3 C<isl> is a thread-safe C library for manipulating
4 sets and relations of integer points bounded by affine constraints.
5 The descriptions of the sets and relations may involve
6 both parameters and existentially quantified variables.
7 All computations are performed in exact integer arithmetic
9 The C<isl> library offers functionality that is similar
10 to that offered by the C<Omega> and C<Omega+> libraries,
11 but the underlying algorithms are in most cases completely different.
13 The library is by no means complete and some fairly basic
14 functionality is still missing.
15 Still, even in its current form, the library has been successfully
16 used as a backend polyhedral library for the polyhedral
17 scanner C<CLooG> and as part of an equivalence checker of
18 static affine programs.
19 For bug reports, feature requests and questions,
20 visit the the discussion group at
21 L<http://groups.google.com/group/isl-development>.
23 =head2 Backward Incompatible Changes
25 =head3 Changes since isl-0.02
29 =item * The old printing functions have been deprecated
30 and replaced by C<isl_printer> functions, see L<Input and Output>.
32 =item * Most functions related to dependence analysis have acquired
33 an extra C<must> argument. To obtain the old behavior, this argument
34 should be given the value 1. See L<Dependence Analysis>.
38 =head3 Changes since isl-0.03
42 =item * The function C<isl_pw_qpolynomial_fold_add> has been
43 renamed to C<isl_pw_qpolynomial_fold_fold>.
44 Similarly, C<isl_union_pw_qpolynomial_fold_add> has been
45 renamed to C<isl_union_pw_qpolynomial_fold_fold>.
51 The source of C<isl> can be obtained either as a tarball
52 or from the git repository. Both are available from
53 L<http://freshmeat.net/projects/isl/>.
54 The installation process depends on how you obtained
57 =head2 Installation from the git repository
61 =item 1 Clone or update the repository
63 The first time the source is obtained, you need to clone
66 git clone git://repo.or.cz/isl.git
68 To obtain updates, you need to pull in the latest changes
72 =item 2 Generate C<configure>
78 After performing the above steps, continue
79 with the L<Common installation instructions>.
81 =head2 Common installation instructions
87 Building C<isl> requires C<GMP>, including its headers files.
88 Your distribution may not provide these header files by default
89 and you may need to install a package called C<gmp-devel> or something
90 similar. Alternatively, C<GMP> can be built from
91 source, available from L<http://gmplib.org/>.
95 C<isl> uses the standard C<autoconf> C<configure> script.
100 optionally followed by some configure options.
101 A complete list of options can be obtained by running
105 Below we discuss some of the more common options.
107 C<isl> can optionally use C<piplib>, but no
108 C<piplib> functionality is currently used by default.
109 The C<--with-piplib> option can
110 be used to specify which C<piplib>
111 library to use, either an installed version (C<system>),
112 an externally built version (C<build>)
113 or no version (C<no>). The option C<build> is mostly useful
114 in C<configure> scripts of larger projects that bundle both C<isl>
121 Installation prefix for C<isl>
123 =item C<--with-gmp-prefix>
125 Installation prefix for C<GMP> (architecture-independent files).
127 =item C<--with-gmp-exec-prefix>
129 Installation prefix for C<GMP> (architecture-dependent files).
131 =item C<--with-piplib>
133 Which copy of C<piplib> to use, either C<no> (default), C<system> or C<build>.
135 =item C<--with-piplib-prefix>
137 Installation prefix for C<system> C<piplib> (architecture-independent files).
139 =item C<--with-piplib-exec-prefix>
141 Installation prefix for C<system> C<piplib> (architecture-dependent files).
143 =item C<--with-piplib-builddir>
145 Location where C<build> C<piplib> was built.
153 =item 4 Install (optional)
161 =head2 Initialization
163 All manipulations of integer sets and relations occur within
164 the context of an C<isl_ctx>.
165 A given C<isl_ctx> can only be used within a single thread.
166 All arguments of a function are required to have been allocated
167 within the same context.
168 There are currently no functions available for moving an object
169 from one C<isl_ctx> to another C<isl_ctx>. This means that
170 there is currently no way of safely moving an object from one
171 thread to another, unless the whole C<isl_ctx> is moved.
173 An C<isl_ctx> can be allocated using C<isl_ctx_alloc> and
174 freed using C<isl_ctx_free>.
175 All objects allocated within an C<isl_ctx> should be freed
176 before the C<isl_ctx> itself is freed.
178 isl_ctx *isl_ctx_alloc();
179 void isl_ctx_free(isl_ctx *ctx);
183 All operations on integers, mainly the coefficients
184 of the constraints describing the sets and relations,
185 are performed in exact integer arithmetic using C<GMP>.
186 However, to allow future versions of C<isl> to optionally
187 support fixed integer arithmetic, all calls to C<GMP>
188 are wrapped inside C<isl> specific macros.
189 The basic type is C<isl_int> and the following operations
190 are available on this type.
191 The meanings of these operations are essentially the same
192 as their C<GMP> C<mpz_> counterparts.
193 As always with C<GMP> types, C<isl_int>s need to be
194 initialized with C<isl_int_init> before they can be used
195 and they need to be released with C<isl_int_clear>
200 =item isl_int_init(i)
202 =item isl_int_clear(i)
204 =item isl_int_set(r,i)
206 =item isl_int_set_si(r,i)
208 =item isl_int_set_gmp(r,g)
210 =item isl_int_get_gmp(i,g)
212 =item isl_int_abs(r,i)
214 =item isl_int_neg(r,i)
216 =item isl_int_swap(i,j)
218 =item isl_int_swap_or_set(i,j)
220 =item isl_int_add_ui(r,i,j)
222 =item isl_int_sub_ui(r,i,j)
224 =item isl_int_add(r,i,j)
226 =item isl_int_sub(r,i,j)
228 =item isl_int_mul(r,i,j)
230 =item isl_int_mul_ui(r,i,j)
232 =item isl_int_addmul(r,i,j)
234 =item isl_int_submul(r,i,j)
236 =item isl_int_gcd(r,i,j)
238 =item isl_int_lcm(r,i,j)
240 =item isl_int_divexact(r,i,j)
242 =item isl_int_cdiv_q(r,i,j)
244 =item isl_int_fdiv_q(r,i,j)
246 =item isl_int_fdiv_r(r,i,j)
248 =item isl_int_fdiv_q_ui(r,i,j)
250 =item isl_int_read(r,s)
252 =item isl_int_print(out,i,width)
256 =item isl_int_cmp(i,j)
258 =item isl_int_cmp_si(i,si)
260 =item isl_int_eq(i,j)
262 =item isl_int_ne(i,j)
264 =item isl_int_lt(i,j)
266 =item isl_int_le(i,j)
268 =item isl_int_gt(i,j)
270 =item isl_int_ge(i,j)
272 =item isl_int_abs_eq(i,j)
274 =item isl_int_abs_ne(i,j)
276 =item isl_int_abs_lt(i,j)
278 =item isl_int_abs_gt(i,j)
280 =item isl_int_abs_ge(i,j)
282 =item isl_int_is_zero(i)
284 =item isl_int_is_one(i)
286 =item isl_int_is_negone(i)
288 =item isl_int_is_pos(i)
290 =item isl_int_is_neg(i)
292 =item isl_int_is_nonpos(i)
294 =item isl_int_is_nonneg(i)
296 =item isl_int_is_divisible_by(i,j)
300 =head2 Sets and Relations
302 C<isl> uses six types of objects for representing sets and relations,
303 C<isl_basic_set>, C<isl_basic_map>, C<isl_set>, C<isl_map>,
304 C<isl_union_set> and C<isl_union_map>.
305 C<isl_basic_set> and C<isl_basic_map> represent sets and relations that
306 can be described as a conjunction of affine constraints, while
307 C<isl_set> and C<isl_map> represent unions of
308 C<isl_basic_set>s and C<isl_basic_map>s, respectively.
309 However, all C<isl_basic_set>s or C<isl_basic_map>s in the union need
310 to have the same dimension. C<isl_union_set>s and C<isl_union_map>s
311 represent unions of C<isl_set>s or C<isl_map>s of I<different> dimensions,
312 where dimensions with different space names
313 (see L<Dimension Specifications>) are considered different as well.
314 The difference between sets and relations (maps) is that sets have
315 one set of variables, while relations have two sets of variables,
316 input variables and output variables.
318 =head2 Memory Management
320 Since a high-level operation on sets and/or relations usually involves
321 several substeps and since the user is usually not interested in
322 the intermediate results, most functions that return a new object
323 will also release all the objects passed as arguments.
324 If the user still wants to use one or more of these arguments
325 after the function call, she should pass along a copy of the
326 object rather than the object itself.
327 The user is then responsible for make sure that the original
328 object gets used somewhere else or is explicitly freed.
330 The arguments and return values of all documents functions are
331 annotated to make clear which arguments are released and which
332 arguments are preserved. In particular, the following annotations
339 C<__isl_give> means that a new object is returned.
340 The user should make sure that the returned pointer is
341 used exactly once as a value for an C<__isl_take> argument.
342 In between, it can be used as a value for as many
343 C<__isl_keep> arguments as the user likes.
344 There is one exception, and that is the case where the
345 pointer returned is C<NULL>. Is this case, the user
346 is free to use it as an C<__isl_take> argument or not.
350 C<__isl_take> means that the object the argument points to
351 is taken over by the function and may no longer be used
352 by the user as an argument to any other function.
353 The pointer value must be one returned by a function
354 returning an C<__isl_give> pointer.
355 If the user passes in a C<NULL> value, then this will
356 be treated as an error in the sense that the function will
357 not perform its usual operation. However, it will still
358 make sure that all the the other C<__isl_take> arguments
363 C<__isl_keep> means that the function will only use the object
364 temporarily. After the function has finished, the user
365 can still use it as an argument to other functions.
366 A C<NULL> value will be treated in the same way as
367 a C<NULL> value for an C<__isl_take> argument.
371 =head2 Dimension Specifications
373 Whenever a new set or relation is created from scratch,
374 its dimension needs to be specified using an C<isl_dim>.
377 __isl_give isl_dim *isl_dim_alloc(isl_ctx *ctx,
378 unsigned nparam, unsigned n_in, unsigned n_out);
379 __isl_give isl_dim *isl_dim_set_alloc(isl_ctx *ctx,
380 unsigned nparam, unsigned dim);
381 __isl_give isl_dim *isl_dim_copy(__isl_keep isl_dim *dim);
382 void isl_dim_free(__isl_take isl_dim *dim);
383 unsigned isl_dim_size(__isl_keep isl_dim *dim,
384 enum isl_dim_type type);
386 The dimension specification used for creating a set
387 needs to be created using C<isl_dim_set_alloc>, while
388 that for creating a relation
389 needs to be created using C<isl_dim_alloc>.
390 C<isl_dim_size> can be used
391 to find out the number of dimensions of each type in
392 a dimension specification, where type may be
393 C<isl_dim_param>, C<isl_dim_in> (only for relations),
394 C<isl_dim_out> (only for relations), C<isl_dim_set>
395 (only for sets) or C<isl_dim_all>.
397 It is often useful to create objects that live in the
398 same space as some other object. This can be accomplished
399 by creating the new objects
400 (see L<Creating New Sets and Relations> or
401 L<Creating New (Piecewise) Quasipolynomials>) based on the dimension
402 specification of the original object.
405 __isl_give isl_dim *isl_basic_set_get_dim(
406 __isl_keep isl_basic_set *bset);
407 __isl_give isl_dim *isl_set_get_dim(__isl_keep isl_set *set);
409 #include <isl_union_set.h>
410 __isl_give isl_dim *isl_union_set_get_dim(
411 __isl_keep isl_union_set *uset);
414 __isl_give isl_dim *isl_basic_map_get_dim(
415 __isl_keep isl_basic_map *bmap);
416 __isl_give isl_dim *isl_map_get_dim(__isl_keep isl_map *map);
418 #include <isl_union_map.h>
419 __isl_give isl_dim *isl_union_map_get_dim(
420 __isl_keep isl_union_map *umap);
422 #include <isl_polynomial.h>
423 __isl_give isl_dim *isl_qpolynomial_get_dim(
424 __isl_keep isl_qpolynomial *qp);
425 __isl_give isl_dim *isl_pw_qpolynomial_get_dim(
426 __isl_keep isl_pw_qpolynomial *pwqp);
427 __isl_give isl_dim *isl_union_pw_qpolynomial_get_dim(
428 __isl_keep isl_union_pw_qpolynomial *upwqp);
429 __isl_give isl_dim *isl_union_pw_qpolynomial_fold_get_dim(
430 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
432 The names of the individual dimensions may be set or read off
433 using the following functions.
436 __isl_give isl_dim *isl_dim_set_name(__isl_take isl_dim *dim,
437 enum isl_dim_type type, unsigned pos,
438 __isl_keep const char *name);
439 __isl_keep const char *isl_dim_get_name(__isl_keep isl_dim *dim,
440 enum isl_dim_type type, unsigned pos);
442 Note that C<isl_dim_get_name> returns a pointer to some internal
443 data structure, so the result can only be used while the
444 corresponding C<isl_dim> is alive.
445 Also note that every function that operates on two sets or relations
446 requires that both arguments have the same parameters. This also
447 means that if one of the arguments has named parameters, then the
448 other needs to have named parameters too and the names need to match.
449 Pairs of C<isl_union_set> and/or C<isl_union_map> arguments may
450 have different parameters (as long as they are named), in which case
451 the result will have as parameters the union of the parameters of
454 The names of entire spaces may be set or read off
455 using the following functions.
458 __isl_give isl_dim *isl_dim_set_tuple_name(
459 __isl_take isl_dim *dim,
460 enum isl_dim_type type, const char *s);
461 const char *isl_dim_get_tuple_name(__isl_keep isl_dim *dim,
462 enum isl_dim_type type);
464 The C<dim> argument needs to be one of C<isl_dim_in>, C<isl_dim_out>
465 or C<isl_dim_set>. As with C<isl_dim_get_name>,
466 the C<isl_dim_get_tuple_name> function returns a pointer to some internal
468 Binary operations require the corresponding spaces of their arguments
469 to have the same name.
471 Spaces can be nested. In particular, the domain of a set or
472 the domain or range of a relation can be a nested relation.
473 The following functions can be used to construct and deconstruct
474 such nested dimension specifications.
477 int isl_dim_is_wrapping(__isl_keep isl_dim *dim);
478 __isl_give isl_dim *isl_dim_wrap(__isl_take isl_dim *dim);
479 __isl_give isl_dim *isl_dim_unwrap(__isl_take isl_dim *dim);
481 The input to C<isl_dim_is_wrapping> and C<isl_dim_unwrap> should
482 be the dimension specification of a set, while that of
483 C<isl_dim_wrap> should be the dimension specification of a relation.
484 Conversely, the output of C<isl_dim_unwrap> is the dimension specification
485 of a relation, while that of C<isl_dim_wrap> is the dimension specification
488 Dimension specifications can be created from other dimension
489 specifications using the following functions.
491 __isl_give isl_dim *isl_dim_domain(__isl_take isl_dim *dim);
492 __isl_give isl_dim *isl_dim_from_domain(__isl_take isl_dim *dim);
493 __isl_give isl_dim *isl_dim_range(__isl_take isl_dim *dim);
494 __isl_give isl_dim *isl_dim_from_range(__isl_take isl_dim *dim);
495 __isl_give isl_dim *isl_dim_reverse(__isl_take isl_dim *dim);
496 __isl_give isl_dim *isl_dim_join(__isl_take isl_dim *left,
497 __isl_take isl_dim *right);
498 __isl_give isl_dim *isl_dim_insert(__isl_take isl_dim *dim,
499 enum isl_dim_type type, unsigned pos, unsigned n);
500 __isl_give isl_dim *isl_dim_add(__isl_take isl_dim *dim,
501 enum isl_dim_type type, unsigned n);
502 __isl_give isl_dim *isl_dim_drop(__isl_take isl_dim *dim,
503 enum isl_dim_type type, unsigned first, unsigned n);
505 Note that if dimensions are added or removed from a space, then
506 the name and the internal structure are lost.
508 =head2 Input and Output
510 C<isl> supports its own input/output format, which is similar
511 to the C<Omega> format, but also supports the C<PolyLib> format
516 The C<isl> format is similar to that of C<Omega>, but has a different
517 syntax for describing the parameters and allows for the definition
518 of an existentially quantified variable as the integer division
519 of an affine expression.
520 For example, the set of integers C<i> between C<0> and C<n>
521 such that C<i % 10 <= 6> can be described as
523 [n] -> { [i] : exists (a = [i/10] : 0 <= i and i <= n and
526 A set or relation can have several disjuncts, separated
527 by the keyword C<or>. Each disjunct is either a conjunction
528 of constraints or a projection (C<exists>) of a conjunction
529 of constraints. The constraints are separated by the keyword
532 =head3 C<PolyLib> format
534 If the represented set is a union, then the first line
535 contains a single number representing the number of disjuncts.
536 Otherwise, a line containing the number C<1> is optional.
538 Each disjunct is represented by a matrix of constraints.
539 The first line contains two numbers representing
540 the number of rows and columns,
541 where the number of rows is equal to the number of constraints
542 and the number of columns is equal to two plus the number of variables.
543 The following lines contain the actual rows of the constraint matrix.
544 In each row, the first column indicates whether the constraint
545 is an equality (C<0>) or inequality (C<1>). The final column
546 corresponds to the constant term.
548 If the set is parametric, then the coefficients of the parameters
549 appear in the last columns before the constant column.
550 The coefficients of any existentially quantified variables appear
551 between those of the set variables and those of the parameters.
553 =head3 Extended C<PolyLib> format
555 The extended C<PolyLib> format is nearly identical to the
556 C<PolyLib> format. The only difference is that the line
557 containing the number of rows and columns of a constraint matrix
558 also contains four additional numbers:
559 the number of output dimensions, the number of input dimensions,
560 the number of local dimensions (i.e., the number of existentially
561 quantified variables) and the number of parameters.
562 For sets, the number of ``output'' dimensions is equal
563 to the number of set dimensions, while the number of ``input''
569 __isl_give isl_basic_set *isl_basic_set_read_from_file(
570 isl_ctx *ctx, FILE *input, int nparam);
571 __isl_give isl_basic_set *isl_basic_set_read_from_str(
572 isl_ctx *ctx, const char *str, int nparam);
573 __isl_give isl_set *isl_set_read_from_file(isl_ctx *ctx,
574 FILE *input, int nparam);
575 __isl_give isl_set *isl_set_read_from_str(isl_ctx *ctx,
576 const char *str, int nparam);
579 __isl_give isl_basic_map *isl_basic_map_read_from_file(
580 isl_ctx *ctx, FILE *input, int nparam);
581 __isl_give isl_basic_map *isl_basic_map_read_from_str(
582 isl_ctx *ctx, const char *str, int nparam);
583 __isl_give isl_map *isl_map_read_from_file(
584 struct isl_ctx *ctx, FILE *input, int nparam);
585 __isl_give isl_map *isl_map_read_from_str(isl_ctx *ctx,
586 const char *str, int nparam);
588 The input format is autodetected and may be either the C<PolyLib> format
589 or the C<isl> format.
590 C<nparam> specifies how many of the final columns in
591 the C<PolyLib> format correspond to parameters.
592 If input is given in the C<isl> format, then the number
593 of parameters needs to be equal to C<nparam>.
594 If C<nparam> is negative, then any number of parameters
595 is accepted in the C<isl> format and zero parameters
596 are assumed in the C<PolyLib> format.
600 Before anything can be printed, an C<isl_printer> needs to
603 __isl_give isl_printer *isl_printer_to_file(isl_ctx *ctx,
605 __isl_give isl_printer *isl_printer_to_str(isl_ctx *ctx);
606 void isl_printer_free(__isl_take isl_printer *printer);
607 __isl_give char *isl_printer_get_str(
608 __isl_keep isl_printer *printer);
610 The behavior of the printer can be modified in various ways
612 __isl_give isl_printer *isl_printer_set_output_format(
613 __isl_take isl_printer *p, int output_format);
614 __isl_give isl_printer *isl_printer_set_indent(
615 __isl_take isl_printer *p, int indent);
616 __isl_give isl_printer *isl_printer_set_prefix(
617 __isl_take isl_printer *p, const char *prefix);
618 __isl_give isl_printer *isl_printer_set_suffix(
619 __isl_take isl_printer *p, const char *suffix);
621 The C<output_format> may be either C<ISL_FORMAT_ISL>, C<ISL_FORMAT_OMEGA>,
622 C<ISL_FORMAT_POLYLIB>, C<ISL_FORMAT_EXT_POLYLIB> or C<ISL_FORMAT_LATEX>
623 and defaults to C<ISL_FORMAT_ISL>.
624 Each line in the output is indented by C<indent> spaces
625 (default: 0), prefixed by C<prefix> and suffixed by C<suffix>.
626 In the C<PolyLib> format output,
627 the coefficients of the existentially quantified variables
628 appear between those of the set variables and those
631 To actually print something, use
634 __isl_give isl_printer *isl_printer_print_basic_set(
635 __isl_take isl_printer *printer,
636 __isl_keep isl_basic_set *bset);
637 __isl_give isl_printer *isl_printer_print_set(
638 __isl_take isl_printer *printer,
639 __isl_keep isl_set *set);
642 __isl_give isl_printer *isl_printer_print_basic_map(
643 __isl_take isl_printer *printer,
644 __isl_keep isl_basic_map *bmap);
645 __isl_give isl_printer *isl_printer_print_map(
646 __isl_take isl_printer *printer,
647 __isl_keep isl_map *map);
649 #include <isl_union_set.h>
650 __isl_give isl_printer *isl_printer_print_union_set(
651 __isl_take isl_printer *p,
652 __isl_keep isl_union_set *uset);
654 #include <isl_union_map.h>
655 __isl_give isl_printer *isl_printer_print_union_map(
656 __isl_take isl_printer *p,
657 __isl_keep isl_union_map *umap);
659 When called on a file printer, the following function flushes
660 the file. When called on a string printer, the buffer is cleared.
662 __isl_give isl_printer *isl_printer_flush(
663 __isl_take isl_printer *p);
665 =head2 Creating New Sets and Relations
667 C<isl> has functions for creating some standard sets and relations.
671 =item * Empty sets and relations
673 __isl_give isl_basic_set *isl_basic_set_empty(
674 __isl_take isl_dim *dim);
675 __isl_give isl_basic_map *isl_basic_map_empty(
676 __isl_take isl_dim *dim);
677 __isl_give isl_set *isl_set_empty(
678 __isl_take isl_dim *dim);
679 __isl_give isl_map *isl_map_empty(
680 __isl_take isl_dim *dim);
681 __isl_give isl_union_set *isl_union_set_empty(
682 __isl_take isl_dim *dim);
683 __isl_give isl_union_map *isl_union_map_empty(
684 __isl_take isl_dim *dim);
686 For C<isl_union_set>s and C<isl_union_map>s, the dimensions specification
687 is only used to specify the parameters.
689 =item * Universe sets and relations
691 __isl_give isl_basic_set *isl_basic_set_universe(
692 __isl_take isl_dim *dim);
693 __isl_give isl_basic_map *isl_basic_map_universe(
694 __isl_take isl_dim *dim);
695 __isl_give isl_set *isl_set_universe(
696 __isl_take isl_dim *dim);
697 __isl_give isl_map *isl_map_universe(
698 __isl_take isl_dim *dim);
700 =item * Identity relations
702 __isl_give isl_basic_map *isl_basic_map_identity(
703 __isl_take isl_dim *set_dim);
704 __isl_give isl_map *isl_map_identity(
705 __isl_take isl_dim *set_dim);
707 These functions take a dimension specification for a B<set>
708 and return an identity relation between two such sets.
710 =item * Lexicographic order
712 __isl_give isl_map *isl_map_lex_lt(
713 __isl_take isl_dim *set_dim);
714 __isl_give isl_map *isl_map_lex_le(
715 __isl_take isl_dim *set_dim);
716 __isl_give isl_map *isl_map_lex_gt(
717 __isl_take isl_dim *set_dim);
718 __isl_give isl_map *isl_map_lex_ge(
719 __isl_take isl_dim *set_dim);
720 __isl_give isl_map *isl_map_lex_lt_first(
721 __isl_take isl_dim *dim, unsigned n);
722 __isl_give isl_map *isl_map_lex_le_first(
723 __isl_take isl_dim *dim, unsigned n);
724 __isl_give isl_map *isl_map_lex_gt_first(
725 __isl_take isl_dim *dim, unsigned n);
726 __isl_give isl_map *isl_map_lex_ge_first(
727 __isl_take isl_dim *dim, unsigned n);
729 The first four functions take a dimension specification for a B<set>
730 and return relations that express that the elements in the domain
731 are lexicographically less
732 (C<isl_map_lex_lt>), less or equal (C<isl_map_lex_le>),
733 greater (C<isl_map_lex_gt>) or greater or equal (C<isl_map_lex_ge>)
734 than the elements in the range.
735 The last four functions take a dimension specification for a map
736 and return relations that express that the first C<n> dimensions
737 in the domain are lexicographically less
738 (C<isl_map_lex_lt_first>), less or equal (C<isl_map_lex_le_first>),
739 greater (C<isl_map_lex_gt_first>) or greater or equal (C<isl_map_lex_ge_first>)
740 than the first C<n> dimensions in the range.
744 A basic set or relation can be converted to a set or relation
745 using the following functions.
747 __isl_give isl_set *isl_set_from_basic_set(
748 __isl_take isl_basic_set *bset);
749 __isl_give isl_map *isl_map_from_basic_map(
750 __isl_take isl_basic_map *bmap);
752 Sets and relations can be converted to union sets and relations
753 using the following functions.
755 __isl_give isl_union_map *isl_union_map_from_map(
756 __isl_take isl_map *map);
757 __isl_give isl_union_set *isl_union_set_from_set(
758 __isl_take isl_set *set);
760 Sets and relations can be copied and freed again using the following
763 __isl_give isl_basic_set *isl_basic_set_copy(
764 __isl_keep isl_basic_set *bset);
765 __isl_give isl_set *isl_set_copy(__isl_keep isl_set *set);
766 __isl_give isl_union_set *isl_union_set_copy(
767 __isl_keep isl_union_set *uset);
768 __isl_give isl_basic_map *isl_basic_map_copy(
769 __isl_keep isl_basic_map *bmap);
770 __isl_give isl_map *isl_map_copy(__isl_keep isl_map *map);
771 __isl_give isl_union_map *isl_union_map_copy(
772 __isl_keep isl_union_map *umap);
773 void isl_basic_set_free(__isl_take isl_basic_set *bset);
774 void isl_set_free(__isl_take isl_set *set);
775 void isl_union_set_free(__isl_take isl_union_set *uset);
776 void isl_basic_map_free(__isl_take isl_basic_map *bmap);
777 void isl_map_free(__isl_take isl_map *map);
778 void isl_union_map_free(__isl_take isl_union_map *umap);
780 Other sets and relations can be constructed by starting
781 from a universe set or relation, adding equality and/or
782 inequality constraints and then projecting out the
783 existentially quantified variables, if any.
784 Constraints can be constructed, manipulated and
785 added to basic sets and relations using the following functions.
787 #include <isl_constraint.h>
788 __isl_give isl_constraint *isl_equality_alloc(
789 __isl_take isl_dim *dim);
790 __isl_give isl_constraint *isl_inequality_alloc(
791 __isl_take isl_dim *dim);
792 void isl_constraint_set_constant(
793 __isl_keep isl_constraint *constraint, isl_int v);
794 void isl_constraint_set_coefficient(
795 __isl_keep isl_constraint *constraint,
796 enum isl_dim_type type, int pos, isl_int v);
797 __isl_give isl_basic_map *isl_basic_map_add_constraint(
798 __isl_take isl_basic_map *bmap,
799 __isl_take isl_constraint *constraint);
800 __isl_give isl_basic_set *isl_basic_set_add_constraint(
801 __isl_take isl_basic_set *bset,
802 __isl_take isl_constraint *constraint);
804 For example, to create a set containing the even integers
805 between 10 and 42, you would use the following code.
809 struct isl_constraint *c;
810 struct isl_basic_set *bset;
813 dim = isl_dim_set_alloc(ctx, 0, 2);
814 bset = isl_basic_set_universe(isl_dim_copy(dim));
816 c = isl_equality_alloc(isl_dim_copy(dim));
817 isl_int_set_si(v, -1);
818 isl_constraint_set_coefficient(c, isl_dim_set, 0, v);
819 isl_int_set_si(v, 2);
820 isl_constraint_set_coefficient(c, isl_dim_set, 1, v);
821 bset = isl_basic_set_add_constraint(bset, c);
823 c = isl_inequality_alloc(isl_dim_copy(dim));
824 isl_int_set_si(v, -10);
825 isl_constraint_set_constant(c, v);
826 isl_int_set_si(v, 1);
827 isl_constraint_set_coefficient(c, isl_dim_set, 0, v);
828 bset = isl_basic_set_add_constraint(bset, c);
830 c = isl_inequality_alloc(dim);
831 isl_int_set_si(v, 42);
832 isl_constraint_set_constant(c, v);
833 isl_int_set_si(v, -1);
834 isl_constraint_set_coefficient(c, isl_dim_set, 0, v);
835 bset = isl_basic_set_add_constraint(bset, c);
837 bset = isl_basic_set_project_out(bset, isl_dim_set, 1, 1);
843 struct isl_basic_set *bset;
844 bset = isl_basic_set_read_from_str(ctx,
845 "{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}", -1);
847 A basic set or relation can also be constructed from two matrices
848 describing the equalities and the inequalities.
850 __isl_give isl_basic_set *isl_basic_set_from_constraint_matrices(
851 __isl_take isl_dim *dim,
852 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
853 enum isl_dim_type c1,
854 enum isl_dim_type c2, enum isl_dim_type c3,
855 enum isl_dim_type c4);
856 __isl_give isl_basic_map *isl_basic_map_from_constraint_matrices(
857 __isl_take isl_dim *dim,
858 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
859 enum isl_dim_type c1,
860 enum isl_dim_type c2, enum isl_dim_type c3,
861 enum isl_dim_type c4, enum isl_dim_type c5);
863 The C<isl_dim_type> arguments indicate the order in which
864 different kinds of variables appear in the input matrices
865 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
866 C<isl_dim_set> and C<isl_dim_div> for sets and
867 of C<isl_dim_cst>, C<isl_dim_param>,
868 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div> for relations.
870 =head2 Inspecting Sets and Relations
872 Usually, the user should not have to care about the actual constraints
873 of the sets and maps, but should instead apply the abstract operations
874 explained in the following sections.
875 Occasionally, however, it may be required to inspect the individual
876 coefficients of the constraints. This section explains how to do so.
877 In these cases, it may also be useful to have C<isl> compute
878 an explicit representation of the existentially quantified variables.
880 __isl_give isl_set *isl_set_compute_divs(
881 __isl_take isl_set *set);
882 __isl_give isl_map *isl_map_compute_divs(
883 __isl_take isl_map *map);
884 __isl_give isl_union_set *isl_union_set_compute_divs(
885 __isl_take isl_union_set *uset);
886 __isl_give isl_union_map *isl_union_map_compute_divs(
887 __isl_take isl_union_map *umap);
889 This explicit representation defines the existentially quantified
890 variables as integer divisions of the other variables, possibly
891 including earlier existentially quantified variables.
892 An explicitly represented existentially quantified variable therefore
893 has a unique value when the values of the other variables are known.
894 If, furthermore, the same existentials, i.e., existentials
895 with the same explicit representations, should appear in the
896 same order in each of the disjuncts of a set or map, then the user should call
897 either of the following functions.
899 __isl_give isl_set *isl_set_align_divs(
900 __isl_take isl_set *set);
901 __isl_give isl_map *isl_map_align_divs(
902 __isl_take isl_map *map);
904 Alternatively, the existentially quantified variables can be removed
905 using the following functions, which compute an overapproximation.
907 __isl_give isl_basic_set *isl_basic_set_remove_divs(
908 __isl_take isl_basic_set *bset);
909 __isl_give isl_basic_map *isl_basic_map_remove_divs(
910 __isl_take isl_basic_map *bmap);
911 __isl_give isl_set *isl_set_remove_divs(
912 __isl_take isl_set *set);
914 To iterate over all the sets or maps in a union set or map, use
916 int isl_union_set_foreach_set(__isl_keep isl_union_set *uset,
917 int (*fn)(__isl_take isl_set *set, void *user),
919 int isl_union_map_foreach_map(__isl_keep isl_union_map *umap,
920 int (*fn)(__isl_take isl_map *map, void *user),
923 The number of sets or maps in a union set or map can be obtained
926 int isl_union_set_n_set(__isl_keep isl_union_set *uset);
927 int isl_union_map_n_map(__isl_keep isl_union_map *umap);
929 To extract the set or map from a union with a given dimension
932 __isl_give isl_set *isl_union_set_extract_set(
933 __isl_keep isl_union_set *uset,
934 __isl_take isl_dim *dim);
935 __isl_give isl_map *isl_union_map_extract_map(
936 __isl_keep isl_union_map *umap,
937 __isl_take isl_dim *dim);
939 To iterate over all the basic sets or maps in a set or map, use
941 int isl_set_foreach_basic_set(__isl_keep isl_set *set,
942 int (*fn)(__isl_take isl_basic_set *bset, void *user),
944 int isl_map_foreach_basic_map(__isl_keep isl_map *map,
945 int (*fn)(__isl_take isl_basic_map *bmap, void *user),
948 The callback function C<fn> should return 0 if successful and
949 -1 if an error occurs. In the latter case, or if any other error
950 occurs, the above functions will return -1.
952 It should be noted that C<isl> does not guarantee that
953 the basic sets or maps passed to C<fn> are disjoint.
954 If this is required, then the user should call one of
955 the following functions first.
957 __isl_give isl_set *isl_set_make_disjoint(
958 __isl_take isl_set *set);
959 __isl_give isl_map *isl_map_make_disjoint(
960 __isl_take isl_map *map);
962 The number of basic sets in a set can be obtained
965 int isl_set_n_basic_set(__isl_keep isl_set *set);
967 To iterate over the constraints of a basic set or map, use
969 #include <isl_constraint.h>
971 int isl_basic_map_foreach_constraint(
972 __isl_keep isl_basic_map *bmap,
973 int (*fn)(__isl_take isl_constraint *c, void *user),
975 void isl_constraint_free(struct isl_constraint *c);
977 Again, the callback function C<fn> should return 0 if successful and
978 -1 if an error occurs. In the latter case, or if any other error
979 occurs, the above functions will return -1.
980 The constraint C<c> represents either an equality or an inequality.
981 Use the following function to find out whether a constraint
982 represents an equality. If not, it represents an inequality.
984 int isl_constraint_is_equality(
985 __isl_keep isl_constraint *constraint);
987 The coefficients of the constraints can be inspected using
988 the following functions.
990 void isl_constraint_get_constant(
991 __isl_keep isl_constraint *constraint, isl_int *v);
992 void isl_constraint_get_coefficient(
993 __isl_keep isl_constraint *constraint,
994 enum isl_dim_type type, int pos, isl_int *v);
996 The explicit representations of the existentially quantified
997 variables can be inspected using the following functions.
998 Note that the user is only allowed to use these functions
999 if the inspected set or map is the result of a call
1000 to C<isl_set_compute_divs> or C<isl_map_compute_divs>.
1002 __isl_give isl_div *isl_constraint_div(
1003 __isl_keep isl_constraint *constraint, int pos);
1004 void isl_div_get_constant(__isl_keep isl_div *div,
1006 void isl_div_get_denominator(__isl_keep isl_div *div,
1008 void isl_div_get_coefficient(__isl_keep isl_div *div,
1009 enum isl_dim_type type, int pos, isl_int *v);
1011 To obtain the constraints of a basic map in matrix
1012 form, use the following functions.
1014 __isl_give isl_mat *isl_basic_map_equalities_matrix(
1015 __isl_keep isl_basic_map *bmap,
1016 enum isl_dim_type c1,
1017 enum isl_dim_type c2, enum isl_dim_type c3,
1018 enum isl_dim_type c4, enum isl_dim_type c5);
1019 __isl_give isl_mat *isl_basic_map_inequalities_matrix(
1020 __isl_keep isl_basic_map *bmap,
1021 enum isl_dim_type c1,
1022 enum isl_dim_type c2, enum isl_dim_type c3,
1023 enum isl_dim_type c4, enum isl_dim_type c5);
1025 The C<isl_dim_type> arguments dictate the order in which
1026 different kinds of variables appear in the resulting matrix
1027 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
1028 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div>.
1030 The names of the domain and range spaces of a set or relation can be
1031 read off using the following functions.
1033 const char *isl_set_get_tuple_name(
1034 __isl_keep isl_set *set);
1035 const char *isl_basic_map_get_tuple_name(
1036 __isl_keep isl_basic_map *bmap,
1037 enum isl_dim_type type);
1038 const char *isl_map_get_tuple_name(
1039 __isl_keep isl_map *map,
1040 enum isl_dim_type type);
1042 As with C<isl_dim_get_tuple_name>, the value returned points to
1043 an internal data structure.
1044 The names of individual dimensions can be read off using
1045 the following functions.
1047 const char *isl_constraint_get_dim_name(
1048 __isl_keep isl_constraint *constraint,
1049 enum isl_dim_type type, unsigned pos);
1050 const char *isl_set_get_dim_name(
1051 __isl_keep isl_set *set,
1052 enum isl_dim_type type, unsigned pos);
1053 const char *isl_basic_map_get_dim_name(
1054 __isl_keep isl_basic_map *bmap,
1055 enum isl_dim_type type, unsigned pos);
1056 const char *isl_map_get_dim_name(
1057 __isl_keep isl_map *map,
1058 enum isl_dim_type type, unsigned pos);
1060 These functions are mostly useful to obtain the names
1065 =head3 Unary Properties
1071 The following functions test whether the given set or relation
1072 contains any integer points. The ``fast'' variants do not perform
1073 any computations, but simply check if the given set or relation
1074 is already known to be empty.
1076 int isl_basic_set_fast_is_empty(__isl_keep isl_basic_set *bset);
1077 int isl_basic_set_is_empty(__isl_keep isl_basic_set *bset);
1078 int isl_set_is_empty(__isl_keep isl_set *set);
1079 int isl_union_set_is_empty(__isl_keep isl_union_set *uset);
1080 int isl_basic_map_fast_is_empty(__isl_keep isl_basic_map *bmap);
1081 int isl_basic_map_is_empty(__isl_keep isl_basic_map *bmap);
1082 int isl_map_fast_is_empty(__isl_keep isl_map *map);
1083 int isl_map_is_empty(__isl_keep isl_map *map);
1084 int isl_union_map_is_empty(__isl_keep isl_union_map *umap);
1086 =item * Universality
1088 int isl_basic_set_is_universe(__isl_keep isl_basic_set *bset);
1089 int isl_basic_map_is_universe(__isl_keep isl_basic_map *bmap);
1090 int isl_set_fast_is_universe(__isl_keep isl_set *set);
1092 =item * Single-valuedness
1094 int isl_map_is_single_valued(__isl_keep isl_map *map);
1098 int isl_map_is_bijective(__isl_keep isl_map *map);
1102 The followning functions check whether the domain of the given
1103 (basic) set is a wrapped relation.
1105 int isl_basic_set_is_wrapping(
1106 __isl_keep isl_basic_set *bset);
1107 int isl_set_is_wrapping(__isl_keep isl_set *set);
1111 =head3 Binary Properties
1117 int isl_set_fast_is_equal(__isl_keep isl_set *set1,
1118 __isl_keep isl_set *set2);
1119 int isl_set_is_equal(__isl_keep isl_set *set1,
1120 __isl_keep isl_set *set2);
1121 int isl_basic_map_is_equal(
1122 __isl_keep isl_basic_map *bmap1,
1123 __isl_keep isl_basic_map *bmap2);
1124 int isl_map_is_equal(__isl_keep isl_map *map1,
1125 __isl_keep isl_map *map2);
1126 int isl_map_fast_is_equal(__isl_keep isl_map *map1,
1127 __isl_keep isl_map *map2);
1128 int isl_union_map_is_equal(
1129 __isl_keep isl_union_map *umap1,
1130 __isl_keep isl_union_map *umap2);
1132 =item * Disjointness
1134 int isl_set_fast_is_disjoint(__isl_keep isl_set *set1,
1135 __isl_keep isl_set *set2);
1139 int isl_set_is_subset(__isl_keep isl_set *set1,
1140 __isl_keep isl_set *set2);
1141 int isl_set_is_strict_subset(
1142 __isl_keep isl_set *set1,
1143 __isl_keep isl_set *set2);
1144 int isl_basic_map_is_subset(
1145 __isl_keep isl_basic_map *bmap1,
1146 __isl_keep isl_basic_map *bmap2);
1147 int isl_basic_map_is_strict_subset(
1148 __isl_keep isl_basic_map *bmap1,
1149 __isl_keep isl_basic_map *bmap2);
1150 int isl_map_is_subset(
1151 __isl_keep isl_map *map1,
1152 __isl_keep isl_map *map2);
1153 int isl_map_is_strict_subset(
1154 __isl_keep isl_map *map1,
1155 __isl_keep isl_map *map2);
1156 int isl_union_map_is_subset(
1157 __isl_keep isl_union_map *umap1,
1158 __isl_keep isl_union_map *umap2);
1159 int isl_union_map_is_strict_subset(
1160 __isl_keep isl_union_map *umap1,
1161 __isl_keep isl_union_map *umap2);
1165 =head2 Unary Operations
1171 __isl_give isl_set *isl_set_complement(
1172 __isl_take isl_set *set);
1176 __isl_give isl_basic_map *isl_basic_map_reverse(
1177 __isl_take isl_basic_map *bmap);
1178 __isl_give isl_map *isl_map_reverse(
1179 __isl_take isl_map *map);
1180 __isl_give isl_union_map *isl_union_map_reverse(
1181 __isl_take isl_union_map *umap);
1185 __isl_give isl_basic_set *isl_basic_set_project_out(
1186 __isl_take isl_basic_set *bset,
1187 enum isl_dim_type type, unsigned first, unsigned n);
1188 __isl_give isl_basic_map *isl_basic_map_project_out(
1189 __isl_take isl_basic_map *bmap,
1190 enum isl_dim_type type, unsigned first, unsigned n);
1191 __isl_give isl_set *isl_set_project_out(__isl_take isl_set *set,
1192 enum isl_dim_type type, unsigned first, unsigned n);
1193 __isl_give isl_map *isl_map_project_out(__isl_take isl_map *map,
1194 enum isl_dim_type type, unsigned first, unsigned n);
1195 __isl_give isl_basic_set *isl_basic_map_domain(
1196 __isl_take isl_basic_map *bmap);
1197 __isl_give isl_basic_set *isl_basic_map_range(
1198 __isl_take isl_basic_map *bmap);
1199 __isl_give isl_set *isl_map_domain(
1200 __isl_take isl_map *bmap);
1201 __isl_give isl_set *isl_map_range(
1202 __isl_take isl_map *map);
1203 __isl_give isl_union_set *isl_union_map_domain(
1204 __isl_take isl_union_map *umap);
1205 __isl_give isl_union_set *isl_union_map_range(
1206 __isl_take isl_union_map *umap);
1208 __isl_give isl_basic_map *isl_basic_map_domain_map(
1209 __isl_take isl_basic_map *bmap);
1210 __isl_give isl_basic_map *isl_basic_map_range_map(
1211 __isl_take isl_basic_map *bmap);
1212 __isl_give isl_map *isl_map_domain_map(__isl_take isl_map *map);
1213 __isl_give isl_map *isl_map_range_map(__isl_take isl_map *map);
1214 __isl_give isl_union_map *isl_union_map_domain_map(
1215 __isl_take isl_union_map *umap);
1216 __isl_give isl_union_map *isl_union_map_range_map(
1217 __isl_take isl_union_map *umap);
1219 The functions above construct a (basic, regular or union) relation
1220 that maps (a wrapped version of) the input relation to its domain or range.
1224 __isl_give isl_map *isl_set_identity(
1225 __isl_take isl_set *set);
1226 __isl_give isl_union_map *isl_union_set_identity(
1227 __isl_take isl_union_set *uset);
1229 Construct an identity relation on the given (union) set.
1233 __isl_give isl_basic_set *isl_basic_map_deltas(
1234 __isl_take isl_basic_map *bmap);
1235 __isl_give isl_set *isl_map_deltas(__isl_take isl_map *map);
1236 __isl_give isl_union_set *isl_union_map_deltas(
1237 __isl_take isl_union_map *umap);
1239 These functions return a (basic) set containing the differences
1240 between image elements and corresponding domain elements in the input.
1244 Simplify the representation of a set or relation by trying
1245 to combine pairs of basic sets or relations into a single
1246 basic set or relation.
1248 __isl_give isl_set *isl_set_coalesce(__isl_take isl_set *set);
1249 __isl_give isl_map *isl_map_coalesce(__isl_take isl_map *map);
1250 __isl_give isl_union_set *isl_union_set_coalesce(
1251 __isl_take isl_union_set *uset);
1252 __isl_give isl_union_map *isl_union_map_coalesce(
1253 __isl_take isl_union_map *umap);
1257 __isl_give isl_basic_set *isl_set_convex_hull(
1258 __isl_take isl_set *set);
1259 __isl_give isl_basic_map *isl_map_convex_hull(
1260 __isl_take isl_map *map);
1262 If the input set or relation has any existentially quantified
1263 variables, then the result of these operations is currently undefined.
1267 __isl_give isl_basic_set *isl_set_simple_hull(
1268 __isl_take isl_set *set);
1269 __isl_give isl_basic_map *isl_map_simple_hull(
1270 __isl_take isl_map *map);
1272 These functions compute a single basic set or relation
1273 that contains the whole input set or relation.
1274 In particular, the output is described by translates
1275 of the constraints describing the basic sets or relations in the input.
1279 (See \autoref{s:simple hull}.)
1285 __isl_give isl_basic_set *isl_basic_set_affine_hull(
1286 __isl_take isl_basic_set *bset);
1287 __isl_give isl_basic_set *isl_set_affine_hull(
1288 __isl_take isl_set *set);
1289 __isl_give isl_union_set *isl_union_set_affine_hull(
1290 __isl_take isl_union_set *uset);
1291 __isl_give isl_basic_map *isl_basic_map_affine_hull(
1292 __isl_take isl_basic_map *bmap);
1293 __isl_give isl_basic_map *isl_map_affine_hull(
1294 __isl_take isl_map *map);
1295 __isl_give isl_union_map *isl_union_map_affine_hull(
1296 __isl_take isl_union_map *umap);
1298 In case of union sets and relations, the affine hull is computed
1301 =item * Polyhedral hull
1303 __isl_give isl_basic_set *isl_set_polyhedral_hull(
1304 __isl_take isl_set *set);
1305 __isl_give isl_basic_map *isl_map_polyhedral_hull(
1306 __isl_take isl_map *map);
1307 __isl_give isl_union_set *isl_union_set_polyhedral_hull(
1308 __isl_take isl_union_set *uset);
1309 __isl_give isl_union_map *isl_union_map_polyhedral_hull(
1310 __isl_take isl_union_map *umap);
1312 These functions compute a single basic set or relation
1313 not involving any existentially quantified variables
1314 that contains the whole input set or relation.
1315 In case of union sets and relations, the polyhedral hull is computed
1320 __isl_give isl_map *isl_map_power(__isl_take isl_map *map,
1321 unsigned param, int *exact);
1323 Compute a parametric representation for all positive powers I<k> of C<map>.
1324 The power I<k> is equated to the parameter at position C<param>.
1325 The result may be an overapproximation. If the result is exact,
1326 then C<*exact> is set to C<1>.
1327 The current implementation only produces exact results for particular
1328 cases of piecewise translations (i.e., piecewise uniform dependences).
1330 =item * Transitive closure
1332 __isl_give isl_map *isl_map_transitive_closure(
1333 __isl_take isl_map *map, int *exact);
1334 __isl_give isl_union_map *isl_union_map_transitive_closure(
1335 __isl_take isl_union_map *umap, int *exact);
1337 Compute the transitive closure of C<map>.
1338 The result may be an overapproximation. If the result is known to be exact,
1339 then C<*exact> is set to C<1>.
1340 The current implementation only produces exact results for particular
1341 cases of piecewise translations (i.e., piecewise uniform dependences).
1343 =item * Reaching path lengths
1345 __isl_give isl_map *isl_map_reaching_path_lengths(
1346 __isl_take isl_map *map, int *exact);
1348 Compute a relation that maps each element in the range of C<map>
1349 to the lengths of all paths composed of edges in C<map> that
1350 end up in the given element.
1351 The result may be an overapproximation. If the result is known to be exact,
1352 then C<*exact> is set to C<1>.
1353 To compute the I<maximal> path length, the resulting relation
1354 should be postprocessed by C<isl_map_lexmax>.
1355 In particular, if the input relation is a dependence relation
1356 (mapping sources to sinks), then the maximal path length corresponds
1357 to the free schedule.
1358 Note, however, that C<isl_map_lexmax> expects the maximum to be
1359 finite, so if the path lengths are unbounded (possibly due to
1360 the overapproximation), then you will get an error message.
1364 __isl_give isl_basic_set *isl_basic_map_wrap(
1365 __isl_take isl_basic_map *bmap);
1366 __isl_give isl_set *isl_map_wrap(
1367 __isl_take isl_map *map);
1368 __isl_give isl_union_set *isl_union_map_wrap(
1369 __isl_take isl_union_map *umap);
1370 __isl_give isl_basic_map *isl_basic_set_unwrap(
1371 __isl_take isl_basic_set *bset);
1372 __isl_give isl_map *isl_set_unwrap(
1373 __isl_take isl_set *set);
1374 __isl_give isl_union_map *isl_union_set_unwrap(
1375 __isl_take isl_union_set *uset);
1379 Remove any internal structure of domain (and range) of the given
1380 set or relation. If there is any such internal structure in the input,
1381 then the name of the space is also removed.
1383 __isl_give isl_set *isl_set_flatten(
1384 __isl_take isl_set *set);
1385 __isl_give isl_map *isl_map_flatten(
1386 __isl_take isl_map *map);
1388 __isl_give isl_map *isl_set_flatten_map(
1389 __isl_take isl_set *set);
1391 The function above constructs a relation
1392 that maps the input set to a flattened version of the set.
1394 =item * Dimension manipulation
1396 __isl_give isl_set *isl_set_add_dims(
1397 __isl_take isl_set *set,
1398 enum isl_dim_type type, unsigned n);
1399 __isl_give isl_map *isl_map_add_dims(
1400 __isl_take isl_map *map,
1401 enum isl_dim_type type, unsigned n);
1403 It is usually not advisable to directly change the (input or output)
1404 space of a set or a relation as this removes the name and the internal
1405 structure of the space. However, the above functions can be useful
1406 to add new parameters.
1410 =head2 Binary Operations
1412 The two arguments of a binary operation not only need to live
1413 in the same C<isl_ctx>, they currently also need to have
1414 the same (number of) parameters.
1416 =head3 Basic Operations
1420 =item * Intersection
1422 __isl_give isl_basic_set *isl_basic_set_intersect(
1423 __isl_take isl_basic_set *bset1,
1424 __isl_take isl_basic_set *bset2);
1425 __isl_give isl_set *isl_set_intersect(
1426 __isl_take isl_set *set1,
1427 __isl_take isl_set *set2);
1428 __isl_give isl_union_set *isl_union_set_intersect(
1429 __isl_take isl_union_set *uset1,
1430 __isl_take isl_union_set *uset2);
1431 __isl_give isl_basic_map *isl_basic_map_intersect_domain(
1432 __isl_take isl_basic_map *bmap,
1433 __isl_take isl_basic_set *bset);
1434 __isl_give isl_basic_map *isl_basic_map_intersect_range(
1435 __isl_take isl_basic_map *bmap,
1436 __isl_take isl_basic_set *bset);
1437 __isl_give isl_basic_map *isl_basic_map_intersect(
1438 __isl_take isl_basic_map *bmap1,
1439 __isl_take isl_basic_map *bmap2);
1440 __isl_give isl_map *isl_map_intersect_domain(
1441 __isl_take isl_map *map,
1442 __isl_take isl_set *set);
1443 __isl_give isl_map *isl_map_intersect_range(
1444 __isl_take isl_map *map,
1445 __isl_take isl_set *set);
1446 __isl_give isl_map *isl_map_intersect(
1447 __isl_take isl_map *map1,
1448 __isl_take isl_map *map2);
1449 __isl_give isl_union_map *isl_union_map_intersect_domain(
1450 __isl_take isl_union_map *umap,
1451 __isl_take isl_union_set *uset);
1452 __isl_give isl_union_map *isl_union_map_intersect_range(
1453 __isl_take isl_union_map *umap,
1454 __isl_take isl_union_set *uset);
1455 __isl_give isl_union_map *isl_union_map_intersect(
1456 __isl_take isl_union_map *umap1,
1457 __isl_take isl_union_map *umap2);
1461 __isl_give isl_set *isl_basic_set_union(
1462 __isl_take isl_basic_set *bset1,
1463 __isl_take isl_basic_set *bset2);
1464 __isl_give isl_map *isl_basic_map_union(
1465 __isl_take isl_basic_map *bmap1,
1466 __isl_take isl_basic_map *bmap2);
1467 __isl_give isl_set *isl_set_union(
1468 __isl_take isl_set *set1,
1469 __isl_take isl_set *set2);
1470 __isl_give isl_map *isl_map_union(
1471 __isl_take isl_map *map1,
1472 __isl_take isl_map *map2);
1473 __isl_give isl_union_set *isl_union_set_union(
1474 __isl_take isl_union_set *uset1,
1475 __isl_take isl_union_set *uset2);
1476 __isl_give isl_union_map *isl_union_map_union(
1477 __isl_take isl_union_map *umap1,
1478 __isl_take isl_union_map *umap2);
1480 =item * Set difference
1482 __isl_give isl_set *isl_set_subtract(
1483 __isl_take isl_set *set1,
1484 __isl_take isl_set *set2);
1485 __isl_give isl_map *isl_map_subtract(
1486 __isl_take isl_map *map1,
1487 __isl_take isl_map *map2);
1488 __isl_give isl_union_set *isl_union_set_subtract(
1489 __isl_take isl_union_set *uset1,
1490 __isl_take isl_union_set *uset2);
1491 __isl_give isl_union_map *isl_union_map_subtract(
1492 __isl_take isl_union_map *umap1,
1493 __isl_take isl_union_map *umap2);
1497 __isl_give isl_basic_set *isl_basic_set_apply(
1498 __isl_take isl_basic_set *bset,
1499 __isl_take isl_basic_map *bmap);
1500 __isl_give isl_set *isl_set_apply(
1501 __isl_take isl_set *set,
1502 __isl_take isl_map *map);
1503 __isl_give isl_union_set *isl_union_set_apply(
1504 __isl_take isl_union_set *uset,
1505 __isl_take isl_union_map *umap);
1506 __isl_give isl_basic_map *isl_basic_map_apply_domain(
1507 __isl_take isl_basic_map *bmap1,
1508 __isl_take isl_basic_map *bmap2);
1509 __isl_give isl_basic_map *isl_basic_map_apply_range(
1510 __isl_take isl_basic_map *bmap1,
1511 __isl_take isl_basic_map *bmap2);
1512 __isl_give isl_map *isl_map_apply_domain(
1513 __isl_take isl_map *map1,
1514 __isl_take isl_map *map2);
1515 __isl_give isl_union_map *isl_union_map_apply_domain(
1516 __isl_take isl_union_map *umap1,
1517 __isl_take isl_union_map *umap2);
1518 __isl_give isl_map *isl_map_apply_range(
1519 __isl_take isl_map *map1,
1520 __isl_take isl_map *map2);
1521 __isl_give isl_union_map *isl_union_map_apply_range(
1522 __isl_take isl_union_map *umap1,
1523 __isl_take isl_union_map *umap2);
1525 =item * Simplification
1527 __isl_give isl_basic_set *isl_basic_set_gist(
1528 __isl_take isl_basic_set *bset,
1529 __isl_take isl_basic_set *context);
1530 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
1531 __isl_take isl_set *context);
1532 __isl_give isl_union_set *isl_union_set_gist(
1533 __isl_take isl_union_set *uset,
1534 __isl_take isl_union_set *context);
1535 __isl_give isl_basic_map *isl_basic_map_gist(
1536 __isl_take isl_basic_map *bmap,
1537 __isl_take isl_basic_map *context);
1538 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
1539 __isl_take isl_map *context);
1540 __isl_give isl_union_map *isl_union_map_gist(
1541 __isl_take isl_union_map *umap,
1542 __isl_take isl_union_map *context);
1544 The gist operation returns a set or relation that has the
1545 same intersection with the context as the input set or relation.
1546 Any implicit equality in the intersection is made explicit in the result,
1547 while all inequalities that are redundant with respect to the intersection
1549 In case of union sets and relations, the gist operation is performed
1554 =head3 Lexicographic Optimization
1556 Given a (basic) set C<set> (or C<bset>) and a zero-dimensional domain C<dom>,
1557 the following functions
1558 compute a set that contains the lexicographic minimum or maximum
1559 of the elements in C<set> (or C<bset>) for those values of the parameters
1560 that satisfy C<dom>.
1561 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
1562 that contains the parameter values in C<dom> for which C<set> (or C<bset>)
1564 In other words, the union of the parameter values
1565 for which the result is non-empty and of C<*empty>
1568 __isl_give isl_set *isl_basic_set_partial_lexmin(
1569 __isl_take isl_basic_set *bset,
1570 __isl_take isl_basic_set *dom,
1571 __isl_give isl_set **empty);
1572 __isl_give isl_set *isl_basic_set_partial_lexmax(
1573 __isl_take isl_basic_set *bset,
1574 __isl_take isl_basic_set *dom,
1575 __isl_give isl_set **empty);
1576 __isl_give isl_set *isl_set_partial_lexmin(
1577 __isl_take isl_set *set, __isl_take isl_set *dom,
1578 __isl_give isl_set **empty);
1579 __isl_give isl_set *isl_set_partial_lexmax(
1580 __isl_take isl_set *set, __isl_take isl_set *dom,
1581 __isl_give isl_set **empty);
1583 Given a (basic) set C<set> (or C<bset>), the following functions simply
1584 return a set containing the lexicographic minimum or maximum
1585 of the elements in C<set> (or C<bset>).
1586 In case of union sets, the optimum is computed per space.
1588 __isl_give isl_set *isl_basic_set_lexmin(
1589 __isl_take isl_basic_set *bset);
1590 __isl_give isl_set *isl_basic_set_lexmax(
1591 __isl_take isl_basic_set *bset);
1592 __isl_give isl_set *isl_set_lexmin(
1593 __isl_take isl_set *set);
1594 __isl_give isl_set *isl_set_lexmax(
1595 __isl_take isl_set *set);
1596 __isl_give isl_union_set *isl_union_set_lexmin(
1597 __isl_take isl_union_set *uset);
1598 __isl_give isl_union_set *isl_union_set_lexmax(
1599 __isl_take isl_union_set *uset);
1601 Given a (basic) relation C<map> (or C<bmap>) and a domain C<dom>,
1602 the following functions
1603 compute a relation that maps each element of C<dom>
1604 to the single lexicographic minimum or maximum
1605 of the elements that are associated to that same
1606 element in C<map> (or C<bmap>).
1607 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
1608 that contains the elements in C<dom> that do not map
1609 to any elements in C<map> (or C<bmap>).
1610 In other words, the union of the domain of the result and of C<*empty>
1613 __isl_give isl_map *isl_basic_map_partial_lexmax(
1614 __isl_take isl_basic_map *bmap,
1615 __isl_take isl_basic_set *dom,
1616 __isl_give isl_set **empty);
1617 __isl_give isl_map *isl_basic_map_partial_lexmin(
1618 __isl_take isl_basic_map *bmap,
1619 __isl_take isl_basic_set *dom,
1620 __isl_give isl_set **empty);
1621 __isl_give isl_map *isl_map_partial_lexmax(
1622 __isl_take isl_map *map, __isl_take isl_set *dom,
1623 __isl_give isl_set **empty);
1624 __isl_give isl_map *isl_map_partial_lexmin(
1625 __isl_take isl_map *map, __isl_take isl_set *dom,
1626 __isl_give isl_set **empty);
1628 Given a (basic) map C<map> (or C<bmap>), the following functions simply
1629 return a map mapping each element in the domain of
1630 C<map> (or C<bmap>) to the lexicographic minimum or maximum
1631 of all elements associated to that element.
1632 In case of union relations, the optimum is computed per space.
1634 __isl_give isl_map *isl_basic_map_lexmin(
1635 __isl_take isl_basic_map *bmap);
1636 __isl_give isl_map *isl_basic_map_lexmax(
1637 __isl_take isl_basic_map *bmap);
1638 __isl_give isl_map *isl_map_lexmin(
1639 __isl_take isl_map *map);
1640 __isl_give isl_map *isl_map_lexmax(
1641 __isl_take isl_map *map);
1642 __isl_give isl_union_map *isl_union_map_lexmin(
1643 __isl_take isl_union_map *umap);
1644 __isl_give isl_union_map *isl_union_map_lexmax(
1645 __isl_take isl_union_map *umap);
1649 Matrices can be created, copied and freed using the following functions.
1651 #include <isl_mat.h>
1652 __isl_give isl_mat *isl_mat_alloc(struct isl_ctx *ctx,
1653 unsigned n_row, unsigned n_col);
1654 __isl_give isl_mat *isl_mat_copy(__isl_keep isl_mat *mat);
1655 void isl_mat_free(__isl_take isl_mat *mat);
1657 Note that the elements of a newly created matrix may have arbitrary values.
1658 The elements can be changed and inspected using the following functions.
1660 int isl_mat_rows(__isl_keep isl_mat *mat);
1661 int isl_mat_cols(__isl_keep isl_mat *mat);
1662 int isl_mat_get_element(__isl_keep isl_mat *mat,
1663 int row, int col, isl_int *v);
1664 __isl_give isl_mat *isl_mat_set_element(__isl_take isl_mat *mat,
1665 int row, int col, isl_int v);
1667 C<isl_mat_get_element> will return a negative value if anything went wrong.
1668 In that case, the value of C<*v> is undefined.
1670 The following function can be used to compute the (right) inverse
1671 of a matrix, i.e., a matrix such that the product of the original
1672 and the inverse (in that order) is a multiple of the identity matrix.
1673 The input matrix is assumed to be of full row-rank.
1675 __isl_give isl_mat *isl_mat_right_inverse(__isl_take isl_mat *mat);
1677 The following function can be used to compute the (right) kernel
1678 (or null space) of a matrix, i.e., a matrix such that the product of
1679 the original and the kernel (in that order) is the zero matrix.
1681 __isl_give isl_mat *isl_mat_right_kernel(__isl_take isl_mat *mat);
1685 Points are elements of a set. They can be used to construct
1686 simple sets (boxes) or they can be used to represent the
1687 individual elements of a set.
1688 The zero point (the origin) can be created using
1690 __isl_give isl_point *isl_point_zero(__isl_take isl_dim *dim);
1692 The coordinates of a point can be inspected, set and changed
1695 void isl_point_get_coordinate(__isl_keep isl_point *pnt,
1696 enum isl_dim_type type, int pos, isl_int *v);
1697 __isl_give isl_point *isl_point_set_coordinate(
1698 __isl_take isl_point *pnt,
1699 enum isl_dim_type type, int pos, isl_int v);
1701 __isl_give isl_point *isl_point_add_ui(
1702 __isl_take isl_point *pnt,
1703 enum isl_dim_type type, int pos, unsigned val);
1704 __isl_give isl_point *isl_point_sub_ui(
1705 __isl_take isl_point *pnt,
1706 enum isl_dim_type type, int pos, unsigned val);
1708 Points can be copied or freed using
1710 __isl_give isl_point *isl_point_copy(
1711 __isl_keep isl_point *pnt);
1712 void isl_point_free(__isl_take isl_point *pnt);
1714 A singleton set can be created from a point using
1716 __isl_give isl_set *isl_set_from_point(
1717 __isl_take isl_point *pnt);
1719 and a box can be created from two opposite extremal points using
1721 __isl_give isl_set *isl_set_box_from_points(
1722 __isl_take isl_point *pnt1,
1723 __isl_take isl_point *pnt2);
1725 All elements of a B<bounded> (union) set can be enumerated using
1726 the following functions.
1728 int isl_set_foreach_point(__isl_keep isl_set *set,
1729 int (*fn)(__isl_take isl_point *pnt, void *user),
1731 int isl_union_set_foreach_point(__isl_keep isl_union_set *uset,
1732 int (*fn)(__isl_take isl_point *pnt, void *user),
1735 The function C<fn> is called for each integer point in
1736 C<set> with as second argument the last argument of
1737 the C<isl_set_foreach_point> call. The function C<fn>
1738 should return C<0> on success and C<-1> on failure.
1739 In the latter case, C<isl_set_foreach_point> will stop
1740 enumerating and return C<-1> as well.
1741 If the enumeration is performed successfully and to completion,
1742 then C<isl_set_foreach_point> returns C<0>.
1744 To obtain a single point of a (basic) set, use
1746 __isl_give isl_point *isl_basic_set_sample_point(
1747 __isl_take isl_basic_set *bset);
1748 __isl_give isl_point *isl_set_sample_point(
1749 __isl_take isl_set *set);
1751 If C<set> does not contain any (integer) points, then the
1752 resulting point will be ``void'', a property that can be
1755 int isl_point_is_void(__isl_keep isl_point *pnt);
1757 =head2 Piecewise Quasipolynomials
1759 A piecewise quasipolynomial is a particular kind of function that maps
1760 a parametric point to a rational value.
1761 More specifically, a quasipolynomial is a polynomial expression in greatest
1762 integer parts of affine expressions of parameters and variables.
1763 A piecewise quasipolynomial is a subdivision of a given parametric
1764 domain into disjoint cells with a quasipolynomial associated to
1765 each cell. The value of the piecewise quasipolynomial at a given
1766 point is the value of the quasipolynomial associated to the cell
1767 that contains the point. Outside of the union of cells,
1768 the value is assumed to be zero.
1769 For example, the piecewise quasipolynomial
1771 [n] -> { [x] -> ((1 + n) - x) : x <= n and x >= 0 }
1773 maps C<x> to C<1 + n - x> for values of C<x> between C<0> and C<n>.
1774 A given piecewise quasipolynomial has a fixed domain dimension.
1775 Union piecewise quasipolynomials are used to contain piecewise quasipolynomials
1776 defined over different domains.
1777 Piecewise quasipolynomials are mainly used by the C<barvinok>
1778 library for representing the number of elements in a parametric set or map.
1779 For example, the piecewise quasipolynomial above represents
1780 the number of points in the map
1782 [n] -> { [x] -> [y] : x,y >= 0 and 0 <= x + y <= n }
1784 =head3 Printing (Piecewise) Quasipolynomials
1786 Quasipolynomials and piecewise quasipolynomials can be printed
1787 using the following functions.
1789 __isl_give isl_printer *isl_printer_print_qpolynomial(
1790 __isl_take isl_printer *p,
1791 __isl_keep isl_qpolynomial *qp);
1793 __isl_give isl_printer *isl_printer_print_pw_qpolynomial(
1794 __isl_take isl_printer *p,
1795 __isl_keep isl_pw_qpolynomial *pwqp);
1797 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial(
1798 __isl_take isl_printer *p,
1799 __isl_keep isl_union_pw_qpolynomial *upwqp);
1801 The output format of the printer
1802 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
1803 For C<isl_printer_print_union_pw_qpolynomial>, only C<ISL_FORMAT_ISL>
1805 In case of printing in C<ISL_FORMAT_C>, the user may want
1806 to set the names of all dimensions
1808 __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name(
1809 __isl_take isl_qpolynomial *qp,
1810 enum isl_dim_type type, unsigned pos,
1812 __isl_give isl_pw_qpolynomial *
1813 isl_pw_qpolynomial_set_dim_name(
1814 __isl_take isl_pw_qpolynomial *pwqp,
1815 enum isl_dim_type type, unsigned pos,
1818 =head3 Creating New (Piecewise) Quasipolynomials
1820 Some simple quasipolynomials can be created using the following functions.
1821 More complicated quasipolynomials can be created by applying
1822 operations such as addition and multiplication
1823 on the resulting quasipolynomials
1825 __isl_give isl_qpolynomial *isl_qpolynomial_zero(
1826 __isl_take isl_dim *dim);
1827 __isl_give isl_qpolynomial *isl_qpolynomial_one(
1828 __isl_take isl_dim *dim);
1829 __isl_give isl_qpolynomial *isl_qpolynomial_infty(
1830 __isl_take isl_dim *dim);
1831 __isl_give isl_qpolynomial *isl_qpolynomial_neginfty(
1832 __isl_take isl_dim *dim);
1833 __isl_give isl_qpolynomial *isl_qpolynomial_nan(
1834 __isl_take isl_dim *dim);
1835 __isl_give isl_qpolynomial *isl_qpolynomial_rat_cst(
1836 __isl_take isl_dim *dim,
1837 const isl_int n, const isl_int d);
1838 __isl_give isl_qpolynomial *isl_qpolynomial_div(
1839 __isl_take isl_div *div);
1840 __isl_give isl_qpolynomial *isl_qpolynomial_var(
1841 __isl_take isl_dim *dim,
1842 enum isl_dim_type type, unsigned pos);
1844 The zero piecewise quasipolynomial or a piecewise quasipolynomial
1845 with a single cell can be created using the following functions.
1846 Multiple of these single cell piecewise quasipolynomials can
1847 be combined to create more complicated piecewise quasipolynomials.
1849 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_zero(
1850 __isl_take isl_dim *dim);
1851 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_alloc(
1852 __isl_take isl_set *set,
1853 __isl_take isl_qpolynomial *qp);
1855 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_zero(
1856 __isl_take isl_dim *dim);
1857 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_from_pw_qpolynomial(
1858 __isl_take isl_pw_qpolynomial *pwqp);
1859 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add_pw_qpolynomial(
1860 __isl_take isl_union_pw_qpolynomial *upwqp,
1861 __isl_take isl_pw_qpolynomial *pwqp);
1863 Quasipolynomials can be copied and freed again using the following
1866 __isl_give isl_qpolynomial *isl_qpolynomial_copy(
1867 __isl_keep isl_qpolynomial *qp);
1868 void isl_qpolynomial_free(__isl_take isl_qpolynomial *qp);
1870 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_copy(
1871 __isl_keep isl_pw_qpolynomial *pwqp);
1872 void isl_pw_qpolynomial_free(
1873 __isl_take isl_pw_qpolynomial *pwqp);
1875 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_copy(
1876 __isl_keep isl_union_pw_qpolynomial *upwqp);
1877 void isl_union_pw_qpolynomial_free(
1878 __isl_take isl_union_pw_qpolynomial *upwqp);
1880 =head3 Inspecting (Piecewise) Quasipolynomials
1882 To iterate over all piecewise quasipolynomials in a union
1883 piecewise quasipolynomial, use the following function
1885 int isl_union_pw_qpolynomial_foreach_pw_qpolynomial(
1886 __isl_keep isl_union_pw_qpolynomial *upwqp,
1887 int (*fn)(__isl_take isl_pw_qpolynomial *pwqp, void *user),
1890 To extract the piecewise quasipolynomial from a union with a given dimension
1893 __isl_give isl_pw_qpolynomial *
1894 isl_union_pw_qpolynomial_extract_pw_qpolynomial(
1895 __isl_keep isl_union_pw_qpolynomial *upwqp,
1896 __isl_take isl_dim *dim);
1898 To iterate over the cells in a piecewise quasipolynomial,
1899 use either of the following two functions
1901 int isl_pw_qpolynomial_foreach_piece(
1902 __isl_keep isl_pw_qpolynomial *pwqp,
1903 int (*fn)(__isl_take isl_set *set,
1904 __isl_take isl_qpolynomial *qp,
1905 void *user), void *user);
1906 int isl_pw_qpolynomial_foreach_lifted_piece(
1907 __isl_keep isl_pw_qpolynomial *pwqp,
1908 int (*fn)(__isl_take isl_set *set,
1909 __isl_take isl_qpolynomial *qp,
1910 void *user), void *user);
1912 As usual, the function C<fn> should return C<0> on success
1913 and C<-1> on failure. The difference between
1914 C<isl_pw_qpolynomial_foreach_piece> and
1915 C<isl_pw_qpolynomial_foreach_lifted_piece> is that
1916 C<isl_pw_qpolynomial_foreach_lifted_piece> will first
1917 compute unique representations for all existentially quantified
1918 variables and then turn these existentially quantified variables
1919 into extra set variables, adapting the associated quasipolynomial
1920 accordingly. This means that the C<set> passed to C<fn>
1921 will not have any existentially quantified variables, but that
1922 the dimensions of the sets may be different for different
1923 invocations of C<fn>.
1925 To iterate over all terms in a quasipolynomial,
1928 int isl_qpolynomial_foreach_term(
1929 __isl_keep isl_qpolynomial *qp,
1930 int (*fn)(__isl_take isl_term *term,
1931 void *user), void *user);
1933 The terms themselves can be inspected and freed using
1936 unsigned isl_term_dim(__isl_keep isl_term *term,
1937 enum isl_dim_type type);
1938 void isl_term_get_num(__isl_keep isl_term *term,
1940 void isl_term_get_den(__isl_keep isl_term *term,
1942 int isl_term_get_exp(__isl_keep isl_term *term,
1943 enum isl_dim_type type, unsigned pos);
1944 __isl_give isl_div *isl_term_get_div(
1945 __isl_keep isl_term *term, unsigned pos);
1946 void isl_term_free(__isl_take isl_term *term);
1948 Each term is a product of parameters, set variables and
1949 integer divisions. The function C<isl_term_get_exp>
1950 returns the exponent of a given dimensions in the given term.
1951 The C<isl_int>s in the arguments of C<isl_term_get_num>
1952 and C<isl_term_get_den> need to have been initialized
1953 using C<isl_int_init> before calling these functions.
1955 =head3 Properties of (Piecewise) Quasipolynomials
1957 To check whether a quasipolynomial is actually a constant,
1958 use the following function.
1960 int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp,
1961 isl_int *n, isl_int *d);
1963 If C<qp> is a constant and if C<n> and C<d> are not C<NULL>
1964 then the numerator and denominator of the constant
1965 are returned in C<*n> and C<*d>, respectively.
1967 =head3 Operations on (Piecewise) Quasipolynomials
1969 __isl_give isl_qpolynomial *isl_qpolynomial_neg(
1970 __isl_take isl_qpolynomial *qp);
1971 __isl_give isl_qpolynomial *isl_qpolynomial_add(
1972 __isl_take isl_qpolynomial *qp1,
1973 __isl_take isl_qpolynomial *qp2);
1974 __isl_give isl_qpolynomial *isl_qpolynomial_sub(
1975 __isl_take isl_qpolynomial *qp1,
1976 __isl_take isl_qpolynomial *qp2);
1977 __isl_give isl_qpolynomial *isl_qpolynomial_mul(
1978 __isl_take isl_qpolynomial *qp1,
1979 __isl_take isl_qpolynomial *qp2);
1981 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add(
1982 __isl_take isl_pw_qpolynomial *pwqp1,
1983 __isl_take isl_pw_qpolynomial *pwqp2);
1984 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_sub(
1985 __isl_take isl_pw_qpolynomial *pwqp1,
1986 __isl_take isl_pw_qpolynomial *pwqp2);
1987 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_disjoint(
1988 __isl_take isl_pw_qpolynomial *pwqp1,
1989 __isl_take isl_pw_qpolynomial *pwqp2);
1990 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_neg(
1991 __isl_take isl_pw_qpolynomial *pwqp);
1992 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
1993 __isl_take isl_pw_qpolynomial *pwqp1,
1994 __isl_take isl_pw_qpolynomial *pwqp2);
1996 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add(
1997 __isl_take isl_union_pw_qpolynomial *upwqp1,
1998 __isl_take isl_union_pw_qpolynomial *upwqp2);
1999 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_sub(
2000 __isl_take isl_union_pw_qpolynomial *upwqp1,
2001 __isl_take isl_union_pw_qpolynomial *upwqp2);
2002 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul(
2003 __isl_take isl_union_pw_qpolynomial *upwqp1,
2004 __isl_take isl_union_pw_qpolynomial *upwqp2);
2006 __isl_give isl_qpolynomial *isl_pw_qpolynomial_eval(
2007 __isl_take isl_pw_qpolynomial *pwqp,
2008 __isl_take isl_point *pnt);
2010 __isl_give isl_qpolynomial *isl_union_pw_qpolynomial_eval(
2011 __isl_take isl_union_pw_qpolynomial *upwqp,
2012 __isl_take isl_point *pnt);
2014 __isl_give isl_set *isl_pw_qpolynomial_domain(
2015 __isl_take isl_pw_qpolynomial *pwqp);
2016 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_intersect_domain(
2017 __isl_take isl_pw_qpolynomial *pwpq,
2018 __isl_take isl_set *set);
2020 __isl_give isl_union_set *isl_union_pw_qpolynomial_domain(
2021 __isl_take isl_union_pw_qpolynomial *upwqp);
2022 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_intersect_domain(
2023 __isl_take isl_union_pw_qpolynomial *upwpq,
2024 __isl_take isl_union_set *uset);
2026 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_coalesce(
2027 __isl_take isl_union_pw_qpolynomial *upwqp);
2029 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist(
2030 __isl_take isl_pw_qpolynomial *pwqp,
2031 __isl_take isl_set *context);
2033 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_gist(
2034 __isl_take isl_union_pw_qpolynomial *upwqp,
2035 __isl_take isl_union_set *context);
2037 The gist operation applies the gist operation to each of
2038 the cells in the domain of the input piecewise quasipolynomial.
2039 The context is also exploited
2040 to simplify the quasipolynomials associated to each cell.
2042 =head2 Bounds on Piecewise Quasipolynomials and Piecewise Quasipolynomial Reductions
2044 A piecewise quasipolynomial reduction is a piecewise
2045 reduction (or fold) of quasipolynomials.
2046 In particular, the reduction can be maximum or a minimum.
2047 The objects are mainly used to represent the result of
2048 an upper or lower bound on a quasipolynomial over its domain,
2049 i.e., as the result of the following function.
2051 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_bound(
2052 __isl_take isl_pw_qpolynomial *pwqp,
2053 enum isl_fold type, int *tight);
2055 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_bound(
2056 __isl_take isl_union_pw_qpolynomial *upwqp,
2057 enum isl_fold type, int *tight);
2059 The C<type> argument may be either C<isl_fold_min> or C<isl_fold_max>.
2060 If C<tight> is not C<NULL>, then C<*tight> is set to C<1>
2061 is the returned bound is known be tight, i.e., for each value
2062 of the parameters there is at least
2063 one element in the domain that reaches the bound.
2064 If the domain of C<pwqp> is not wrapping, then the bound is computed
2065 over all elements in that domain and the result has a purely parametric
2066 domain. If the domain of C<pwqp> is wrapping, then the bound is
2067 computed over the range of the wrapped relation. The domain of the
2068 wrapped relation becomes the domain of the result.
2070 A (piecewise) quasipolynomial reduction can be copied or freed using the
2071 following functions.
2073 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_copy(
2074 __isl_keep isl_qpolynomial_fold *fold);
2075 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_copy(
2076 __isl_keep isl_pw_qpolynomial_fold *pwf);
2077 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_copy(
2078 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
2079 void isl_qpolynomial_fold_free(
2080 __isl_take isl_qpolynomial_fold *fold);
2081 void isl_pw_qpolynomial_fold_free(
2082 __isl_take isl_pw_qpolynomial_fold *pwf);
2083 void isl_union_pw_qpolynomial_fold_free(
2084 __isl_take isl_union_pw_qpolynomial_fold *upwf);
2086 =head3 Printing Piecewise Quasipolynomial Reductions
2088 Piecewise quasipolynomial reductions can be printed
2089 using the following function.
2091 __isl_give isl_printer *isl_printer_print_pw_qpolynomial_fold(
2092 __isl_take isl_printer *p,
2093 __isl_keep isl_pw_qpolynomial_fold *pwf);
2094 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial_fold(
2095 __isl_take isl_printer *p,
2096 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
2098 For C<isl_printer_print_pw_qpolynomial_fold>,
2099 output format of the printer
2100 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
2101 For C<isl_printer_print_union_pw_qpolynomial_fold>,
2102 output format of the printer
2103 needs to be set to C<ISL_FORMAT_ISL>.
2104 In case of printing in C<ISL_FORMAT_C>, the user may want
2105 to set the names of all dimensions
2107 __isl_give isl_pw_qpolynomial_fold *
2108 isl_pw_qpolynomial_fold_set_dim_name(
2109 __isl_take isl_pw_qpolynomial_fold *pwf,
2110 enum isl_dim_type type, unsigned pos,
2113 =head3 Inspecting (Piecewise) Quasipolynomial Reductions
2115 To iterate over all piecewise quasipolynomial reductions in a union
2116 piecewise quasipolynomial reduction, use the following function
2118 int isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold(
2119 __isl_keep isl_union_pw_qpolynomial_fold *upwf,
2120 int (*fn)(__isl_take isl_pw_qpolynomial_fold *pwf,
2121 void *user), void *user);
2123 To iterate over the cells in a piecewise quasipolynomial reduction,
2124 use either of the following two functions
2126 int isl_pw_qpolynomial_fold_foreach_piece(
2127 __isl_keep isl_pw_qpolynomial_fold *pwf,
2128 int (*fn)(__isl_take isl_set *set,
2129 __isl_take isl_qpolynomial_fold *fold,
2130 void *user), void *user);
2131 int isl_pw_qpolynomial_fold_foreach_lifted_piece(
2132 __isl_keep isl_pw_qpolynomial_fold *pwf,
2133 int (*fn)(__isl_take isl_set *set,
2134 __isl_take isl_qpolynomial_fold *fold,
2135 void *user), void *user);
2137 See L<Inspecting (Piecewise) Quasipolynomials> for an explanation
2138 of the difference between these two functions.
2140 To iterate over all quasipolynomials in a reduction, use
2142 int isl_qpolynomial_fold_foreach_qpolynomial(
2143 __isl_keep isl_qpolynomial_fold *fold,
2144 int (*fn)(__isl_take isl_qpolynomial *qp,
2145 void *user), void *user);
2147 =head3 Operations on Piecewise Quasipolynomial Reductions
2149 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_add(
2150 __isl_take isl_pw_qpolynomial_fold *pwf1,
2151 __isl_take isl_pw_qpolynomial_fold *pwf2);
2153 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_fold(
2154 __isl_take isl_pw_qpolynomial_fold *pwf1,
2155 __isl_take isl_pw_qpolynomial_fold *pwf2);
2157 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_fold(
2158 __isl_take isl_union_pw_qpolynomial_fold *upwf1,
2159 __isl_take isl_union_pw_qpolynomial_fold *upwf2);
2161 __isl_give isl_qpolynomial *isl_pw_qpolynomial_fold_eval(
2162 __isl_take isl_pw_qpolynomial_fold *pwf,
2163 __isl_take isl_point *pnt);
2165 __isl_give isl_qpolynomial *isl_union_pw_qpolynomial_fold_eval(
2166 __isl_take isl_union_pw_qpolynomial_fold *upwf,
2167 __isl_take isl_point *pnt);
2169 __isl_give isl_union_set *isl_union_pw_qpolynomial_fold_domain(
2170 __isl_take isl_union_pw_qpolynomial_fold *upwf);
2171 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_intersect_domain(
2172 __isl_take isl_union_pw_qpolynomial_fold *upwf,
2173 __isl_take isl_union_set *uset);
2175 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_coalesce(
2176 __isl_take isl_pw_qpolynomial_fold *pwf);
2178 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_coalesce(
2179 __isl_take isl_union_pw_qpolynomial_fold *upwf);
2181 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_gist(
2182 __isl_take isl_pw_qpolynomial_fold *pwf,
2183 __isl_take isl_set *context);
2185 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_gist(
2186 __isl_take isl_union_pw_qpolynomial_fold *upwf,
2187 __isl_take isl_union_set *context);
2189 The gist operation applies the gist operation to each of
2190 the cells in the domain of the input piecewise quasipolynomial reduction.
2191 In future, the operation will also exploit the context
2192 to simplify the quasipolynomial reductions associated to each cell.
2194 __isl_give isl_pw_qpolynomial_fold *
2195 isl_map_apply_pw_qpolynomial_fold(
2196 __isl_take isl_map *map,
2197 __isl_take isl_pw_qpolynomial_fold *pwf,
2199 __isl_give isl_union_pw_qpolynomial_fold *
2200 isl_union_map_apply_union_pw_qpolynomial_fold(
2201 __isl_take isl_union_map *umap,
2202 __isl_take isl_union_pw_qpolynomial_fold *upwf,
2206 compose the given map with the given piecewise quasipolynomial reduction.
2207 That is, compute a bound (of the same type as C<pwf> or C<upwf> itself)
2208 over all elements in the intersection of the range of the map
2209 and the domain of the piecewise quasipolynomial reduction
2210 as a function of an element in the domain of the map.
2212 =head2 Dependence Analysis
2214 C<isl> contains specialized functionality for performing
2215 array dataflow analysis. That is, given a I<sink> access relation
2216 and a collection of possible I<source> access relations,
2217 C<isl> can compute relations that describe
2218 for each iteration of the sink access, which iteration
2219 of which of the source access relations was the last
2220 to access the same data element before the given iteration
2222 To compute standard flow dependences, the sink should be
2223 a read, while the sources should be writes.
2224 If any of the source accesses are marked as being I<may>
2225 accesses, then there will be a dependence to the last
2226 I<must> access B<and> to any I<may> access that follows
2227 this last I<must> access.
2228 In particular, if I<all> sources are I<may> accesses,
2229 then memory based dependence analysis is performed.
2230 If, on the other hand, all sources are I<must> accesses,
2231 then value based dependence analysis is performed.
2233 #include <isl_flow.h>
2235 typedef int (*isl_access_level_before)(void *first, void *second);
2237 __isl_give isl_access_info *isl_access_info_alloc(
2238 __isl_take isl_map *sink,
2239 void *sink_user, isl_access_level_before fn,
2241 __isl_give isl_access_info *isl_access_info_add_source(
2242 __isl_take isl_access_info *acc,
2243 __isl_take isl_map *source, int must,
2245 void isl_access_info_free(__isl_take isl_access_info *acc);
2247 __isl_give isl_flow *isl_access_info_compute_flow(
2248 __isl_take isl_access_info *acc);
2250 int isl_flow_foreach(__isl_keep isl_flow *deps,
2251 int (*fn)(__isl_take isl_map *dep, int must,
2252 void *dep_user, void *user),
2254 __isl_give isl_set *isl_flow_get_no_source(
2255 __isl_keep isl_flow *deps, int must);
2256 void isl_flow_free(__isl_take isl_flow *deps);
2258 The function C<isl_access_info_compute_flow> performs the actual
2259 dependence analysis. The other functions are used to construct
2260 the input for this function or to read off the output.
2262 The input is collected in an C<isl_access_info>, which can
2263 be created through a call to C<isl_access_info_alloc>.
2264 The arguments to this functions are the sink access relation
2265 C<sink>, a token C<sink_user> used to identify the sink
2266 access to the user, a callback function for specifying the
2267 relative order of source and sink accesses, and the number
2268 of source access relations that will be added.
2269 The callback function has type C<int (*)(void *first, void *second)>.
2270 The function is called with two user supplied tokens identifying
2271 either a source or the sink and it should return the shared nesting
2272 level and the relative order of the two accesses.
2273 In particular, let I<n> be the number of loops shared by
2274 the two accesses. If C<first> precedes C<second> textually,
2275 then the function should return I<2 * n + 1>; otherwise,
2276 it should return I<2 * n>.
2277 The sources can be added to the C<isl_access_info> by performing
2278 (at most) C<max_source> calls to C<isl_access_info_add_source>.
2279 C<must> indicates whether the source is a I<must> access
2280 or a I<may> access. Note that a multi-valued access relation
2281 should only be marked I<must> if every iteration in the domain
2282 of the relation accesses I<all> elements in its image.
2283 The C<source_user> token is again used to identify
2284 the source access. The range of the source access relation
2285 C<source> should have the same dimension as the range
2286 of the sink access relation.
2287 The C<isl_access_info_free> function should usually not be
2288 called explicitly, because it is called implicitly by
2289 C<isl_access_info_compute_flow>.
2291 The result of the dependence analysis is collected in an
2292 C<isl_flow>. There may be elements in the domain of
2293 the sink access for which no preceding source access could be
2294 found or for which all preceding sources are I<may> accesses.
2295 The sets of these elements can be obtained through
2296 calls to C<isl_flow_get_no_source>, the first with C<must> set
2297 and the second with C<must> unset.
2298 In the case of standard flow dependence analysis,
2299 with the sink a read and the sources I<must> writes,
2300 the first set corresponds to the reads from uninitialized
2301 array elements and the second set is empty.
2302 The actual flow dependences can be extracted using
2303 C<isl_flow_foreach>. This function will call the user-specified
2304 callback function C<fn> for each B<non-empty> dependence between
2305 a source and the sink. The callback function is called
2306 with four arguments, the actual flow dependence relation
2307 mapping source iterations to sink iterations, a boolean that
2308 indicates whether it is a I<must> or I<may> dependence, a token
2309 identifying the source and an additional C<void *> with value
2310 equal to the third argument of the C<isl_flow_foreach> call.
2311 A dependence is marked I<must> if it originates from a I<must>
2312 source and if it is not followed by any I<may> sources.
2314 After finishing with an C<isl_flow>, the user should call
2315 C<isl_flow_free> to free all associated memory.
2317 A higher-level interface to dependence analysis is provided
2318 by the following function.
2320 #include <isl_flow.h>
2322 int isl_union_map_compute_flow(__isl_take isl_union_map *sink,
2323 __isl_take isl_union_map *must_source,
2324 __isl_take isl_union_map *may_source,
2325 __isl_take isl_union_map *schedule,
2326 __isl_give isl_union_map **must_dep,
2327 __isl_give isl_union_map **may_dep,
2328 __isl_give isl_union_set **must_no_source,
2329 __isl_give isl_union_set **may_no_source);
2331 The arrays are identified by the tuple names of the ranges
2332 of the accesses. The iteration domains by the tuple names
2333 of the domains of the accesses and of the schedule.
2334 The relative order of the iteration domains is given by the
2335 schedule. Any of C<must_dep>, C<may_dep>, C<must_no_source>
2336 or C<may_no_source> may be C<NULL>, but a C<NULL> value for
2337 any of the other arguments is treated as an error.
2339 =head2 Parametric Vertex Enumeration
2341 The parametric vertex enumeration described in this section
2342 is mainly intended to be used internally and by the C<barvinok>
2345 #include <isl_vertices.h>
2346 __isl_give isl_vertices *isl_basic_set_compute_vertices(
2347 __isl_keep isl_basic_set *bset);
2349 The function C<isl_basic_set_compute_vertices> performs the
2350 actual computation of the parametric vertices and the chamber
2351 decomposition and store the result in an C<isl_vertices> object.
2352 This information can be queried by either iterating over all
2353 the vertices or iterating over all the chambers or cells
2354 and then iterating over all vertices that are active on the chamber.
2356 int isl_vertices_foreach_vertex(
2357 __isl_keep isl_vertices *vertices,
2358 int (*fn)(__isl_take isl_vertex *vertex, void *user),
2361 int isl_vertices_foreach_cell(
2362 __isl_keep isl_vertices *vertices,
2363 int (*fn)(__isl_take isl_cell *cell, void *user),
2365 int isl_cell_foreach_vertex(__isl_keep isl_cell *cell,
2366 int (*fn)(__isl_take isl_vertex *vertex, void *user),
2369 Other operations that can be performed on an C<isl_vertices> object are
2372 isl_ctx *isl_vertices_get_ctx(
2373 __isl_keep isl_vertices *vertices);
2374 int isl_vertices_get_n_vertices(
2375 __isl_keep isl_vertices *vertices);
2376 void isl_vertices_free(__isl_take isl_vertices *vertices);
2378 Vertices can be inspected and destroyed using the following functions.
2380 isl_ctx *isl_vertex_get_ctx(__isl_keep isl_vertex *vertex);
2381 int isl_vertex_get_id(__isl_keep isl_vertex *vertex);
2382 __isl_give isl_basic_set *isl_vertex_get_domain(
2383 __isl_keep isl_vertex *vertex);
2384 __isl_give isl_basic_set *isl_vertex_get_expr(
2385 __isl_keep isl_vertex *vertex);
2386 void isl_vertex_free(__isl_take isl_vertex *vertex);
2388 C<isl_vertex_get_expr> returns a singleton parametric set describing
2389 the vertex, while C<isl_vertex_get_domain> returns the activity domain
2391 Note that C<isl_vertex_get_domain> and C<isl_vertex_get_expr> return
2392 B<rational> basic sets, so they should mainly be used for inspection
2393 and should not be mixed with integer sets.
2395 Chambers can be inspected and destroyed using the following functions.
2397 isl_ctx *isl_cell_get_ctx(__isl_keep isl_cell *cell);
2398 __isl_give isl_basic_set *isl_cell_get_domain(
2399 __isl_keep isl_cell *cell);
2400 void isl_cell_free(__isl_take isl_cell *cell);
2404 Although C<isl> is mainly meant to be used as a library,
2405 it also contains some basic applications that use some
2406 of the functionality of C<isl>.
2407 The input may be specified in either the L<isl format>
2408 or the L<PolyLib format>.
2410 =head2 C<isl_polyhedron_sample>
2412 C<isl_polyhedron_sample> takes a polyhedron as input and prints
2413 an integer element of the polyhedron, if there is any.
2414 The first column in the output is the denominator and is always
2415 equal to 1. If the polyhedron contains no integer points,
2416 then a vector of length zero is printed.
2420 C<isl_pip> takes the same input as the C<example> program
2421 from the C<piplib> distribution, i.e., a set of constraints
2422 on the parameters, a line containing only -1 and finally a set
2423 of constraints on a parametric polyhedron.
2424 The coefficients of the parameters appear in the last columns
2425 (but before the final constant column).
2426 The output is the lexicographic minimum of the parametric polyhedron.
2427 As C<isl> currently does not have its own output format, the output
2428 is just a dump of the internal state.
2430 =head2 C<isl_polyhedron_minimize>
2432 C<isl_polyhedron_minimize> computes the minimum of some linear
2433 or affine objective function over the integer points in a polyhedron.
2434 If an affine objective function
2435 is given, then the constant should appear in the last column.
2437 =head2 C<isl_polytope_scan>
2439 Given a polytope, C<isl_polytope_scan> prints
2440 all integer points in the polytope.
2442 =head1 C<isl-polylib>
2444 The C<isl-polylib> library provides the following functions for converting
2445 between C<isl> objects and C<PolyLib> objects.
2446 The library is distributed separately for licensing reasons.
2448 #include <isl_set_polylib.h>
2449 __isl_give isl_basic_set *isl_basic_set_new_from_polylib(
2450 Polyhedron *P, __isl_take isl_dim *dim);
2451 Polyhedron *isl_basic_set_to_polylib(
2452 __isl_keep isl_basic_set *bset);
2453 __isl_give isl_set *isl_set_new_from_polylib(Polyhedron *D,
2454 __isl_take isl_dim *dim);
2455 Polyhedron *isl_set_to_polylib(__isl_keep isl_set *set);
2457 #include <isl_map_polylib.h>
2458 __isl_give isl_basic_map *isl_basic_map_new_from_polylib(
2459 Polyhedron *P, __isl_take isl_dim *dim);
2460 __isl_give isl_map *isl_map_new_from_polylib(Polyhedron *D,
2461 __isl_take isl_dim *dim);
2462 Polyhedron *isl_basic_map_to_polylib(
2463 __isl_keep isl_basic_map *bmap);
2464 Polyhedron *isl_map_to_polylib(__isl_keep isl_map *map);