3 C<isl> is a thread-safe C library for manipulating
4 sets and relations of integer points bounded by affine constraints.
5 The descriptions of the sets and relations may involve
6 both parameters and existentially quantified variables.
7 All computations are performed in exact integer arithmetic
9 The C<isl> library offers functionality that is similar
10 to that offered by the C<Omega> and C<Omega+> libraries,
11 but the underlying algorithms are in most cases completely different.
13 The library is by no means complete and some fairly basic
14 functionality is still missing.
15 Still, even in its current form, the library has been successfully
16 used as a backend polyhedral library for the polyhedral
17 scanner C<CLooG> and as part of an equivalence checker of
18 static affine programs.
19 For bug reports, feature requests and questions,
20 visit the the discussion group at
21 L<http://groups.google.com/group/isl-development>.
23 =head2 Backward Incompatible Changes
25 =head3 Changes since isl-0.02
29 =item * The old printing functions have been deprecated
30 and replaced by C<isl_printer> functions, see L<Input and Output>.
32 =item * Most functions related to dependence analysis have acquired
33 an extra C<must> argument. To obtain the old behavior, this argument
34 should be given the value 1. See L<Dependence Analysis>.
38 =head3 Changes since isl-0.03
42 =item * The function C<isl_pw_qpolynomial_fold_add> has been
43 renamed to C<isl_pw_qpolynomial_fold_fold>.
44 Similarly, C<isl_union_pw_qpolynomial_fold_add> has been
45 renamed to C<isl_union_pw_qpolynomial_fold_fold>.
49 =head3 Changes since isl-0.04
53 =item * All header files have been renamed from C<isl_header.h>
58 =head3 Changes since isl-0.05
62 =item * The functions C<isl_printer_print_basic_set> and
63 C<isl_printer_print_basic_map> no longer print a newline.
69 The source of C<isl> can be obtained either as a tarball
70 or from the git repository. Both are available from
71 L<http://freshmeat.net/projects/isl/>.
72 The installation process depends on how you obtained
75 =head2 Installation from the git repository
79 =item 1 Clone or update the repository
81 The first time the source is obtained, you need to clone
84 git clone git://repo.or.cz/isl.git
86 To obtain updates, you need to pull in the latest changes
90 =item 2 Generate C<configure>
96 After performing the above steps, continue
97 with the L<Common installation instructions>.
99 =head2 Common installation instructions
103 =item 1 Obtain C<GMP>
105 Building C<isl> requires C<GMP>, including its headers files.
106 Your distribution may not provide these header files by default
107 and you may need to install a package called C<gmp-devel> or something
108 similar. Alternatively, C<GMP> can be built from
109 source, available from L<http://gmplib.org/>.
113 C<isl> uses the standard C<autoconf> C<configure> script.
118 optionally followed by some configure options.
119 A complete list of options can be obtained by running
123 Below we discuss some of the more common options.
125 C<isl> can optionally use C<piplib>, but no
126 C<piplib> functionality is currently used by default.
127 The C<--with-piplib> option can
128 be used to specify which C<piplib>
129 library to use, either an installed version (C<system>),
130 an externally built version (C<build>)
131 or no version (C<no>). The option C<build> is mostly useful
132 in C<configure> scripts of larger projects that bundle both C<isl>
139 Installation prefix for C<isl>
141 =item C<--with-gmp-prefix>
143 Installation prefix for C<GMP> (architecture-independent files).
145 =item C<--with-gmp-exec-prefix>
147 Installation prefix for C<GMP> (architecture-dependent files).
149 =item C<--with-piplib>
151 Which copy of C<piplib> to use, either C<no> (default), C<system> or C<build>.
153 =item C<--with-piplib-prefix>
155 Installation prefix for C<system> C<piplib> (architecture-independent files).
157 =item C<--with-piplib-exec-prefix>
159 Installation prefix for C<system> C<piplib> (architecture-dependent files).
161 =item C<--with-piplib-builddir>
163 Location where C<build> C<piplib> was built.
171 =item 4 Install (optional)
179 =head2 Initialization
181 All manipulations of integer sets and relations occur within
182 the context of an C<isl_ctx>.
183 A given C<isl_ctx> can only be used within a single thread.
184 All arguments of a function are required to have been allocated
185 within the same context.
186 There are currently no functions available for moving an object
187 from one C<isl_ctx> to another C<isl_ctx>. This means that
188 there is currently no way of safely moving an object from one
189 thread to another, unless the whole C<isl_ctx> is moved.
191 An C<isl_ctx> can be allocated using C<isl_ctx_alloc> and
192 freed using C<isl_ctx_free>.
193 All objects allocated within an C<isl_ctx> should be freed
194 before the C<isl_ctx> itself is freed.
196 isl_ctx *isl_ctx_alloc();
197 void isl_ctx_free(isl_ctx *ctx);
201 All operations on integers, mainly the coefficients
202 of the constraints describing the sets and relations,
203 are performed in exact integer arithmetic using C<GMP>.
204 However, to allow future versions of C<isl> to optionally
205 support fixed integer arithmetic, all calls to C<GMP>
206 are wrapped inside C<isl> specific macros.
207 The basic type is C<isl_int> and the operations below
208 are available on this type.
209 The meanings of these operations are essentially the same
210 as their C<GMP> C<mpz_> counterparts.
211 As always with C<GMP> types, C<isl_int>s need to be
212 initialized with C<isl_int_init> before they can be used
213 and they need to be released with C<isl_int_clear>
215 The user should not assume that an C<isl_int> is represented
216 as a C<mpz_t>, but should instead explicitly convert between
217 C<mpz_t>s and C<isl_int>s using C<isl_int_set_gmp> and
218 C<isl_int_get_gmp> whenever a C<mpz_t> is required.
222 =item isl_int_init(i)
224 =item isl_int_clear(i)
226 =item isl_int_set(r,i)
228 =item isl_int_set_si(r,i)
230 =item isl_int_set_gmp(r,g)
232 =item isl_int_get_gmp(i,g)
234 =item isl_int_abs(r,i)
236 =item isl_int_neg(r,i)
238 =item isl_int_swap(i,j)
240 =item isl_int_swap_or_set(i,j)
242 =item isl_int_add_ui(r,i,j)
244 =item isl_int_sub_ui(r,i,j)
246 =item isl_int_add(r,i,j)
248 =item isl_int_sub(r,i,j)
250 =item isl_int_mul(r,i,j)
252 =item isl_int_mul_ui(r,i,j)
254 =item isl_int_addmul(r,i,j)
256 =item isl_int_submul(r,i,j)
258 =item isl_int_gcd(r,i,j)
260 =item isl_int_lcm(r,i,j)
262 =item isl_int_divexact(r,i,j)
264 =item isl_int_cdiv_q(r,i,j)
266 =item isl_int_fdiv_q(r,i,j)
268 =item isl_int_fdiv_r(r,i,j)
270 =item isl_int_fdiv_q_ui(r,i,j)
272 =item isl_int_read(r,s)
274 =item isl_int_print(out,i,width)
278 =item isl_int_cmp(i,j)
280 =item isl_int_cmp_si(i,si)
282 =item isl_int_eq(i,j)
284 =item isl_int_ne(i,j)
286 =item isl_int_lt(i,j)
288 =item isl_int_le(i,j)
290 =item isl_int_gt(i,j)
292 =item isl_int_ge(i,j)
294 =item isl_int_abs_eq(i,j)
296 =item isl_int_abs_ne(i,j)
298 =item isl_int_abs_lt(i,j)
300 =item isl_int_abs_gt(i,j)
302 =item isl_int_abs_ge(i,j)
304 =item isl_int_is_zero(i)
306 =item isl_int_is_one(i)
308 =item isl_int_is_negone(i)
310 =item isl_int_is_pos(i)
312 =item isl_int_is_neg(i)
314 =item isl_int_is_nonpos(i)
316 =item isl_int_is_nonneg(i)
318 =item isl_int_is_divisible_by(i,j)
322 =head2 Sets and Relations
324 C<isl> uses six types of objects for representing sets and relations,
325 C<isl_basic_set>, C<isl_basic_map>, C<isl_set>, C<isl_map>,
326 C<isl_union_set> and C<isl_union_map>.
327 C<isl_basic_set> and C<isl_basic_map> represent sets and relations that
328 can be described as a conjunction of affine constraints, while
329 C<isl_set> and C<isl_map> represent unions of
330 C<isl_basic_set>s and C<isl_basic_map>s, respectively.
331 However, all C<isl_basic_set>s or C<isl_basic_map>s in the union need
332 to have the same dimension. C<isl_union_set>s and C<isl_union_map>s
333 represent unions of C<isl_set>s or C<isl_map>s of I<different> dimensions,
334 where dimensions with different space names
335 (see L<Dimension Specifications>) are considered different as well.
336 The difference between sets and relations (maps) is that sets have
337 one set of variables, while relations have two sets of variables,
338 input variables and output variables.
340 =head2 Memory Management
342 Since a high-level operation on sets and/or relations usually involves
343 several substeps and since the user is usually not interested in
344 the intermediate results, most functions that return a new object
345 will also release all the objects passed as arguments.
346 If the user still wants to use one or more of these arguments
347 after the function call, she should pass along a copy of the
348 object rather than the object itself.
349 The user is then responsible for make sure that the original
350 object gets used somewhere else or is explicitly freed.
352 The arguments and return values of all documents functions are
353 annotated to make clear which arguments are released and which
354 arguments are preserved. In particular, the following annotations
361 C<__isl_give> means that a new object is returned.
362 The user should make sure that the returned pointer is
363 used exactly once as a value for an C<__isl_take> argument.
364 In between, it can be used as a value for as many
365 C<__isl_keep> arguments as the user likes.
366 There is one exception, and that is the case where the
367 pointer returned is C<NULL>. Is this case, the user
368 is free to use it as an C<__isl_take> argument or not.
372 C<__isl_take> means that the object the argument points to
373 is taken over by the function and may no longer be used
374 by the user as an argument to any other function.
375 The pointer value must be one returned by a function
376 returning an C<__isl_give> pointer.
377 If the user passes in a C<NULL> value, then this will
378 be treated as an error in the sense that the function will
379 not perform its usual operation. However, it will still
380 make sure that all the the other C<__isl_take> arguments
385 C<__isl_keep> means that the function will only use the object
386 temporarily. After the function has finished, the user
387 can still use it as an argument to other functions.
388 A C<NULL> value will be treated in the same way as
389 a C<NULL> value for an C<__isl_take> argument.
393 =head2 Dimension Specifications
395 Whenever a new set or relation is created from scratch,
396 its dimension needs to be specified using an C<isl_dim>.
399 __isl_give isl_dim *isl_dim_alloc(isl_ctx *ctx,
400 unsigned nparam, unsigned n_in, unsigned n_out);
401 __isl_give isl_dim *isl_dim_set_alloc(isl_ctx *ctx,
402 unsigned nparam, unsigned dim);
403 __isl_give isl_dim *isl_dim_copy(__isl_keep isl_dim *dim);
404 void isl_dim_free(__isl_take isl_dim *dim);
405 unsigned isl_dim_size(__isl_keep isl_dim *dim,
406 enum isl_dim_type type);
408 The dimension specification used for creating a set
409 needs to be created using C<isl_dim_set_alloc>, while
410 that for creating a relation
411 needs to be created using C<isl_dim_alloc>.
412 C<isl_dim_size> can be used
413 to find out the number of dimensions of each type in
414 a dimension specification, where type may be
415 C<isl_dim_param>, C<isl_dim_in> (only for relations),
416 C<isl_dim_out> (only for relations), C<isl_dim_set>
417 (only for sets) or C<isl_dim_all>.
419 It is often useful to create objects that live in the
420 same space as some other object. This can be accomplished
421 by creating the new objects
422 (see L<Creating New Sets and Relations> or
423 L<Creating New (Piecewise) Quasipolynomials>) based on the dimension
424 specification of the original object.
427 __isl_give isl_dim *isl_basic_set_get_dim(
428 __isl_keep isl_basic_set *bset);
429 __isl_give isl_dim *isl_set_get_dim(__isl_keep isl_set *set);
431 #include <isl/union_set.h>
432 __isl_give isl_dim *isl_union_set_get_dim(
433 __isl_keep isl_union_set *uset);
436 __isl_give isl_dim *isl_basic_map_get_dim(
437 __isl_keep isl_basic_map *bmap);
438 __isl_give isl_dim *isl_map_get_dim(__isl_keep isl_map *map);
440 #include <isl/union_map.h>
441 __isl_give isl_dim *isl_union_map_get_dim(
442 __isl_keep isl_union_map *umap);
444 #include <isl/polynomial.h>
445 __isl_give isl_dim *isl_qpolynomial_get_dim(
446 __isl_keep isl_qpolynomial *qp);
447 __isl_give isl_dim *isl_pw_qpolynomial_get_dim(
448 __isl_keep isl_pw_qpolynomial *pwqp);
449 __isl_give isl_dim *isl_union_pw_qpolynomial_get_dim(
450 __isl_keep isl_union_pw_qpolynomial *upwqp);
451 __isl_give isl_dim *isl_union_pw_qpolynomial_fold_get_dim(
452 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
454 The names of the individual dimensions may be set or read off
455 using the following functions.
458 __isl_give isl_dim *isl_dim_set_name(__isl_take isl_dim *dim,
459 enum isl_dim_type type, unsigned pos,
460 __isl_keep const char *name);
461 __isl_keep const char *isl_dim_get_name(__isl_keep isl_dim *dim,
462 enum isl_dim_type type, unsigned pos);
464 Note that C<isl_dim_get_name> returns a pointer to some internal
465 data structure, so the result can only be used while the
466 corresponding C<isl_dim> is alive.
467 Also note that every function that operates on two sets or relations
468 requires that both arguments have the same parameters. This also
469 means that if one of the arguments has named parameters, then the
470 other needs to have named parameters too and the names need to match.
471 Pairs of C<isl_union_set> and/or C<isl_union_map> arguments may
472 have different parameters (as long as they are named), in which case
473 the result will have as parameters the union of the parameters of
476 The names of entire spaces may be set or read off
477 using the following functions.
480 __isl_give isl_dim *isl_dim_set_tuple_name(
481 __isl_take isl_dim *dim,
482 enum isl_dim_type type, const char *s);
483 const char *isl_dim_get_tuple_name(__isl_keep isl_dim *dim,
484 enum isl_dim_type type);
486 The C<dim> argument needs to be one of C<isl_dim_in>, C<isl_dim_out>
487 or C<isl_dim_set>. As with C<isl_dim_get_name>,
488 the C<isl_dim_get_tuple_name> function returns a pointer to some internal
490 Binary operations require the corresponding spaces of their arguments
491 to have the same name.
493 Spaces can be nested. In particular, the domain of a set or
494 the domain or range of a relation can be a nested relation.
495 The following functions can be used to construct and deconstruct
496 such nested dimension specifications.
499 int isl_dim_is_wrapping(__isl_keep isl_dim *dim);
500 __isl_give isl_dim *isl_dim_wrap(__isl_take isl_dim *dim);
501 __isl_give isl_dim *isl_dim_unwrap(__isl_take isl_dim *dim);
503 The input to C<isl_dim_is_wrapping> and C<isl_dim_unwrap> should
504 be the dimension specification of a set, while that of
505 C<isl_dim_wrap> should be the dimension specification of a relation.
506 Conversely, the output of C<isl_dim_unwrap> is the dimension specification
507 of a relation, while that of C<isl_dim_wrap> is the dimension specification
510 Dimension specifications can be created from other dimension
511 specifications using the following functions.
513 __isl_give isl_dim *isl_dim_domain(__isl_take isl_dim *dim);
514 __isl_give isl_dim *isl_dim_from_domain(__isl_take isl_dim *dim);
515 __isl_give isl_dim *isl_dim_range(__isl_take isl_dim *dim);
516 __isl_give isl_dim *isl_dim_from_range(__isl_take isl_dim *dim);
517 __isl_give isl_dim *isl_dim_reverse(__isl_take isl_dim *dim);
518 __isl_give isl_dim *isl_dim_join(__isl_take isl_dim *left,
519 __isl_take isl_dim *right);
520 __isl_give isl_dim *isl_dim_insert(__isl_take isl_dim *dim,
521 enum isl_dim_type type, unsigned pos, unsigned n);
522 __isl_give isl_dim *isl_dim_add(__isl_take isl_dim *dim,
523 enum isl_dim_type type, unsigned n);
524 __isl_give isl_dim *isl_dim_drop(__isl_take isl_dim *dim,
525 enum isl_dim_type type, unsigned first, unsigned n);
527 Note that if dimensions are added or removed from a space, then
528 the name and the internal structure are lost.
530 =head2 Input and Output
532 C<isl> supports its own input/output format, which is similar
533 to the C<Omega> format, but also supports the C<PolyLib> format
538 The C<isl> format is similar to that of C<Omega>, but has a different
539 syntax for describing the parameters and allows for the definition
540 of an existentially quantified variable as the integer division
541 of an affine expression.
542 For example, the set of integers C<i> between C<0> and C<n>
543 such that C<i % 10 <= 6> can be described as
545 [n] -> { [i] : exists (a = [i/10] : 0 <= i and i <= n and
548 A set or relation can have several disjuncts, separated
549 by the keyword C<or>. Each disjunct is either a conjunction
550 of constraints or a projection (C<exists>) of a conjunction
551 of constraints. The constraints are separated by the keyword
554 =head3 C<PolyLib> format
556 If the represented set is a union, then the first line
557 contains a single number representing the number of disjuncts.
558 Otherwise, a line containing the number C<1> is optional.
560 Each disjunct is represented by a matrix of constraints.
561 The first line contains two numbers representing
562 the number of rows and columns,
563 where the number of rows is equal to the number of constraints
564 and the number of columns is equal to two plus the number of variables.
565 The following lines contain the actual rows of the constraint matrix.
566 In each row, the first column indicates whether the constraint
567 is an equality (C<0>) or inequality (C<1>). The final column
568 corresponds to the constant term.
570 If the set is parametric, then the coefficients of the parameters
571 appear in the last columns before the constant column.
572 The coefficients of any existentially quantified variables appear
573 between those of the set variables and those of the parameters.
575 =head3 Extended C<PolyLib> format
577 The extended C<PolyLib> format is nearly identical to the
578 C<PolyLib> format. The only difference is that the line
579 containing the number of rows and columns of a constraint matrix
580 also contains four additional numbers:
581 the number of output dimensions, the number of input dimensions,
582 the number of local dimensions (i.e., the number of existentially
583 quantified variables) and the number of parameters.
584 For sets, the number of ``output'' dimensions is equal
585 to the number of set dimensions, while the number of ``input''
591 __isl_give isl_basic_set *isl_basic_set_read_from_file(
592 isl_ctx *ctx, FILE *input, int nparam);
593 __isl_give isl_basic_set *isl_basic_set_read_from_str(
594 isl_ctx *ctx, const char *str, int nparam);
595 __isl_give isl_set *isl_set_read_from_file(isl_ctx *ctx,
596 FILE *input, int nparam);
597 __isl_give isl_set *isl_set_read_from_str(isl_ctx *ctx,
598 const char *str, int nparam);
601 __isl_give isl_basic_map *isl_basic_map_read_from_file(
602 isl_ctx *ctx, FILE *input, int nparam);
603 __isl_give isl_basic_map *isl_basic_map_read_from_str(
604 isl_ctx *ctx, const char *str, int nparam);
605 __isl_give isl_map *isl_map_read_from_file(
606 struct isl_ctx *ctx, FILE *input, int nparam);
607 __isl_give isl_map *isl_map_read_from_str(isl_ctx *ctx,
608 const char *str, int nparam);
610 #include <isl/union_set.h>
611 __isl_give isl_union_set *isl_union_set_read_from_str(
612 struct isl_ctx *ctx, const char *str);
614 #include <isl/union_map.h>
615 __isl_give isl_union_map *isl_union_map_read_from_str(
616 struct isl_ctx *ctx, const char *str);
618 The input format is autodetected and may be either the C<PolyLib> format
619 or the C<isl> format.
620 C<nparam> specifies how many of the final columns in
621 the C<PolyLib> format correspond to parameters.
622 If input is given in the C<isl> format, then the number
623 of parameters needs to be equal to C<nparam>.
624 If C<nparam> is negative, then any number of parameters
625 is accepted in the C<isl> format and zero parameters
626 are assumed in the C<PolyLib> format.
630 Before anything can be printed, an C<isl_printer> needs to
633 __isl_give isl_printer *isl_printer_to_file(isl_ctx *ctx,
635 __isl_give isl_printer *isl_printer_to_str(isl_ctx *ctx);
636 void isl_printer_free(__isl_take isl_printer *printer);
637 __isl_give char *isl_printer_get_str(
638 __isl_keep isl_printer *printer);
640 The behavior of the printer can be modified in various ways
642 __isl_give isl_printer *isl_printer_set_output_format(
643 __isl_take isl_printer *p, int output_format);
644 __isl_give isl_printer *isl_printer_set_indent(
645 __isl_take isl_printer *p, int indent);
646 __isl_give isl_printer *isl_printer_set_prefix(
647 __isl_take isl_printer *p, const char *prefix);
648 __isl_give isl_printer *isl_printer_set_suffix(
649 __isl_take isl_printer *p, const char *suffix);
651 The C<output_format> may be either C<ISL_FORMAT_ISL>, C<ISL_FORMAT_OMEGA>,
652 C<ISL_FORMAT_POLYLIB>, C<ISL_FORMAT_EXT_POLYLIB> or C<ISL_FORMAT_LATEX>
653 and defaults to C<ISL_FORMAT_ISL>.
654 Each line in the output is indented by C<indent> spaces
655 (default: 0), prefixed by C<prefix> and suffixed by C<suffix>.
656 In the C<PolyLib> format output,
657 the coefficients of the existentially quantified variables
658 appear between those of the set variables and those
661 To actually print something, use
664 __isl_give isl_printer *isl_printer_print_basic_set(
665 __isl_take isl_printer *printer,
666 __isl_keep isl_basic_set *bset);
667 __isl_give isl_printer *isl_printer_print_set(
668 __isl_take isl_printer *printer,
669 __isl_keep isl_set *set);
672 __isl_give isl_printer *isl_printer_print_basic_map(
673 __isl_take isl_printer *printer,
674 __isl_keep isl_basic_map *bmap);
675 __isl_give isl_printer *isl_printer_print_map(
676 __isl_take isl_printer *printer,
677 __isl_keep isl_map *map);
679 #include <isl/union_set.h>
680 __isl_give isl_printer *isl_printer_print_union_set(
681 __isl_take isl_printer *p,
682 __isl_keep isl_union_set *uset);
684 #include <isl/union_map.h>
685 __isl_give isl_printer *isl_printer_print_union_map(
686 __isl_take isl_printer *p,
687 __isl_keep isl_union_map *umap);
689 When called on a file printer, the following function flushes
690 the file. When called on a string printer, the buffer is cleared.
692 __isl_give isl_printer *isl_printer_flush(
693 __isl_take isl_printer *p);
695 =head2 Creating New Sets and Relations
697 C<isl> has functions for creating some standard sets and relations.
701 =item * Empty sets and relations
703 __isl_give isl_basic_set *isl_basic_set_empty(
704 __isl_take isl_dim *dim);
705 __isl_give isl_basic_map *isl_basic_map_empty(
706 __isl_take isl_dim *dim);
707 __isl_give isl_set *isl_set_empty(
708 __isl_take isl_dim *dim);
709 __isl_give isl_map *isl_map_empty(
710 __isl_take isl_dim *dim);
711 __isl_give isl_union_set *isl_union_set_empty(
712 __isl_take isl_dim *dim);
713 __isl_give isl_union_map *isl_union_map_empty(
714 __isl_take isl_dim *dim);
716 For C<isl_union_set>s and C<isl_union_map>s, the dimensions specification
717 is only used to specify the parameters.
719 =item * Universe sets and relations
721 __isl_give isl_basic_set *isl_basic_set_universe(
722 __isl_take isl_dim *dim);
723 __isl_give isl_basic_map *isl_basic_map_universe(
724 __isl_take isl_dim *dim);
725 __isl_give isl_set *isl_set_universe(
726 __isl_take isl_dim *dim);
727 __isl_give isl_map *isl_map_universe(
728 __isl_take isl_dim *dim);
730 =item * Identity relations
732 __isl_give isl_basic_map *isl_basic_map_identity(
733 __isl_take isl_dim *set_dim);
734 __isl_give isl_map *isl_map_identity(
735 __isl_take isl_dim *set_dim);
737 These functions take a dimension specification for a B<set>
738 and return an identity relation between two such sets.
740 =item * Lexicographic order
742 __isl_give isl_map *isl_map_lex_lt(
743 __isl_take isl_dim *set_dim);
744 __isl_give isl_map *isl_map_lex_le(
745 __isl_take isl_dim *set_dim);
746 __isl_give isl_map *isl_map_lex_gt(
747 __isl_take isl_dim *set_dim);
748 __isl_give isl_map *isl_map_lex_ge(
749 __isl_take isl_dim *set_dim);
750 __isl_give isl_map *isl_map_lex_lt_first(
751 __isl_take isl_dim *dim, unsigned n);
752 __isl_give isl_map *isl_map_lex_le_first(
753 __isl_take isl_dim *dim, unsigned n);
754 __isl_give isl_map *isl_map_lex_gt_first(
755 __isl_take isl_dim *dim, unsigned n);
756 __isl_give isl_map *isl_map_lex_ge_first(
757 __isl_take isl_dim *dim, unsigned n);
759 The first four functions take a dimension specification for a B<set>
760 and return relations that express that the elements in the domain
761 are lexicographically less
762 (C<isl_map_lex_lt>), less or equal (C<isl_map_lex_le>),
763 greater (C<isl_map_lex_gt>) or greater or equal (C<isl_map_lex_ge>)
764 than the elements in the range.
765 The last four functions take a dimension specification for a map
766 and return relations that express that the first C<n> dimensions
767 in the domain are lexicographically less
768 (C<isl_map_lex_lt_first>), less or equal (C<isl_map_lex_le_first>),
769 greater (C<isl_map_lex_gt_first>) or greater or equal (C<isl_map_lex_ge_first>)
770 than the first C<n> dimensions in the range.
774 A basic set or relation can be converted to a set or relation
775 using the following functions.
777 __isl_give isl_set *isl_set_from_basic_set(
778 __isl_take isl_basic_set *bset);
779 __isl_give isl_map *isl_map_from_basic_map(
780 __isl_take isl_basic_map *bmap);
782 Sets and relations can be converted to union sets and relations
783 using the following functions.
785 __isl_give isl_union_map *isl_union_map_from_map(
786 __isl_take isl_map *map);
787 __isl_give isl_union_set *isl_union_set_from_set(
788 __isl_take isl_set *set);
790 Sets and relations can be copied and freed again using the following
793 __isl_give isl_basic_set *isl_basic_set_copy(
794 __isl_keep isl_basic_set *bset);
795 __isl_give isl_set *isl_set_copy(__isl_keep isl_set *set);
796 __isl_give isl_union_set *isl_union_set_copy(
797 __isl_keep isl_union_set *uset);
798 __isl_give isl_basic_map *isl_basic_map_copy(
799 __isl_keep isl_basic_map *bmap);
800 __isl_give isl_map *isl_map_copy(__isl_keep isl_map *map);
801 __isl_give isl_union_map *isl_union_map_copy(
802 __isl_keep isl_union_map *umap);
803 void isl_basic_set_free(__isl_take isl_basic_set *bset);
804 void isl_set_free(__isl_take isl_set *set);
805 void isl_union_set_free(__isl_take isl_union_set *uset);
806 void isl_basic_map_free(__isl_take isl_basic_map *bmap);
807 void isl_map_free(__isl_take isl_map *map);
808 void isl_union_map_free(__isl_take isl_union_map *umap);
810 Other sets and relations can be constructed by starting
811 from a universe set or relation, adding equality and/or
812 inequality constraints and then projecting out the
813 existentially quantified variables, if any.
814 Constraints can be constructed, manipulated and
815 added to basic sets and relations using the following functions.
817 #include <isl/constraint.h>
818 __isl_give isl_constraint *isl_equality_alloc(
819 __isl_take isl_dim *dim);
820 __isl_give isl_constraint *isl_inequality_alloc(
821 __isl_take isl_dim *dim);
822 void isl_constraint_set_constant(
823 __isl_keep isl_constraint *constraint, isl_int v);
824 void isl_constraint_set_coefficient(
825 __isl_keep isl_constraint *constraint,
826 enum isl_dim_type type, int pos, isl_int v);
827 __isl_give isl_basic_map *isl_basic_map_add_constraint(
828 __isl_take isl_basic_map *bmap,
829 __isl_take isl_constraint *constraint);
830 __isl_give isl_basic_set *isl_basic_set_add_constraint(
831 __isl_take isl_basic_set *bset,
832 __isl_take isl_constraint *constraint);
834 For example, to create a set containing the even integers
835 between 10 and 42, you would use the following code.
839 struct isl_constraint *c;
840 struct isl_basic_set *bset;
843 dim = isl_dim_set_alloc(ctx, 0, 2);
844 bset = isl_basic_set_universe(isl_dim_copy(dim));
846 c = isl_equality_alloc(isl_dim_copy(dim));
847 isl_int_set_si(v, -1);
848 isl_constraint_set_coefficient(c, isl_dim_set, 0, v);
849 isl_int_set_si(v, 2);
850 isl_constraint_set_coefficient(c, isl_dim_set, 1, v);
851 bset = isl_basic_set_add_constraint(bset, c);
853 c = isl_inequality_alloc(isl_dim_copy(dim));
854 isl_int_set_si(v, -10);
855 isl_constraint_set_constant(c, v);
856 isl_int_set_si(v, 1);
857 isl_constraint_set_coefficient(c, isl_dim_set, 0, v);
858 bset = isl_basic_set_add_constraint(bset, c);
860 c = isl_inequality_alloc(dim);
861 isl_int_set_si(v, 42);
862 isl_constraint_set_constant(c, v);
863 isl_int_set_si(v, -1);
864 isl_constraint_set_coefficient(c, isl_dim_set, 0, v);
865 bset = isl_basic_set_add_constraint(bset, c);
867 bset = isl_basic_set_project_out(bset, isl_dim_set, 1, 1);
873 struct isl_basic_set *bset;
874 bset = isl_basic_set_read_from_str(ctx,
875 "{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}", -1);
877 A basic set or relation can also be constructed from two matrices
878 describing the equalities and the inequalities.
880 __isl_give isl_basic_set *isl_basic_set_from_constraint_matrices(
881 __isl_take isl_dim *dim,
882 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
883 enum isl_dim_type c1,
884 enum isl_dim_type c2, enum isl_dim_type c3,
885 enum isl_dim_type c4);
886 __isl_give isl_basic_map *isl_basic_map_from_constraint_matrices(
887 __isl_take isl_dim *dim,
888 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
889 enum isl_dim_type c1,
890 enum isl_dim_type c2, enum isl_dim_type c3,
891 enum isl_dim_type c4, enum isl_dim_type c5);
893 The C<isl_dim_type> arguments indicate the order in which
894 different kinds of variables appear in the input matrices
895 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
896 C<isl_dim_set> and C<isl_dim_div> for sets and
897 of C<isl_dim_cst>, C<isl_dim_param>,
898 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div> for relations.
900 =head2 Inspecting Sets and Relations
902 Usually, the user should not have to care about the actual constraints
903 of the sets and maps, but should instead apply the abstract operations
904 explained in the following sections.
905 Occasionally, however, it may be required to inspect the individual
906 coefficients of the constraints. This section explains how to do so.
907 In these cases, it may also be useful to have C<isl> compute
908 an explicit representation of the existentially quantified variables.
910 __isl_give isl_set *isl_set_compute_divs(
911 __isl_take isl_set *set);
912 __isl_give isl_map *isl_map_compute_divs(
913 __isl_take isl_map *map);
914 __isl_give isl_union_set *isl_union_set_compute_divs(
915 __isl_take isl_union_set *uset);
916 __isl_give isl_union_map *isl_union_map_compute_divs(
917 __isl_take isl_union_map *umap);
919 This explicit representation defines the existentially quantified
920 variables as integer divisions of the other variables, possibly
921 including earlier existentially quantified variables.
922 An explicitly represented existentially quantified variable therefore
923 has a unique value when the values of the other variables are known.
924 If, furthermore, the same existentials, i.e., existentials
925 with the same explicit representations, should appear in the
926 same order in each of the disjuncts of a set or map, then the user should call
927 either of the following functions.
929 __isl_give isl_set *isl_set_align_divs(
930 __isl_take isl_set *set);
931 __isl_give isl_map *isl_map_align_divs(
932 __isl_take isl_map *map);
934 Alternatively, the existentially quantified variables can be removed
935 using the following functions, which compute an overapproximation.
937 __isl_give isl_basic_set *isl_basic_set_remove_divs(
938 __isl_take isl_basic_set *bset);
939 __isl_give isl_basic_map *isl_basic_map_remove_divs(
940 __isl_take isl_basic_map *bmap);
941 __isl_give isl_set *isl_set_remove_divs(
942 __isl_take isl_set *set);
944 To iterate over all the sets or maps in a union set or map, use
946 int isl_union_set_foreach_set(__isl_keep isl_union_set *uset,
947 int (*fn)(__isl_take isl_set *set, void *user),
949 int isl_union_map_foreach_map(__isl_keep isl_union_map *umap,
950 int (*fn)(__isl_take isl_map *map, void *user),
953 The number of sets or maps in a union set or map can be obtained
956 int isl_union_set_n_set(__isl_keep isl_union_set *uset);
957 int isl_union_map_n_map(__isl_keep isl_union_map *umap);
959 To extract the set or map from a union with a given dimension
962 __isl_give isl_set *isl_union_set_extract_set(
963 __isl_keep isl_union_set *uset,
964 __isl_take isl_dim *dim);
965 __isl_give isl_map *isl_union_map_extract_map(
966 __isl_keep isl_union_map *umap,
967 __isl_take isl_dim *dim);
969 To iterate over all the basic sets or maps in a set or map, use
971 int isl_set_foreach_basic_set(__isl_keep isl_set *set,
972 int (*fn)(__isl_take isl_basic_set *bset, void *user),
974 int isl_map_foreach_basic_map(__isl_keep isl_map *map,
975 int (*fn)(__isl_take isl_basic_map *bmap, void *user),
978 The callback function C<fn> should return 0 if successful and
979 -1 if an error occurs. In the latter case, or if any other error
980 occurs, the above functions will return -1.
982 It should be noted that C<isl> does not guarantee that
983 the basic sets or maps passed to C<fn> are disjoint.
984 If this is required, then the user should call one of
985 the following functions first.
987 __isl_give isl_set *isl_set_make_disjoint(
988 __isl_take isl_set *set);
989 __isl_give isl_map *isl_map_make_disjoint(
990 __isl_take isl_map *map);
992 The number of basic sets in a set can be obtained
995 int isl_set_n_basic_set(__isl_keep isl_set *set);
997 To iterate over the constraints of a basic set or map, use
999 #include <isl/constraint.h>
1001 int isl_basic_map_foreach_constraint(
1002 __isl_keep isl_basic_map *bmap,
1003 int (*fn)(__isl_take isl_constraint *c, void *user),
1005 void isl_constraint_free(struct isl_constraint *c);
1007 Again, the callback function C<fn> should return 0 if successful and
1008 -1 if an error occurs. In the latter case, or if any other error
1009 occurs, the above functions will return -1.
1010 The constraint C<c> represents either an equality or an inequality.
1011 Use the following function to find out whether a constraint
1012 represents an equality. If not, it represents an inequality.
1014 int isl_constraint_is_equality(
1015 __isl_keep isl_constraint *constraint);
1017 The coefficients of the constraints can be inspected using
1018 the following functions.
1020 void isl_constraint_get_constant(
1021 __isl_keep isl_constraint *constraint, isl_int *v);
1022 void isl_constraint_get_coefficient(
1023 __isl_keep isl_constraint *constraint,
1024 enum isl_dim_type type, int pos, isl_int *v);
1026 The explicit representations of the existentially quantified
1027 variables can be inspected using the following functions.
1028 Note that the user is only allowed to use these functions
1029 if the inspected set or map is the result of a call
1030 to C<isl_set_compute_divs> or C<isl_map_compute_divs>.
1032 __isl_give isl_div *isl_constraint_div(
1033 __isl_keep isl_constraint *constraint, int pos);
1034 void isl_div_get_constant(__isl_keep isl_div *div,
1036 void isl_div_get_denominator(__isl_keep isl_div *div,
1038 void isl_div_get_coefficient(__isl_keep isl_div *div,
1039 enum isl_dim_type type, int pos, isl_int *v);
1041 To obtain the constraints of a basic set or map in matrix
1042 form, use the following functions.
1044 __isl_give isl_mat *isl_basic_set_equalities_matrix(
1045 __isl_keep isl_basic_set *bset,
1046 enum isl_dim_type c1, enum isl_dim_type c2,
1047 enum isl_dim_type c3, enum isl_dim_type c4);
1048 __isl_give isl_mat *isl_basic_set_inequalities_matrix(
1049 __isl_keep isl_basic_set *bset,
1050 enum isl_dim_type c1, enum isl_dim_type c2,
1051 enum isl_dim_type c3, enum isl_dim_type c4);
1052 __isl_give isl_mat *isl_basic_map_equalities_matrix(
1053 __isl_keep isl_basic_map *bmap,
1054 enum isl_dim_type c1,
1055 enum isl_dim_type c2, enum isl_dim_type c3,
1056 enum isl_dim_type c4, enum isl_dim_type c5);
1057 __isl_give isl_mat *isl_basic_map_inequalities_matrix(
1058 __isl_keep isl_basic_map *bmap,
1059 enum isl_dim_type c1,
1060 enum isl_dim_type c2, enum isl_dim_type c3,
1061 enum isl_dim_type c4, enum isl_dim_type c5);
1063 The C<isl_dim_type> arguments dictate the order in which
1064 different kinds of variables appear in the resulting matrix
1065 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
1066 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div>.
1068 The names of the domain and range spaces of a set or relation can be
1069 read off using the following functions.
1071 const char *isl_set_get_tuple_name(
1072 __isl_keep isl_set *set);
1073 const char *isl_basic_map_get_tuple_name(
1074 __isl_keep isl_basic_map *bmap,
1075 enum isl_dim_type type);
1076 const char *isl_map_get_tuple_name(
1077 __isl_keep isl_map *map,
1078 enum isl_dim_type type);
1080 As with C<isl_dim_get_tuple_name>, the value returned points to
1081 an internal data structure.
1082 The names of individual dimensions can be read off using
1083 the following functions.
1085 const char *isl_constraint_get_dim_name(
1086 __isl_keep isl_constraint *constraint,
1087 enum isl_dim_type type, unsigned pos);
1088 const char *isl_set_get_dim_name(
1089 __isl_keep isl_set *set,
1090 enum isl_dim_type type, unsigned pos);
1091 const char *isl_basic_map_get_dim_name(
1092 __isl_keep isl_basic_map *bmap,
1093 enum isl_dim_type type, unsigned pos);
1094 const char *isl_map_get_dim_name(
1095 __isl_keep isl_map *map,
1096 enum isl_dim_type type, unsigned pos);
1098 These functions are mostly useful to obtain the names
1103 =head3 Unary Properties
1109 The following functions test whether the given set or relation
1110 contains any integer points. The ``fast'' variants do not perform
1111 any computations, but simply check if the given set or relation
1112 is already known to be empty.
1114 int isl_basic_set_fast_is_empty(__isl_keep isl_basic_set *bset);
1115 int isl_basic_set_is_empty(__isl_keep isl_basic_set *bset);
1116 int isl_set_is_empty(__isl_keep isl_set *set);
1117 int isl_union_set_is_empty(__isl_keep isl_union_set *uset);
1118 int isl_basic_map_fast_is_empty(__isl_keep isl_basic_map *bmap);
1119 int isl_basic_map_is_empty(__isl_keep isl_basic_map *bmap);
1120 int isl_map_fast_is_empty(__isl_keep isl_map *map);
1121 int isl_map_is_empty(__isl_keep isl_map *map);
1122 int isl_union_map_is_empty(__isl_keep isl_union_map *umap);
1124 =item * Universality
1126 int isl_basic_set_is_universe(__isl_keep isl_basic_set *bset);
1127 int isl_basic_map_is_universe(__isl_keep isl_basic_map *bmap);
1128 int isl_set_fast_is_universe(__isl_keep isl_set *set);
1130 =item * Single-valuedness
1132 int isl_map_is_single_valued(__isl_keep isl_map *map);
1136 int isl_map_is_bijective(__isl_keep isl_map *map);
1140 The followning functions check whether the domain of the given
1141 (basic) set is a wrapped relation.
1143 int isl_basic_set_is_wrapping(
1144 __isl_keep isl_basic_set *bset);
1145 int isl_set_is_wrapping(__isl_keep isl_set *set);
1149 =head3 Binary Properties
1155 int isl_set_fast_is_equal(__isl_keep isl_set *set1,
1156 __isl_keep isl_set *set2);
1157 int isl_set_is_equal(__isl_keep isl_set *set1,
1158 __isl_keep isl_set *set2);
1159 int isl_union_set_is_equal(
1160 __isl_keep isl_union_set *uset1,
1161 __isl_keep isl_union_set *uset2);
1162 int isl_basic_map_is_equal(
1163 __isl_keep isl_basic_map *bmap1,
1164 __isl_keep isl_basic_map *bmap2);
1165 int isl_map_is_equal(__isl_keep isl_map *map1,
1166 __isl_keep isl_map *map2);
1167 int isl_map_fast_is_equal(__isl_keep isl_map *map1,
1168 __isl_keep isl_map *map2);
1169 int isl_union_map_is_equal(
1170 __isl_keep isl_union_map *umap1,
1171 __isl_keep isl_union_map *umap2);
1173 =item * Disjointness
1175 int isl_set_fast_is_disjoint(__isl_keep isl_set *set1,
1176 __isl_keep isl_set *set2);
1180 int isl_set_is_subset(__isl_keep isl_set *set1,
1181 __isl_keep isl_set *set2);
1182 int isl_set_is_strict_subset(
1183 __isl_keep isl_set *set1,
1184 __isl_keep isl_set *set2);
1185 int isl_union_set_is_subset(
1186 __isl_keep isl_union_set *uset1,
1187 __isl_keep isl_union_set *uset2);
1188 int isl_union_set_is_strict_subset(
1189 __isl_keep isl_union_set *uset1,
1190 __isl_keep isl_union_set *uset2);
1191 int isl_basic_map_is_subset(
1192 __isl_keep isl_basic_map *bmap1,
1193 __isl_keep isl_basic_map *bmap2);
1194 int isl_basic_map_is_strict_subset(
1195 __isl_keep isl_basic_map *bmap1,
1196 __isl_keep isl_basic_map *bmap2);
1197 int isl_map_is_subset(
1198 __isl_keep isl_map *map1,
1199 __isl_keep isl_map *map2);
1200 int isl_map_is_strict_subset(
1201 __isl_keep isl_map *map1,
1202 __isl_keep isl_map *map2);
1203 int isl_union_map_is_subset(
1204 __isl_keep isl_union_map *umap1,
1205 __isl_keep isl_union_map *umap2);
1206 int isl_union_map_is_strict_subset(
1207 __isl_keep isl_union_map *umap1,
1208 __isl_keep isl_union_map *umap2);
1212 =head2 Unary Operations
1218 __isl_give isl_set *isl_set_complement(
1219 __isl_take isl_set *set);
1223 __isl_give isl_basic_map *isl_basic_map_reverse(
1224 __isl_take isl_basic_map *bmap);
1225 __isl_give isl_map *isl_map_reverse(
1226 __isl_take isl_map *map);
1227 __isl_give isl_union_map *isl_union_map_reverse(
1228 __isl_take isl_union_map *umap);
1232 __isl_give isl_basic_set *isl_basic_set_project_out(
1233 __isl_take isl_basic_set *bset,
1234 enum isl_dim_type type, unsigned first, unsigned n);
1235 __isl_give isl_basic_map *isl_basic_map_project_out(
1236 __isl_take isl_basic_map *bmap,
1237 enum isl_dim_type type, unsigned first, unsigned n);
1238 __isl_give isl_set *isl_set_project_out(__isl_take isl_set *set,
1239 enum isl_dim_type type, unsigned first, unsigned n);
1240 __isl_give isl_map *isl_map_project_out(__isl_take isl_map *map,
1241 enum isl_dim_type type, unsigned first, unsigned n);
1242 __isl_give isl_basic_set *isl_basic_map_domain(
1243 __isl_take isl_basic_map *bmap);
1244 __isl_give isl_basic_set *isl_basic_map_range(
1245 __isl_take isl_basic_map *bmap);
1246 __isl_give isl_set *isl_map_domain(
1247 __isl_take isl_map *bmap);
1248 __isl_give isl_set *isl_map_range(
1249 __isl_take isl_map *map);
1250 __isl_give isl_union_set *isl_union_map_domain(
1251 __isl_take isl_union_map *umap);
1252 __isl_give isl_union_set *isl_union_map_range(
1253 __isl_take isl_union_map *umap);
1255 __isl_give isl_basic_map *isl_basic_map_domain_map(
1256 __isl_take isl_basic_map *bmap);
1257 __isl_give isl_basic_map *isl_basic_map_range_map(
1258 __isl_take isl_basic_map *bmap);
1259 __isl_give isl_map *isl_map_domain_map(__isl_take isl_map *map);
1260 __isl_give isl_map *isl_map_range_map(__isl_take isl_map *map);
1261 __isl_give isl_union_map *isl_union_map_domain_map(
1262 __isl_take isl_union_map *umap);
1263 __isl_give isl_union_map *isl_union_map_range_map(
1264 __isl_take isl_union_map *umap);
1266 The functions above construct a (basic, regular or union) relation
1267 that maps (a wrapped version of) the input relation to its domain or range.
1271 __isl_give isl_map *isl_set_identity(
1272 __isl_take isl_set *set);
1273 __isl_give isl_union_map *isl_union_set_identity(
1274 __isl_take isl_union_set *uset);
1276 Construct an identity relation on the given (union) set.
1280 __isl_give isl_basic_set *isl_basic_map_deltas(
1281 __isl_take isl_basic_map *bmap);
1282 __isl_give isl_set *isl_map_deltas(__isl_take isl_map *map);
1283 __isl_give isl_union_set *isl_union_map_deltas(
1284 __isl_take isl_union_map *umap);
1286 These functions return a (basic) set containing the differences
1287 between image elements and corresponding domain elements in the input.
1291 Simplify the representation of a set or relation by trying
1292 to combine pairs of basic sets or relations into a single
1293 basic set or relation.
1295 __isl_give isl_set *isl_set_coalesce(__isl_take isl_set *set);
1296 __isl_give isl_map *isl_map_coalesce(__isl_take isl_map *map);
1297 __isl_give isl_union_set *isl_union_set_coalesce(
1298 __isl_take isl_union_set *uset);
1299 __isl_give isl_union_map *isl_union_map_coalesce(
1300 __isl_take isl_union_map *umap);
1304 __isl_give isl_basic_set *isl_set_convex_hull(
1305 __isl_take isl_set *set);
1306 __isl_give isl_basic_map *isl_map_convex_hull(
1307 __isl_take isl_map *map);
1309 If the input set or relation has any existentially quantified
1310 variables, then the result of these operations is currently undefined.
1314 __isl_give isl_basic_set *isl_set_simple_hull(
1315 __isl_take isl_set *set);
1316 __isl_give isl_basic_map *isl_map_simple_hull(
1317 __isl_take isl_map *map);
1319 These functions compute a single basic set or relation
1320 that contains the whole input set or relation.
1321 In particular, the output is described by translates
1322 of the constraints describing the basic sets or relations in the input.
1326 (See \autoref{s:simple hull}.)
1332 __isl_give isl_basic_set *isl_basic_set_affine_hull(
1333 __isl_take isl_basic_set *bset);
1334 __isl_give isl_basic_set *isl_set_affine_hull(
1335 __isl_take isl_set *set);
1336 __isl_give isl_union_set *isl_union_set_affine_hull(
1337 __isl_take isl_union_set *uset);
1338 __isl_give isl_basic_map *isl_basic_map_affine_hull(
1339 __isl_take isl_basic_map *bmap);
1340 __isl_give isl_basic_map *isl_map_affine_hull(
1341 __isl_take isl_map *map);
1342 __isl_give isl_union_map *isl_union_map_affine_hull(
1343 __isl_take isl_union_map *umap);
1345 In case of union sets and relations, the affine hull is computed
1348 =item * Polyhedral hull
1350 __isl_give isl_basic_set *isl_set_polyhedral_hull(
1351 __isl_take isl_set *set);
1352 __isl_give isl_basic_map *isl_map_polyhedral_hull(
1353 __isl_take isl_map *map);
1354 __isl_give isl_union_set *isl_union_set_polyhedral_hull(
1355 __isl_take isl_union_set *uset);
1356 __isl_give isl_union_map *isl_union_map_polyhedral_hull(
1357 __isl_take isl_union_map *umap);
1359 These functions compute a single basic set or relation
1360 not involving any existentially quantified variables
1361 that contains the whole input set or relation.
1362 In case of union sets and relations, the polyhedral hull is computed
1367 __isl_give isl_map *isl_map_power(__isl_take isl_map *map,
1368 unsigned param, int *exact);
1370 Compute a parametric representation for all positive powers I<k> of C<map>.
1371 The power I<k> is equated to the parameter at position C<param>.
1372 The result may be an overapproximation. If the result is exact,
1373 then C<*exact> is set to C<1>.
1374 The current implementation only produces exact results for particular
1375 cases of piecewise translations (i.e., piecewise uniform dependences).
1377 =item * Transitive closure
1379 __isl_give isl_map *isl_map_transitive_closure(
1380 __isl_take isl_map *map, int *exact);
1381 __isl_give isl_union_map *isl_union_map_transitive_closure(
1382 __isl_take isl_union_map *umap, int *exact);
1384 Compute the transitive closure of C<map>.
1385 The result may be an overapproximation. If the result is known to be exact,
1386 then C<*exact> is set to C<1>.
1387 The current implementation only produces exact results for particular
1388 cases of piecewise translations (i.e., piecewise uniform dependences).
1390 =item * Reaching path lengths
1392 __isl_give isl_map *isl_map_reaching_path_lengths(
1393 __isl_take isl_map *map, int *exact);
1395 Compute a relation that maps each element in the range of C<map>
1396 to the lengths of all paths composed of edges in C<map> that
1397 end up in the given element.
1398 The result may be an overapproximation. If the result is known to be exact,
1399 then C<*exact> is set to C<1>.
1400 To compute the I<maximal> path length, the resulting relation
1401 should be postprocessed by C<isl_map_lexmax>.
1402 In particular, if the input relation is a dependence relation
1403 (mapping sources to sinks), then the maximal path length corresponds
1404 to the free schedule.
1405 Note, however, that C<isl_map_lexmax> expects the maximum to be
1406 finite, so if the path lengths are unbounded (possibly due to
1407 the overapproximation), then you will get an error message.
1411 __isl_give isl_basic_set *isl_basic_map_wrap(
1412 __isl_take isl_basic_map *bmap);
1413 __isl_give isl_set *isl_map_wrap(
1414 __isl_take isl_map *map);
1415 __isl_give isl_union_set *isl_union_map_wrap(
1416 __isl_take isl_union_map *umap);
1417 __isl_give isl_basic_map *isl_basic_set_unwrap(
1418 __isl_take isl_basic_set *bset);
1419 __isl_give isl_map *isl_set_unwrap(
1420 __isl_take isl_set *set);
1421 __isl_give isl_union_map *isl_union_set_unwrap(
1422 __isl_take isl_union_set *uset);
1426 Remove any internal structure of domain (and range) of the given
1427 set or relation. If there is any such internal structure in the input,
1428 then the name of the space is also removed.
1430 __isl_give isl_set *isl_set_flatten(
1431 __isl_take isl_set *set);
1432 __isl_give isl_map *isl_map_flatten(
1433 __isl_take isl_map *map);
1435 __isl_give isl_map *isl_set_flatten_map(
1436 __isl_take isl_set *set);
1438 The function above constructs a relation
1439 that maps the input set to a flattened version of the set.
1441 =item * Dimension manipulation
1443 __isl_give isl_set *isl_set_add_dims(
1444 __isl_take isl_set *set,
1445 enum isl_dim_type type, unsigned n);
1446 __isl_give isl_map *isl_map_add_dims(
1447 __isl_take isl_map *map,
1448 enum isl_dim_type type, unsigned n);
1450 It is usually not advisable to directly change the (input or output)
1451 space of a set or a relation as this removes the name and the internal
1452 structure of the space. However, the above functions can be useful
1453 to add new parameters.
1457 =head2 Binary Operations
1459 The two arguments of a binary operation not only need to live
1460 in the same C<isl_ctx>, they currently also need to have
1461 the same (number of) parameters.
1463 =head3 Basic Operations
1467 =item * Intersection
1469 __isl_give isl_basic_set *isl_basic_set_intersect(
1470 __isl_take isl_basic_set *bset1,
1471 __isl_take isl_basic_set *bset2);
1472 __isl_give isl_set *isl_set_intersect(
1473 __isl_take isl_set *set1,
1474 __isl_take isl_set *set2);
1475 __isl_give isl_union_set *isl_union_set_intersect(
1476 __isl_take isl_union_set *uset1,
1477 __isl_take isl_union_set *uset2);
1478 __isl_give isl_basic_map *isl_basic_map_intersect_domain(
1479 __isl_take isl_basic_map *bmap,
1480 __isl_take isl_basic_set *bset);
1481 __isl_give isl_basic_map *isl_basic_map_intersect_range(
1482 __isl_take isl_basic_map *bmap,
1483 __isl_take isl_basic_set *bset);
1484 __isl_give isl_basic_map *isl_basic_map_intersect(
1485 __isl_take isl_basic_map *bmap1,
1486 __isl_take isl_basic_map *bmap2);
1487 __isl_give isl_map *isl_map_intersect_domain(
1488 __isl_take isl_map *map,
1489 __isl_take isl_set *set);
1490 __isl_give isl_map *isl_map_intersect_range(
1491 __isl_take isl_map *map,
1492 __isl_take isl_set *set);
1493 __isl_give isl_map *isl_map_intersect(
1494 __isl_take isl_map *map1,
1495 __isl_take isl_map *map2);
1496 __isl_give isl_union_map *isl_union_map_intersect_domain(
1497 __isl_take isl_union_map *umap,
1498 __isl_take isl_union_set *uset);
1499 __isl_give isl_union_map *isl_union_map_intersect_range(
1500 __isl_take isl_union_map *umap,
1501 __isl_take isl_union_set *uset);
1502 __isl_give isl_union_map *isl_union_map_intersect(
1503 __isl_take isl_union_map *umap1,
1504 __isl_take isl_union_map *umap2);
1508 __isl_give isl_set *isl_basic_set_union(
1509 __isl_take isl_basic_set *bset1,
1510 __isl_take isl_basic_set *bset2);
1511 __isl_give isl_map *isl_basic_map_union(
1512 __isl_take isl_basic_map *bmap1,
1513 __isl_take isl_basic_map *bmap2);
1514 __isl_give isl_set *isl_set_union(
1515 __isl_take isl_set *set1,
1516 __isl_take isl_set *set2);
1517 __isl_give isl_map *isl_map_union(
1518 __isl_take isl_map *map1,
1519 __isl_take isl_map *map2);
1520 __isl_give isl_union_set *isl_union_set_union(
1521 __isl_take isl_union_set *uset1,
1522 __isl_take isl_union_set *uset2);
1523 __isl_give isl_union_map *isl_union_map_union(
1524 __isl_take isl_union_map *umap1,
1525 __isl_take isl_union_map *umap2);
1527 =item * Set difference
1529 __isl_give isl_set *isl_set_subtract(
1530 __isl_take isl_set *set1,
1531 __isl_take isl_set *set2);
1532 __isl_give isl_map *isl_map_subtract(
1533 __isl_take isl_map *map1,
1534 __isl_take isl_map *map2);
1535 __isl_give isl_union_set *isl_union_set_subtract(
1536 __isl_take isl_union_set *uset1,
1537 __isl_take isl_union_set *uset2);
1538 __isl_give isl_union_map *isl_union_map_subtract(
1539 __isl_take isl_union_map *umap1,
1540 __isl_take isl_union_map *umap2);
1544 __isl_give isl_basic_set *isl_basic_set_apply(
1545 __isl_take isl_basic_set *bset,
1546 __isl_take isl_basic_map *bmap);
1547 __isl_give isl_set *isl_set_apply(
1548 __isl_take isl_set *set,
1549 __isl_take isl_map *map);
1550 __isl_give isl_union_set *isl_union_set_apply(
1551 __isl_take isl_union_set *uset,
1552 __isl_take isl_union_map *umap);
1553 __isl_give isl_basic_map *isl_basic_map_apply_domain(
1554 __isl_take isl_basic_map *bmap1,
1555 __isl_take isl_basic_map *bmap2);
1556 __isl_give isl_basic_map *isl_basic_map_apply_range(
1557 __isl_take isl_basic_map *bmap1,
1558 __isl_take isl_basic_map *bmap2);
1559 __isl_give isl_map *isl_map_apply_domain(
1560 __isl_take isl_map *map1,
1561 __isl_take isl_map *map2);
1562 __isl_give isl_union_map *isl_union_map_apply_domain(
1563 __isl_take isl_union_map *umap1,
1564 __isl_take isl_union_map *umap2);
1565 __isl_give isl_map *isl_map_apply_range(
1566 __isl_take isl_map *map1,
1567 __isl_take isl_map *map2);
1568 __isl_give isl_union_map *isl_union_map_apply_range(
1569 __isl_take isl_union_map *umap1,
1570 __isl_take isl_union_map *umap2);
1572 =item * Simplification
1574 __isl_give isl_basic_set *isl_basic_set_gist(
1575 __isl_take isl_basic_set *bset,
1576 __isl_take isl_basic_set *context);
1577 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
1578 __isl_take isl_set *context);
1579 __isl_give isl_union_set *isl_union_set_gist(
1580 __isl_take isl_union_set *uset,
1581 __isl_take isl_union_set *context);
1582 __isl_give isl_basic_map *isl_basic_map_gist(
1583 __isl_take isl_basic_map *bmap,
1584 __isl_take isl_basic_map *context);
1585 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
1586 __isl_take isl_map *context);
1587 __isl_give isl_union_map *isl_union_map_gist(
1588 __isl_take isl_union_map *umap,
1589 __isl_take isl_union_map *context);
1591 The gist operation returns a set or relation that has the
1592 same intersection with the context as the input set or relation.
1593 Any implicit equality in the intersection is made explicit in the result,
1594 while all inequalities that are redundant with respect to the intersection
1596 In case of union sets and relations, the gist operation is performed
1601 =head3 Lexicographic Optimization
1603 Given a (basic) set C<set> (or C<bset>) and a zero-dimensional domain C<dom>,
1604 the following functions
1605 compute a set that contains the lexicographic minimum or maximum
1606 of the elements in C<set> (or C<bset>) for those values of the parameters
1607 that satisfy C<dom>.
1608 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
1609 that contains the parameter values in C<dom> for which C<set> (or C<bset>)
1611 In other words, the union of the parameter values
1612 for which the result is non-empty and of C<*empty>
1615 __isl_give isl_set *isl_basic_set_partial_lexmin(
1616 __isl_take isl_basic_set *bset,
1617 __isl_take isl_basic_set *dom,
1618 __isl_give isl_set **empty);
1619 __isl_give isl_set *isl_basic_set_partial_lexmax(
1620 __isl_take isl_basic_set *bset,
1621 __isl_take isl_basic_set *dom,
1622 __isl_give isl_set **empty);
1623 __isl_give isl_set *isl_set_partial_lexmin(
1624 __isl_take isl_set *set, __isl_take isl_set *dom,
1625 __isl_give isl_set **empty);
1626 __isl_give isl_set *isl_set_partial_lexmax(
1627 __isl_take isl_set *set, __isl_take isl_set *dom,
1628 __isl_give isl_set **empty);
1630 Given a (basic) set C<set> (or C<bset>), the following functions simply
1631 return a set containing the lexicographic minimum or maximum
1632 of the elements in C<set> (or C<bset>).
1633 In case of union sets, the optimum is computed per space.
1635 __isl_give isl_set *isl_basic_set_lexmin(
1636 __isl_take isl_basic_set *bset);
1637 __isl_give isl_set *isl_basic_set_lexmax(
1638 __isl_take isl_basic_set *bset);
1639 __isl_give isl_set *isl_set_lexmin(
1640 __isl_take isl_set *set);
1641 __isl_give isl_set *isl_set_lexmax(
1642 __isl_take isl_set *set);
1643 __isl_give isl_union_set *isl_union_set_lexmin(
1644 __isl_take isl_union_set *uset);
1645 __isl_give isl_union_set *isl_union_set_lexmax(
1646 __isl_take isl_union_set *uset);
1648 Given a (basic) relation C<map> (or C<bmap>) and a domain C<dom>,
1649 the following functions
1650 compute a relation that maps each element of C<dom>
1651 to the single lexicographic minimum or maximum
1652 of the elements that are associated to that same
1653 element in C<map> (or C<bmap>).
1654 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
1655 that contains the elements in C<dom> that do not map
1656 to any elements in C<map> (or C<bmap>).
1657 In other words, the union of the domain of the result and of C<*empty>
1660 __isl_give isl_map *isl_basic_map_partial_lexmax(
1661 __isl_take isl_basic_map *bmap,
1662 __isl_take isl_basic_set *dom,
1663 __isl_give isl_set **empty);
1664 __isl_give isl_map *isl_basic_map_partial_lexmin(
1665 __isl_take isl_basic_map *bmap,
1666 __isl_take isl_basic_set *dom,
1667 __isl_give isl_set **empty);
1668 __isl_give isl_map *isl_map_partial_lexmax(
1669 __isl_take isl_map *map, __isl_take isl_set *dom,
1670 __isl_give isl_set **empty);
1671 __isl_give isl_map *isl_map_partial_lexmin(
1672 __isl_take isl_map *map, __isl_take isl_set *dom,
1673 __isl_give isl_set **empty);
1675 Given a (basic) map C<map> (or C<bmap>), the following functions simply
1676 return a map mapping each element in the domain of
1677 C<map> (or C<bmap>) to the lexicographic minimum or maximum
1678 of all elements associated to that element.
1679 In case of union relations, the optimum is computed per space.
1681 __isl_give isl_map *isl_basic_map_lexmin(
1682 __isl_take isl_basic_map *bmap);
1683 __isl_give isl_map *isl_basic_map_lexmax(
1684 __isl_take isl_basic_map *bmap);
1685 __isl_give isl_map *isl_map_lexmin(
1686 __isl_take isl_map *map);
1687 __isl_give isl_map *isl_map_lexmax(
1688 __isl_take isl_map *map);
1689 __isl_give isl_union_map *isl_union_map_lexmin(
1690 __isl_take isl_union_map *umap);
1691 __isl_give isl_union_map *isl_union_map_lexmax(
1692 __isl_take isl_union_map *umap);
1696 Matrices can be created, copied and freed using the following functions.
1698 #include <isl/mat.h>
1699 __isl_give isl_mat *isl_mat_alloc(struct isl_ctx *ctx,
1700 unsigned n_row, unsigned n_col);
1701 __isl_give isl_mat *isl_mat_copy(__isl_keep isl_mat *mat);
1702 void isl_mat_free(__isl_take isl_mat *mat);
1704 Note that the elements of a newly created matrix may have arbitrary values.
1705 The elements can be changed and inspected using the following functions.
1707 int isl_mat_rows(__isl_keep isl_mat *mat);
1708 int isl_mat_cols(__isl_keep isl_mat *mat);
1709 int isl_mat_get_element(__isl_keep isl_mat *mat,
1710 int row, int col, isl_int *v);
1711 __isl_give isl_mat *isl_mat_set_element(__isl_take isl_mat *mat,
1712 int row, int col, isl_int v);
1714 C<isl_mat_get_element> will return a negative value if anything went wrong.
1715 In that case, the value of C<*v> is undefined.
1717 The following function can be used to compute the (right) inverse
1718 of a matrix, i.e., a matrix such that the product of the original
1719 and the inverse (in that order) is a multiple of the identity matrix.
1720 The input matrix is assumed to be of full row-rank.
1722 __isl_give isl_mat *isl_mat_right_inverse(__isl_take isl_mat *mat);
1724 The following function can be used to compute the (right) kernel
1725 (or null space) of a matrix, i.e., a matrix such that the product of
1726 the original and the kernel (in that order) is the zero matrix.
1728 __isl_give isl_mat *isl_mat_right_kernel(__isl_take isl_mat *mat);
1732 Points are elements of a set. They can be used to construct
1733 simple sets (boxes) or they can be used to represent the
1734 individual elements of a set.
1735 The zero point (the origin) can be created using
1737 __isl_give isl_point *isl_point_zero(__isl_take isl_dim *dim);
1739 The coordinates of a point can be inspected, set and changed
1742 void isl_point_get_coordinate(__isl_keep isl_point *pnt,
1743 enum isl_dim_type type, int pos, isl_int *v);
1744 __isl_give isl_point *isl_point_set_coordinate(
1745 __isl_take isl_point *pnt,
1746 enum isl_dim_type type, int pos, isl_int v);
1748 __isl_give isl_point *isl_point_add_ui(
1749 __isl_take isl_point *pnt,
1750 enum isl_dim_type type, int pos, unsigned val);
1751 __isl_give isl_point *isl_point_sub_ui(
1752 __isl_take isl_point *pnt,
1753 enum isl_dim_type type, int pos, unsigned val);
1755 Points can be copied or freed using
1757 __isl_give isl_point *isl_point_copy(
1758 __isl_keep isl_point *pnt);
1759 void isl_point_free(__isl_take isl_point *pnt);
1761 A singleton set can be created from a point using
1763 __isl_give isl_basic_set *isl_basic_set_from_point(
1764 __isl_take isl_point *pnt);
1765 __isl_give isl_set *isl_set_from_point(
1766 __isl_take isl_point *pnt);
1768 and a box can be created from two opposite extremal points using
1770 __isl_give isl_basic_set *isl_basic_set_box_from_points(
1771 __isl_take isl_point *pnt1,
1772 __isl_take isl_point *pnt2);
1773 __isl_give isl_set *isl_set_box_from_points(
1774 __isl_take isl_point *pnt1,
1775 __isl_take isl_point *pnt2);
1777 All elements of a B<bounded> (union) set can be enumerated using
1778 the following functions.
1780 int isl_set_foreach_point(__isl_keep isl_set *set,
1781 int (*fn)(__isl_take isl_point *pnt, void *user),
1783 int isl_union_set_foreach_point(__isl_keep isl_union_set *uset,
1784 int (*fn)(__isl_take isl_point *pnt, void *user),
1787 The function C<fn> is called for each integer point in
1788 C<set> with as second argument the last argument of
1789 the C<isl_set_foreach_point> call. The function C<fn>
1790 should return C<0> on success and C<-1> on failure.
1791 In the latter case, C<isl_set_foreach_point> will stop
1792 enumerating and return C<-1> as well.
1793 If the enumeration is performed successfully and to completion,
1794 then C<isl_set_foreach_point> returns C<0>.
1796 To obtain a single point of a (basic) set, use
1798 __isl_give isl_point *isl_basic_set_sample_point(
1799 __isl_take isl_basic_set *bset);
1800 __isl_give isl_point *isl_set_sample_point(
1801 __isl_take isl_set *set);
1803 If C<set> does not contain any (integer) points, then the
1804 resulting point will be ``void'', a property that can be
1807 int isl_point_is_void(__isl_keep isl_point *pnt);
1809 =head2 Piecewise Quasipolynomials
1811 A piecewise quasipolynomial is a particular kind of function that maps
1812 a parametric point to a rational value.
1813 More specifically, a quasipolynomial is a polynomial expression in greatest
1814 integer parts of affine expressions of parameters and variables.
1815 A piecewise quasipolynomial is a subdivision of a given parametric
1816 domain into disjoint cells with a quasipolynomial associated to
1817 each cell. The value of the piecewise quasipolynomial at a given
1818 point is the value of the quasipolynomial associated to the cell
1819 that contains the point. Outside of the union of cells,
1820 the value is assumed to be zero.
1821 For example, the piecewise quasipolynomial
1823 [n] -> { [x] -> ((1 + n) - x) : x <= n and x >= 0 }
1825 maps C<x> to C<1 + n - x> for values of C<x> between C<0> and C<n>.
1826 A given piecewise quasipolynomial has a fixed domain dimension.
1827 Union piecewise quasipolynomials are used to contain piecewise quasipolynomials
1828 defined over different domains.
1829 Piecewise quasipolynomials are mainly used by the C<barvinok>
1830 library for representing the number of elements in a parametric set or map.
1831 For example, the piecewise quasipolynomial above represents
1832 the number of points in the map
1834 [n] -> { [x] -> [y] : x,y >= 0 and 0 <= x + y <= n }
1836 =head3 Printing (Piecewise) Quasipolynomials
1838 Quasipolynomials and piecewise quasipolynomials can be printed
1839 using the following functions.
1841 __isl_give isl_printer *isl_printer_print_qpolynomial(
1842 __isl_take isl_printer *p,
1843 __isl_keep isl_qpolynomial *qp);
1845 __isl_give isl_printer *isl_printer_print_pw_qpolynomial(
1846 __isl_take isl_printer *p,
1847 __isl_keep isl_pw_qpolynomial *pwqp);
1849 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial(
1850 __isl_take isl_printer *p,
1851 __isl_keep isl_union_pw_qpolynomial *upwqp);
1853 The output format of the printer
1854 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
1855 For C<isl_printer_print_union_pw_qpolynomial>, only C<ISL_FORMAT_ISL>
1857 In case of printing in C<ISL_FORMAT_C>, the user may want
1858 to set the names of all dimensions
1860 __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name(
1861 __isl_take isl_qpolynomial *qp,
1862 enum isl_dim_type type, unsigned pos,
1864 __isl_give isl_pw_qpolynomial *
1865 isl_pw_qpolynomial_set_dim_name(
1866 __isl_take isl_pw_qpolynomial *pwqp,
1867 enum isl_dim_type type, unsigned pos,
1870 =head3 Creating New (Piecewise) Quasipolynomials
1872 Some simple quasipolynomials can be created using the following functions.
1873 More complicated quasipolynomials can be created by applying
1874 operations such as addition and multiplication
1875 on the resulting quasipolynomials
1877 __isl_give isl_qpolynomial *isl_qpolynomial_zero(
1878 __isl_take isl_dim *dim);
1879 __isl_give isl_qpolynomial *isl_qpolynomial_one(
1880 __isl_take isl_dim *dim);
1881 __isl_give isl_qpolynomial *isl_qpolynomial_infty(
1882 __isl_take isl_dim *dim);
1883 __isl_give isl_qpolynomial *isl_qpolynomial_neginfty(
1884 __isl_take isl_dim *dim);
1885 __isl_give isl_qpolynomial *isl_qpolynomial_nan(
1886 __isl_take isl_dim *dim);
1887 __isl_give isl_qpolynomial *isl_qpolynomial_rat_cst(
1888 __isl_take isl_dim *dim,
1889 const isl_int n, const isl_int d);
1890 __isl_give isl_qpolynomial *isl_qpolynomial_div(
1891 __isl_take isl_div *div);
1892 __isl_give isl_qpolynomial *isl_qpolynomial_var(
1893 __isl_take isl_dim *dim,
1894 enum isl_dim_type type, unsigned pos);
1896 The zero piecewise quasipolynomial or a piecewise quasipolynomial
1897 with a single cell can be created using the following functions.
1898 Multiple of these single cell piecewise quasipolynomials can
1899 be combined to create more complicated piecewise quasipolynomials.
1901 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_zero(
1902 __isl_take isl_dim *dim);
1903 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_alloc(
1904 __isl_take isl_set *set,
1905 __isl_take isl_qpolynomial *qp);
1907 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_zero(
1908 __isl_take isl_dim *dim);
1909 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_from_pw_qpolynomial(
1910 __isl_take isl_pw_qpolynomial *pwqp);
1911 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add_pw_qpolynomial(
1912 __isl_take isl_union_pw_qpolynomial *upwqp,
1913 __isl_take isl_pw_qpolynomial *pwqp);
1915 Quasipolynomials can be copied and freed again using the following
1918 __isl_give isl_qpolynomial *isl_qpolynomial_copy(
1919 __isl_keep isl_qpolynomial *qp);
1920 void isl_qpolynomial_free(__isl_take isl_qpolynomial *qp);
1922 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_copy(
1923 __isl_keep isl_pw_qpolynomial *pwqp);
1924 void isl_pw_qpolynomial_free(
1925 __isl_take isl_pw_qpolynomial *pwqp);
1927 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_copy(
1928 __isl_keep isl_union_pw_qpolynomial *upwqp);
1929 void isl_union_pw_qpolynomial_free(
1930 __isl_take isl_union_pw_qpolynomial *upwqp);
1932 =head3 Inspecting (Piecewise) Quasipolynomials
1934 To iterate over all piecewise quasipolynomials in a union
1935 piecewise quasipolynomial, use the following function
1937 int isl_union_pw_qpolynomial_foreach_pw_qpolynomial(
1938 __isl_keep isl_union_pw_qpolynomial *upwqp,
1939 int (*fn)(__isl_take isl_pw_qpolynomial *pwqp, void *user),
1942 To extract the piecewise quasipolynomial from a union with a given dimension
1945 __isl_give isl_pw_qpolynomial *
1946 isl_union_pw_qpolynomial_extract_pw_qpolynomial(
1947 __isl_keep isl_union_pw_qpolynomial *upwqp,
1948 __isl_take isl_dim *dim);
1950 To iterate over the cells in a piecewise quasipolynomial,
1951 use either of the following two functions
1953 int isl_pw_qpolynomial_foreach_piece(
1954 __isl_keep isl_pw_qpolynomial *pwqp,
1955 int (*fn)(__isl_take isl_set *set,
1956 __isl_take isl_qpolynomial *qp,
1957 void *user), void *user);
1958 int isl_pw_qpolynomial_foreach_lifted_piece(
1959 __isl_keep isl_pw_qpolynomial *pwqp,
1960 int (*fn)(__isl_take isl_set *set,
1961 __isl_take isl_qpolynomial *qp,
1962 void *user), void *user);
1964 As usual, the function C<fn> should return C<0> on success
1965 and C<-1> on failure. The difference between
1966 C<isl_pw_qpolynomial_foreach_piece> and
1967 C<isl_pw_qpolynomial_foreach_lifted_piece> is that
1968 C<isl_pw_qpolynomial_foreach_lifted_piece> will first
1969 compute unique representations for all existentially quantified
1970 variables and then turn these existentially quantified variables
1971 into extra set variables, adapting the associated quasipolynomial
1972 accordingly. This means that the C<set> passed to C<fn>
1973 will not have any existentially quantified variables, but that
1974 the dimensions of the sets may be different for different
1975 invocations of C<fn>.
1977 To iterate over all terms in a quasipolynomial,
1980 int isl_qpolynomial_foreach_term(
1981 __isl_keep isl_qpolynomial *qp,
1982 int (*fn)(__isl_take isl_term *term,
1983 void *user), void *user);
1985 The terms themselves can be inspected and freed using
1988 unsigned isl_term_dim(__isl_keep isl_term *term,
1989 enum isl_dim_type type);
1990 void isl_term_get_num(__isl_keep isl_term *term,
1992 void isl_term_get_den(__isl_keep isl_term *term,
1994 int isl_term_get_exp(__isl_keep isl_term *term,
1995 enum isl_dim_type type, unsigned pos);
1996 __isl_give isl_div *isl_term_get_div(
1997 __isl_keep isl_term *term, unsigned pos);
1998 void isl_term_free(__isl_take isl_term *term);
2000 Each term is a product of parameters, set variables and
2001 integer divisions. The function C<isl_term_get_exp>
2002 returns the exponent of a given dimensions in the given term.
2003 The C<isl_int>s in the arguments of C<isl_term_get_num>
2004 and C<isl_term_get_den> need to have been initialized
2005 using C<isl_int_init> before calling these functions.
2007 =head3 Properties of (Piecewise) Quasipolynomials
2009 To check whether a quasipolynomial is actually a constant,
2010 use the following function.
2012 int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp,
2013 isl_int *n, isl_int *d);
2015 If C<qp> is a constant and if C<n> and C<d> are not C<NULL>
2016 then the numerator and denominator of the constant
2017 are returned in C<*n> and C<*d>, respectively.
2019 =head3 Operations on (Piecewise) Quasipolynomials
2021 __isl_give isl_qpolynomial *isl_qpolynomial_neg(
2022 __isl_take isl_qpolynomial *qp);
2023 __isl_give isl_qpolynomial *isl_qpolynomial_add(
2024 __isl_take isl_qpolynomial *qp1,
2025 __isl_take isl_qpolynomial *qp2);
2026 __isl_give isl_qpolynomial *isl_qpolynomial_sub(
2027 __isl_take isl_qpolynomial *qp1,
2028 __isl_take isl_qpolynomial *qp2);
2029 __isl_give isl_qpolynomial *isl_qpolynomial_mul(
2030 __isl_take isl_qpolynomial *qp1,
2031 __isl_take isl_qpolynomial *qp2);
2032 __isl_give isl_qpolynomial *isl_qpolynomial_pow(
2033 __isl_take isl_qpolynomial *qp, unsigned exponent);
2035 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add(
2036 __isl_take isl_pw_qpolynomial *pwqp1,
2037 __isl_take isl_pw_qpolynomial *pwqp2);
2038 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_sub(
2039 __isl_take isl_pw_qpolynomial *pwqp1,
2040 __isl_take isl_pw_qpolynomial *pwqp2);
2041 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_disjoint(
2042 __isl_take isl_pw_qpolynomial *pwqp1,
2043 __isl_take isl_pw_qpolynomial *pwqp2);
2044 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_neg(
2045 __isl_take isl_pw_qpolynomial *pwqp);
2046 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
2047 __isl_take isl_pw_qpolynomial *pwqp1,
2048 __isl_take isl_pw_qpolynomial *pwqp2);
2050 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add(
2051 __isl_take isl_union_pw_qpolynomial *upwqp1,
2052 __isl_take isl_union_pw_qpolynomial *upwqp2);
2053 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_sub(
2054 __isl_take isl_union_pw_qpolynomial *upwqp1,
2055 __isl_take isl_union_pw_qpolynomial *upwqp2);
2056 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul(
2057 __isl_take isl_union_pw_qpolynomial *upwqp1,
2058 __isl_take isl_union_pw_qpolynomial *upwqp2);
2060 __isl_give isl_qpolynomial *isl_pw_qpolynomial_eval(
2061 __isl_take isl_pw_qpolynomial *pwqp,
2062 __isl_take isl_point *pnt);
2064 __isl_give isl_qpolynomial *isl_union_pw_qpolynomial_eval(
2065 __isl_take isl_union_pw_qpolynomial *upwqp,
2066 __isl_take isl_point *pnt);
2068 __isl_give isl_set *isl_pw_qpolynomial_domain(
2069 __isl_take isl_pw_qpolynomial *pwqp);
2070 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_intersect_domain(
2071 __isl_take isl_pw_qpolynomial *pwpq,
2072 __isl_take isl_set *set);
2074 __isl_give isl_union_set *isl_union_pw_qpolynomial_domain(
2075 __isl_take isl_union_pw_qpolynomial *upwqp);
2076 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_intersect_domain(
2077 __isl_take isl_union_pw_qpolynomial *upwpq,
2078 __isl_take isl_union_set *uset);
2080 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_coalesce(
2081 __isl_take isl_union_pw_qpolynomial *upwqp);
2083 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist(
2084 __isl_take isl_pw_qpolynomial *pwqp,
2085 __isl_take isl_set *context);
2087 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_gist(
2088 __isl_take isl_union_pw_qpolynomial *upwqp,
2089 __isl_take isl_union_set *context);
2091 The gist operation applies the gist operation to each of
2092 the cells in the domain of the input piecewise quasipolynomial.
2093 The context is also exploited
2094 to simplify the quasipolynomials associated to each cell.
2096 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial(
2097 __isl_take isl_pw_qpolynomial *pwqp, int sign);
2098 __isl_give isl_union_pw_qpolynomial *
2099 isl_union_pw_qpolynomial_to_polynomial(
2100 __isl_take isl_union_pw_qpolynomial *upwqp, int sign);
2102 Approximate each quasipolynomial by a polynomial. If C<sign> is positive,
2103 the polynomial will be an overapproximation. If C<sign> is negative,
2104 it will be an underapproximation. If C<sign> is zero, the approximation
2105 will lie somewhere in between.
2107 =head2 Bounds on Piecewise Quasipolynomials and Piecewise Quasipolynomial Reductions
2109 A piecewise quasipolynomial reduction is a piecewise
2110 reduction (or fold) of quasipolynomials.
2111 In particular, the reduction can be maximum or a minimum.
2112 The objects are mainly used to represent the result of
2113 an upper or lower bound on a quasipolynomial over its domain,
2114 i.e., as the result of the following function.
2116 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_bound(
2117 __isl_take isl_pw_qpolynomial *pwqp,
2118 enum isl_fold type, int *tight);
2120 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_bound(
2121 __isl_take isl_union_pw_qpolynomial *upwqp,
2122 enum isl_fold type, int *tight);
2124 The C<type> argument may be either C<isl_fold_min> or C<isl_fold_max>.
2125 If C<tight> is not C<NULL>, then C<*tight> is set to C<1>
2126 is the returned bound is known be tight, i.e., for each value
2127 of the parameters there is at least
2128 one element in the domain that reaches the bound.
2129 If the domain of C<pwqp> is not wrapping, then the bound is computed
2130 over all elements in that domain and the result has a purely parametric
2131 domain. If the domain of C<pwqp> is wrapping, then the bound is
2132 computed over the range of the wrapped relation. The domain of the
2133 wrapped relation becomes the domain of the result.
2135 A (piecewise) quasipolynomial reduction can be copied or freed using the
2136 following functions.
2138 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_copy(
2139 __isl_keep isl_qpolynomial_fold *fold);
2140 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_copy(
2141 __isl_keep isl_pw_qpolynomial_fold *pwf);
2142 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_copy(
2143 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
2144 void isl_qpolynomial_fold_free(
2145 __isl_take isl_qpolynomial_fold *fold);
2146 void isl_pw_qpolynomial_fold_free(
2147 __isl_take isl_pw_qpolynomial_fold *pwf);
2148 void isl_union_pw_qpolynomial_fold_free(
2149 __isl_take isl_union_pw_qpolynomial_fold *upwf);
2151 =head3 Printing Piecewise Quasipolynomial Reductions
2153 Piecewise quasipolynomial reductions can be printed
2154 using the following function.
2156 __isl_give isl_printer *isl_printer_print_pw_qpolynomial_fold(
2157 __isl_take isl_printer *p,
2158 __isl_keep isl_pw_qpolynomial_fold *pwf);
2159 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial_fold(
2160 __isl_take isl_printer *p,
2161 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
2163 For C<isl_printer_print_pw_qpolynomial_fold>,
2164 output format of the printer
2165 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
2166 For C<isl_printer_print_union_pw_qpolynomial_fold>,
2167 output format of the printer
2168 needs to be set to C<ISL_FORMAT_ISL>.
2169 In case of printing in C<ISL_FORMAT_C>, the user may want
2170 to set the names of all dimensions
2172 __isl_give isl_pw_qpolynomial_fold *
2173 isl_pw_qpolynomial_fold_set_dim_name(
2174 __isl_take isl_pw_qpolynomial_fold *pwf,
2175 enum isl_dim_type type, unsigned pos,
2178 =head3 Inspecting (Piecewise) Quasipolynomial Reductions
2180 To iterate over all piecewise quasipolynomial reductions in a union
2181 piecewise quasipolynomial reduction, use the following function
2183 int isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold(
2184 __isl_keep isl_union_pw_qpolynomial_fold *upwf,
2185 int (*fn)(__isl_take isl_pw_qpolynomial_fold *pwf,
2186 void *user), void *user);
2188 To iterate over the cells in a piecewise quasipolynomial reduction,
2189 use either of the following two functions
2191 int isl_pw_qpolynomial_fold_foreach_piece(
2192 __isl_keep isl_pw_qpolynomial_fold *pwf,
2193 int (*fn)(__isl_take isl_set *set,
2194 __isl_take isl_qpolynomial_fold *fold,
2195 void *user), void *user);
2196 int isl_pw_qpolynomial_fold_foreach_lifted_piece(
2197 __isl_keep isl_pw_qpolynomial_fold *pwf,
2198 int (*fn)(__isl_take isl_set *set,
2199 __isl_take isl_qpolynomial_fold *fold,
2200 void *user), void *user);
2202 See L<Inspecting (Piecewise) Quasipolynomials> for an explanation
2203 of the difference between these two functions.
2205 To iterate over all quasipolynomials in a reduction, use
2207 int isl_qpolynomial_fold_foreach_qpolynomial(
2208 __isl_keep isl_qpolynomial_fold *fold,
2209 int (*fn)(__isl_take isl_qpolynomial *qp,
2210 void *user), void *user);
2212 =head3 Operations on Piecewise Quasipolynomial Reductions
2214 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_add(
2215 __isl_take isl_pw_qpolynomial_fold *pwf1,
2216 __isl_take isl_pw_qpolynomial_fold *pwf2);
2218 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_fold(
2219 __isl_take isl_pw_qpolynomial_fold *pwf1,
2220 __isl_take isl_pw_qpolynomial_fold *pwf2);
2222 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_fold(
2223 __isl_take isl_union_pw_qpolynomial_fold *upwf1,
2224 __isl_take isl_union_pw_qpolynomial_fold *upwf2);
2226 __isl_give isl_qpolynomial *isl_pw_qpolynomial_fold_eval(
2227 __isl_take isl_pw_qpolynomial_fold *pwf,
2228 __isl_take isl_point *pnt);
2230 __isl_give isl_qpolynomial *isl_union_pw_qpolynomial_fold_eval(
2231 __isl_take isl_union_pw_qpolynomial_fold *upwf,
2232 __isl_take isl_point *pnt);
2234 __isl_give isl_union_set *isl_union_pw_qpolynomial_fold_domain(
2235 __isl_take isl_union_pw_qpolynomial_fold *upwf);
2236 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_intersect_domain(
2237 __isl_take isl_union_pw_qpolynomial_fold *upwf,
2238 __isl_take isl_union_set *uset);
2240 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_coalesce(
2241 __isl_take isl_pw_qpolynomial_fold *pwf);
2243 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_coalesce(
2244 __isl_take isl_union_pw_qpolynomial_fold *upwf);
2246 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_gist(
2247 __isl_take isl_pw_qpolynomial_fold *pwf,
2248 __isl_take isl_set *context);
2250 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_gist(
2251 __isl_take isl_union_pw_qpolynomial_fold *upwf,
2252 __isl_take isl_union_set *context);
2254 The gist operation applies the gist operation to each of
2255 the cells in the domain of the input piecewise quasipolynomial reduction.
2256 In future, the operation will also exploit the context
2257 to simplify the quasipolynomial reductions associated to each cell.
2259 __isl_give isl_pw_qpolynomial_fold *
2260 isl_map_apply_pw_qpolynomial_fold(
2261 __isl_take isl_map *map,
2262 __isl_take isl_pw_qpolynomial_fold *pwf,
2264 __isl_give isl_union_pw_qpolynomial_fold *
2265 isl_union_map_apply_union_pw_qpolynomial_fold(
2266 __isl_take isl_union_map *umap,
2267 __isl_take isl_union_pw_qpolynomial_fold *upwf,
2271 compose the given map with the given piecewise quasipolynomial reduction.
2272 That is, compute a bound (of the same type as C<pwf> or C<upwf> itself)
2273 over all elements in the intersection of the range of the map
2274 and the domain of the piecewise quasipolynomial reduction
2275 as a function of an element in the domain of the map.
2277 =head2 Dependence Analysis
2279 C<isl> contains specialized functionality for performing
2280 array dataflow analysis. That is, given a I<sink> access relation
2281 and a collection of possible I<source> access relations,
2282 C<isl> can compute relations that describe
2283 for each iteration of the sink access, which iteration
2284 of which of the source access relations was the last
2285 to access the same data element before the given iteration
2287 To compute standard flow dependences, the sink should be
2288 a read, while the sources should be writes.
2289 If any of the source accesses are marked as being I<may>
2290 accesses, then there will be a dependence to the last
2291 I<must> access B<and> to any I<may> access that follows
2292 this last I<must> access.
2293 In particular, if I<all> sources are I<may> accesses,
2294 then memory based dependence analysis is performed.
2295 If, on the other hand, all sources are I<must> accesses,
2296 then value based dependence analysis is performed.
2298 #include <isl/flow.h>
2300 typedef int (*isl_access_level_before)(void *first, void *second);
2302 __isl_give isl_access_info *isl_access_info_alloc(
2303 __isl_take isl_map *sink,
2304 void *sink_user, isl_access_level_before fn,
2306 __isl_give isl_access_info *isl_access_info_add_source(
2307 __isl_take isl_access_info *acc,
2308 __isl_take isl_map *source, int must,
2310 void isl_access_info_free(__isl_take isl_access_info *acc);
2312 __isl_give isl_flow *isl_access_info_compute_flow(
2313 __isl_take isl_access_info *acc);
2315 int isl_flow_foreach(__isl_keep isl_flow *deps,
2316 int (*fn)(__isl_take isl_map *dep, int must,
2317 void *dep_user, void *user),
2319 __isl_give isl_set *isl_flow_get_no_source(
2320 __isl_keep isl_flow *deps, int must);
2321 void isl_flow_free(__isl_take isl_flow *deps);
2323 The function C<isl_access_info_compute_flow> performs the actual
2324 dependence analysis. The other functions are used to construct
2325 the input for this function or to read off the output.
2327 The input is collected in an C<isl_access_info>, which can
2328 be created through a call to C<isl_access_info_alloc>.
2329 The arguments to this functions are the sink access relation
2330 C<sink>, a token C<sink_user> used to identify the sink
2331 access to the user, a callback function for specifying the
2332 relative order of source and sink accesses, and the number
2333 of source access relations that will be added.
2334 The callback function has type C<int (*)(void *first, void *second)>.
2335 The function is called with two user supplied tokens identifying
2336 either a source or the sink and it should return the shared nesting
2337 level and the relative order of the two accesses.
2338 In particular, let I<n> be the number of loops shared by
2339 the two accesses. If C<first> precedes C<second> textually,
2340 then the function should return I<2 * n + 1>; otherwise,
2341 it should return I<2 * n>.
2342 The sources can be added to the C<isl_access_info> by performing
2343 (at most) C<max_source> calls to C<isl_access_info_add_source>.
2344 C<must> indicates whether the source is a I<must> access
2345 or a I<may> access. Note that a multi-valued access relation
2346 should only be marked I<must> if every iteration in the domain
2347 of the relation accesses I<all> elements in its image.
2348 The C<source_user> token is again used to identify
2349 the source access. The range of the source access relation
2350 C<source> should have the same dimension as the range
2351 of the sink access relation.
2352 The C<isl_access_info_free> function should usually not be
2353 called explicitly, because it is called implicitly by
2354 C<isl_access_info_compute_flow>.
2356 The result of the dependence analysis is collected in an
2357 C<isl_flow>. There may be elements in the domain of
2358 the sink access for which no preceding source access could be
2359 found or for which all preceding sources are I<may> accesses.
2360 The sets of these elements can be obtained through
2361 calls to C<isl_flow_get_no_source>, the first with C<must> set
2362 and the second with C<must> unset.
2363 In the case of standard flow dependence analysis,
2364 with the sink a read and the sources I<must> writes,
2365 the first set corresponds to the reads from uninitialized
2366 array elements and the second set is empty.
2367 The actual flow dependences can be extracted using
2368 C<isl_flow_foreach>. This function will call the user-specified
2369 callback function C<fn> for each B<non-empty> dependence between
2370 a source and the sink. The callback function is called
2371 with four arguments, the actual flow dependence relation
2372 mapping source iterations to sink iterations, a boolean that
2373 indicates whether it is a I<must> or I<may> dependence, a token
2374 identifying the source and an additional C<void *> with value
2375 equal to the third argument of the C<isl_flow_foreach> call.
2376 A dependence is marked I<must> if it originates from a I<must>
2377 source and if it is not followed by any I<may> sources.
2379 After finishing with an C<isl_flow>, the user should call
2380 C<isl_flow_free> to free all associated memory.
2382 A higher-level interface to dependence analysis is provided
2383 by the following function.
2385 #include <isl/flow.h>
2387 int isl_union_map_compute_flow(__isl_take isl_union_map *sink,
2388 __isl_take isl_union_map *must_source,
2389 __isl_take isl_union_map *may_source,
2390 __isl_take isl_union_map *schedule,
2391 __isl_give isl_union_map **must_dep,
2392 __isl_give isl_union_map **may_dep,
2393 __isl_give isl_union_set **must_no_source,
2394 __isl_give isl_union_set **may_no_source);
2396 The arrays are identified by the tuple names of the ranges
2397 of the accesses. The iteration domains by the tuple names
2398 of the domains of the accesses and of the schedule.
2399 The relative order of the iteration domains is given by the
2400 schedule. Any of C<must_dep>, C<may_dep>, C<must_no_source>
2401 or C<may_no_source> may be C<NULL>, but a C<NULL> value for
2402 any of the other arguments is treated as an error.
2404 =head2 Parametric Vertex Enumeration
2406 The parametric vertex enumeration described in this section
2407 is mainly intended to be used internally and by the C<barvinok>
2410 #include <isl/vertices.h>
2411 __isl_give isl_vertices *isl_basic_set_compute_vertices(
2412 __isl_keep isl_basic_set *bset);
2414 The function C<isl_basic_set_compute_vertices> performs the
2415 actual computation of the parametric vertices and the chamber
2416 decomposition and store the result in an C<isl_vertices> object.
2417 This information can be queried by either iterating over all
2418 the vertices or iterating over all the chambers or cells
2419 and then iterating over all vertices that are active on the chamber.
2421 int isl_vertices_foreach_vertex(
2422 __isl_keep isl_vertices *vertices,
2423 int (*fn)(__isl_take isl_vertex *vertex, void *user),
2426 int isl_vertices_foreach_cell(
2427 __isl_keep isl_vertices *vertices,
2428 int (*fn)(__isl_take isl_cell *cell, void *user),
2430 int isl_cell_foreach_vertex(__isl_keep isl_cell *cell,
2431 int (*fn)(__isl_take isl_vertex *vertex, void *user),
2434 Other operations that can be performed on an C<isl_vertices> object are
2437 isl_ctx *isl_vertices_get_ctx(
2438 __isl_keep isl_vertices *vertices);
2439 int isl_vertices_get_n_vertices(
2440 __isl_keep isl_vertices *vertices);
2441 void isl_vertices_free(__isl_take isl_vertices *vertices);
2443 Vertices can be inspected and destroyed using the following functions.
2445 isl_ctx *isl_vertex_get_ctx(__isl_keep isl_vertex *vertex);
2446 int isl_vertex_get_id(__isl_keep isl_vertex *vertex);
2447 __isl_give isl_basic_set *isl_vertex_get_domain(
2448 __isl_keep isl_vertex *vertex);
2449 __isl_give isl_basic_set *isl_vertex_get_expr(
2450 __isl_keep isl_vertex *vertex);
2451 void isl_vertex_free(__isl_take isl_vertex *vertex);
2453 C<isl_vertex_get_expr> returns a singleton parametric set describing
2454 the vertex, while C<isl_vertex_get_domain> returns the activity domain
2456 Note that C<isl_vertex_get_domain> and C<isl_vertex_get_expr> return
2457 B<rational> basic sets, so they should mainly be used for inspection
2458 and should not be mixed with integer sets.
2460 Chambers can be inspected and destroyed using the following functions.
2462 isl_ctx *isl_cell_get_ctx(__isl_keep isl_cell *cell);
2463 __isl_give isl_basic_set *isl_cell_get_domain(
2464 __isl_keep isl_cell *cell);
2465 void isl_cell_free(__isl_take isl_cell *cell);
2469 Although C<isl> is mainly meant to be used as a library,
2470 it also contains some basic applications that use some
2471 of the functionality of C<isl>.
2472 The input may be specified in either the L<isl format>
2473 or the L<PolyLib format>.
2475 =head2 C<isl_polyhedron_sample>
2477 C<isl_polyhedron_sample> takes a polyhedron as input and prints
2478 an integer element of the polyhedron, if there is any.
2479 The first column in the output is the denominator and is always
2480 equal to 1. If the polyhedron contains no integer points,
2481 then a vector of length zero is printed.
2485 C<isl_pip> takes the same input as the C<example> program
2486 from the C<piplib> distribution, i.e., a set of constraints
2487 on the parameters, a line containing only -1 and finally a set
2488 of constraints on a parametric polyhedron.
2489 The coefficients of the parameters appear in the last columns
2490 (but before the final constant column).
2491 The output is the lexicographic minimum of the parametric polyhedron.
2492 As C<isl> currently does not have its own output format, the output
2493 is just a dump of the internal state.
2495 =head2 C<isl_polyhedron_minimize>
2497 C<isl_polyhedron_minimize> computes the minimum of some linear
2498 or affine objective function over the integer points in a polyhedron.
2499 If an affine objective function
2500 is given, then the constant should appear in the last column.
2502 =head2 C<isl_polytope_scan>
2504 Given a polytope, C<isl_polytope_scan> prints
2505 all integer points in the polytope.
2507 =head1 C<isl-polylib>
2509 The C<isl-polylib> library provides the following functions for converting
2510 between C<isl> objects and C<PolyLib> objects.
2511 The library is distributed separately for licensing reasons.
2513 #include <isl_set_polylib.h>
2514 __isl_give isl_basic_set *isl_basic_set_new_from_polylib(
2515 Polyhedron *P, __isl_take isl_dim *dim);
2516 Polyhedron *isl_basic_set_to_polylib(
2517 __isl_keep isl_basic_set *bset);
2518 __isl_give isl_set *isl_set_new_from_polylib(Polyhedron *D,
2519 __isl_take isl_dim *dim);
2520 Polyhedron *isl_set_to_polylib(__isl_keep isl_set *set);
2522 #include <isl_map_polylib.h>
2523 __isl_give isl_basic_map *isl_basic_map_new_from_polylib(
2524 Polyhedron *P, __isl_take isl_dim *dim);
2525 __isl_give isl_map *isl_map_new_from_polylib(Polyhedron *D,
2526 __isl_take isl_dim *dim);
2527 Polyhedron *isl_basic_map_to_polylib(
2528 __isl_keep isl_basic_map *bmap);
2529 Polyhedron *isl_map_to_polylib(__isl_keep isl_map *map);