2354 __isl_take isl_set *set2);
2355 __isl_give isl_map *isl_map_union(
2356 __isl_take isl_map *map1,
2357 __isl_take isl_map *map2);
2358 __isl_give isl_union_set *isl_union_set_union(
2359 __isl_take isl_union_set *uset1,
2360 __isl_take isl_union_set *uset2);
2361 __isl_give isl_union_map *isl_union_map_union(
2362 __isl_take isl_union_map *umap1,
2363 __isl_take isl_union_map *umap2);
2365 =item * Set difference
2367 __isl_give isl_set *isl_set_subtract(
2368 __isl_take isl_set *set1,
2369 __isl_take isl_set *set2);
2370 __isl_give isl_map *isl_map_subtract(
2371 __isl_take isl_map *map1,
2372 __isl_take isl_map *map2);
2373 __isl_give isl_map *isl_map_subtract_domain(
2374 __isl_take isl_map *map,
2375 __isl_take isl_set *dom);
2376 __isl_give isl_map *isl_map_subtract_range(
2377 __isl_take isl_map *map,
2378 __isl_take isl_set *dom);
2379 __isl_give isl_union_set *isl_union_set_subtract(
2380 __isl_take isl_union_set *uset1,
2381 __isl_take isl_union_set *uset2);
2382 __isl_give isl_union_map *isl_union_map_subtract(
2383 __isl_take isl_union_map *umap1,
2384 __isl_take isl_union_map *umap2);
2388 __isl_give isl_basic_set *isl_basic_set_apply(
2389 __isl_take isl_basic_set *bset,
2390 __isl_take isl_basic_map *bmap);
2391 __isl_give isl_set *isl_set_apply(
2392 __isl_take isl_set *set,
2393 __isl_take isl_map *map);
2394 __isl_give isl_union_set *isl_union_set_apply(
2395 __isl_take isl_union_set *uset,
2396 __isl_take isl_union_map *umap);
2397 __isl_give isl_basic_map *isl_basic_map_apply_domain(
2398 __isl_take isl_basic_map *bmap1,
2399 __isl_take isl_basic_map *bmap2);
2400 __isl_give isl_basic_map *isl_basic_map_apply_range(
2401 __isl_take isl_basic_map *bmap1,
2402 __isl_take isl_basic_map *bmap2);
2403 __isl_give isl_map *isl_map_apply_domain(
2404 __isl_take isl_map *map1,
2405 __isl_take isl_map *map2);
2406 __isl_give isl_union_map *isl_union_map_apply_domain(
2407 __isl_take isl_union_map *umap1,
2408 __isl_take isl_union_map *umap2);
2409 __isl_give isl_map *isl_map_apply_range(
2410 __isl_take isl_map *map1,
2411 __isl_take isl_map *map2);
2412 __isl_give isl_union_map *isl_union_map_apply_range(
2413 __isl_take isl_union_map *umap1,
2414 __isl_take isl_union_map *umap2);
2416 =item * Cartesian Product
2418 __isl_give isl_set *isl_set_product(
2419 __isl_take isl_set *set1,
2420 __isl_take isl_set *set2);
2421 __isl_give isl_union_set *isl_union_set_product(
2422 __isl_take isl_union_set *uset1,
2423 __isl_take isl_union_set *uset2);
2424 __isl_give isl_basic_map *isl_basic_map_domain_product(
2425 __isl_take isl_basic_map *bmap1,
2426 __isl_take isl_basic_map *bmap2);
2427 __isl_give isl_basic_map *isl_basic_map_range_product(
2428 __isl_take isl_basic_map *bmap1,
2429 __isl_take isl_basic_map *bmap2);
2430 __isl_give isl_map *isl_map_domain_product(
2431 __isl_take isl_map *map1,
2432 __isl_take isl_map *map2);
2433 __isl_give isl_map *isl_map_range_product(
2434 __isl_take isl_map *map1,
2435 __isl_take isl_map *map2);
2436 __isl_give isl_union_map *isl_union_map_range_product(
2437 __isl_take isl_union_map *umap1,
2438 __isl_take isl_union_map *umap2);
2439 __isl_give isl_map *isl_map_product(
2440 __isl_take isl_map *map1,
2441 __isl_take isl_map *map2);
2442 __isl_give isl_union_map *isl_union_map_product(
2443 __isl_take isl_union_map *umap1,
2444 __isl_take isl_union_map *umap2);
2446 The above functions compute the cross product of the given
2447 sets or relations. The domains and ranges of the results
2448 are wrapped maps between domains and ranges of the inputs.
2449 To obtain a ``flat'' product, use the following functions
2452 __isl_give isl_basic_set *isl_basic_set_flat_product(
2453 __isl_take isl_basic_set *bset1,
2454 __isl_take isl_basic_set *bset2);
2455 __isl_give isl_set *isl_set_flat_product(
2456 __isl_take isl_set *set1,
2457 __isl_take isl_set *set2);
2458 __isl_give isl_basic_map *isl_basic_map_flat_range_product(
2459 __isl_take isl_basic_map *bmap1,
2460 __isl_take isl_basic_map *bmap2);
2461 __isl_give isl_map *isl_map_flat_domain_product(
2462 __isl_take isl_map *map1,
2463 __isl_take isl_map *map2);
2464 __isl_give isl_map *isl_map_flat_range_product(
2465 __isl_take isl_map *map1,
2466 __isl_take isl_map *map2);
2467 __isl_give isl_union_map *isl_union_map_flat_range_product(
2468 __isl_take isl_union_map *umap1,
2469 __isl_take isl_union_map *umap2);
2470 __isl_give isl_basic_map *isl_basic_map_flat_product(
2471 __isl_take isl_basic_map *bmap1,
2472 __isl_take isl_basic_map *bmap2);
2473 __isl_give isl_map *isl_map_flat_product(
2474 __isl_take isl_map *map1,
2475 __isl_take isl_map *map2);
2477 =item * Simplification
2479 __isl_give isl_basic_set *isl_basic_set_gist(
2480 __isl_take isl_basic_set *bset,
2481 __isl_take isl_basic_set *context);
2482 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
2483 __isl_take isl_set *context);
2484 __isl_give isl_set *isl_set_gist_params(
2485 __isl_take isl_set *set,
2486 __isl_take isl_set *context);
2487 __isl_give isl_union_set *isl_union_set_gist(
2488 __isl_take isl_union_set *uset,
2489 __isl_take isl_union_set *context);
2490 __isl_give isl_union_set *isl_union_set_gist_params(
2491 __isl_take isl_union_set *uset,
2492 __isl_take isl_set *set);
2493 __isl_give isl_basic_map *isl_basic_map_gist(
2494 __isl_take isl_basic_map *bmap,
2495 __isl_take isl_basic_map *context);
2496 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
2497 __isl_take isl_map *context);
2498 __isl_give isl_map *isl_map_gist_params(
2499 __isl_take isl_map *map,
2500 __isl_take isl_set *context);
2501 __isl_give isl_map *isl_map_gist_domain(
2502 __isl_take isl_map *map,
2503 __isl_take isl_set *context);
2504 __isl_give isl_map *isl_map_gist_range(
2505 __isl_take isl_map *map,
2506 __isl_take isl_set *context);
2507 __isl_give isl_union_map *isl_union_map_gist(
2508 __isl_take isl_union_map *umap,
2509 __isl_take isl_union_map *context);
2510 __isl_give isl_union_map *isl_union_map_gist_params(
2511 __isl_take isl_union_map *umap,
2512 __isl_take isl_set *set);
2513 __isl_give isl_union_map *isl_union_map_gist_domain(
2514 __isl_take isl_union_map *umap,
2515 __isl_take isl_union_set *uset);
2516 __isl_give isl_union_map *isl_union_map_gist_range(
2517 __isl_take isl_union_map *umap,
2518 __isl_take isl_union_set *uset);
2520 The gist operation returns a set or relation that has the
2521 same intersection with the context as the input set or relation.
2522 Any implicit equality in the intersection is made explicit in the result,
2523 while all inequalities that are redundant with respect to the intersection
2525 In case of union sets and relations, the gist operation is performed
2530 =head3 Lexicographic Optimization
2532 Given a (basic) set C<set> (or C<bset>) and a zero-dimensional domain C<dom>,
2533 the following functions
2534 compute a set that contains the lexicographic minimum or maximum
2535 of the elements in C<set> (or C<bset>) for those values of the parameters
2536 that satisfy C<dom>.
2537 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
2538 that contains the parameter values in C<dom> for which C<set> (or C<bset>)
2540 In other words, the union of the parameter values
2541 for which the result is non-empty and of C<*empty>
2544 __isl_give isl_set *isl_basic_set_partial_lexmin(
2545 __isl_take isl_basic_set *bset,
2546 __isl_take isl_basic_set *dom,
2547 __isl_give isl_set **empty);
2548 __isl_give isl_set *isl_basic_set_partial_lexmax(
2549 __isl_take isl_basic_set *bset,
2550 __isl_take isl_basic_set *dom,
2551 __isl_give isl_set **empty);
2552 __isl_give isl_set *isl_set_partial_lexmin(
2553 __isl_take isl_set *set, __isl_take isl_set *dom,
2554 __isl_give isl_set **empty);
2555 __isl_give isl_set *isl_set_partial_lexmax(
2556 __isl_take isl_set *set, __isl_take isl_set *dom,
2557 __isl_give isl_set **empty);
2559 Given a (basic) set C<set> (or C<bset>), the following functions simply
2560 return a set containing the lexicographic minimum or maximum
2561 of the elements in C<set> (or C<bset>).
2562 In case of union sets, the optimum is computed per space.
2564 __isl_give isl_set *isl_basic_set_lexmin(
2565 __isl_take isl_basic_set *bset);
2566 __isl_give isl_set *isl_basic_set_lexmax(
2567 __isl_take isl_basic_set *bset);
2568 __isl_give isl_set *isl_set_lexmin(
2569 __isl_take isl_set *set);
2570 __isl_give isl_set *isl_set_lexmax(
2571 __isl_take isl_set *set);
2572 __isl_give isl_union_set *isl_union_set_lexmin(
2573 __isl_take isl_union_set *uset);
2574 __isl_give isl_union_set *isl_union_set_lexmax(
2575 __isl_take isl_union_set *uset);
2577 Given a (basic) relation C<map> (or C<bmap>) and a domain C<dom>,
2578 the following functions
2579 compute a relation that maps each element of C<dom>
2580 to the single lexicographic minimum or maximum
2581 of the elements that are associated to that same
2582 element in C<map> (or C<bmap>).
2583 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
2584 that contains the elements in C<dom> that do not map
2585 to any elements in C<map> (or C<bmap>).
2586 In other words, the union of the domain of the result and of C<*empty>
2589 __isl_give isl_map *isl_basic_map_partial_lexmax(
2590 __isl_take isl_basic_map *bmap,
2591 __isl_take isl_basic_set *dom,
2592 __isl_give isl_set **empty);
2593 __isl_give isl_map *isl_basic_map_partial_lexmin(
2594 __isl_take isl_basic_map *bmap,
2595 __isl_take isl_basic_set *dom,
2596 __isl_give isl_set **empty);
2597 __isl_give isl_map *isl_map_partial_lexmax(
2598 __isl_take isl_map *map, __isl_take isl_set *dom,
2599 __isl_give isl_set **empty);
2600 __isl_give isl_map *isl_map_partial_lexmin(
2601 __isl_take isl_map *map, __isl_take isl_set *dom,
2602 __isl_give isl_set **empty);
2604 Given a (basic) map C<map> (or C<bmap>), the following functions simply
2605 return a map mapping each element in the domain of
2606 C<map> (or C<bmap>) to the lexicographic minimum or maximum
2607 of all elements associated to that element.
2608 In case of union relations, the optimum is computed per space.
2610 __isl_give isl_map *isl_basic_map_lexmin(
2611 __isl_take isl_basic_map *bmap);
2612 __isl_give isl_map *isl_basic_map_lexmax(
2613 __isl_take isl_basic_map *bmap);
2614 __isl_give isl_map *isl_map_lexmin(
2615 __isl_take isl_map *map);
2616 __isl_give isl_map *isl_map_lexmax(
2617 __isl_take isl_map *map);
2618 __isl_give isl_union_map *isl_union_map_lexmin(
2619 __isl_take isl_union_map *umap);
2620 __isl_give isl_union_map *isl_union_map_lexmax(
2621 __isl_take isl_union_map *umap);
2623 The following functions return their result in the form of
2624 a piecewise multi-affine expression
2625 (See L<"Piecewise Multiple Quasi Affine Expressions">),
2626 but are otherwise equivalent to the corresponding functions
2627 returning a basic set or relation.
2629 __isl_give isl_pw_multi_aff *
2630 isl_basic_map_lexmin_pw_multi_aff(
2631 __isl_take isl_basic_map *bmap);
2632 __isl_give isl_pw_multi_aff *
2633 isl_basic_set_partial_lexmin_pw_multi_aff(
2634 __isl_take isl_basic_set *bset,
2635 __isl_take isl_basic_set *dom,
2636 __isl_give isl_set **empty);
2637 __isl_give isl_pw_multi_aff *
2638 isl_basic_set_partial_lexmax_pw_multi_aff(
2639 __isl_take isl_basic_set *bset,
2640 __isl_take isl_basic_set *dom,
2641 __isl_give isl_set **empty);
2642 __isl_give isl_pw_multi_aff *
2643 isl_basic_map_partial_lexmin_pw_multi_aff(
2644 __isl_take isl_basic_map *bmap,
2645 __isl_take isl_basic_set *dom,
2646 __isl_give isl_set **empty);
2647 __isl_give isl_pw_multi_aff *
2648 isl_basic_map_partial_lexmax_pw_multi_aff(
2649 __isl_take isl_basic_map *bmap,
2650 __isl_take isl_basic_set *dom,
2651 __isl_give isl_set **empty);
2655 Lists are defined over several element types, including
2656 C<isl_aff>, C<isl_pw_aff>, C<isl_basic_set> and C<isl_set>.
2657 Here we take lists of C<isl_set>s as an example.
2658 Lists can be created, copied and freed using the following functions.
2660 #include <isl/list.h>
2661 __isl_give isl_set_list *isl_set_list_from_set(
2662 __isl_take isl_set *el);
2663 __isl_give isl_set_list *isl_set_list_alloc(
2664 isl_ctx *ctx, int n);
2665 __isl_give isl_set_list *isl_set_list_copy(
2666 __isl_keep isl_set_list *list);
2667 __isl_give isl_set_list *isl_set_list_add(
2668 __isl_take isl_set_list *list,
2669 __isl_take isl_set *el);
2670 __isl_give isl_set_list *isl_set_list_concat(
2671 __isl_take isl_set_list *list1,
2672 __isl_take isl_set_list *list2);
2673 void *isl_set_list_free(__isl_take isl_set_list *list);
2675 C<isl_set_list_alloc> creates an empty list with a capacity for
2676 C<n> elements. C<isl_set_list_from_set> creates a list with a single
2679 Lists can be inspected using the following functions.
2681 #include <isl/list.h>
2682 isl_ctx *isl_set_list_get_ctx(__isl_keep isl_set_list *list);
2683 int isl_set_list_n_set(__isl_keep isl_set_list *list);
2684 __isl_give isl_set *isl_set_list_get_set(
2685 __isl_keep isl_set_list *list, int index);
2686 int isl_set_list_foreach(__isl_keep isl_set_list *list,
2687 int (*fn)(__isl_take isl_set *el, void *user),
2690 Lists can be printed using
2692 #include <isl/list.h>
2693 __isl_give isl_printer *isl_printer_print_set_list(
2694 __isl_take isl_printer *p,
2695 __isl_keep isl_set_list *list);
2699 Matrices can be created, copied and freed using the following functions.
2701 #include <isl/mat.h>
2702 __isl_give isl_mat *isl_mat_alloc(isl_ctx *ctx,
2703 unsigned n_row, unsigned n_col);
2704 __isl_give isl_mat *isl_mat_copy(__isl_keep isl_mat *mat);
2705 void isl_mat_free(__isl_take isl_mat *mat);
2707 Note that the elements of a newly created matrix may have arbitrary values.
2708 The elements can be changed and inspected using the following functions.
2710 isl_ctx *isl_mat_get_ctx(__isl_keep isl_mat *mat);
2711 int isl_mat_rows(__isl_keep isl_mat *mat);
2712 int isl_mat_cols(__isl_keep isl_mat *mat);
2713 int isl_mat_get_element(__isl_keep isl_mat *mat,
2714 int row, int col, isl_int *v);
2715 __isl_give isl_mat *isl_mat_set_element(__isl_take isl_mat *mat,
2716 int row, int col, isl_int v);
2717 __isl_give isl_mat *isl_mat_set_element_si(__isl_take isl_mat *mat,
2718 int row, int col, int v);
2720 C<isl_mat_get_element> will return a negative value if anything went wrong.
2721 In that case, the value of C<*v> is undefined.
2723 The following function can be used to compute the (right) inverse
2724 of a matrix, i.e., a matrix such that the product of the original
2725 and the inverse (in that order) is a multiple of the identity matrix.
2726 The input matrix is assumed to be of full row-rank.
2728 __isl_give isl_mat *isl_mat_right_inverse(__isl_take isl_mat *mat);
2730 The following function can be used to compute the (right) kernel
2731 (or null space) of a matrix, i.e., a matrix such that the product of
2732 the original and the kernel (in that order) is the zero matrix.
2734 __isl_give isl_mat *isl_mat_right_kernel(__isl_take isl_mat *mat);
2736 =head2 Piecewise Quasi Affine Expressions
2738 The zero quasi affine expression on a given domain can be created using
2740 __isl_give isl_aff *isl_aff_zero_on_domain(
2741 __isl_take isl_local_space *ls);
2743 Note that the space in which the resulting object lives is a map space
2744 with the given space as domain and a one-dimensional range.
2746 An empty piecewise quasi affine expression (one with no cells)
2747 or a piecewise quasi affine expression with a single cell can
2748 be created using the following functions.
2750 #include <isl/aff.h>
2751 __isl_give isl_pw_aff *isl_pw_aff_empty(
2752 __isl_take isl_space *space);
2753 __isl_give isl_pw_aff *isl_pw_aff_alloc(
2754 __isl_take isl_set *set, __isl_take isl_aff *aff);
2755 __isl_give isl_pw_aff *isl_pw_aff_from_aff(
2756 __isl_take isl_aff *aff);
2758 Quasi affine expressions can be copied and freed using
2760 #include <isl/aff.h>
2761 __isl_give isl_aff *isl_aff_copy(__isl_keep isl_aff *aff);
2762 void *isl_aff_free(__isl_take isl_aff *aff);
2764 __isl_give isl_pw_aff *isl_pw_aff_copy(
2765 __isl_keep isl_pw_aff *pwaff);
2766 void *isl_pw_aff_free(__isl_take isl_pw_aff *pwaff);
2768 A (rational) bound on a dimension can be extracted from an C<isl_constraint>
2769 using the following function. The constraint is required to have
2770 a non-zero coefficient for the specified dimension.
2772 #include <isl/constraint.h>
2773 __isl_give isl_aff *isl_constraint_get_bound(
2774 __isl_keep isl_constraint *constraint,
2775 enum isl_dim_type type, int pos);
2777 The entire affine expression of the constraint can also be extracted
2778 using the following function.
2780 #include <isl/constraint.h>
2781 __isl_give isl_aff *isl_constraint_get_aff(
2782 __isl_keep isl_constraint *constraint);
2784 Conversely, an equality constraint equating
2785 the affine expression to zero or an inequality constraint enforcing
2786 the affine expression to be non-negative, can be constructed using
2788 __isl_give isl_constraint *isl_equality_from_aff(
2789 __isl_take isl_aff *aff);
2790 __isl_give isl_constraint *isl_inequality_from_aff(
2791 __isl_take isl_aff *aff);
2793 The expression can be inspected using
2795 #include <isl/aff.h>
2796 isl_ctx *isl_aff_get_ctx(__isl_keep isl_aff *aff);
2797 int isl_aff_dim(__isl_keep isl_aff *aff,
2798 enum isl_dim_type type);
2799 __isl_give isl_local_space *isl_aff_get_domain_local_space(
2800 __isl_keep isl_aff *aff);
2801 __isl_give isl_local_space *isl_aff_get_local_space(
2802 __isl_keep isl_aff *aff);
2803 const char *isl_aff_get_dim_name(__isl_keep isl_aff *aff,
2804 enum isl_dim_type type, unsigned pos);
2805 const char *isl_pw_aff_get_dim_name(
2806 __isl_keep isl_pw_aff *pa,
2807 enum isl_dim_type type, unsigned pos);
2808 int isl_pw_aff_has_dim_id(__isl_keep isl_pw_aff *pa,
2809 enum isl_dim_type type, unsigned pos);
2810 __isl_give isl_id *isl_pw_aff_get_dim_id(
2811 __isl_keep isl_pw_aff *pa,
2812 enum isl_dim_type type, unsigned pos);
2813 int isl_aff_get_constant(__isl_keep isl_aff *aff,
2815 int isl_aff_get_coefficient(__isl_keep isl_aff *aff,
2816 enum isl_dim_type type, int pos, isl_int *v);
2817 int isl_aff_get_denominator(__isl_keep isl_aff *aff,
2819 __isl_give isl_aff *isl_aff_get_div(
2820 __isl_keep isl_aff *aff, int pos);
2822 int isl_pw_aff_foreach_piece(__isl_keep isl_pw_aff *pwaff,
2823 int (*fn)(__isl_take isl_set *set,
2824 __isl_take isl_aff *aff,
2825 void *user), void *user);
2827 int isl_aff_is_cst(__isl_keep isl_aff *aff);
2828 int isl_pw_aff_is_cst(__isl_keep isl_pw_aff *pwaff);
2830 int isl_aff_involves_dims(__isl_keep isl_aff *aff,
2831 enum isl_dim_type type, unsigned first, unsigned n);
2832 int isl_pw_aff_involves_dims(__isl_keep isl_pw_aff *pwaff,
2833 enum isl_dim_type type, unsigned first, unsigned n);
2835 isl_ctx *isl_pw_aff_get_ctx(__isl_keep isl_pw_aff *pwaff);
2836 unsigned isl_pw_aff_dim(__isl_keep isl_pw_aff *pwaff,
2837 enum isl_dim_type type);
2838 int isl_pw_aff_is_empty(__isl_keep isl_pw_aff *pwaff);
2840 It can be modified using
2842 #include <isl/aff.h>
2843 __isl_give isl_pw_aff *isl_pw_aff_set_tuple_id(
2844 __isl_take isl_pw_aff *pwaff,
2845 enum isl_dim_type type, __isl_take isl_id *id);
2846 __isl_give isl_aff *isl_aff_set_dim_name(
2847 __isl_take isl_aff *aff, enum isl_dim_type type,
2848 unsigned pos, const char *s);
2849 __isl_give isl_aff *isl_aff_set_dim_id(
2850 __isl_take isl_aff *aff, enum isl_dim_type type,
2851 unsigned pos, __isl_take isl_id *id);
2852 __isl_give isl_pw_aff *isl_pw_aff_set_dim_id(
2853 __isl_take isl_pw_aff *pma,
2854 enum isl_dim_type type, unsigned pos,
2855 __isl_take isl_id *id);
2856 __isl_give isl_aff *isl_aff_set_constant(
2857 __isl_take isl_aff *aff, isl_int v);
2858 __isl_give isl_aff *isl_aff_set_constant_si(
2859 __isl_take isl_aff *aff, int v);
2860 __isl_give isl_aff *isl_aff_set_coefficient(
2861 __isl_take isl_aff *aff,
2862 enum isl_dim_type type, int pos, isl_int v);
2863 __isl_give isl_aff *isl_aff_set_coefficient_si(
2864 __isl_take isl_aff *aff,
2865 enum isl_dim_type type, int pos, int v);
2866 __isl_give isl_aff *isl_aff_set_denominator(
2867 __isl_take isl_aff *aff, isl_int v);
2869 __isl_give isl_aff *isl_aff_add_constant(
2870 __isl_take isl_aff *aff, isl_int v);
2871 __isl_give isl_aff *isl_aff_add_constant_si(
2872 __isl_take isl_aff *aff, int v);
2873 __isl_give isl_aff *isl_aff_add_coefficient(
2874 __isl_take isl_aff *aff,
2875 enum isl_dim_type type, int pos, isl_int v);
2876 __isl_give isl_aff *isl_aff_add_coefficient_si(
2877 __isl_take isl_aff *aff,
2878 enum isl_dim_type type, int pos, int v);
2880 __isl_give isl_aff *isl_aff_insert_dims(
2881 __isl_take isl_aff *aff,
2882 enum isl_dim_type type, unsigned first, unsigned n);
2883 __isl_give isl_pw_aff *isl_pw_aff_insert_dims(
2884 __isl_take isl_pw_aff *pwaff,
2885 enum isl_dim_type type, unsigned first, unsigned n);
2886 __isl_give isl_aff *isl_aff_add_dims(
2887 __isl_take isl_aff *aff,
2888 enum isl_dim_type type, unsigned n);
2889 __isl_give isl_pw_aff *isl_pw_aff_add_dims(
2890 __isl_take isl_pw_aff *pwaff,
2891 enum isl_dim_type type, unsigned n);
2892 __isl_give isl_aff *isl_aff_drop_dims(
2893 __isl_take isl_aff *aff,
2894 enum isl_dim_type type, unsigned first, unsigned n);
2895 __isl_give isl_pw_aff *isl_pw_aff_drop_dims(
2896 __isl_take isl_pw_aff *pwaff,
2897 enum isl_dim_type type, unsigned first, unsigned n);
2899 Note that the C<set_constant> and C<set_coefficient> functions
2900 set the I<numerator> of the constant or coefficient, while
2901 C<add_constant> and C<add_coefficient> add an integer value to
2902 the possibly rational constant or coefficient.
2904 To check whether an affine expressions is obviously zero
2905 or obviously equal to some other affine expression, use
2907 #include <isl/aff.h>
2908 int isl_aff_plain_is_zero(__isl_keep isl_aff *aff);
2909 int isl_aff_plain_is_equal(__isl_keep isl_aff *aff1,
2910 __isl_keep isl_aff *aff2);
2911 int isl_pw_aff_plain_is_equal(
2912 __isl_keep isl_pw_aff *pwaff1,
2913 __isl_keep isl_pw_aff *pwaff2);
2917 #include <isl/aff.h>
2918 __isl_give isl_aff *isl_aff_add(__isl_take isl_aff *aff1,
2919 __isl_take isl_aff *aff2);
2920 __isl_give isl_pw_aff *isl_pw_aff_add(
2921 __isl_take isl_pw_aff *pwaff1,
2922 __isl_take isl_pw_aff *pwaff2);
2923 __isl_give isl_pw_aff *isl_pw_aff_min(
2924 __isl_take isl_pw_aff *pwaff1,
2925 __isl_take isl_pw_aff *pwaff2);
2926 __isl_give isl_pw_aff *isl_pw_aff_max(
2927 __isl_take isl_pw_aff *pwaff1,
2928 __isl_take isl_pw_aff *pwaff2);
2929 __isl_give isl_aff *isl_aff_sub(__isl_take isl_aff *aff1,
2930 __isl_take isl_aff *aff2);
2931 __isl_give isl_pw_aff *isl_pw_aff_sub(
2932 __isl_take isl_pw_aff *pwaff1,
2933 __isl_take isl_pw_aff *pwaff2);
2934 __isl_give isl_aff *isl_aff_neg(__isl_take isl_aff *aff);
2935 __isl_give isl_pw_aff *isl_pw_aff_neg(
2936 __isl_take isl_pw_aff *pwaff);
2937 __isl_give isl_aff *isl_aff_ceil(__isl_take isl_aff *aff);
2938 __isl_give isl_pw_aff *isl_pw_aff_ceil(
2939 __isl_take isl_pw_aff *pwaff);
2940 __isl_give isl_aff *isl_aff_floor(__isl_take isl_aff *aff);
2941 __isl_give isl_pw_aff *isl_pw_aff_floor(
2942 __isl_take isl_pw_aff *pwaff);
2943 __isl_give isl_aff *isl_aff_mod(__isl_take isl_aff *aff,
2945 __isl_give isl_pw_aff *isl_pw_aff_mod(
2946 __isl_take isl_pw_aff *pwaff, isl_int mod);
2947 __isl_give isl_aff *isl_aff_scale(__isl_take isl_aff *aff,
2949 __isl_give isl_pw_aff *isl_pw_aff_scale(
2950 __isl_take isl_pw_aff *pwaff, isl_int f);
2951 __isl_give isl_aff *isl_aff_scale_down(__isl_take isl_aff *aff,
2953 __isl_give isl_aff *isl_aff_scale_down_ui(
2954 __isl_take isl_aff *aff, unsigned f);
2955 __isl_give isl_pw_aff *isl_pw_aff_scale_down(
2956 __isl_take isl_pw_aff *pwaff, isl_int f);
2958 __isl_give isl_pw_aff *isl_pw_aff_list_min(
2959 __isl_take isl_pw_aff_list *list);
2960 __isl_give isl_pw_aff *isl_pw_aff_list_max(
2961 __isl_take isl_pw_aff_list *list);
2963 __isl_give isl_pw_aff *isl_pw_aff_coalesce(
2964 __isl_take isl_pw_aff *pwqp);
2966 __isl_give isl_aff *isl_aff_align_params(
2967 __isl_take isl_aff *aff,
2968 __isl_take isl_space *model);
2969 __isl_give isl_pw_aff *isl_pw_aff_align_params(
2970 __isl_take isl_pw_aff *pwaff,
2971 __isl_take isl_space *model);
2973 __isl_give isl_aff *isl_aff_project_domain_on_params(
2974 __isl_take isl_aff *aff);
2976 __isl_give isl_aff *isl_aff_gist_params(
2977 __isl_take isl_aff *aff,
2978 __isl_take isl_set *context);
2979 __isl_give isl_aff *isl_aff_gist(__isl_take isl_aff *aff,
2980 __isl_take isl_set *context);
2981 __isl_give isl_pw_aff *isl_pw_aff_gist_params(
2982 __isl_take isl_pw_aff *pwaff,
2983 __isl_take isl_set *context);
2984 __isl_give isl_pw_aff *isl_pw_aff_gist(
2985 __isl_take isl_pw_aff *pwaff,
2986 __isl_take isl_set *context);
2988 __isl_give isl_set *isl_pw_aff_domain(
2989 __isl_take isl_pw_aff *pwaff);
2990 __isl_give isl_pw_aff *isl_pw_aff_intersect_domain(
2991 __isl_take isl_pw_aff *pa,
2992 __isl_take isl_set *set);
2993 __isl_give isl_pw_aff *isl_pw_aff_intersect_params(
2994 __isl_take isl_pw_aff *pa,
2995 __isl_take isl_set *set);
2997 __isl_give isl_aff *isl_aff_mul(__isl_take isl_aff *aff1,
2998 __isl_take isl_aff *aff2);
2999 __isl_give isl_pw_aff *isl_pw_aff_mul(
3000 __isl_take isl_pw_aff *pwaff1,
3001 __isl_take isl_pw_aff *pwaff2);
3003 When multiplying two affine expressions, at least one of the two needs
3006 #include <isl/aff.h>
3007 __isl_give isl_basic_set *isl_aff_le_basic_set(
3008 __isl_take isl_aff *aff1, __isl_take isl_aff *aff2);
3009 __isl_give isl_basic_set *isl_aff_ge_basic_set(
3010 __isl_take isl_aff *aff1, __isl_take isl_aff *aff2);
3011 __isl_give isl_set *isl_pw_aff_eq_set(
3012 __isl_take isl_pw_aff *pwaff1,
3013 __isl_take isl_pw_aff *pwaff2);
3014 __isl_give isl_set *isl_pw_aff_ne_set(
3015 __isl_take isl_pw_aff *pwaff1,
3016 __isl_take isl_pw_aff *pwaff2);
3017 __isl_give isl_set *isl_pw_aff_le_set(
3018 __isl_take isl_pw_aff *pwaff1,
3019 __isl_take isl_pw_aff *pwaff2);
3020 __isl_give isl_set *isl_pw_aff_lt_set(
3021 __isl_take isl_pw_aff *pwaff1,
3022 __isl_take isl_pw_aff *pwaff2);
3023 __isl_give isl_set *isl_pw_aff_ge_set(
3024 __isl_take isl_pw_aff *pwaff1,
3025 __isl_take isl_pw_aff *pwaff2);
3026 __isl_give isl_set *isl_pw_aff_gt_set(
3027 __isl_take isl_pw_aff *pwaff1,
3028 __isl_take isl_pw_aff *pwaff2);
3030 __isl_give isl_set *isl_pw_aff_list_eq_set(
3031 __isl_take isl_pw_aff_list *list1,
3032 __isl_take isl_pw_aff_list *list2);
3033 __isl_give isl_set *isl_pw_aff_list_ne_set(
3034 __isl_take isl_pw_aff_list *list1,
3035 __isl_take isl_pw_aff_list *list2);
3036 __isl_give isl_set *isl_pw_aff_list_le_set(
3037 __isl_take isl_pw_aff_list *list1,
3038 __isl_take isl_pw_aff_list *list2);
3039 __isl_give isl_set *isl_pw_aff_list_lt_set(
3040 __isl_take isl_pw_aff_list *list1,
3041 __isl_take isl_pw_aff_list *list2);
3042 __isl_give isl_set *isl_pw_aff_list_ge_set(
3043 __isl_take isl_pw_aff_list *list1,
3044 __isl_take isl_pw_aff_list *list2);
3045 __isl_give isl_set *isl_pw_aff_list_gt_set(
3046 __isl_take isl_pw_aff_list *list1,
3047 __isl_take isl_pw_aff_list *list2);
3049 The function C<isl_aff_ge_basic_set> returns a basic set
3050 containing those elements in the shared space
3051 of C<aff1> and C<aff2> where C<aff1> is greater than or equal to C<aff2>.
3052 The function C<isl_aff_ge_set> returns a set
3053 containing those elements in the shared domain
3054 of C<pwaff1> and C<pwaff2> where C<pwaff1> is greater than or equal to C<pwaff2>.
3055 The functions operating on C<isl_pw_aff_list> apply the corresponding
3056 C<isl_pw_aff> function to each pair of elements in the two lists.
3058 #include <isl/aff.h>
3059 __isl_give isl_set *isl_pw_aff_nonneg_set(
3060 __isl_take isl_pw_aff *pwaff);
3061 __isl_give isl_set *isl_pw_aff_zero_set(
3062 __isl_take isl_pw_aff *pwaff);
3063 __isl_give isl_set *isl_pw_aff_non_zero_set(
3064 __isl_take isl_pw_aff *pwaff);
3066 The function C<isl_pw_aff_nonneg_set> returns a set
3067 containing those elements in the domain
3068 of C<pwaff> where C<pwaff> is non-negative.
3070 #include <isl/aff.h>
3071 __isl_give isl_pw_aff *isl_pw_aff_cond(
3072 __isl_take isl_set *cond,
3073 __isl_take isl_pw_aff *pwaff_true,
3074 __isl_take isl_pw_aff *pwaff_false);
3076 The function C<isl_pw_aff_cond> performs a conditional operator
3077 and returns an expression that is equal to C<pwaff_true>
3078 for elements in C<cond> and equal to C<pwaff_false> for elements
3081 #include <isl/aff.h>
3082 __isl_give isl_pw_aff *isl_pw_aff_union_min(
3083 __isl_take isl_pw_aff *pwaff1,
3084 __isl_take isl_pw_aff *pwaff2);
3085 __isl_give isl_pw_aff *isl_pw_aff_union_max(
3086 __isl_take isl_pw_aff *pwaff1,
3087 __isl_take isl_pw_aff *pwaff2);
3088 __isl_give isl_pw_aff *isl_pw_aff_union_add(
3089 __isl_take isl_pw_aff *pwaff1,
3090 __isl_take isl_pw_aff *pwaff2);
3092 The function C<isl_pw_aff_union_max> computes a piecewise quasi-affine
3093 expression with a domain that is the union of those of C<pwaff1> and
3094 C<pwaff2> and such that on each cell, the quasi-affine expression is
3095 the maximum of those of C<pwaff1> and C<pwaff2>. If only one of
3096 C<pwaff1> or C<pwaff2> is defined on a given cell, then the
3097 associated expression is the defined one.
3099 An expression can be read from input using
3101 #include <isl/aff.h>
3102 __isl_give isl_aff *isl_aff_read_from_str(
3103 isl_ctx *ctx, const char *str);
3104 __isl_give isl_pw_aff *isl_pw_aff_read_from_str(
3105 isl_ctx *ctx, const char *str);
3107 An expression can be printed using
3109 #include <isl/aff.h>
3110 __isl_give isl_printer *isl_printer_print_aff(
3111 __isl_take isl_printer *p, __isl_keep isl_aff *aff);
3113 __isl_give isl_printer *isl_printer_print_pw_aff(
3114 __isl_take isl_printer *p,
3115 __isl_keep isl_pw_aff *pwaff);
3117 =head2 Piecewise Multiple Quasi Affine Expressions
3119 An C<isl_multi_aff> object represents a sequence of
3120 zero or more affine expressions, all defined on the same domain space.
3122 An C<isl_multi_aff> can be constructed from a C<isl_aff_list> using the
3125 #include <isl/aff.h>
3126 __isl_give isl_multi_aff *isl_multi_aff_from_aff_list(
3127 __isl_take isl_space *space,
3128 __isl_take isl_aff_list *list);
3130 An empty piecewise multiple quasi affine expression (one with no cells) or
3131 a piecewise multiple quasi affine expression with a single cell can
3132 be created using the following functions.
3134 #include <isl/aff.h>
3135 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_empty(
3136 __isl_take isl_space *space);
3137 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_alloc(
3138 __isl_take isl_set *set,
3139 __isl_take isl_multi_aff *maff);
3141 A piecewise multiple quasi affine expression can also be initialized
3142 from an C<isl_set> or C<isl_map>, provided the C<isl_set> is a singleton
3143 and the C<isl_map> is single-valued.
3145 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_set(
3146 __isl_take isl_set *set);
3147 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_map(
3148 __isl_take isl_map *map);
3150 Multiple quasi affine expressions can be copied and freed using
3152 #include <isl/aff.h>
3153 __isl_give isl_multi_aff *isl_multi_aff_copy(
3154 __isl_keep isl_multi_aff *maff);
3155 void *isl_multi_aff_free(__isl_take isl_multi_aff *maff);
3157 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_copy(
3158 __isl_keep isl_pw_multi_aff *pma);
3159 void *isl_pw_multi_aff_free(
3160 __isl_take isl_pw_multi_aff *pma);
3162 The expression can be inspected using
3164 #include <isl/aff.h>
3165 isl_ctx *isl_multi_aff_get_ctx(
3166 __isl_keep isl_multi_aff *maff);
3167 isl_ctx *isl_pw_multi_aff_get_ctx(
3168 __isl_keep isl_pw_multi_aff *pma);
3169 unsigned isl_multi_aff_dim(__isl_keep isl_multi_aff *maff,
3170 enum isl_dim_type type);
3171 unsigned isl_pw_multi_aff_dim(
3172 __isl_keep isl_pw_multi_aff *pma,
3173 enum isl_dim_type type);
3174 __isl_give isl_aff *isl_multi_aff_get_aff(
3175 __isl_keep isl_multi_aff *multi, int pos);
3176 __isl_give isl_pw_aff *isl_pw_multi_aff_get_pw_aff(
3177 __isl_keep isl_pw_multi_aff *pma, int pos);
3178 const char *isl_pw_multi_aff_get_dim_name(
3179 __isl_keep isl_pw_multi_aff *pma,
3180 enum isl_dim_type type, unsigned pos);
3181 __isl_give isl_id *isl_pw_multi_aff_get_dim_id(
3182 __isl_keep isl_pw_multi_aff *pma,
3183 enum isl_dim_type type, unsigned pos);
3184 const char *isl_multi_aff_get_tuple_name(
3185 __isl_keep isl_multi_aff *multi,
3186 enum isl_dim_type type);
3187 const char *isl_pw_multi_aff_get_tuple_name(
3188 __isl_keep isl_pw_multi_aff *pma,
3189 enum isl_dim_type type);
3190 int isl_pw_multi_aff_has_tuple_id(
3191 __isl_keep isl_pw_multi_aff *pma,
3192 enum isl_dim_type type);
3193 __isl_give isl_id *isl_pw_multi_aff_get_tuple_id(
3194 __isl_keep isl_pw_multi_aff *pma,
3195 enum isl_dim_type type);
3197 int isl_pw_multi_aff_foreach_piece(
3198 __isl_keep isl_pw_multi_aff *pma,
3199 int (*fn)(__isl_take isl_set *set,
3200 __isl_take isl_multi_aff *maff,
3201 void *user), void *user);
3203 It can be modified using
3205 #include <isl/aff.h>
3206 __isl_give isl_multi_aff *isl_multi_aff_set_dim_name(
3207 __isl_take isl_multi_aff *maff,
3208 enum isl_dim_type type, unsigned pos, const char *s);
3209 __isl_give isl_multi_aff *isl_multi_aff_set_tuple_id(
3210 __isl_take isl_multi_aff *maff,
3211 enum isl_dim_type type, __isl_take isl_id *id);
3212 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_set_tuple_id(
3213 __isl_take isl_pw_multi_aff *pma,
3214 enum isl_dim_type type, __isl_take isl_id *id);
3216 __isl_give isl_multi_aff *isl_multi_aff_drop_dims(
3217 __isl_take isl_multi_aff *maff,
3218 enum isl_dim_type type, unsigned first, unsigned n);
3220 To check whether two multiple affine expressions are
3221 obviously equal to each other, use
3223 int isl_multi_aff_plain_is_equal(__isl_keep isl_multi_aff *maff1,
3224 __isl_keep isl_multi_aff *maff2);
3225 int isl_pw_multi_aff_plain_is_equal(
3226 __isl_keep isl_pw_multi_aff *pma1,
3227 __isl_keep isl_pw_multi_aff *pma2);
3231 #include <isl/aff.h>
3232 __isl_give isl_multi_aff *isl_multi_aff_add(
3233 __isl_take isl_multi_aff *maff1,
3234 __isl_take isl_multi_aff *maff2);
3235 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_add(
3236 __isl_take isl_pw_multi_aff *pma1,
3237 __isl_take isl_pw_multi_aff *pma2);
3238 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_add(
3239 __isl_take isl_pw_multi_aff *pma1,
3240 __isl_take isl_pw_multi_aff *pma2);
3241 __isl_give isl_multi_aff *isl_multi_aff_scale(
3242 __isl_take isl_multi_aff *maff,
3244 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_params(
3245 __isl_take isl_pw_multi_aff *pma,
3246 __isl_take isl_set *set);
3247 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_domain(
3248 __isl_take isl_pw_multi_aff *pma,
3249 __isl_take isl_set *set);
3250 __isl_give isl_multi_aff *isl_multi_aff_lift(
3251 __isl_take isl_multi_aff *maff,
3252 __isl_give isl_local_space **ls);
3253 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_coalesce(
3254 __isl_take isl_pw_multi_aff *pma);
3255 __isl_give isl_multi_aff *isl_multi_aff_gist_params(
3256 __isl_take isl_multi_aff *maff,
3257 __isl_take isl_set *context);
3258 __isl_give isl_multi_aff *isl_multi_aff_gist(
3259 __isl_take isl_multi_aff *maff,
3260 __isl_take isl_set *context);
3261 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_gist_params(
3262 __isl_take isl_pw_multi_aff *pma,
3263 __isl_take isl_set *set);
3264 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_gist(
3265 __isl_take isl_pw_multi_aff *pma,
3266 __isl_take isl_set *set);
3267 __isl_give isl_set *isl_pw_multi_aff_domain(
3268 __isl_take isl_pw_multi_aff *pma);
3270 If the C<ls> argument of C<isl_multi_aff_lift> is not C<NULL>,
3271 then it is assigned the local space that lies at the basis of
3272 the lifting applied.
3274 An expression can be read from input using
3276 #include <isl/aff.h>
3277 __isl_give isl_multi_aff *isl_multi_aff_read_from_str(
3278 isl_ctx *ctx, const char *str);
3279 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_read_from_str(
3280 isl_ctx *ctx, const char *str);
3282 An expression can be printed using
3284 #include <isl/aff.h>
3285 __isl_give isl_printer *isl_printer_print_multi_aff(
3286 __isl_take isl_printer *p,
3287 __isl_keep isl_multi_aff *maff);
3288 __isl_give isl_printer *isl_printer_print_pw_multi_aff(
3289 __isl_take isl_printer *p,
3290 __isl_keep isl_pw_multi_aff *pma);
3294 Points are elements of a set. They can be used to construct
3295 simple sets (boxes) or they can be used to represent the
3296 individual elements of a set.
3297 The zero point (the origin) can be created using
3299 __isl_give isl_point *isl_point_zero(__isl_take isl_space *space);
3301 The coordinates of a point can be inspected, set and changed
3304 int isl_point_get_coordinate(__isl_keep isl_point *pnt,
3305 enum isl_dim_type type, int pos, isl_int *v);
3306 __isl_give isl_point *isl_point_set_coordinate(
3307 __isl_take isl_point *pnt,
3308 enum isl_dim_type type, int pos, isl_int v);
3310 __isl_give isl_point *isl_point_add_ui(
3311 __isl_take isl_point *pnt,
3312 enum isl_dim_type type, int pos, unsigned val);
3313 __isl_give isl_point *isl_point_sub_ui(
3314 __isl_take isl_point *pnt,
3315 enum isl_dim_type type, int pos, unsigned val);
3317 Other properties can be obtained using
3319 isl_ctx *isl_point_get_ctx(__isl_keep isl_point *pnt);
3321 Points can be copied or freed using
3323 __isl_give isl_point *isl_point_copy(
3324 __isl_keep isl_point *pnt);
3325 void isl_point_free(__isl_take isl_point *pnt);
3327 A singleton set can be created from a point using
3329 __isl_give isl_basic_set *isl_basic_set_from_point(
3330 __isl_take isl_point *pnt);
3331 __isl_give isl_set *isl_set_from_point(
3332 __isl_take isl_point *pnt);
3334 and a box can be created from two opposite extremal points using
3336 __isl_give isl_basic_set *isl_basic_set_box_from_points(
3337 __isl_take isl_point *pnt1,
3338 __isl_take isl_point *pnt2);
3339 __isl_give isl_set *isl_set_box_from_points(
3340 __isl_take isl_point *pnt1,
3341 __isl_take isl_point *pnt2);
3343 All elements of a B<bounded> (union) set can be enumerated using
3344 the following functions.
3346 int isl_set_foreach_point(__isl_keep isl_set *set,
3347 int (*fn)(__isl_take isl_point *pnt, void *user),
3349 int isl_union_set_foreach_point(__isl_keep isl_union_set *uset,
3350 int (*fn)(__isl_take isl_point *pnt, void *user),
3353 The function C<fn> is called for each integer point in
3354 C<set> with as second argument the last argument of
3355 the C<isl_set_foreach_point> call. The function C<fn>
3356 should return C<0> on success and C<-1> on failure.
3357 In the latter case, C<isl_set_foreach_point> will stop
3358 enumerating and return C<-1> as well.
3359 If the enumeration is performed successfully and to completion,
3360 then C<isl_set_foreach_point> returns C<0>.
3362 To obtain a single point of a (basic) set, use
3364 __isl_give isl_point *isl_basic_set_sample_point(
3365 __isl_take isl_basic_set *bset);
3366 __isl_give isl_point *isl_set_sample_point(
3367 __isl_take isl_set *set);
3369 If C<set> does not contain any (integer) points, then the
3370 resulting point will be ``void'', a property that can be
3373 int isl_point_is_void(__isl_keep isl_point *pnt);
3375 =head2 Piecewise Quasipolynomials
3377 A piecewise quasipolynomial is a particular kind of function that maps
3378 a parametric point to a rational value.
3379 More specifically, a quasipolynomial is a polynomial expression in greatest
3380 integer parts of affine expressions of parameters and variables.
3381 A piecewise quasipolynomial is a subdivision of a given parametric
3382 domain into disjoint cells with a quasipolynomial associated to
3383 each cell. The value of the piecewise quasipolynomial at a given
3384 point is the value of the quasipolynomial associated to the cell
3385 that contains the point. Outside of the union of cells,
3386 the value is assumed to be zero.
3387 For example, the piecewise quasipolynomial
3389 [n] -> { [x] -> ((1 + n) - x) : x <= n and x >= 0 }
3391 maps C<x> to C<1 + n - x> for values of C<x> between C<0> and C<n>.
3392 A given piecewise quasipolynomial has a fixed domain dimension.
3393 Union piecewise quasipolynomials are used to contain piecewise quasipolynomials
3394 defined over different domains.
3395 Piecewise quasipolynomials are mainly used by the C<barvinok>
3396 library for representing the number of elements in a parametric set or map.
3397 For example, the piecewise quasipolynomial above represents
3398 the number of points in the map
3400 [n] -> { [x] -> [y] : x,y >= 0 and 0 <= x + y <= n }
3402 =head3 Input and Output
3404 Piecewise quasipolynomials can be read from input using
3406 __isl_give isl_union_pw_qpolynomial *
3407 isl_union_pw_qpolynomial_read_from_str(
3408 isl_ctx *ctx, const char *str);
3410 Quasipolynomials and piecewise quasipolynomials can be printed
3411 using the following functions.
3413 __isl_give isl_printer *isl_printer_print_qpolynomial(
3414 __isl_take isl_printer *p,
3415 __isl_keep isl_qpolynomial *qp);
3417 __isl_give isl_printer *isl_printer_print_pw_qpolynomial(
3418 __isl_take isl_printer *p,
3419 __isl_keep isl_pw_qpolynomial *pwqp);
3421 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial(
3422 __isl_take isl_printer *p,
3423 __isl_keep isl_union_pw_qpolynomial *upwqp);
3425 The output format of the printer
3426 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
3427 For C<isl_printer_print_union_pw_qpolynomial>, only C<ISL_FORMAT_ISL>
3429 In case of printing in C<ISL_FORMAT_C>, the user may want
3430 to set the names of all dimensions
3432 __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name(
3433 __isl_take isl_qpolynomial *qp,
3434 enum isl_dim_type type, unsigned pos,
3436 __isl_give isl_pw_qpolynomial *
3437 isl_pw_qpolynomial_set_dim_name(
3438 __isl_take isl_pw_qpolynomial *pwqp,
3439 enum isl_dim_type type, unsigned pos,
3442 =head3 Creating New (Piecewise) Quasipolynomials
3444 Some simple quasipolynomials can be created using the following functions.
3445 More complicated quasipolynomials can be created by applying
3446 operations such as addition and multiplication
3447 on the resulting quasipolynomials
3449 __isl_give isl_qpolynomial *isl_qpolynomial_zero_on_domain(
3450 __isl_take isl_space *domain);
3451 __isl_give isl_qpolynomial *isl_qpolynomial_one_on_domain(
3452 __isl_take isl_space *domain);
3453 __isl_give isl_qpolynomial *isl_qpolynomial_infty_on_domain(
3454 __isl_take isl_space *domain);
3455 __isl_give isl_qpolynomial *isl_qpolynomial_neginfty_on_domain(
3456 __isl_take isl_space *domain);
3457 __isl_give isl_qpolynomial *isl_qpolynomial_nan_on_domain(
3458 __isl_take isl_space *domain);
3459 __isl_give isl_qpolynomial *isl_qpolynomial_rat_cst_on_domain(
3460 __isl_take isl_space *domain,
3461 const isl_int n, const isl_int d);
3462 __isl_give isl_qpolynomial *isl_qpolynomial_var_on_domain(
3463 __isl_take isl_space *domain,
3464 enum isl_dim_type type, unsigned pos);
3465 __isl_give isl_qpolynomial *isl_qpolynomial_from_aff(
3466 __isl_take isl_aff *aff);
3468 Note that the space in which a quasipolynomial lives is a map space
3469 with a one-dimensional range. The C<domain> argument in some of
3470 the functions above corresponds to the domain of this map space.
3472 The zero piecewise quasipolynomial or a piecewise quasipolynomial
3473 with a single cell can be created using the following functions.
3474 Multiple of these single cell piecewise quasipolynomials can
3475 be combined to create more complicated piecewise quasipolynomials.
3477 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_zero(
3478 __isl_take isl_space *space);
3479 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_alloc(
3480 __isl_take isl_set *set,
3481 __isl_take isl_qpolynomial *qp);
3482 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_qpolynomial(
3483 __isl_take isl_qpolynomial *qp);
3484 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_pw_aff(
3485 __isl_take isl_pw_aff *pwaff);
3487 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_zero(
3488 __isl_take isl_space *space);
3489 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_from_pw_qpolynomial(
3490 __isl_take isl_pw_qpolynomial *pwqp);
3491 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add_pw_qpolynomial(
3492 __isl_take isl_union_pw_qpolynomial *upwqp,
3493 __isl_take isl_pw_qpolynomial *pwqp);
3495 Quasipolynomials can be copied and freed again using the following
3498 __isl_give isl_qpolynomial *isl_qpolynomial_copy(
3499 __isl_keep isl_qpolynomial *qp);
3500 void *isl_qpolynomial_free(__isl_take isl_qpolynomial *qp);
3502 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_copy(
3503 __isl_keep isl_pw_qpolynomial *pwqp);
3504 void *isl_pw_qpolynomial_free(
3505 __isl_take isl_pw_qpolynomial *pwqp);
3507 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_copy(
3508 __isl_keep isl_union_pw_qpolynomial *upwqp);
3509 void isl_union_pw_qpolynomial_free(
3510 __isl_take isl_union_pw_qpolynomial *upwqp);
3512 =head3 Inspecting (Piecewise) Quasipolynomials
3514 To iterate over all piecewise quasipolynomials in a union
3515 piecewise quasipolynomial, use the following function
3517 int isl_union_pw_qpolynomial_foreach_pw_qpolynomial(
3518 __isl_keep isl_union_pw_qpolynomial *upwqp,
3519 int (*fn)(__isl_take isl_pw_qpolynomial *pwqp, void *user),
3522 To extract the piecewise quasipolynomial in a given space from a union, use
3524 __isl_give isl_pw_qpolynomial *
3525 isl_union_pw_qpolynomial_extract_pw_qpolynomial(
3526 __isl_keep isl_union_pw_qpolynomial *upwqp,
3527 __isl_take isl_space *space);
3529 To iterate over the cells in a piecewise quasipolynomial,
3530 use either of the following two functions
3532 int isl_pw_qpolynomial_foreach_piece(
3533 __isl_keep isl_pw_qpolynomial *pwqp,
3534 int (*fn)(__isl_take isl_set *set,
3535 __isl_take isl_qpolynomial *qp,
3536 void *user), void *user);
3537 int isl_pw_qpolynomial_foreach_lifted_piece(
3538 __isl_keep isl_pw_qpolynomial *pwqp,
3539 int (*fn)(__isl_take isl_set *set,
3540 __isl_take isl_qpolynomial *qp,
3541 void *user), void *user);
3543 As usual, the function C<fn> should return C<0> on success
3544 and C<-1> on failure. The difference between
3545 C<isl_pw_qpolynomial_foreach_piece> and
3546 C<isl_pw_qpolynomial_foreach_lifted_piece> is that
3547 C<isl_pw_qpolynomial_foreach_lifted_piece> will first
3548 compute unique representations for all existentially quantified
3549 variables and then turn these existentially quantified variables
3550 into extra set variables, adapting the associated quasipolynomial
3551 accordingly. This means that the C<set> passed to C<fn>
3552 will not have any existentially quantified variables, but that
3553 the dimensions of the sets may be different for different
3554 invocations of C<fn>.
3556 To iterate over all terms in a quasipolynomial,
3559 int isl_qpolynomial_foreach_term(
3560 __isl_keep isl_qpolynomial *qp,
3561 int (*fn)(__isl_take isl_term *term,
3562 void *user), void *user);
3564 The terms themselves can be inspected and freed using
3567 unsigned isl_term_dim(__isl_keep isl_term *term,
3568 enum isl_dim_type type);
3569 void isl_term_get_num(__isl_keep isl_term *term,
3571 void isl_term_get_den(__isl_keep isl_term *term,
3573 int isl_term_get_exp(__isl_keep isl_term *term,
3574 enum isl_dim_type type, unsigned pos);
3575 __isl_give isl_aff *isl_term_get_div(
3576 __isl_keep isl_term *term, unsigned pos);
3577 void isl_term_free(__isl_take isl_term *term);
3579 Each term is a product of parameters, set variables and
3580 integer divisions. The function C<isl_term_get_exp>
3581 returns the exponent of a given dimensions in the given term.
3582 The C<isl_int>s in the arguments of C<isl_term_get_num>
3583 and C<isl_term_get_den> need to have been initialized
3584 using C<isl_int_init> before calling these functions.
3586 =head3 Properties of (Piecewise) Quasipolynomials
3588 To check whether a quasipolynomial is actually a constant,
3589 use the following function.
3591 int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp,
3592 isl_int *n, isl_int *d);
3594 If C<qp> is a constant and if C<n> and C<d> are not C<NULL>
3595 then the numerator and denominator of the constant
3596 are returned in C<*n> and C<*d>, respectively.
3598 To check whether two union piecewise quasipolynomials are
3599 obviously equal, use
3601 int isl_union_pw_qpolynomial_plain_is_equal(
3602 __isl_keep isl_union_pw_qpolynomial *upwqp1,
3603 __isl_keep isl_union_pw_qpolynomial *upwqp2);
3605 =head3 Operations on (Piecewise) Quasipolynomials
3607 __isl_give isl_qpolynomial *isl_qpolynomial_scale(
3608 __isl_take isl_qpolynomial *qp, isl_int v);
3609 __isl_give isl_qpolynomial *isl_qpolynomial_neg(
3610 __isl_take isl_qpolynomial *qp);
3611 __isl_give isl_qpolynomial *isl_qpolynomial_add(
3612 __isl_take isl_qpolynomial *qp1,
3613 __isl_take isl_qpolynomial *qp2);
3614 __isl_give isl_qpolynomial *isl_qpolynomial_sub(
3615 __isl_take isl_qpolynomial *qp1,
3616 __isl_take isl_qpolynomial *qp2);
3617 __isl_give isl_qpolynomial *isl_qpolynomial_mul(
3618 __isl_take isl_qpolynomial *qp1,
3619 __isl_take isl_qpolynomial *qp2);
3620 __isl_give isl_qpolynomial *isl_qpolynomial_pow(
3621 __isl_take isl_qpolynomial *qp, unsigned exponent);
3623 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add(
3624 __isl_take isl_pw_qpolynomial *pwqp1,
3625 __isl_take isl_pw_qpolynomial *pwqp2);
3626 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_sub(
3627 __isl_take isl_pw_qpolynomial *pwqp1,
3628 __isl_take isl_pw_qpolynomial *pwqp2);
3629 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_disjoint(
3630 __isl_take isl_pw_qpolynomial *pwqp1,
3631 __isl_take isl_pw_qpolynomial *pwqp2);
3632 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_neg(
3633 __isl_take isl_pw_qpolynomial *pwqp);
3634 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
3635 __isl_take isl_pw_qpolynomial *pwqp1,
3636 __isl_take isl_pw_qpolynomial *pwqp2);
3637 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_pow(
3638 __isl_take isl_pw_qpolynomial *pwqp, unsigned exponent);
3640 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add(
3641 __isl_take isl_union_pw_qpolynomial *upwqp1,
3642 __isl_take isl_union_pw_qpolynomial *upwqp2);
3643 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_sub(
3644 __isl_take isl_union_pw_qpolynomial *upwqp1,
3645 __isl_take isl_union_pw_qpolynomial *upwqp2);
3646 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul(
3647 __isl_take isl_union_pw_qpolynomial *upwqp1,
3648 __isl_take isl_union_pw_qpolynomial *upwqp2);
3650 __isl_give isl_qpolynomial *isl_pw_qpolynomial_eval(
3651 __isl_take isl_pw_qpolynomial *pwqp,
3652 __isl_take isl_point *pnt);
3654 __isl_give isl_qpolynomial *isl_union_pw_qpolynomial_eval(
3655 __isl_take isl_union_pw_qpolynomial *upwqp,
3656 __isl_take isl_point *pnt);
3658 __isl_give isl_set *isl_pw_qpolynomial_domain(
3659 __isl_take isl_pw_qpolynomial *pwqp);
3660 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_intersect_domain(
3661 __isl_take isl_pw_qpolynomial *pwpq,
3662 __isl_take isl_set *set);
3663 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_intersect_params(
3664 __isl_take isl_pw_qpolynomial *pwpq,
3665 __isl_take isl_set *set);
3667 __isl_give isl_union_set *isl_union_pw_qpolynomial_domain(
3668 __isl_take isl_union_pw_qpolynomial *upwqp);
3669 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_intersect_domain(
3670 __isl_take isl_union_pw_qpolynomial *upwpq,
3671 __isl_take isl_union_set *uset);
3672 __isl_give isl_union_pw_qpolynomial *
3673 isl_union_pw_qpolynomial_intersect_params(
3674 __isl_take isl_union_pw_qpolynomial *upwpq,
3675 __isl_take isl_set *set);
3677 __isl_give isl_qpolynomial *isl_qpolynomial_align_params(
3678 __isl_take isl_qpolynomial *qp,
3679 __isl_take isl_space *model);
3681 __isl_give isl_qpolynomial *isl_qpolynomial_project_domain_on_params(
3682 __isl_take isl_qpolynomial *qp);
3683 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_project_domain_on_params(
3684 __isl_take isl_pw_qpolynomial *pwqp);
3686 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_coalesce(
3687 __isl_take isl_union_pw_qpolynomial *upwqp);
3689 __isl_give isl_qpolynomial *isl_qpolynomial_gist_params(
3690 __isl_take isl_qpolynomial *qp,
3691 __isl_take isl_set *context);
3692 __isl_give isl_qpolynomial *isl_qpolynomial_gist(
3693 __isl_take isl_qpolynomial *qp,
3694 __isl_take isl_set *context);
3696 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist_params(
3697 __isl_take isl_pw_qpolynomial *pwqp,
3698 __isl_take isl_set *context);
3699 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist(
3700 __isl_take isl_pw_qpolynomial *pwqp,
3701 __isl_take isl_set *context);
3703 __isl_give isl_union_pw_qpolynomial *
3704 isl_union_pw_qpolynomial_gist_params(
3705 __isl_take isl_union_pw_qpolynomial *upwqp,
3706 __isl_take isl_set *context);
3707 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_gist(
3708 __isl_take isl_union_pw_qpolynomial *upwqp,
3709 __isl_take isl_union_set *context);
3711 The gist operation applies the gist operation to each of
3712 the cells in the domain of the input piecewise quasipolynomial.
3713 The context is also exploited
3714 to simplify the quasipolynomials associated to each cell.
3716 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial(
3717 __isl_take isl_pw_qpolynomial *pwqp, int sign);
3718 __isl_give isl_union_pw_qpolynomial *
3719 isl_union_pw_qpolynomial_to_polynomial(
3720 __isl_take isl_union_pw_qpolynomial *upwqp, int sign);
3722 Approximate each quasipolynomial by a polynomial. If C<sign> is positive,
3723 the polynomial will be an overapproximation. If C<sign> is negative,
3724 it will be an underapproximation. If C<sign> is zero, the approximation
3725 will lie somewhere in between.
3727 =head2 Bounds on Piecewise Quasipolynomials and Piecewise Quasipolynomial Reductions
3729 A piecewise quasipolynomial reduction is a piecewise
3730 reduction (or fold) of quasipolynomials.
3731 In particular, the reduction can be maximum or a minimum.
3732 The objects are mainly used to represent the result of
3733 an upper or lower bound on a quasipolynomial over its domain,
3734 i.e., as the result of the following function.
3736 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_bound(
3737 __isl_take isl_pw_qpolynomial *pwqp,
3738 enum isl_fold type, int *tight);
3740 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_bound(
3741 __isl_take isl_union_pw_qpolynomial *upwqp,
3742 enum isl_fold type, int *tight);
3744 The C<type> argument may be either C<isl_fold_min> or C<isl_fold_max>.
3745 If C<tight> is not C<NULL>, then C<*tight> is set to C<1>
3746 is the returned bound is known be tight, i.e., for each value
3747 of the parameters there is at least
3748 one element in the domain that reaches the bound.
3749 If the domain of C<pwqp> is not wrapping, then the bound is computed
3750 over all elements in that domain and the result has a purely parametric
3751 domain. If the domain of C<pwqp> is wrapping, then the bound is
3752 computed over the range of the wrapped relation. The domain of the
3753 wrapped relation becomes the domain of the result.
3755 A (piecewise) quasipolynomial reduction can be copied or freed using the
3756 following functions.
3758 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_copy(
3759 __isl_keep isl_qpolynomial_fold *fold);
3760 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_copy(
3761 __isl_keep isl_pw_qpolynomial_fold *pwf);
3762 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_copy(
3763 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
3764 void isl_qpolynomial_fold_free(
3765 __isl_take isl_qpolynomial_fold *fold);
3766 void *isl_pw_qpolynomial_fold_free(
3767 __isl_take isl_pw_qpolynomial_fold *pwf);
3768 void isl_union_pw_qpolynomial_fold_free(
3769 __isl_take isl_union_pw_qpolynomial_fold *upwf);
3771 =head3 Printing Piecewise Quasipolynomial Reductions
3773 Piecewise quasipolynomial reductions can be printed
3774 using the following function.
3776 __isl_give isl_printer *isl_printer_print_pw_qpolynomial_fold(
3777 __isl_take isl_printer *p,
3778 __isl_keep isl_pw_qpolynomial_fold *pwf);
3779 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial_fold(
3780 __isl_take isl_printer *p,
3781 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
3783 For C<isl_printer_print_pw_qpolynomial_fold>,
3784 output format of the printer
3785 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
3786 For C<isl_printer_print_union_pw_qpolynomial_fold>,
3787 output format of the printer
3788 needs to be set to C<ISL_FORMAT_ISL>.
3789 In case of printing in C<ISL_FORMAT_C>, the user may want
3790 to set the names of all dimensions
3792 __isl_give isl_pw_qpolynomial_fold *
3793 isl_pw_qpolynomial_fold_set_dim_name(
3794 __isl_take isl_pw_qpolynomial_fold *pwf,
3795 enum isl_dim_type type, unsigned pos,
3798 =head3 Inspecting (Piecewise) Quasipolynomial Reductions
3800 To iterate over all piecewise quasipolynomial reductions in a union
3801 piecewise quasipolynomial reduction, use the following function
3803 int isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold(
3804 __isl_keep isl_union_pw_qpolynomial_fold *upwf,
3805 int (*fn)(__isl_take isl_pw_qpolynomial_fold *pwf,
3806 void *user), void *user);
3808 To iterate over the cells in a piecewise quasipolynomial reduction,
3809 use either of the following two functions
3811 int isl_pw_qpolynomial_fold_foreach_piece(
3812 __isl_keep isl_pw_qpolynomial_fold *pwf,
3813 int (*fn)(__isl_take isl_set *set,
3814 __isl_take isl_qpolynomial_fold *fold,
3815 void *user), void *user);
3816 int isl_pw_qpolynomial_fold_foreach_lifted_piece(
3817 __isl_keep isl_pw_qpolynomial_fold *pwf,
3818 int (*fn)(__isl_take isl_set *set,
3819 __isl_take isl_qpolynomial_fold *fold,
3820 void *user), void *user);
3822 See L<Inspecting (Piecewise) Quasipolynomials> for an explanation
3823 of the difference between these two functions.
3825 To iterate over all quasipolynomials in a reduction, use
3827 int isl_qpolynomial_fold_foreach_qpolynomial(
3828 __isl_keep isl_qpolynomial_fold *fold,
3829 int (*fn)(__isl_take isl_qpolynomial *qp,
3830 void *user), void *user);
3832 =head3 Properties of Piecewise Quasipolynomial Reductions
3834 To check whether two union piecewise quasipolynomial reductions are
3835 obviously equal, use
3837 int isl_union_pw_qpolynomial_fold_plain_is_equal(
3838 __isl_keep isl_union_pw_qpolynomial_fold *upwf1,
3839 __isl_keep isl_union_pw_qpolynomial_fold *upwf2);
3841 =head3 Operations on Piecewise Quasipolynomial Reductions
3843 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_scale(
3844 __isl_take isl_qpolynomial_fold *fold, isl_int v);
3846 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_add(
3847 __isl_take isl_pw_qpolynomial_fold *pwf1,
3848 __isl_take isl_pw_qpolynomial_fold *pwf2);
3850 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_fold(
3851 __isl_take isl_pw_qpolynomial_fold *pwf1,
3852 __isl_take isl_pw_qpolynomial_fold *pwf2);
3854 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_fold(
3855 __isl_take isl_union_pw_qpolynomial_fold *upwf1,
3856 __isl_take isl_union_pw_qpolynomial_fold *upwf2);
3858 __isl_give isl_qpolynomial *isl_pw_qpolynomial_fold_eval(
3859 __isl_take isl_pw_qpolynomial_fold *pwf,
3860 __isl_take isl_point *pnt);
3862 __isl_give isl_qpolynomial *isl_union_pw_qpolynomial_fold_eval(
3863 __isl_take isl_union_pw_qpolynomial_fold *upwf,
3864 __isl_take isl_point *pnt);
3866 __isl_give isl_pw_qpolynomial_fold *
3867 sl_pw_qpolynomial_fold_intersect_params(
3868 __isl_take isl_pw_qpolynomial_fold *pwf,
3869 __isl_take isl_set *set);
3871 __isl_give isl_union_set *isl_union_pw_qpolynomial_fold_domain(
3872 __isl_take isl_union_pw_qpolynomial_fold *upwf);
3873 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_intersect_domain(
3874 __isl_take isl_union_pw_qpolynomial_fold *upwf,
3875 __isl_take isl_union_set *uset);
3876 __isl_give isl_union_pw_qpolynomial_fold *
3877 isl_union_pw_qpolynomial_fold_intersect_params(
3878 __isl_take isl_union_pw_qpolynomial_fold *upwf,
3879 __isl_take isl_set *set);
3881 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_project_domain_on_params(
3882 __isl_take isl_pw_qpolynomial_fold *pwf);
3884 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_coalesce(
3885 __isl_take isl_pw_qpolynomial_fold *pwf);
3887 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_coalesce(
3888 __isl_take isl_union_pw_qpolynomial_fold *upwf);
3890 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist_params(
3891 __isl_take isl_qpolynomial_fold *fold,
3892 __isl_take isl_set *context);
3893 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist(
3894 __isl_take isl_qpolynomial_fold *fold,
3895 __isl_take isl_set *context);
3897 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_gist(
3898 __isl_take isl_pw_qpolynomial_fold *pwf,
3899 __isl_take isl_set *context);
3900 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_gist_params(
3901 __isl_take isl_pw_qpolynomial_fold *pwf,
3902 __isl_take isl_set *context);
3904 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_gist(
3905 __isl_take isl_union_pw_qpolynomial_fold *upwf,
3906 __isl_take isl_union_set *context);
3907 __isl_give isl_union_pw_qpolynomial_fold *
3908 isl_union_pw_qpolynomial_fold_gist_params(
3909 __isl_take isl_union_pw_qpolynomial_fold *upwf,
3910 __isl_take isl_set *context);
3912 The gist operation applies the gist operation to each of
3913 the cells in the domain of the input piecewise quasipolynomial reduction.
3914 In future, the operation will also exploit the context
3915 to simplify the quasipolynomial reductions associated to each cell.
3917 __isl_give isl_pw_qpolynomial_fold *
3918 isl_set_apply_pw_qpolynomial_fold(
3919 __isl_take isl_set *set,
3920 __isl_take isl_pw_qpolynomial_fold *pwf,
3922 __isl_give isl_pw_qpolynomial_fold *
3923 isl_map_apply_pw_qpolynomial_fold(
3924 __isl_take isl_map *map,
3925 __isl_take isl_pw_qpolynomial_fold *pwf,
3927 __isl_give isl_union_pw_qpolynomial_fold *
3928 isl_union_set_apply_union_pw_qpolynomial_fold(
3929 __isl_take isl_union_set *uset,
3930 __isl_take isl_union_pw_qpolynomial_fold *upwf,
3932 __isl_give isl_union_pw_qpolynomial_fold *
3933 isl_union_map_apply_union_pw_qpolynomial_fold(
3934 __isl_take isl_union_map *umap,
3935 __isl_take isl_union_pw_qpolynomial_fold *upwf,
3938 The functions taking a map
3939 compose the given map with the given piecewise quasipolynomial reduction.
3940 That is, compute a bound (of the same type as C<pwf> or C<upwf> itself)
3941 over all elements in the intersection of the range of the map
3942 and the domain of the piecewise quasipolynomial reduction
3943 as a function of an element in the domain of the map.
3944 The functions taking a set compute a bound over all elements in the
3945 intersection of the set and the domain of the
3946 piecewise quasipolynomial reduction.
3948 =head2 Dependence Analysis
3950 C<isl> contains specialized functionality for performing
3951 array dataflow analysis. That is, given a I<sink> access relation
3952 and a collection of possible I<source> access relations,
3953 C<isl> can compute relations that describe
3954 for each iteration of the sink access, which iteration
3955 of which of the source access relations was the last
3956 to access the same data element before the given iteration
3958 The resulting dependence relations map source iterations
3959 to the corresponding sink iterations.
3960 To compute standard flow dependences, the sink should be
3961 a read, while the sources should be writes.
3962 If any of the source accesses are marked as being I<may>
3963 accesses, then there will be a dependence from the last
3964 I<must> access B<and> from any I<may> access that follows
3965 this last I<must> access.
3966 In particular, if I<all> sources are I<may> accesses,
3967 then memory based dependence analysis is performed.
3968 If, on the other hand, all sources are I<must> accesses,
3969 then value based dependence analysis is performed.
3971 #include <isl/flow.h>
3973 typedef int (*isl_access_level_before)(void *first, void *second);
3975 __isl_give isl_access_info *isl_access_info_alloc(
3976 __isl_take isl_map *sink,
3977 void *sink_user, isl_access_level_before fn,
3979 __isl_give isl_access_info *isl_access_info_add_source(
3980 __isl_take isl_access_info *acc,
3981 __isl_take isl_map *source, int must,
3983 void isl_access_info_free(__isl_take isl_access_info *acc);
3985 __isl_give isl_flow *isl_access_info_compute_flow(
3986 __isl_take isl_access_info *acc);
3988 int isl_flow_foreach(__isl_keep isl_flow *deps,
3989 int (*fn)(__isl_take isl_map *dep, int must,
3990 void *dep_user, void *user),
3992 __isl_give isl_map *isl_flow_get_no_source(
3993 __isl_keep isl_flow *deps, int must);
3994 void isl_flow_free(__isl_take isl_flow *deps);
3996 The function C<isl_access_info_compute_flow> performs the actual
3997 dependence analysis. The other functions are used to construct
3998 the input for this function or to read off the output.
4000 The input is collected in an C<isl_access_info>, which can
4001 be created through a call to C<isl_access_info_alloc>.
4002 The arguments to this functions are the sink access relation
4003 C<sink>, a token C<sink_user> used to identify the sink
4004 access to the user, a callback function for specifying the
4005 relative order of source and sink accesses, and the number
4006 of source access relations that will be added.
4007 The callback function has type C<int (*)(void *first, void *second)>.
4008 The function is called with two user supplied tokens identifying
4009 either a source or the sink and it should return the shared nesting
4010 level and the relative order of the two accesses.
4011 In particular, let I<n> be the number of loops shared by
4012 the two accesses. If C<first> precedes C<second> textually,
4013 then the function should return I<2 * n + 1>; otherwise,
4014 it should return I<2 * n>.
4015 The sources can be added to the C<isl_access_info> by performing
4016 (at most) C<max_source> calls to C<isl_access_info_add_source>.
4017 C<must> indicates whether the source is a I<must> access
4018 or a I<may> access. Note that a multi-valued access relation
4019 should only be marked I<must> if every iteration in the domain
4020 of the relation accesses I<all> elements in its image.
4021 The C<source_user> token is again used to identify
4022 the source access. The range of the source access relation
4023 C<source> should have the same dimension as the range
4024 of the sink access relation.
4025 The C<isl_access_info_free> function should usually not be
4026 called explicitly, because it is called implicitly by
4027 C<isl_access_info_compute_flow>.
4029 The result of the dependence analysis is collected in an
4030 C<isl_flow>. There may be elements of
4031 the sink access for which no preceding source access could be
4032 found or for which all preceding sources are I<may> accesses.
4033 The relations containing these elements can be obtained through
4034 calls to C<isl_flow_get_no_source>, the first with C<must> set
4035 and the second with C<must> unset.
4036 In the case of standard flow dependence analysis,
4037 with the sink a read and the sources I<must> writes,
4038 the first relation corresponds to the reads from uninitialized
4039 array elements and the second relation is empty.
4040 The actual flow dependences can be extracted using
4041 C<isl_flow_foreach>. This function will call the user-specified
4042 callback function C<fn> for each B<non-empty> dependence between
4043 a source and the sink. The callback function is called
4044 with four arguments, the actual flow dependence relation
4045 mapping source iterations to sink iterations, a boolean that
4046 indicates whether it is a I<must> or I<may> dependence, a token
4047 identifying the source and an additional C<void *> with value
4048 equal to the third argument of the C<isl_flow_foreach> call.
4049 A dependence is marked I<must> if it originates from a I<must>
4050 source and if it is not followed by any I<may> sources.
4052 After finishing with an C<isl_flow>, the user should call
4053 C<isl_flow_free> to free all associated memory.
4055 A higher-level interface to dependence analysis is provided
4056 by the following function.
4058 #include <isl/flow.h>
4060 int isl_union_map_compute_flow(__isl_take isl_union_map *sink,
4061 __isl_take isl_union_map *must_source,
4062 __isl_take isl_union_map *may_source,
4063 __isl_take isl_union_map *schedule,
4064 __isl_give isl_union_map **must_dep,
4065 __isl_give isl_union_map **may_dep,
4066 __isl_give isl_union_map **must_no_source,
4067 __isl_give isl_union_map **may_no_source);
4069 The arrays are identified by the tuple names of the ranges
4070 of the accesses. The iteration domains by the tuple names
4071 of the domains of the accesses and of the schedule.
4072 The relative order of the iteration domains is given by the
4073 schedule. The relations returned through C<must_no_source>
4074 and C<may_no_source> are subsets of C<sink>.
4075 Any of C<must_dep>, C<may_dep>, C<must_no_source>
4076 or C<may_no_source> may be C<NULL>, but a C<NULL> value for
4077 any of the other arguments is treated as an error.
4079 =head3 Interaction with Dependence Analysis
4081 During the dependence analysis, we frequently need to perform
4082 the following operation. Given a relation between sink iterations
4083 and potential soure iterations from a particular source domain,
4084 what is the last potential source iteration corresponding to each
4085 sink iteration. It can sometimes be convenient to adjust
4086 the set of potential source iterations before each such operation.
4087 The prototypical example is fuzzy array dataflow analysis,
4088 where we need to analyze if, based on data-dependent constraints,
4089 the sink iteration can ever be executed without one or more of
4090 the corresponding potential source iterations being executed.
4091 If so, we can introduce extra parameters and select an unknown
4092 but fixed source iteration from the potential source iterations.
4093 To be able to perform such manipulations, C<isl> provides the following
4096 #include <isl/flow.h>
4098 typedef __isl_give isl_set *(*isl_access_restrict_sources)(
4099 __isl_take isl_map *source_map,
4100 void *sink_user, void *source_user);
4101 __isl_give isl_access_info *
4102 isl_access_info_set_restrict_sources(
4103 __isl_take isl_access_info *acc,
4104 isl_access_restrict_sources fn);
4106 The function C<isl_access_info_set_restrict_sources> should be called
4107 before C<isl_access_info_compute_flow> and registers a callback function
4108 that will be called any time C<isl> is about to compute the last
4109 potential source. The first argument is the (reverse) proto-dependence,
4110 mapping sink iterations to potential source iterations.
4111 The other two arguments are the tokens corresponding to the sink
4112 and the source. The callback is expected to return a set
4113 that restricts the source iterations. The potential source iterations
4114 will be intersected with this set. If no restrictions are required
4115 for a given C<source_map>, then the callback should return
4118 isl_space_range(isl_map_get_space(source_map)));
4120 If any error occurs, the callback should return C<NULL>.
4124 B<The functionality described in this section is fairly new
4125 and may be subject to change.>
4127 The following function can be used to compute a schedule
4128 for a union of domains.
4129 By default, the algorithm used to construct the schedule is similar
4130 to that of C<Pluto>.
4131 Alternatively, Feautrier's multi-dimensional scheduling algorithm can
4133 The generated schedule respects all C<validity> dependences.
4134 That is, all dependence distances over these dependences in the
4135 scheduled space are lexicographically positive.
4136 The default algorithm tries to minimize the dependence distances over
4137 C<proximity> dependences.
4138 Moreover, it tries to obtain sequences (bands) of schedule dimensions
4139 for groups of domains where the dependence distances have only
4140 non-negative values.
4141 When using Feautrier's algorithm, the C<proximity> dependence
4142 distances are only minimized during the extension to a
4143 full-dimensional schedule.
4145 #include <isl/schedule.h>
4146 __isl_give isl_schedule *isl_union_set_compute_schedule(
4147 __isl_take isl_union_set *domain,
4148 __isl_take isl_union_map *validity,
4149 __isl_take isl_union_map *proximity);
4150 void *isl_schedule_free(__isl_take isl_schedule *sched);
4152 A mapping from the domains to the scheduled space can be obtained
4153 from an C<isl_schedule> using the following function.
4155 __isl_give isl_union_map *isl_schedule_get_map(
4156 __isl_keep isl_schedule *sched);
4158 A representation of the schedule can be printed using
4160 __isl_give isl_printer *isl_printer_print_schedule(
4161 __isl_take isl_printer *p,
4162 __isl_keep isl_schedule *schedule);
4164 A representation of the schedule as a forest of bands can be obtained
4165 using the following function.
4167 __isl_give isl_band_list *isl_schedule_get_band_forest(
4168 __isl_keep isl_schedule *schedule);
4170 The list can be manipulated as explained in L<"Lists">.
4171 The bands inside the list can be copied and freed using the following
4174 #include <isl/band.h>
4175 __isl_give isl_band *isl_band_copy(
4176 __isl_keep isl_band *band);
4177 void *isl_band_free(__isl_take isl_band *band);
4179 Each band contains zero or more scheduling dimensions.
4180 These are referred to as the members of the band.
4181 The section of the schedule that corresponds to the band is
4182 referred to as the partial schedule of the band.
4183 For those nodes that participate in a band, the outer scheduling
4184 dimensions form the prefix schedule, while the inner scheduling
4185 dimensions form the suffix schedule.
4186 That is, if we take a cut of the band forest, then the union of
4187 the concatenations of the prefix, partial and suffix schedules of
4188 each band in the cut is equal to the entire schedule (modulo
4189 some possible padding at the end with zero scheduling dimensions).
4190 The properties of a band can be inspected using the following functions.
4192 #include <isl/band.h>
4193 isl_ctx *isl_band_get_ctx(__isl_keep isl_band *band);
4195 int isl_band_has_children(__isl_keep isl_band *band);
4196 __isl_give isl_band_list *isl_band_get_children(
4197 __isl_keep isl_band *band);
4199 __isl_give isl_union_map *isl_band_get_prefix_schedule(
4200 __isl_keep isl_band *band);
4201 __isl_give isl_union_map *isl_band_get_partial_schedule(
4202 __isl_keep isl_band *band);
4203 __isl_give isl_union_map *isl_band_get_suffix_schedule(
4204 __isl_keep isl_band *band);
4206 int isl_band_n_member(__isl_keep isl_band *band);
4207 int isl_band_member_is_zero_distance(
4208 __isl_keep isl_band *band, int pos);
4210 Note that a scheduling dimension is considered to be ``zero
4211 distance'' if it does not carry any proximity dependences
4213 That is, if the dependence distances of the proximity
4214 dependences are all zero in that direction (for fixed
4215 iterations of outer bands).
4217 A representation of the band can be printed using
4219 #include <isl/band.h>
4220 __isl_give isl_printer *isl_printer_print_band(
4221 __isl_take isl_printer *p,
4222 __isl_keep isl_band *band);
4226 #include <isl/schedule.h>
4227 int isl_options_set_schedule_max_coefficient(
4228 isl_ctx *ctx, int val);
4229 int isl_options_get_schedule_max_coefficient(
4231 int isl_options_set_schedule_max_constant_term(
4232 isl_ctx *ctx, int val);
4233 int isl_options_get_schedule_max_constant_term(
4235 int isl_options_set_schedule_maximize_band_depth(
4236 isl_ctx *ctx, int val);
4237 int isl_options_get_schedule_maximize_band_depth(
4239 int isl_options_set_schedule_outer_zero_distance(
4240 isl_ctx *ctx, int val);
4241 int isl_options_get_schedule_outer_zero_distance(
4243 int isl_options_set_schedule_split_scaled(
4244 isl_ctx *ctx, int val);
4245 int isl_options_get_schedule_split_scaled(
4247 int isl_options_set_schedule_algorithm(
4248 isl_ctx *ctx, int val);
4249 int isl_options_get_schedule_algorithm(
4255 =item * schedule_max_coefficient
4257 This option enforces that the coefficients for variable and parameter
4258 dimensions in the calculated schedule are not larger than the specified value.
4259 This option can significantly increase the speed of the scheduling calculation
4260 and may also prevent fusing of unrelated dimensions. A value of -1 means that
4261 this option does not introduce bounds on the variable or parameter
4264 =item * schedule_max_constant_term
4266 This option enforces that the constant coefficients in the calculated schedule
4267 are not larger than the maximal constant term. This option can significantly
4268 increase the speed of the scheduling calculation and may also prevent fusing of
4269 unrelated dimensions. A value of -1 means that this option does not introduce
4270 bounds on the constant coefficients.
4272 =item * schedule_maximize_band_depth
4274 If this option is set, we do not split bands at the point
4275 where we detect splitting is necessary. Instead, we
4276 backtrack and split bands as early as possible. This
4277 reduces the number of splits and maximizes the width of
4278 the bands. Wider bands give more possibilities for tiling.
4280 =item * schedule_outer_zero_distance
4282 If this option is set, then we try to construct schedules
4283 where the outermost scheduling dimension in each band
4284 results in a zero dependence distance over the proximity
4287 =item * schedule_split_scaled
4289 If this option is set, then we try to construct schedules in which the
4290 constant term is split off from the linear part if the linear parts of
4291 the scheduling rows for all nodes in the graphs have a common non-trivial
4293 The constant term is then placed in a separate band and the linear
4296 =item * schedule_algorithm
4298 Selects the scheduling algorithm to be used.
4299 Available scheduling algorithms are C<ISL_SCHEDULE_ALGORITHM_ISL>
4300 and C<ISL_SCHEDULE_ALGORITHM_FEAUTRIER>.
4304 =head2 Parametric Vertex Enumeration
4306 The parametric vertex enumeration described in this section
4307 is mainly intended to be used internally and by the C<barvinok>
4310 #include <isl/vertices.h>
4311 __isl_give isl_vertices *isl_basic_set_compute_vertices(
4312 __isl_keep isl_basic_set *bset);
4314 The function C<isl_basic_set_compute_vertices> performs the
4315 actual computation of the parametric vertices and the chamber
4316 decomposition and store the result in an C<isl_vertices> object.
4317 This information can be queried by either iterating over all
4318 the vertices or iterating over all the chambers or cells
4319 and then iterating over all vertices that are active on the chamber.
4321 int isl_vertices_foreach_vertex(
4322 __isl_keep isl_vertices *vertices,
4323 int (*fn)(__isl_take isl_vertex *vertex, void *user),
4326 int isl_vertices_foreach_cell(
4327 __isl_keep isl_vertices *vertices,
4328 int (*fn)(__isl_take isl_cell *cell, void *user),
4330 int isl_cell_foreach_vertex(__isl_keep isl_cell *cell,
4331 int (*fn)(__isl_take isl_vertex *vertex, void *user),
4334 Other operations that can be performed on an C<isl_vertices> object are
4337 isl_ctx *isl_vertices_get_ctx(
4338 __isl_keep isl_vertices *vertices);
4339 int isl_vertices_get_n_vertices(
4340 __isl_keep isl_vertices *vertices);
4341 void isl_vertices_free(__isl_take isl_vertices *vertices);
4343 Vertices can be inspected and destroyed using the following functions.
4345 isl_ctx *isl_vertex_get_ctx(__isl_keep isl_vertex *vertex);
4346 int isl_vertex_get_id(__isl_keep isl_vertex *vertex);
4347 __isl_give isl_basic_set *isl_vertex_get_domain(
4348 __isl_keep isl_vertex *vertex);
4349 __isl_give isl_basic_set *isl_vertex_get_expr(
4350 __isl_keep isl_vertex *vertex);
4351 void isl_vertex_free(__isl_take isl_vertex *vertex);
4353 C<isl_vertex_get_expr> returns a singleton parametric set describing
4354 the vertex, while C<isl_vertex_get_domain> returns the activity domain
4356 Note that C<isl_vertex_get_domain> and C<isl_vertex_get_expr> return
4357 B<rational> basic sets, so they should mainly be used for inspection
4358 and should not be mixed with integer sets.
4360 Chambers can be inspected and destroyed using the following functions.
4362 isl_ctx *isl_cell_get_ctx(__isl_keep isl_cell *cell);
4363 __isl_give isl_basic_set *isl_cell_get_domain(
4364 __isl_keep isl_cell *cell);
4365 void isl_cell_free(__isl_take isl_cell *cell);
4369 Although C<isl> is mainly meant to be used as a library,
4370 it also contains some basic applications that use some
4371 of the functionality of C<isl>.
4372 The input may be specified in either the L<isl format>
4373 or the L<PolyLib format>.
4375 =head2 C<isl_polyhedron_sample>
4377 C<isl_polyhedron_sample> takes a polyhedron as input and prints
4378 an integer element of the polyhedron, if there is any.
4379 The first column in the output is the denominator and is always
4380 equal to 1. If the polyhedron contains no integer points,
4381 then a vector of length zero is printed.
4385 C<isl_pip> takes the same input as the C<example> program
4386 from the C<piplib> distribution, i.e., a set of constraints
4387 on the parameters, a line containing only -1 and finally a set
4388 of constraints on a parametric polyhedron.
4389 The coefficients of the parameters appear in the last columns
4390 (but before the final constant column).
4391 The output is the lexicographic minimum of the parametric polyhedron.
4392 As C<isl> currently does not have its own output format, the output
4393 is just a dump of the internal state.
4395 =head2 C<isl_polyhedron_minimize>
4397 C<isl_polyhedron_minimize> computes the minimum of some linear
4398 or affine objective function over the integer points in a polyhedron.
4399 If an affine objective function
4400 is given, then the constant should appear in the last column.
4402 =head2 C<isl_polytope_scan>
4404 Given a polytope, C<isl_polytope_scan> prints
4405 all integer points in the polytope.