3 C<isl> is a thread-safe C library for manipulating
4 sets and relations of integer points bounded by affine constraints.
5 The descriptions of the sets and relations may involve
6 both parameters and existentially quantified variables.
7 All computations are performed in exact integer arithmetic
9 The C<isl> library offers functionality that is similar
10 to that offered by the C<Omega> and C<Omega+> libraries,
11 but the underlying algorithms are in most cases completely different.
13 The library is by no means complete and some fairly basic
14 functionality is still missing.
15 Still, even in its current form, the library has been successfully
16 used as a backend polyhedral library for the polyhedral
17 scanner C<CLooG> and as part of an equivalence checker of
18 static affine programs.
19 For bug reports, feature requests and questions,
20 visit the the discussion group at
21 L<http://groups.google.com/group/isl-development>.
23 =head2 Backward Incompatible Changes
25 =head3 Changes since isl-0.02
29 =item * The old printing functions have been deprecated
30 and replaced by C<isl_printer> functions, see L<Input and Output>.
32 =item * Most functions related to dependence analysis have acquired
33 an extra C<must> argument. To obtain the old behavior, this argument
34 should be given the value 1. See L<Dependence Analysis>.
38 =head3 Changes since isl-0.03
42 =item * The function C<isl_pw_qpolynomial_fold_add> has been
43 renamed to C<isl_pw_qpolynomial_fold_fold>.
44 Similarly, C<isl_union_pw_qpolynomial_fold_add> has been
45 renamed to C<isl_union_pw_qpolynomial_fold_fold>.
49 =head3 Changes since isl-0.04
53 =item * All header files have been renamed from C<isl_header.h>
58 =head3 Changes since isl-0.05
62 =item * The functions C<isl_printer_print_basic_set> and
63 C<isl_printer_print_basic_map> no longer print a newline.
69 The source of C<isl> can be obtained either as a tarball
70 or from the git repository. Both are available from
71 L<http://freshmeat.net/projects/isl/>.
72 The installation process depends on how you obtained
75 =head2 Installation from the git repository
79 =item 1 Clone or update the repository
81 The first time the source is obtained, you need to clone
84 git clone git://repo.or.cz/isl.git
86 To obtain updates, you need to pull in the latest changes
90 =item 2 Generate C<configure>
96 After performing the above steps, continue
97 with the L<Common installation instructions>.
99 =head2 Common installation instructions
103 =item 1 Obtain C<GMP>
105 Building C<isl> requires C<GMP>, including its headers files.
106 Your distribution may not provide these header files by default
107 and you may need to install a package called C<gmp-devel> or something
108 similar. Alternatively, C<GMP> can be built from
109 source, available from L<http://gmplib.org/>.
113 C<isl> uses the standard C<autoconf> C<configure> script.
118 optionally followed by some configure options.
119 A complete list of options can be obtained by running
123 Below we discuss some of the more common options.
125 C<isl> can optionally use C<piplib>, but no
126 C<piplib> functionality is currently used by default.
127 The C<--with-piplib> option can
128 be used to specify which C<piplib>
129 library to use, either an installed version (C<system>),
130 an externally built version (C<build>)
131 or no version (C<no>). The option C<build> is mostly useful
132 in C<configure> scripts of larger projects that bundle both C<isl>
139 Installation prefix for C<isl>
141 =item C<--with-gmp-prefix>
143 Installation prefix for C<GMP> (architecture-independent files).
145 =item C<--with-gmp-exec-prefix>
147 Installation prefix for C<GMP> (architecture-dependent files).
149 =item C<--with-piplib>
151 Which copy of C<piplib> to use, either C<no> (default), C<system> or C<build>.
153 =item C<--with-piplib-prefix>
155 Installation prefix for C<system> C<piplib> (architecture-independent files).
157 =item C<--with-piplib-exec-prefix>
159 Installation prefix for C<system> C<piplib> (architecture-dependent files).
161 =item C<--with-piplib-builddir>
163 Location where C<build> C<piplib> was built.
171 =item 4 Install (optional)
179 =head2 Initialization
181 All manipulations of integer sets and relations occur within
182 the context of an C<isl_ctx>.
183 A given C<isl_ctx> can only be used within a single thread.
184 All arguments of a function are required to have been allocated
185 within the same context.
186 There are currently no functions available for moving an object
187 from one C<isl_ctx> to another C<isl_ctx>. This means that
188 there is currently no way of safely moving an object from one
189 thread to another, unless the whole C<isl_ctx> is moved.
191 An C<isl_ctx> can be allocated using C<isl_ctx_alloc> and
192 freed using C<isl_ctx_free>.
193 All objects allocated within an C<isl_ctx> should be freed
194 before the C<isl_ctx> itself is freed.
196 isl_ctx *isl_ctx_alloc();
197 void isl_ctx_free(isl_ctx *ctx);
201 All operations on integers, mainly the coefficients
202 of the constraints describing the sets and relations,
203 are performed in exact integer arithmetic using C<GMP>.
204 However, to allow future versions of C<isl> to optionally
205 support fixed integer arithmetic, all calls to C<GMP>
206 are wrapped inside C<isl> specific macros.
207 The basic type is C<isl_int> and the operations below
208 are available on this type.
209 The meanings of these operations are essentially the same
210 as their C<GMP> C<mpz_> counterparts.
211 As always with C<GMP> types, C<isl_int>s need to be
212 initialized with C<isl_int_init> before they can be used
213 and they need to be released with C<isl_int_clear>
215 The user should not assume that an C<isl_int> is represented
216 as a C<mpz_t>, but should instead explicitly convert between
217 C<mpz_t>s and C<isl_int>s using C<isl_int_set_gmp> and
218 C<isl_int_get_gmp> whenever a C<mpz_t> is required.
222 =item isl_int_init(i)
224 =item isl_int_clear(i)
226 =item isl_int_set(r,i)
228 =item isl_int_set_si(r,i)
230 =item isl_int_set_gmp(r,g)
232 =item isl_int_get_gmp(i,g)
234 =item isl_int_abs(r,i)
236 =item isl_int_neg(r,i)
238 =item isl_int_swap(i,j)
240 =item isl_int_swap_or_set(i,j)
242 =item isl_int_add_ui(r,i,j)
244 =item isl_int_sub_ui(r,i,j)
246 =item isl_int_add(r,i,j)
248 =item isl_int_sub(r,i,j)
250 =item isl_int_mul(r,i,j)
252 =item isl_int_mul_ui(r,i,j)
254 =item isl_int_addmul(r,i,j)
256 =item isl_int_submul(r,i,j)
258 =item isl_int_gcd(r,i,j)
260 =item isl_int_lcm(r,i,j)
262 =item isl_int_divexact(r,i,j)
264 =item isl_int_cdiv_q(r,i,j)
266 =item isl_int_fdiv_q(r,i,j)
268 =item isl_int_fdiv_r(r,i,j)
270 =item isl_int_fdiv_q_ui(r,i,j)
272 =item isl_int_read(r,s)
274 =item isl_int_print(out,i,width)
278 =item isl_int_cmp(i,j)
280 =item isl_int_cmp_si(i,si)
282 =item isl_int_eq(i,j)
284 =item isl_int_ne(i,j)
286 =item isl_int_lt(i,j)
288 =item isl_int_le(i,j)
290 =item isl_int_gt(i,j)
292 =item isl_int_ge(i,j)
294 =item isl_int_abs_eq(i,j)
296 =item isl_int_abs_ne(i,j)
298 =item isl_int_abs_lt(i,j)
300 =item isl_int_abs_gt(i,j)
302 =item isl_int_abs_ge(i,j)
304 =item isl_int_is_zero(i)
306 =item isl_int_is_one(i)
308 =item isl_int_is_negone(i)
310 =item isl_int_is_pos(i)
312 =item isl_int_is_neg(i)
314 =item isl_int_is_nonpos(i)
316 =item isl_int_is_nonneg(i)
318 =item isl_int_is_divisible_by(i,j)
322 =head2 Sets and Relations
324 C<isl> uses six types of objects for representing sets and relations,
325 C<isl_basic_set>, C<isl_basic_map>, C<isl_set>, C<isl_map>,
326 C<isl_union_set> and C<isl_union_map>.
327 C<isl_basic_set> and C<isl_basic_map> represent sets and relations that
328 can be described as a conjunction of affine constraints, while
329 C<isl_set> and C<isl_map> represent unions of
330 C<isl_basic_set>s and C<isl_basic_map>s, respectively.
331 However, all C<isl_basic_set>s or C<isl_basic_map>s in the union need
332 to have the same dimension. C<isl_union_set>s and C<isl_union_map>s
333 represent unions of C<isl_set>s or C<isl_map>s of I<different> dimensions,
334 where dimensions with different space names
335 (see L<Dimension Specifications>) are considered different as well.
336 The difference between sets and relations (maps) is that sets have
337 one set of variables, while relations have two sets of variables,
338 input variables and output variables.
340 =head2 Memory Management
342 Since a high-level operation on sets and/or relations usually involves
343 several substeps and since the user is usually not interested in
344 the intermediate results, most functions that return a new object
345 will also release all the objects passed as arguments.
346 If the user still wants to use one or more of these arguments
347 after the function call, she should pass along a copy of the
348 object rather than the object itself.
349 The user is then responsible for make sure that the original
350 object gets used somewhere else or is explicitly freed.
352 The arguments and return values of all documents functions are
353 annotated to make clear which arguments are released and which
354 arguments are preserved. In particular, the following annotations
361 C<__isl_give> means that a new object is returned.
362 The user should make sure that the returned pointer is
363 used exactly once as a value for an C<__isl_take> argument.
364 In between, it can be used as a value for as many
365 C<__isl_keep> arguments as the user likes.
366 There is one exception, and that is the case where the
367 pointer returned is C<NULL>. Is this case, the user
368 is free to use it as an C<__isl_take> argument or not.
372 C<__isl_take> means that the object the argument points to
373 is taken over by the function and may no longer be used
374 by the user as an argument to any other function.
375 The pointer value must be one returned by a function
376 returning an C<__isl_give> pointer.
377 If the user passes in a C<NULL> value, then this will
378 be treated as an error in the sense that the function will
379 not perform its usual operation. However, it will still
380 make sure that all the the other C<__isl_take> arguments
385 C<__isl_keep> means that the function will only use the object
386 temporarily. After the function has finished, the user
387 can still use it as an argument to other functions.
388 A C<NULL> value will be treated in the same way as
389 a C<NULL> value for an C<__isl_take> argument.
393 =head2 Dimension Specifications
395 Whenever a new set or relation is created from scratch,
396 its dimension needs to be specified using an C<isl_dim>.
399 __isl_give isl_dim *isl_dim_alloc(isl_ctx *ctx,
400 unsigned nparam, unsigned n_in, unsigned n_out);
401 __isl_give isl_dim *isl_dim_set_alloc(isl_ctx *ctx,
402 unsigned nparam, unsigned dim);
403 __isl_give isl_dim *isl_dim_copy(__isl_keep isl_dim *dim);
404 void isl_dim_free(__isl_take isl_dim *dim);
405 unsigned isl_dim_size(__isl_keep isl_dim *dim,
406 enum isl_dim_type type);
408 The dimension specification used for creating a set
409 needs to be created using C<isl_dim_set_alloc>, while
410 that for creating a relation
411 needs to be created using C<isl_dim_alloc>.
412 C<isl_dim_size> can be used
413 to find out the number of dimensions of each type in
414 a dimension specification, where type may be
415 C<isl_dim_param>, C<isl_dim_in> (only for relations),
416 C<isl_dim_out> (only for relations), C<isl_dim_set>
417 (only for sets) or C<isl_dim_all>.
419 It is often useful to create objects that live in the
420 same space as some other object. This can be accomplished
421 by creating the new objects
422 (see L<Creating New Sets and Relations> or
423 L<Creating New (Piecewise) Quasipolynomials>) based on the dimension
424 specification of the original object.
427 __isl_give isl_dim *isl_basic_set_get_dim(
428 __isl_keep isl_basic_set *bset);
429 __isl_give isl_dim *isl_set_get_dim(__isl_keep isl_set *set);
431 #include <isl/union_set.h>
432 __isl_give isl_dim *isl_union_set_get_dim(
433 __isl_keep isl_union_set *uset);
436 __isl_give isl_dim *isl_basic_map_get_dim(
437 __isl_keep isl_basic_map *bmap);
438 __isl_give isl_dim *isl_map_get_dim(__isl_keep isl_map *map);
440 #include <isl/union_map.h>
441 __isl_give isl_dim *isl_union_map_get_dim(
442 __isl_keep isl_union_map *umap);
444 #include <isl/polynomial.h>
445 __isl_give isl_dim *isl_qpolynomial_get_dim(
446 __isl_keep isl_qpolynomial *qp);
447 __isl_give isl_dim *isl_pw_qpolynomial_get_dim(
448 __isl_keep isl_pw_qpolynomial *pwqp);
449 __isl_give isl_dim *isl_union_pw_qpolynomial_get_dim(
450 __isl_keep isl_union_pw_qpolynomial *upwqp);
451 __isl_give isl_dim *isl_union_pw_qpolynomial_fold_get_dim(
452 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
454 The names of the individual dimensions may be set or read off
455 using the following functions.
458 __isl_give isl_dim *isl_dim_set_name(__isl_take isl_dim *dim,
459 enum isl_dim_type type, unsigned pos,
460 __isl_keep const char *name);
461 __isl_keep const char *isl_dim_get_name(__isl_keep isl_dim *dim,
462 enum isl_dim_type type, unsigned pos);
464 Note that C<isl_dim_get_name> returns a pointer to some internal
465 data structure, so the result can only be used while the
466 corresponding C<isl_dim> is alive.
467 Also note that every function that operates on two sets or relations
468 requires that both arguments have the same parameters. This also
469 means that if one of the arguments has named parameters, then the
470 other needs to have named parameters too and the names need to match.
471 Pairs of C<isl_union_set> and/or C<isl_union_map> arguments may
472 have different parameters (as long as they are named), in which case
473 the result will have as parameters the union of the parameters of
476 The names of entire spaces may be set or read off
477 using the following functions.
480 __isl_give isl_dim *isl_dim_set_tuple_name(
481 __isl_take isl_dim *dim,
482 enum isl_dim_type type, const char *s);
483 const char *isl_dim_get_tuple_name(__isl_keep isl_dim *dim,
484 enum isl_dim_type type);
486 The C<dim> argument needs to be one of C<isl_dim_in>, C<isl_dim_out>
487 or C<isl_dim_set>. As with C<isl_dim_get_name>,
488 the C<isl_dim_get_tuple_name> function returns a pointer to some internal
490 Binary operations require the corresponding spaces of their arguments
491 to have the same name.
493 Spaces can be nested. In particular, the domain of a set or
494 the domain or range of a relation can be a nested relation.
495 The following functions can be used to construct and deconstruct
496 such nested dimension specifications.
499 int isl_dim_is_wrapping(__isl_keep isl_dim *dim);
500 __isl_give isl_dim *isl_dim_wrap(__isl_take isl_dim *dim);
501 __isl_give isl_dim *isl_dim_unwrap(__isl_take isl_dim *dim);
503 The input to C<isl_dim_is_wrapping> and C<isl_dim_unwrap> should
504 be the dimension specification of a set, while that of
505 C<isl_dim_wrap> should be the dimension specification of a relation.
506 Conversely, the output of C<isl_dim_unwrap> is the dimension specification
507 of a relation, while that of C<isl_dim_wrap> is the dimension specification
510 Dimension specifications can be created from other dimension
511 specifications using the following functions.
513 __isl_give isl_dim *isl_dim_domain(__isl_take isl_dim *dim);
514 __isl_give isl_dim *isl_dim_from_domain(__isl_take isl_dim *dim);
515 __isl_give isl_dim *isl_dim_range(__isl_take isl_dim *dim);
516 __isl_give isl_dim *isl_dim_from_range(__isl_take isl_dim *dim);
517 __isl_give isl_dim *isl_dim_reverse(__isl_take isl_dim *dim);
518 __isl_give isl_dim *isl_dim_join(__isl_take isl_dim *left,
519 __isl_take isl_dim *right);
520 __isl_give isl_dim *isl_dim_insert(__isl_take isl_dim *dim,
521 enum isl_dim_type type, unsigned pos, unsigned n);
522 __isl_give isl_dim *isl_dim_add(__isl_take isl_dim *dim,
523 enum isl_dim_type type, unsigned n);
524 __isl_give isl_dim *isl_dim_drop(__isl_take isl_dim *dim,
525 enum isl_dim_type type, unsigned first, unsigned n);
527 Note that if dimensions are added or removed from a space, then
528 the name and the internal structure are lost.
530 =head2 Input and Output
532 C<isl> supports its own input/output format, which is similar
533 to the C<Omega> format, but also supports the C<PolyLib> format
538 The C<isl> format is similar to that of C<Omega>, but has a different
539 syntax for describing the parameters and allows for the definition
540 of an existentially quantified variable as the integer division
541 of an affine expression.
542 For example, the set of integers C<i> between C<0> and C<n>
543 such that C<i % 10 <= 6> can be described as
545 [n] -> { [i] : exists (a = [i/10] : 0 <= i and i <= n and
548 A set or relation can have several disjuncts, separated
549 by the keyword C<or>. Each disjunct is either a conjunction
550 of constraints or a projection (C<exists>) of a conjunction
551 of constraints. The constraints are separated by the keyword
554 =head3 C<PolyLib> format
556 If the represented set is a union, then the first line
557 contains a single number representing the number of disjuncts.
558 Otherwise, a line containing the number C<1> is optional.
560 Each disjunct is represented by a matrix of constraints.
561 The first line contains two numbers representing
562 the number of rows and columns,
563 where the number of rows is equal to the number of constraints
564 and the number of columns is equal to two plus the number of variables.
565 The following lines contain the actual rows of the constraint matrix.
566 In each row, the first column indicates whether the constraint
567 is an equality (C<0>) or inequality (C<1>). The final column
568 corresponds to the constant term.
570 If the set is parametric, then the coefficients of the parameters
571 appear in the last columns before the constant column.
572 The coefficients of any existentially quantified variables appear
573 between those of the set variables and those of the parameters.
575 =head3 Extended C<PolyLib> format
577 The extended C<PolyLib> format is nearly identical to the
578 C<PolyLib> format. The only difference is that the line
579 containing the number of rows and columns of a constraint matrix
580 also contains four additional numbers:
581 the number of output dimensions, the number of input dimensions,
582 the number of local dimensions (i.e., the number of existentially
583 quantified variables) and the number of parameters.
584 For sets, the number of ``output'' dimensions is equal
585 to the number of set dimensions, while the number of ``input''
591 __isl_give isl_basic_set *isl_basic_set_read_from_file(
592 isl_ctx *ctx, FILE *input, int nparam);
593 __isl_give isl_basic_set *isl_basic_set_read_from_str(
594 isl_ctx *ctx, const char *str, int nparam);
595 __isl_give isl_set *isl_set_read_from_file(isl_ctx *ctx,
596 FILE *input, int nparam);
597 __isl_give isl_set *isl_set_read_from_str(isl_ctx *ctx,
598 const char *str, int nparam);
601 __isl_give isl_basic_map *isl_basic_map_read_from_file(
602 isl_ctx *ctx, FILE *input, int nparam);
603 __isl_give isl_basic_map *isl_basic_map_read_from_str(
604 isl_ctx *ctx, const char *str, int nparam);
605 __isl_give isl_map *isl_map_read_from_file(
606 struct isl_ctx *ctx, FILE *input, int nparam);
607 __isl_give isl_map *isl_map_read_from_str(isl_ctx *ctx,
608 const char *str, int nparam);
610 #include <isl/union_set.h>
611 __isl_give isl_union_set *isl_union_set_read_from_str(
612 struct isl_ctx *ctx, const char *str);
614 #include <isl/union_map.h>
615 __isl_give isl_union_map *isl_union_map_read_from_str(
616 struct isl_ctx *ctx, const char *str);
618 The input format is autodetected and may be either the C<PolyLib> format
619 or the C<isl> format.
620 C<nparam> specifies how many of the final columns in
621 the C<PolyLib> format correspond to parameters.
622 If input is given in the C<isl> format, then the number
623 of parameters needs to be equal to C<nparam>.
624 If C<nparam> is negative, then any number of parameters
625 is accepted in the C<isl> format and zero parameters
626 are assumed in the C<PolyLib> format.
630 Before anything can be printed, an C<isl_printer> needs to
633 __isl_give isl_printer *isl_printer_to_file(isl_ctx *ctx,
635 __isl_give isl_printer *isl_printer_to_str(isl_ctx *ctx);
636 void isl_printer_free(__isl_take isl_printer *printer);
637 __isl_give char *isl_printer_get_str(
638 __isl_keep isl_printer *printer);
640 The behavior of the printer can be modified in various ways
642 __isl_give isl_printer *isl_printer_set_output_format(
643 __isl_take isl_printer *p, int output_format);
644 __isl_give isl_printer *isl_printer_set_indent(
645 __isl_take isl_printer *p, int indent);
646 __isl_give isl_printer *isl_printer_set_prefix(
647 __isl_take isl_printer *p, const char *prefix);
648 __isl_give isl_printer *isl_printer_set_suffix(
649 __isl_take isl_printer *p, const char *suffix);
651 The C<output_format> may be either C<ISL_FORMAT_ISL>, C<ISL_FORMAT_OMEGA>,
652 C<ISL_FORMAT_POLYLIB>, C<ISL_FORMAT_EXT_POLYLIB> or C<ISL_FORMAT_LATEX>
653 and defaults to C<ISL_FORMAT_ISL>.
654 Each line in the output is indented by C<indent> spaces
655 (default: 0), prefixed by C<prefix> and suffixed by C<suffix>.
656 In the C<PolyLib> format output,
657 the coefficients of the existentially quantified variables
658 appear between those of the set variables and those
661 To actually print something, use
664 __isl_give isl_printer *isl_printer_print_basic_set(
665 __isl_take isl_printer *printer,
666 __isl_keep isl_basic_set *bset);
667 __isl_give isl_printer *isl_printer_print_set(
668 __isl_take isl_printer *printer,
669 __isl_keep isl_set *set);
672 __isl_give isl_printer *isl_printer_print_basic_map(
673 __isl_take isl_printer *printer,
674 __isl_keep isl_basic_map *bmap);
675 __isl_give isl_printer *isl_printer_print_map(
676 __isl_take isl_printer *printer,
677 __isl_keep isl_map *map);
679 #include <isl/union_set.h>
680 __isl_give isl_printer *isl_printer_print_union_set(
681 __isl_take isl_printer *p,
682 __isl_keep isl_union_set *uset);
684 #include <isl/union_map.h>
685 __isl_give isl_printer *isl_printer_print_union_map(
686 __isl_take isl_printer *p,
687 __isl_keep isl_union_map *umap);
689 When called on a file printer, the following function flushes
690 the file. When called on a string printer, the buffer is cleared.
692 __isl_give isl_printer *isl_printer_flush(
693 __isl_take isl_printer *p);
695 =head2 Creating New Sets and Relations
697 C<isl> has functions for creating some standard sets and relations.
701 =item * Empty sets and relations
703 __isl_give isl_basic_set *isl_basic_set_empty(
704 __isl_take isl_dim *dim);
705 __isl_give isl_basic_map *isl_basic_map_empty(
706 __isl_take isl_dim *dim);
707 __isl_give isl_set *isl_set_empty(
708 __isl_take isl_dim *dim);
709 __isl_give isl_map *isl_map_empty(
710 __isl_take isl_dim *dim);
711 __isl_give isl_union_set *isl_union_set_empty(
712 __isl_take isl_dim *dim);
713 __isl_give isl_union_map *isl_union_map_empty(
714 __isl_take isl_dim *dim);
716 For C<isl_union_set>s and C<isl_union_map>s, the dimensions specification
717 is only used to specify the parameters.
719 =item * Universe sets and relations
721 __isl_give isl_basic_set *isl_basic_set_universe(
722 __isl_take isl_dim *dim);
723 __isl_give isl_basic_map *isl_basic_map_universe(
724 __isl_take isl_dim *dim);
725 __isl_give isl_set *isl_set_universe(
726 __isl_take isl_dim *dim);
727 __isl_give isl_map *isl_map_universe(
728 __isl_take isl_dim *dim);
730 =item * Identity relations
732 __isl_give isl_basic_map *isl_basic_map_identity(
733 __isl_take isl_dim *set_dim);
734 __isl_give isl_map *isl_map_identity(
735 __isl_take isl_dim *set_dim);
737 These functions take a dimension specification for a B<set>
738 and return an identity relation between two such sets.
740 =item * Lexicographic order
742 __isl_give isl_map *isl_map_lex_lt(
743 __isl_take isl_dim *set_dim);
744 __isl_give isl_map *isl_map_lex_le(
745 __isl_take isl_dim *set_dim);
746 __isl_give isl_map *isl_map_lex_gt(
747 __isl_take isl_dim *set_dim);
748 __isl_give isl_map *isl_map_lex_ge(
749 __isl_take isl_dim *set_dim);
750 __isl_give isl_map *isl_map_lex_lt_first(
751 __isl_take isl_dim *dim, unsigned n);
752 __isl_give isl_map *isl_map_lex_le_first(
753 __isl_take isl_dim *dim, unsigned n);
754 __isl_give isl_map *isl_map_lex_gt_first(
755 __isl_take isl_dim *dim, unsigned n);
756 __isl_give isl_map *isl_map_lex_ge_first(
757 __isl_take isl_dim *dim, unsigned n);
759 The first four functions take a dimension specification for a B<set>
760 and return relations that express that the elements in the domain
761 are lexicographically less
762 (C<isl_map_lex_lt>), less or equal (C<isl_map_lex_le>),
763 greater (C<isl_map_lex_gt>) or greater or equal (C<isl_map_lex_ge>)
764 than the elements in the range.
765 The last four functions take a dimension specification for a map
766 and return relations that express that the first C<n> dimensions
767 in the domain are lexicographically less
768 (C<isl_map_lex_lt_first>), less or equal (C<isl_map_lex_le_first>),
769 greater (C<isl_map_lex_gt_first>) or greater or equal (C<isl_map_lex_ge_first>)
770 than the first C<n> dimensions in the range.
774 A basic set or relation can be converted to a set or relation
775 using the following functions.
777 __isl_give isl_set *isl_set_from_basic_set(
778 __isl_take isl_basic_set *bset);
779 __isl_give isl_map *isl_map_from_basic_map(
780 __isl_take isl_basic_map *bmap);
782 Sets and relations can be converted to union sets and relations
783 using the following functions.
785 __isl_give isl_union_map *isl_union_map_from_map(
786 __isl_take isl_map *map);
787 __isl_give isl_union_set *isl_union_set_from_set(
788 __isl_take isl_set *set);
790 Sets and relations can be copied and freed again using the following
793 __isl_give isl_basic_set *isl_basic_set_copy(
794 __isl_keep isl_basic_set *bset);
795 __isl_give isl_set *isl_set_copy(__isl_keep isl_set *set);
796 __isl_give isl_union_set *isl_union_set_copy(
797 __isl_keep isl_union_set *uset);
798 __isl_give isl_basic_map *isl_basic_map_copy(
799 __isl_keep isl_basic_map *bmap);
800 __isl_give isl_map *isl_map_copy(__isl_keep isl_map *map);
801 __isl_give isl_union_map *isl_union_map_copy(
802 __isl_keep isl_union_map *umap);
803 void isl_basic_set_free(__isl_take isl_basic_set *bset);
804 void isl_set_free(__isl_take isl_set *set);
805 void isl_union_set_free(__isl_take isl_union_set *uset);
806 void isl_basic_map_free(__isl_take isl_basic_map *bmap);
807 void isl_map_free(__isl_take isl_map *map);
808 void isl_union_map_free(__isl_take isl_union_map *umap);
810 Other sets and relations can be constructed by starting
811 from a universe set or relation, adding equality and/or
812 inequality constraints and then projecting out the
813 existentially quantified variables, if any.
814 Constraints can be constructed, manipulated and
815 added to basic sets and relations using the following functions.
817 #include <isl/constraint.h>
818 __isl_give isl_constraint *isl_equality_alloc(
819 __isl_take isl_dim *dim);
820 __isl_give isl_constraint *isl_inequality_alloc(
821 __isl_take isl_dim *dim);
822 void isl_constraint_set_constant(
823 __isl_keep isl_constraint *constraint, isl_int v);
824 void isl_constraint_set_coefficient(
825 __isl_keep isl_constraint *constraint,
826 enum isl_dim_type type, int pos, isl_int v);
827 __isl_give isl_basic_map *isl_basic_map_add_constraint(
828 __isl_take isl_basic_map *bmap,
829 __isl_take isl_constraint *constraint);
830 __isl_give isl_basic_set *isl_basic_set_add_constraint(
831 __isl_take isl_basic_set *bset,
832 __isl_take isl_constraint *constraint);
834 For example, to create a set containing the even integers
835 between 10 and 42, you would use the following code.
839 struct isl_constraint *c;
840 struct isl_basic_set *bset;
843 dim = isl_dim_set_alloc(ctx, 0, 2);
844 bset = isl_basic_set_universe(isl_dim_copy(dim));
846 c = isl_equality_alloc(isl_dim_copy(dim));
847 isl_int_set_si(v, -1);
848 isl_constraint_set_coefficient(c, isl_dim_set, 0, v);
849 isl_int_set_si(v, 2);
850 isl_constraint_set_coefficient(c, isl_dim_set, 1, v);
851 bset = isl_basic_set_add_constraint(bset, c);
853 c = isl_inequality_alloc(isl_dim_copy(dim));
854 isl_int_set_si(v, -10);
855 isl_constraint_set_constant(c, v);
856 isl_int_set_si(v, 1);
857 isl_constraint_set_coefficient(c, isl_dim_set, 0, v);
858 bset = isl_basic_set_add_constraint(bset, c);
860 c = isl_inequality_alloc(dim);
861 isl_int_set_si(v, 42);
862 isl_constraint_set_constant(c, v);
863 isl_int_set_si(v, -1);
864 isl_constraint_set_coefficient(c, isl_dim_set, 0, v);
865 bset = isl_basic_set_add_constraint(bset, c);
867 bset = isl_basic_set_project_out(bset, isl_dim_set, 1, 1);
873 struct isl_basic_set *bset;
874 bset = isl_basic_set_read_from_str(ctx,
875 "{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}", -1);
877 A basic set or relation can also be constructed from two matrices
878 describing the equalities and the inequalities.
880 __isl_give isl_basic_set *isl_basic_set_from_constraint_matrices(
881 __isl_take isl_dim *dim,
882 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
883 enum isl_dim_type c1,
884 enum isl_dim_type c2, enum isl_dim_type c3,
885 enum isl_dim_type c4);
886 __isl_give isl_basic_map *isl_basic_map_from_constraint_matrices(
887 __isl_take isl_dim *dim,
888 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
889 enum isl_dim_type c1,
890 enum isl_dim_type c2, enum isl_dim_type c3,
891 enum isl_dim_type c4, enum isl_dim_type c5);
893 The C<isl_dim_type> arguments indicate the order in which
894 different kinds of variables appear in the input matrices
895 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
896 C<isl_dim_set> and C<isl_dim_div> for sets and
897 of C<isl_dim_cst>, C<isl_dim_param>,
898 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div> for relations.
900 =head2 Inspecting Sets and Relations
902 Usually, the user should not have to care about the actual constraints
903 of the sets and maps, but should instead apply the abstract operations
904 explained in the following sections.
905 Occasionally, however, it may be required to inspect the individual
906 coefficients of the constraints. This section explains how to do so.
907 In these cases, it may also be useful to have C<isl> compute
908 an explicit representation of the existentially quantified variables.
910 __isl_give isl_set *isl_set_compute_divs(
911 __isl_take isl_set *set);
912 __isl_give isl_map *isl_map_compute_divs(
913 __isl_take isl_map *map);
914 __isl_give isl_union_set *isl_union_set_compute_divs(
915 __isl_take isl_union_set *uset);
916 __isl_give isl_union_map *isl_union_map_compute_divs(
917 __isl_take isl_union_map *umap);
919 This explicit representation defines the existentially quantified
920 variables as integer divisions of the other variables, possibly
921 including earlier existentially quantified variables.
922 An explicitly represented existentially quantified variable therefore
923 has a unique value when the values of the other variables are known.
924 If, furthermore, the same existentials, i.e., existentials
925 with the same explicit representations, should appear in the
926 same order in each of the disjuncts of a set or map, then the user should call
927 either of the following functions.
929 __isl_give isl_set *isl_set_align_divs(
930 __isl_take isl_set *set);
931 __isl_give isl_map *isl_map_align_divs(
932 __isl_take isl_map *map);
934 Alternatively, the existentially quantified variables can be removed
935 using the following functions, which compute an overapproximation.
937 __isl_give isl_basic_set *isl_basic_set_remove_divs(
938 __isl_take isl_basic_set *bset);
939 __isl_give isl_basic_map *isl_basic_map_remove_divs(
940 __isl_take isl_basic_map *bmap);
941 __isl_give isl_set *isl_set_remove_divs(
942 __isl_take isl_set *set);
944 To iterate over all the sets or maps in a union set or map, use
946 int isl_union_set_foreach_set(__isl_keep isl_union_set *uset,
947 int (*fn)(__isl_take isl_set *set, void *user),
949 int isl_union_map_foreach_map(__isl_keep isl_union_map *umap,
950 int (*fn)(__isl_take isl_map *map, void *user),
953 The number of sets or maps in a union set or map can be obtained
956 int isl_union_set_n_set(__isl_keep isl_union_set *uset);
957 int isl_union_map_n_map(__isl_keep isl_union_map *umap);
959 To extract the set or map from a union with a given dimension
962 __isl_give isl_set *isl_union_set_extract_set(
963 __isl_keep isl_union_set *uset,
964 __isl_take isl_dim *dim);
965 __isl_give isl_map *isl_union_map_extract_map(
966 __isl_keep isl_union_map *umap,
967 __isl_take isl_dim *dim);
969 To iterate over all the basic sets or maps in a set or map, use
971 int isl_set_foreach_basic_set(__isl_keep isl_set *set,
972 int (*fn)(__isl_take isl_basic_set *bset, void *user),
974 int isl_map_foreach_basic_map(__isl_keep isl_map *map,
975 int (*fn)(__isl_take isl_basic_map *bmap, void *user),
978 The callback function C<fn> should return 0 if successful and
979 -1 if an error occurs. In the latter case, or if any other error
980 occurs, the above functions will return -1.
982 It should be noted that C<isl> does not guarantee that
983 the basic sets or maps passed to C<fn> are disjoint.
984 If this is required, then the user should call one of
985 the following functions first.
987 __isl_give isl_set *isl_set_make_disjoint(
988 __isl_take isl_set *set);
989 __isl_give isl_map *isl_map_make_disjoint(
990 __isl_take isl_map *map);
992 The number of basic sets in a set can be obtained
995 int isl_set_n_basic_set(__isl_keep isl_set *set);
997 To iterate over the constraints of a basic set or map, use
999 #include <isl/constraint.h>
1001 int isl_basic_map_foreach_constraint(
1002 __isl_keep isl_basic_map *bmap,
1003 int (*fn)(__isl_take isl_constraint *c, void *user),
1005 void isl_constraint_free(struct isl_constraint *c);
1007 Again, the callback function C<fn> should return 0 if successful and
1008 -1 if an error occurs. In the latter case, or if any other error
1009 occurs, the above functions will return -1.
1010 The constraint C<c> represents either an equality or an inequality.
1011 Use the following function to find out whether a constraint
1012 represents an equality. If not, it represents an inequality.
1014 int isl_constraint_is_equality(
1015 __isl_keep isl_constraint *constraint);
1017 The coefficients of the constraints can be inspected using
1018 the following functions.
1020 void isl_constraint_get_constant(
1021 __isl_keep isl_constraint *constraint, isl_int *v);
1022 void isl_constraint_get_coefficient(
1023 __isl_keep isl_constraint *constraint,
1024 enum isl_dim_type type, int pos, isl_int *v);
1026 The explicit representations of the existentially quantified
1027 variables can be inspected using the following functions.
1028 Note that the user is only allowed to use these functions
1029 if the inspected set or map is the result of a call
1030 to C<isl_set_compute_divs> or C<isl_map_compute_divs>.
1032 __isl_give isl_div *isl_constraint_div(
1033 __isl_keep isl_constraint *constraint, int pos);
1034 void isl_div_get_constant(__isl_keep isl_div *div,
1036 void isl_div_get_denominator(__isl_keep isl_div *div,
1038 void isl_div_get_coefficient(__isl_keep isl_div *div,
1039 enum isl_dim_type type, int pos, isl_int *v);
1041 To obtain the constraints of a basic set or map in matrix
1042 form, use the following functions.
1044 __isl_give isl_mat *isl_basic_set_equalities_matrix(
1045 __isl_keep isl_basic_set *bset,
1046 enum isl_dim_type c1, enum isl_dim_type c2,
1047 enum isl_dim_type c3, enum isl_dim_type c4);
1048 __isl_give isl_mat *isl_basic_set_inequalities_matrix(
1049 __isl_keep isl_basic_set *bset,
1050 enum isl_dim_type c1, enum isl_dim_type c2,
1051 enum isl_dim_type c3, enum isl_dim_type c4);
1052 __isl_give isl_mat *isl_basic_map_equalities_matrix(
1053 __isl_keep isl_basic_map *bmap,
1054 enum isl_dim_type c1,
1055 enum isl_dim_type c2, enum isl_dim_type c3,
1056 enum isl_dim_type c4, enum isl_dim_type c5);
1057 __isl_give isl_mat *isl_basic_map_inequalities_matrix(
1058 __isl_keep isl_basic_map *bmap,
1059 enum isl_dim_type c1,
1060 enum isl_dim_type c2, enum isl_dim_type c3,
1061 enum isl_dim_type c4, enum isl_dim_type c5);
1063 The C<isl_dim_type> arguments dictate the order in which
1064 different kinds of variables appear in the resulting matrix
1065 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
1066 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div>.
1068 The names of the domain and range spaces of a set or relation can be
1069 read off using the following functions.
1071 const char *isl_set_get_tuple_name(
1072 __isl_keep isl_set *set);
1073 const char *isl_basic_map_get_tuple_name(
1074 __isl_keep isl_basic_map *bmap,
1075 enum isl_dim_type type);
1076 const char *isl_map_get_tuple_name(
1077 __isl_keep isl_map *map,
1078 enum isl_dim_type type);
1080 As with C<isl_dim_get_tuple_name>, the value returned points to
1081 an internal data structure.
1082 The names of individual dimensions can be read off using
1083 the following functions.
1085 const char *isl_constraint_get_dim_name(
1086 __isl_keep isl_constraint *constraint,
1087 enum isl_dim_type type, unsigned pos);
1088 const char *isl_set_get_dim_name(
1089 __isl_keep isl_set *set,
1090 enum isl_dim_type type, unsigned pos);
1091 const char *isl_basic_map_get_dim_name(
1092 __isl_keep isl_basic_map *bmap,
1093 enum isl_dim_type type, unsigned pos);
1094 const char *isl_map_get_dim_name(
1095 __isl_keep isl_map *map,
1096 enum isl_dim_type type, unsigned pos);
1098 These functions are mostly useful to obtain the names
1103 =head3 Unary Properties
1109 The following functions test whether the given set or relation
1110 contains any integer points. The ``fast'' variants do not perform
1111 any computations, but simply check if the given set or relation
1112 is already known to be empty.
1114 int isl_basic_set_fast_is_empty(__isl_keep isl_basic_set *bset);
1115 int isl_basic_set_is_empty(__isl_keep isl_basic_set *bset);
1116 int isl_set_is_empty(__isl_keep isl_set *set);
1117 int isl_union_set_is_empty(__isl_keep isl_union_set *uset);
1118 int isl_basic_map_fast_is_empty(__isl_keep isl_basic_map *bmap);
1119 int isl_basic_map_is_empty(__isl_keep isl_basic_map *bmap);
1120 int isl_map_fast_is_empty(__isl_keep isl_map *map);
1121 int isl_map_is_empty(__isl_keep isl_map *map);
1122 int isl_union_map_is_empty(__isl_keep isl_union_map *umap);
1124 =item * Universality
1126 int isl_basic_set_is_universe(__isl_keep isl_basic_set *bset);
1127 int isl_basic_map_is_universe(__isl_keep isl_basic_map *bmap);
1128 int isl_set_fast_is_universe(__isl_keep isl_set *set);
1130 =item * Single-valuedness
1132 int isl_map_is_single_valued(__isl_keep isl_map *map);
1136 int isl_map_is_bijective(__isl_keep isl_map *map);
1140 The followning functions check whether the domain of the given
1141 (basic) set is a wrapped relation.
1143 int isl_basic_set_is_wrapping(
1144 __isl_keep isl_basic_set *bset);
1145 int isl_set_is_wrapping(__isl_keep isl_set *set);
1149 =head3 Binary Properties
1155 int isl_set_fast_is_equal(__isl_keep isl_set *set1,
1156 __isl_keep isl_set *set2);
1157 int isl_set_is_equal(__isl_keep isl_set *set1,
1158 __isl_keep isl_set *set2);
1159 int isl_union_set_is_equal(
1160 __isl_keep isl_union_set *uset1,
1161 __isl_keep isl_union_set *uset2);
1162 int isl_basic_map_is_equal(
1163 __isl_keep isl_basic_map *bmap1,
1164 __isl_keep isl_basic_map *bmap2);
1165 int isl_map_is_equal(__isl_keep isl_map *map1,
1166 __isl_keep isl_map *map2);
1167 int isl_map_fast_is_equal(__isl_keep isl_map *map1,
1168 __isl_keep isl_map *map2);
1169 int isl_union_map_is_equal(
1170 __isl_keep isl_union_map *umap1,
1171 __isl_keep isl_union_map *umap2);
1173 =item * Disjointness
1175 int isl_set_fast_is_disjoint(__isl_keep isl_set *set1,
1176 __isl_keep isl_set *set2);
1180 int isl_set_is_subset(__isl_keep isl_set *set1,
1181 __isl_keep isl_set *set2);
1182 int isl_set_is_strict_subset(
1183 __isl_keep isl_set *set1,
1184 __isl_keep isl_set *set2);
1185 int isl_union_set_is_subset(
1186 __isl_keep isl_union_set *uset1,
1187 __isl_keep isl_union_set *uset2);
1188 int isl_union_set_is_strict_subset(
1189 __isl_keep isl_union_set *uset1,
1190 __isl_keep isl_union_set *uset2);
1191 int isl_basic_map_is_subset(
1192 __isl_keep isl_basic_map *bmap1,
1193 __isl_keep isl_basic_map *bmap2);
1194 int isl_basic_map_is_strict_subset(
1195 __isl_keep isl_basic_map *bmap1,
1196 __isl_keep isl_basic_map *bmap2);
1197 int isl_map_is_subset(
1198 __isl_keep isl_map *map1,
1199 __isl_keep isl_map *map2);
1200 int isl_map_is_strict_subset(
1201 __isl_keep isl_map *map1,
1202 __isl_keep isl_map *map2);
1203 int isl_union_map_is_subset(
1204 __isl_keep isl_union_map *umap1,
1205 __isl_keep isl_union_map *umap2);
1206 int isl_union_map_is_strict_subset(
1207 __isl_keep isl_union_map *umap1,
1208 __isl_keep isl_union_map *umap2);
1212 =head2 Unary Operations
1218 __isl_give isl_set *isl_set_complement(
1219 __isl_take isl_set *set);
1223 __isl_give isl_basic_map *isl_basic_map_reverse(
1224 __isl_take isl_basic_map *bmap);
1225 __isl_give isl_map *isl_map_reverse(
1226 __isl_take isl_map *map);
1227 __isl_give isl_union_map *isl_union_map_reverse(
1228 __isl_take isl_union_map *umap);
1232 __isl_give isl_basic_set *isl_basic_set_project_out(
1233 __isl_take isl_basic_set *bset,
1234 enum isl_dim_type type, unsigned first, unsigned n);
1235 __isl_give isl_basic_map *isl_basic_map_project_out(
1236 __isl_take isl_basic_map *bmap,
1237 enum isl_dim_type type, unsigned first, unsigned n);
1238 __isl_give isl_set *isl_set_project_out(__isl_take isl_set *set,
1239 enum isl_dim_type type, unsigned first, unsigned n);
1240 __isl_give isl_map *isl_map_project_out(__isl_take isl_map *map,
1241 enum isl_dim_type type, unsigned first, unsigned n);
1242 __isl_give isl_basic_set *isl_basic_map_domain(
1243 __isl_take isl_basic_map *bmap);
1244 __isl_give isl_basic_set *isl_basic_map_range(
1245 __isl_take isl_basic_map *bmap);
1246 __isl_give isl_set *isl_map_domain(
1247 __isl_take isl_map *bmap);
1248 __isl_give isl_set *isl_map_range(
1249 __isl_take isl_map *map);
1250 __isl_give isl_union_set *isl_union_map_domain(
1251 __isl_take isl_union_map *umap);
1252 __isl_give isl_union_set *isl_union_map_range(
1253 __isl_take isl_union_map *umap);
1255 __isl_give isl_basic_map *isl_basic_map_domain_map(
1256 __isl_take isl_basic_map *bmap);
1257 __isl_give isl_basic_map *isl_basic_map_range_map(
1258 __isl_take isl_basic_map *bmap);
1259 __isl_give isl_map *isl_map_domain_map(__isl_take isl_map *map);
1260 __isl_give isl_map *isl_map_range_map(__isl_take isl_map *map);
1261 __isl_give isl_union_map *isl_union_map_domain_map(
1262 __isl_take isl_union_map *umap);
1263 __isl_give isl_union_map *isl_union_map_range_map(
1264 __isl_take isl_union_map *umap);
1266 The functions above construct a (basic, regular or union) relation
1267 that maps (a wrapped version of) the input relation to its domain or range.
1271 __isl_give isl_map *isl_set_identity(
1272 __isl_take isl_set *set);
1273 __isl_give isl_union_map *isl_union_set_identity(
1274 __isl_take isl_union_set *uset);
1276 Construct an identity relation on the given (union) set.
1280 __isl_give isl_basic_set *isl_basic_map_deltas(
1281 __isl_take isl_basic_map *bmap);
1282 __isl_give isl_set *isl_map_deltas(__isl_take isl_map *map);
1283 __isl_give isl_union_set *isl_union_map_deltas(
1284 __isl_take isl_union_map *umap);
1286 These functions return a (basic) set containing the differences
1287 between image elements and corresponding domain elements in the input.
1291 Simplify the representation of a set or relation by trying
1292 to combine pairs of basic sets or relations into a single
1293 basic set or relation.
1295 __isl_give isl_set *isl_set_coalesce(__isl_take isl_set *set);
1296 __isl_give isl_map *isl_map_coalesce(__isl_take isl_map *map);
1297 __isl_give isl_union_set *isl_union_set_coalesce(
1298 __isl_take isl_union_set *uset);
1299 __isl_give isl_union_map *isl_union_map_coalesce(
1300 __isl_take isl_union_map *umap);
1304 __isl_give isl_basic_set *isl_set_convex_hull(
1305 __isl_take isl_set *set);
1306 __isl_give isl_basic_map *isl_map_convex_hull(
1307 __isl_take isl_map *map);
1309 If the input set or relation has any existentially quantified
1310 variables, then the result of these operations is currently undefined.
1314 __isl_give isl_basic_set *isl_set_simple_hull(
1315 __isl_take isl_set *set);
1316 __isl_give isl_basic_map *isl_map_simple_hull(
1317 __isl_take isl_map *map);
1318 __isl_give isl_union_map *isl_union_map_simple_hull(
1319 __isl_take isl_union_map *umap);
1321 These functions compute a single basic set or relation
1322 that contains the whole input set or relation.
1323 In particular, the output is described by translates
1324 of the constraints describing the basic sets or relations in the input.
1328 (See \autoref{s:simple hull}.)
1334 __isl_give isl_basic_set *isl_basic_set_affine_hull(
1335 __isl_take isl_basic_set *bset);
1336 __isl_give isl_basic_set *isl_set_affine_hull(
1337 __isl_take isl_set *set);
1338 __isl_give isl_union_set *isl_union_set_affine_hull(
1339 __isl_take isl_union_set *uset);
1340 __isl_give isl_basic_map *isl_basic_map_affine_hull(
1341 __isl_take isl_basic_map *bmap);
1342 __isl_give isl_basic_map *isl_map_affine_hull(
1343 __isl_take isl_map *map);
1344 __isl_give isl_union_map *isl_union_map_affine_hull(
1345 __isl_take isl_union_map *umap);
1347 In case of union sets and relations, the affine hull is computed
1350 =item * Polyhedral hull
1352 __isl_give isl_basic_set *isl_set_polyhedral_hull(
1353 __isl_take isl_set *set);
1354 __isl_give isl_basic_map *isl_map_polyhedral_hull(
1355 __isl_take isl_map *map);
1356 __isl_give isl_union_set *isl_union_set_polyhedral_hull(
1357 __isl_take isl_union_set *uset);
1358 __isl_give isl_union_map *isl_union_map_polyhedral_hull(
1359 __isl_take isl_union_map *umap);
1361 These functions compute a single basic set or relation
1362 not involving any existentially quantified variables
1363 that contains the whole input set or relation.
1364 In case of union sets and relations, the polyhedral hull is computed
1369 __isl_give isl_map *isl_map_power(__isl_take isl_map *map,
1370 unsigned param, int *exact);
1372 Compute a parametric representation for all positive powers I<k> of C<map>.
1373 The power I<k> is equated to the parameter at position C<param>.
1374 The result may be an overapproximation. If the result is exact,
1375 then C<*exact> is set to C<1>.
1376 The current implementation only produces exact results for particular
1377 cases of piecewise translations (i.e., piecewise uniform dependences).
1379 =item * Transitive closure
1381 __isl_give isl_map *isl_map_transitive_closure(
1382 __isl_take isl_map *map, int *exact);
1383 __isl_give isl_union_map *isl_union_map_transitive_closure(
1384 __isl_take isl_union_map *umap, int *exact);
1386 Compute the transitive closure of C<map>.
1387 The result may be an overapproximation. If the result is known to be exact,
1388 then C<*exact> is set to C<1>.
1389 The current implementation only produces exact results for particular
1390 cases of piecewise translations (i.e., piecewise uniform dependences).
1392 =item * Reaching path lengths
1394 __isl_give isl_map *isl_map_reaching_path_lengths(
1395 __isl_take isl_map *map, int *exact);
1397 Compute a relation that maps each element in the range of C<map>
1398 to the lengths of all paths composed of edges in C<map> that
1399 end up in the given element.
1400 The result may be an overapproximation. If the result is known to be exact,
1401 then C<*exact> is set to C<1>.
1402 To compute the I<maximal> path length, the resulting relation
1403 should be postprocessed by C<isl_map_lexmax>.
1404 In particular, if the input relation is a dependence relation
1405 (mapping sources to sinks), then the maximal path length corresponds
1406 to the free schedule.
1407 Note, however, that C<isl_map_lexmax> expects the maximum to be
1408 finite, so if the path lengths are unbounded (possibly due to
1409 the overapproximation), then you will get an error message.
1413 __isl_give isl_basic_set *isl_basic_map_wrap(
1414 __isl_take isl_basic_map *bmap);
1415 __isl_give isl_set *isl_map_wrap(
1416 __isl_take isl_map *map);
1417 __isl_give isl_union_set *isl_union_map_wrap(
1418 __isl_take isl_union_map *umap);
1419 __isl_give isl_basic_map *isl_basic_set_unwrap(
1420 __isl_take isl_basic_set *bset);
1421 __isl_give isl_map *isl_set_unwrap(
1422 __isl_take isl_set *set);
1423 __isl_give isl_union_map *isl_union_set_unwrap(
1424 __isl_take isl_union_set *uset);
1428 Remove any internal structure of domain (and range) of the given
1429 set or relation. If there is any such internal structure in the input,
1430 then the name of the space is also removed.
1432 __isl_give isl_set *isl_set_flatten(
1433 __isl_take isl_set *set);
1434 __isl_give isl_map *isl_map_flatten(
1435 __isl_take isl_map *map);
1437 __isl_give isl_map *isl_set_flatten_map(
1438 __isl_take isl_set *set);
1440 The function above constructs a relation
1441 that maps the input set to a flattened version of the set.
1443 =item * Dimension manipulation
1445 __isl_give isl_set *isl_set_add_dims(
1446 __isl_take isl_set *set,
1447 enum isl_dim_type type, unsigned n);
1448 __isl_give isl_map *isl_map_add_dims(
1449 __isl_take isl_map *map,
1450 enum isl_dim_type type, unsigned n);
1452 It is usually not advisable to directly change the (input or output)
1453 space of a set or a relation as this removes the name and the internal
1454 structure of the space. However, the above functions can be useful
1455 to add new parameters.
1459 =head2 Binary Operations
1461 The two arguments of a binary operation not only need to live
1462 in the same C<isl_ctx>, they currently also need to have
1463 the same (number of) parameters.
1465 =head3 Basic Operations
1469 =item * Intersection
1471 __isl_give isl_basic_set *isl_basic_set_intersect(
1472 __isl_take isl_basic_set *bset1,
1473 __isl_take isl_basic_set *bset2);
1474 __isl_give isl_set *isl_set_intersect(
1475 __isl_take isl_set *set1,
1476 __isl_take isl_set *set2);
1477 __isl_give isl_union_set *isl_union_set_intersect(
1478 __isl_take isl_union_set *uset1,
1479 __isl_take isl_union_set *uset2);
1480 __isl_give isl_basic_map *isl_basic_map_intersect_domain(
1481 __isl_take isl_basic_map *bmap,
1482 __isl_take isl_basic_set *bset);
1483 __isl_give isl_basic_map *isl_basic_map_intersect_range(
1484 __isl_take isl_basic_map *bmap,
1485 __isl_take isl_basic_set *bset);
1486 __isl_give isl_basic_map *isl_basic_map_intersect(
1487 __isl_take isl_basic_map *bmap1,
1488 __isl_take isl_basic_map *bmap2);
1489 __isl_give isl_map *isl_map_intersect_domain(
1490 __isl_take isl_map *map,
1491 __isl_take isl_set *set);
1492 __isl_give isl_map *isl_map_intersect_range(
1493 __isl_take isl_map *map,
1494 __isl_take isl_set *set);
1495 __isl_give isl_map *isl_map_intersect(
1496 __isl_take isl_map *map1,
1497 __isl_take isl_map *map2);
1498 __isl_give isl_union_map *isl_union_map_intersect_domain(
1499 __isl_take isl_union_map *umap,
1500 __isl_take isl_union_set *uset);
1501 __isl_give isl_union_map *isl_union_map_intersect_range(
1502 __isl_take isl_union_map *umap,
1503 __isl_take isl_union_set *uset);
1504 __isl_give isl_union_map *isl_union_map_intersect(
1505 __isl_take isl_union_map *umap1,
1506 __isl_take isl_union_map *umap2);
1510 __isl_give isl_set *isl_basic_set_union(
1511 __isl_take isl_basic_set *bset1,
1512 __isl_take isl_basic_set *bset2);
1513 __isl_give isl_map *isl_basic_map_union(
1514 __isl_take isl_basic_map *bmap1,
1515 __isl_take isl_basic_map *bmap2);
1516 __isl_give isl_set *isl_set_union(
1517 __isl_take isl_set *set1,
1518 __isl_take isl_set *set2);
1519 __isl_give isl_map *isl_map_union(
1520 __isl_take isl_map *map1,
1521 __isl_take isl_map *map2);
1522 __isl_give isl_union_set *isl_union_set_union(
1523 __isl_take isl_union_set *uset1,
1524 __isl_take isl_union_set *uset2);
1525 __isl_give isl_union_map *isl_union_map_union(
1526 __isl_take isl_union_map *umap1,
1527 __isl_take isl_union_map *umap2);
1529 =item * Set difference
1531 __isl_give isl_set *isl_set_subtract(
1532 __isl_take isl_set *set1,
1533 __isl_take isl_set *set2);
1534 __isl_give isl_map *isl_map_subtract(
1535 __isl_take isl_map *map1,
1536 __isl_take isl_map *map2);
1537 __isl_give isl_union_set *isl_union_set_subtract(
1538 __isl_take isl_union_set *uset1,
1539 __isl_take isl_union_set *uset2);
1540 __isl_give isl_union_map *isl_union_map_subtract(
1541 __isl_take isl_union_map *umap1,
1542 __isl_take isl_union_map *umap2);
1546 __isl_give isl_basic_set *isl_basic_set_apply(
1547 __isl_take isl_basic_set *bset,
1548 __isl_take isl_basic_map *bmap);
1549 __isl_give isl_set *isl_set_apply(
1550 __isl_take isl_set *set,
1551 __isl_take isl_map *map);
1552 __isl_give isl_union_set *isl_union_set_apply(
1553 __isl_take isl_union_set *uset,
1554 __isl_take isl_union_map *umap);
1555 __isl_give isl_basic_map *isl_basic_map_apply_domain(
1556 __isl_take isl_basic_map *bmap1,
1557 __isl_take isl_basic_map *bmap2);
1558 __isl_give isl_basic_map *isl_basic_map_apply_range(
1559 __isl_take isl_basic_map *bmap1,
1560 __isl_take isl_basic_map *bmap2);
1561 __isl_give isl_map *isl_map_apply_domain(
1562 __isl_take isl_map *map1,
1563 __isl_take isl_map *map2);
1564 __isl_give isl_union_map *isl_union_map_apply_domain(
1565 __isl_take isl_union_map *umap1,
1566 __isl_take isl_union_map *umap2);
1567 __isl_give isl_map *isl_map_apply_range(
1568 __isl_take isl_map *map1,
1569 __isl_take isl_map *map2);
1570 __isl_give isl_union_map *isl_union_map_apply_range(
1571 __isl_take isl_union_map *umap1,
1572 __isl_take isl_union_map *umap2);
1574 =item * Simplification
1576 __isl_give isl_basic_set *isl_basic_set_gist(
1577 __isl_take isl_basic_set *bset,
1578 __isl_take isl_basic_set *context);
1579 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
1580 __isl_take isl_set *context);
1581 __isl_give isl_union_set *isl_union_set_gist(
1582 __isl_take isl_union_set *uset,
1583 __isl_take isl_union_set *context);
1584 __isl_give isl_basic_map *isl_basic_map_gist(
1585 __isl_take isl_basic_map *bmap,
1586 __isl_take isl_basic_map *context);
1587 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
1588 __isl_take isl_map *context);
1589 __isl_give isl_union_map *isl_union_map_gist(
1590 __isl_take isl_union_map *umap,
1591 __isl_take isl_union_map *context);
1593 The gist operation returns a set or relation that has the
1594 same intersection with the context as the input set or relation.
1595 Any implicit equality in the intersection is made explicit in the result,
1596 while all inequalities that are redundant with respect to the intersection
1598 In case of union sets and relations, the gist operation is performed
1603 =head3 Lexicographic Optimization
1605 Given a (basic) set C<set> (or C<bset>) and a zero-dimensional domain C<dom>,
1606 the following functions
1607 compute a set that contains the lexicographic minimum or maximum
1608 of the elements in C<set> (or C<bset>) for those values of the parameters
1609 that satisfy C<dom>.
1610 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
1611 that contains the parameter values in C<dom> for which C<set> (or C<bset>)
1613 In other words, the union of the parameter values
1614 for which the result is non-empty and of C<*empty>
1617 __isl_give isl_set *isl_basic_set_partial_lexmin(
1618 __isl_take isl_basic_set *bset,
1619 __isl_take isl_basic_set *dom,
1620 __isl_give isl_set **empty);
1621 __isl_give isl_set *isl_basic_set_partial_lexmax(
1622 __isl_take isl_basic_set *bset,
1623 __isl_take isl_basic_set *dom,
1624 __isl_give isl_set **empty);
1625 __isl_give isl_set *isl_set_partial_lexmin(
1626 __isl_take isl_set *set, __isl_take isl_set *dom,
1627 __isl_give isl_set **empty);
1628 __isl_give isl_set *isl_set_partial_lexmax(
1629 __isl_take isl_set *set, __isl_take isl_set *dom,
1630 __isl_give isl_set **empty);
1632 Given a (basic) set C<set> (or C<bset>), the following functions simply
1633 return a set containing the lexicographic minimum or maximum
1634 of the elements in C<set> (or C<bset>).
1635 In case of union sets, the optimum is computed per space.
1637 __isl_give isl_set *isl_basic_set_lexmin(
1638 __isl_take isl_basic_set *bset);
1639 __isl_give isl_set *isl_basic_set_lexmax(
1640 __isl_take isl_basic_set *bset);
1641 __isl_give isl_set *isl_set_lexmin(
1642 __isl_take isl_set *set);
1643 __isl_give isl_set *isl_set_lexmax(
1644 __isl_take isl_set *set);
1645 __isl_give isl_union_set *isl_union_set_lexmin(
1646 __isl_take isl_union_set *uset);
1647 __isl_give isl_union_set *isl_union_set_lexmax(
1648 __isl_take isl_union_set *uset);
1650 Given a (basic) relation C<map> (or C<bmap>) and a domain C<dom>,
1651 the following functions
1652 compute a relation that maps each element of C<dom>
1653 to the single lexicographic minimum or maximum
1654 of the elements that are associated to that same
1655 element in C<map> (or C<bmap>).
1656 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
1657 that contains the elements in C<dom> that do not map
1658 to any elements in C<map> (or C<bmap>).
1659 In other words, the union of the domain of the result and of C<*empty>
1662 __isl_give isl_map *isl_basic_map_partial_lexmax(
1663 __isl_take isl_basic_map *bmap,
1664 __isl_take isl_basic_set *dom,
1665 __isl_give isl_set **empty);
1666 __isl_give isl_map *isl_basic_map_partial_lexmin(
1667 __isl_take isl_basic_map *bmap,
1668 __isl_take isl_basic_set *dom,
1669 __isl_give isl_set **empty);
1670 __isl_give isl_map *isl_map_partial_lexmax(
1671 __isl_take isl_map *map, __isl_take isl_set *dom,
1672 __isl_give isl_set **empty);
1673 __isl_give isl_map *isl_map_partial_lexmin(
1674 __isl_take isl_map *map, __isl_take isl_set *dom,
1675 __isl_give isl_set **empty);
1677 Given a (basic) map C<map> (or C<bmap>), the following functions simply
1678 return a map mapping each element in the domain of
1679 C<map> (or C<bmap>) to the lexicographic minimum or maximum
1680 of all elements associated to that element.
1681 In case of union relations, the optimum is computed per space.
1683 __isl_give isl_map *isl_basic_map_lexmin(
1684 __isl_take isl_basic_map *bmap);
1685 __isl_give isl_map *isl_basic_map_lexmax(
1686 __isl_take isl_basic_map *bmap);
1687 __isl_give isl_map *isl_map_lexmin(
1688 __isl_take isl_map *map);
1689 __isl_give isl_map *isl_map_lexmax(
1690 __isl_take isl_map *map);
1691 __isl_give isl_union_map *isl_union_map_lexmin(
1692 __isl_take isl_union_map *umap);
1693 __isl_give isl_union_map *isl_union_map_lexmax(
1694 __isl_take isl_union_map *umap);
1698 Matrices can be created, copied and freed using the following functions.
1700 #include <isl/mat.h>
1701 __isl_give isl_mat *isl_mat_alloc(struct isl_ctx *ctx,
1702 unsigned n_row, unsigned n_col);
1703 __isl_give isl_mat *isl_mat_copy(__isl_keep isl_mat *mat);
1704 void isl_mat_free(__isl_take isl_mat *mat);
1706 Note that the elements of a newly created matrix may have arbitrary values.
1707 The elements can be changed and inspected using the following functions.
1709 int isl_mat_rows(__isl_keep isl_mat *mat);
1710 int isl_mat_cols(__isl_keep isl_mat *mat);
1711 int isl_mat_get_element(__isl_keep isl_mat *mat,
1712 int row, int col, isl_int *v);
1713 __isl_give isl_mat *isl_mat_set_element(__isl_take isl_mat *mat,
1714 int row, int col, isl_int v);
1716 C<isl_mat_get_element> will return a negative value if anything went wrong.
1717 In that case, the value of C<*v> is undefined.
1719 The following function can be used to compute the (right) inverse
1720 of a matrix, i.e., a matrix such that the product of the original
1721 and the inverse (in that order) is a multiple of the identity matrix.
1722 The input matrix is assumed to be of full row-rank.
1724 __isl_give isl_mat *isl_mat_right_inverse(__isl_take isl_mat *mat);
1726 The following function can be used to compute the (right) kernel
1727 (or null space) of a matrix, i.e., a matrix such that the product of
1728 the original and the kernel (in that order) is the zero matrix.
1730 __isl_give isl_mat *isl_mat_right_kernel(__isl_take isl_mat *mat);
1734 Points are elements of a set. They can be used to construct
1735 simple sets (boxes) or they can be used to represent the
1736 individual elements of a set.
1737 The zero point (the origin) can be created using
1739 __isl_give isl_point *isl_point_zero(__isl_take isl_dim *dim);
1741 The coordinates of a point can be inspected, set and changed
1744 void isl_point_get_coordinate(__isl_keep isl_point *pnt,
1745 enum isl_dim_type type, int pos, isl_int *v);
1746 __isl_give isl_point *isl_point_set_coordinate(
1747 __isl_take isl_point *pnt,
1748 enum isl_dim_type type, int pos, isl_int v);
1750 __isl_give isl_point *isl_point_add_ui(
1751 __isl_take isl_point *pnt,
1752 enum isl_dim_type type, int pos, unsigned val);
1753 __isl_give isl_point *isl_point_sub_ui(
1754 __isl_take isl_point *pnt,
1755 enum isl_dim_type type, int pos, unsigned val);
1757 Points can be copied or freed using
1759 __isl_give isl_point *isl_point_copy(
1760 __isl_keep isl_point *pnt);
1761 void isl_point_free(__isl_take isl_point *pnt);
1763 A singleton set can be created from a point using
1765 __isl_give isl_basic_set *isl_basic_set_from_point(
1766 __isl_take isl_point *pnt);
1767 __isl_give isl_set *isl_set_from_point(
1768 __isl_take isl_point *pnt);
1770 and a box can be created from two opposite extremal points using
1772 __isl_give isl_basic_set *isl_basic_set_box_from_points(
1773 __isl_take isl_point *pnt1,
1774 __isl_take isl_point *pnt2);
1775 __isl_give isl_set *isl_set_box_from_points(
1776 __isl_take isl_point *pnt1,
1777 __isl_take isl_point *pnt2);
1779 All elements of a B<bounded> (union) set can be enumerated using
1780 the following functions.
1782 int isl_set_foreach_point(__isl_keep isl_set *set,
1783 int (*fn)(__isl_take isl_point *pnt, void *user),
1785 int isl_union_set_foreach_point(__isl_keep isl_union_set *uset,
1786 int (*fn)(__isl_take isl_point *pnt, void *user),
1789 The function C<fn> is called for each integer point in
1790 C<set> with as second argument the last argument of
1791 the C<isl_set_foreach_point> call. The function C<fn>
1792 should return C<0> on success and C<-1> on failure.
1793 In the latter case, C<isl_set_foreach_point> will stop
1794 enumerating and return C<-1> as well.
1795 If the enumeration is performed successfully and to completion,
1796 then C<isl_set_foreach_point> returns C<0>.
1798 To obtain a single point of a (basic) set, use
1800 __isl_give isl_point *isl_basic_set_sample_point(
1801 __isl_take isl_basic_set *bset);
1802 __isl_give isl_point *isl_set_sample_point(
1803 __isl_take isl_set *set);
1805 If C<set> does not contain any (integer) points, then the
1806 resulting point will be ``void'', a property that can be
1809 int isl_point_is_void(__isl_keep isl_point *pnt);
1811 =head2 Piecewise Quasipolynomials
1813 A piecewise quasipolynomial is a particular kind of function that maps
1814 a parametric point to a rational value.
1815 More specifically, a quasipolynomial is a polynomial expression in greatest
1816 integer parts of affine expressions of parameters and variables.
1817 A piecewise quasipolynomial is a subdivision of a given parametric
1818 domain into disjoint cells with a quasipolynomial associated to
1819 each cell. The value of the piecewise quasipolynomial at a given
1820 point is the value of the quasipolynomial associated to the cell
1821 that contains the point. Outside of the union of cells,
1822 the value is assumed to be zero.
1823 For example, the piecewise quasipolynomial
1825 [n] -> { [x] -> ((1 + n) - x) : x <= n and x >= 0 }
1827 maps C<x> to C<1 + n - x> for values of C<x> between C<0> and C<n>.
1828 A given piecewise quasipolynomial has a fixed domain dimension.
1829 Union piecewise quasipolynomials are used to contain piecewise quasipolynomials
1830 defined over different domains.
1831 Piecewise quasipolynomials are mainly used by the C<barvinok>
1832 library for representing the number of elements in a parametric set or map.
1833 For example, the piecewise quasipolynomial above represents
1834 the number of points in the map
1836 [n] -> { [x] -> [y] : x,y >= 0 and 0 <= x + y <= n }
1838 =head3 Printing (Piecewise) Quasipolynomials
1840 Quasipolynomials and piecewise quasipolynomials can be printed
1841 using the following functions.
1843 __isl_give isl_printer *isl_printer_print_qpolynomial(
1844 __isl_take isl_printer *p,
1845 __isl_keep isl_qpolynomial *qp);
1847 __isl_give isl_printer *isl_printer_print_pw_qpolynomial(
1848 __isl_take isl_printer *p,
1849 __isl_keep isl_pw_qpolynomial *pwqp);
1851 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial(
1852 __isl_take isl_printer *p,
1853 __isl_keep isl_union_pw_qpolynomial *upwqp);
1855 The output format of the printer
1856 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
1857 For C<isl_printer_print_union_pw_qpolynomial>, only C<ISL_FORMAT_ISL>
1859 In case of printing in C<ISL_FORMAT_C>, the user may want
1860 to set the names of all dimensions
1862 __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name(
1863 __isl_take isl_qpolynomial *qp,
1864 enum isl_dim_type type, unsigned pos,
1866 __isl_give isl_pw_qpolynomial *
1867 isl_pw_qpolynomial_set_dim_name(
1868 __isl_take isl_pw_qpolynomial *pwqp,
1869 enum isl_dim_type type, unsigned pos,
1872 =head3 Creating New (Piecewise) Quasipolynomials
1874 Some simple quasipolynomials can be created using the following functions.
1875 More complicated quasipolynomials can be created by applying
1876 operations such as addition and multiplication
1877 on the resulting quasipolynomials
1879 __isl_give isl_qpolynomial *isl_qpolynomial_zero(
1880 __isl_take isl_dim *dim);
1881 __isl_give isl_qpolynomial *isl_qpolynomial_one(
1882 __isl_take isl_dim *dim);
1883 __isl_give isl_qpolynomial *isl_qpolynomial_infty(
1884 __isl_take isl_dim *dim);
1885 __isl_give isl_qpolynomial *isl_qpolynomial_neginfty(
1886 __isl_take isl_dim *dim);
1887 __isl_give isl_qpolynomial *isl_qpolynomial_nan(
1888 __isl_take isl_dim *dim);
1889 __isl_give isl_qpolynomial *isl_qpolynomial_rat_cst(
1890 __isl_take isl_dim *dim,
1891 const isl_int n, const isl_int d);
1892 __isl_give isl_qpolynomial *isl_qpolynomial_div(
1893 __isl_take isl_div *div);
1894 __isl_give isl_qpolynomial *isl_qpolynomial_var(
1895 __isl_take isl_dim *dim,
1896 enum isl_dim_type type, unsigned pos);
1898 The zero piecewise quasipolynomial or a piecewise quasipolynomial
1899 with a single cell can be created using the following functions.
1900 Multiple of these single cell piecewise quasipolynomials can
1901 be combined to create more complicated piecewise quasipolynomials.
1903 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_zero(
1904 __isl_take isl_dim *dim);
1905 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_alloc(
1906 __isl_take isl_set *set,
1907 __isl_take isl_qpolynomial *qp);
1909 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_zero(
1910 __isl_take isl_dim *dim);
1911 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_from_pw_qpolynomial(
1912 __isl_take isl_pw_qpolynomial *pwqp);
1913 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add_pw_qpolynomial(
1914 __isl_take isl_union_pw_qpolynomial *upwqp,
1915 __isl_take isl_pw_qpolynomial *pwqp);
1917 Quasipolynomials can be copied and freed again using the following
1920 __isl_give isl_qpolynomial *isl_qpolynomial_copy(
1921 __isl_keep isl_qpolynomial *qp);
1922 void isl_qpolynomial_free(__isl_take isl_qpolynomial *qp);
1924 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_copy(
1925 __isl_keep isl_pw_qpolynomial *pwqp);
1926 void isl_pw_qpolynomial_free(
1927 __isl_take isl_pw_qpolynomial *pwqp);
1929 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_copy(
1930 __isl_keep isl_union_pw_qpolynomial *upwqp);
1931 void isl_union_pw_qpolynomial_free(
1932 __isl_take isl_union_pw_qpolynomial *upwqp);
1934 =head3 Inspecting (Piecewise) Quasipolynomials
1936 To iterate over all piecewise quasipolynomials in a union
1937 piecewise quasipolynomial, use the following function
1939 int isl_union_pw_qpolynomial_foreach_pw_qpolynomial(
1940 __isl_keep isl_union_pw_qpolynomial *upwqp,
1941 int (*fn)(__isl_take isl_pw_qpolynomial *pwqp, void *user),
1944 To extract the piecewise quasipolynomial from a union with a given dimension
1947 __isl_give isl_pw_qpolynomial *
1948 isl_union_pw_qpolynomial_extract_pw_qpolynomial(
1949 __isl_keep isl_union_pw_qpolynomial *upwqp,
1950 __isl_take isl_dim *dim);
1952 To iterate over the cells in a piecewise quasipolynomial,
1953 use either of the following two functions
1955 int isl_pw_qpolynomial_foreach_piece(
1956 __isl_keep isl_pw_qpolynomial *pwqp,
1957 int (*fn)(__isl_take isl_set *set,
1958 __isl_take isl_qpolynomial *qp,
1959 void *user), void *user);
1960 int isl_pw_qpolynomial_foreach_lifted_piece(
1961 __isl_keep isl_pw_qpolynomial *pwqp,
1962 int (*fn)(__isl_take isl_set *set,
1963 __isl_take isl_qpolynomial *qp,
1964 void *user), void *user);
1966 As usual, the function C<fn> should return C<0> on success
1967 and C<-1> on failure. The difference between
1968 C<isl_pw_qpolynomial_foreach_piece> and
1969 C<isl_pw_qpolynomial_foreach_lifted_piece> is that
1970 C<isl_pw_qpolynomial_foreach_lifted_piece> will first
1971 compute unique representations for all existentially quantified
1972 variables and then turn these existentially quantified variables
1973 into extra set variables, adapting the associated quasipolynomial
1974 accordingly. This means that the C<set> passed to C<fn>
1975 will not have any existentially quantified variables, but that
1976 the dimensions of the sets may be different for different
1977 invocations of C<fn>.
1979 To iterate over all terms in a quasipolynomial,
1982 int isl_qpolynomial_foreach_term(
1983 __isl_keep isl_qpolynomial *qp,
1984 int (*fn)(__isl_take isl_term *term,
1985 void *user), void *user);
1987 The terms themselves can be inspected and freed using
1990 unsigned isl_term_dim(__isl_keep isl_term *term,
1991 enum isl_dim_type type);
1992 void isl_term_get_num(__isl_keep isl_term *term,
1994 void isl_term_get_den(__isl_keep isl_term *term,
1996 int isl_term_get_exp(__isl_keep isl_term *term,
1997 enum isl_dim_type type, unsigned pos);
1998 __isl_give isl_div *isl_term_get_div(
1999 __isl_keep isl_term *term, unsigned pos);
2000 void isl_term_free(__isl_take isl_term *term);
2002 Each term is a product of parameters, set variables and
2003 integer divisions. The function C<isl_term_get_exp>
2004 returns the exponent of a given dimensions in the given term.
2005 The C<isl_int>s in the arguments of C<isl_term_get_num>
2006 and C<isl_term_get_den> need to have been initialized
2007 using C<isl_int_init> before calling these functions.
2009 =head3 Properties of (Piecewise) Quasipolynomials
2011 To check whether a quasipolynomial is actually a constant,
2012 use the following function.
2014 int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp,
2015 isl_int *n, isl_int *d);
2017 If C<qp> is a constant and if C<n> and C<d> are not C<NULL>
2018 then the numerator and denominator of the constant
2019 are returned in C<*n> and C<*d>, respectively.
2021 =head3 Operations on (Piecewise) Quasipolynomials
2023 __isl_give isl_qpolynomial *isl_qpolynomial_neg(
2024 __isl_take isl_qpolynomial *qp);
2025 __isl_give isl_qpolynomial *isl_qpolynomial_add(
2026 __isl_take isl_qpolynomial *qp1,
2027 __isl_take isl_qpolynomial *qp2);
2028 __isl_give isl_qpolynomial *isl_qpolynomial_sub(
2029 __isl_take isl_qpolynomial *qp1,
2030 __isl_take isl_qpolynomial *qp2);
2031 __isl_give isl_qpolynomial *isl_qpolynomial_mul(
2032 __isl_take isl_qpolynomial *qp1,
2033 __isl_take isl_qpolynomial *qp2);
2034 __isl_give isl_qpolynomial *isl_qpolynomial_pow(
2035 __isl_take isl_qpolynomial *qp, unsigned exponent);
2037 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add(
2038 __isl_take isl_pw_qpolynomial *pwqp1,
2039 __isl_take isl_pw_qpolynomial *pwqp2);
2040 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_sub(
2041 __isl_take isl_pw_qpolynomial *pwqp1,
2042 __isl_take isl_pw_qpolynomial *pwqp2);
2043 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_disjoint(
2044 __isl_take isl_pw_qpolynomial *pwqp1,
2045 __isl_take isl_pw_qpolynomial *pwqp2);
2046 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_neg(
2047 __isl_take isl_pw_qpolynomial *pwqp);
2048 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
2049 __isl_take isl_pw_qpolynomial *pwqp1,
2050 __isl_take isl_pw_qpolynomial *pwqp2);
2052 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add(
2053 __isl_take isl_union_pw_qpolynomial *upwqp1,
2054 __isl_take isl_union_pw_qpolynomial *upwqp2);
2055 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_sub(
2056 __isl_take isl_union_pw_qpolynomial *upwqp1,
2057 __isl_take isl_union_pw_qpolynomial *upwqp2);
2058 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul(
2059 __isl_take isl_union_pw_qpolynomial *upwqp1,
2060 __isl_take isl_union_pw_qpolynomial *upwqp2);
2062 __isl_give isl_qpolynomial *isl_pw_qpolynomial_eval(
2063 __isl_take isl_pw_qpolynomial *pwqp,
2064 __isl_take isl_point *pnt);
2066 __isl_give isl_qpolynomial *isl_union_pw_qpolynomial_eval(
2067 __isl_take isl_union_pw_qpolynomial *upwqp,
2068 __isl_take isl_point *pnt);
2070 __isl_give isl_set *isl_pw_qpolynomial_domain(
2071 __isl_take isl_pw_qpolynomial *pwqp);
2072 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_intersect_domain(
2073 __isl_take isl_pw_qpolynomial *pwpq,
2074 __isl_take isl_set *set);
2076 __isl_give isl_union_set *isl_union_pw_qpolynomial_domain(
2077 __isl_take isl_union_pw_qpolynomial *upwqp);
2078 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_intersect_domain(
2079 __isl_take isl_union_pw_qpolynomial *upwpq,
2080 __isl_take isl_union_set *uset);
2082 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_coalesce(
2083 __isl_take isl_union_pw_qpolynomial *upwqp);
2085 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist(
2086 __isl_take isl_pw_qpolynomial *pwqp,
2087 __isl_take isl_set *context);
2089 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_gist(
2090 __isl_take isl_union_pw_qpolynomial *upwqp,
2091 __isl_take isl_union_set *context);
2093 The gist operation applies the gist operation to each of
2094 the cells in the domain of the input piecewise quasipolynomial.
2095 The context is also exploited
2096 to simplify the quasipolynomials associated to each cell.
2098 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial(
2099 __isl_take isl_pw_qpolynomial *pwqp, int sign);
2100 __isl_give isl_union_pw_qpolynomial *
2101 isl_union_pw_qpolynomial_to_polynomial(
2102 __isl_take isl_union_pw_qpolynomial *upwqp, int sign);
2104 Approximate each quasipolynomial by a polynomial. If C<sign> is positive,
2105 the polynomial will be an overapproximation. If C<sign> is negative,
2106 it will be an underapproximation. If C<sign> is zero, the approximation
2107 will lie somewhere in between.
2109 =head2 Bounds on Piecewise Quasipolynomials and Piecewise Quasipolynomial Reductions
2111 A piecewise quasipolynomial reduction is a piecewise
2112 reduction (or fold) of quasipolynomials.
2113 In particular, the reduction can be maximum or a minimum.
2114 The objects are mainly used to represent the result of
2115 an upper or lower bound on a quasipolynomial over its domain,
2116 i.e., as the result of the following function.
2118 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_bound(
2119 __isl_take isl_pw_qpolynomial *pwqp,
2120 enum isl_fold type, int *tight);
2122 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_bound(
2123 __isl_take isl_union_pw_qpolynomial *upwqp,
2124 enum isl_fold type, int *tight);
2126 The C<type> argument may be either C<isl_fold_min> or C<isl_fold_max>.
2127 If C<tight> is not C<NULL>, then C<*tight> is set to C<1>
2128 is the returned bound is known be tight, i.e., for each value
2129 of the parameters there is at least
2130 one element in the domain that reaches the bound.
2131 If the domain of C<pwqp> is not wrapping, then the bound is computed
2132 over all elements in that domain and the result has a purely parametric
2133 domain. If the domain of C<pwqp> is wrapping, then the bound is
2134 computed over the range of the wrapped relation. The domain of the
2135 wrapped relation becomes the domain of the result.
2137 A (piecewise) quasipolynomial reduction can be copied or freed using the
2138 following functions.
2140 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_copy(
2141 __isl_keep isl_qpolynomial_fold *fold);
2142 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_copy(
2143 __isl_keep isl_pw_qpolynomial_fold *pwf);
2144 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_copy(
2145 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
2146 void isl_qpolynomial_fold_free(
2147 __isl_take isl_qpolynomial_fold *fold);
2148 void isl_pw_qpolynomial_fold_free(
2149 __isl_take isl_pw_qpolynomial_fold *pwf);
2150 void isl_union_pw_qpolynomial_fold_free(
2151 __isl_take isl_union_pw_qpolynomial_fold *upwf);
2153 =head3 Printing Piecewise Quasipolynomial Reductions
2155 Piecewise quasipolynomial reductions can be printed
2156 using the following function.
2158 __isl_give isl_printer *isl_printer_print_pw_qpolynomial_fold(
2159 __isl_take isl_printer *p,
2160 __isl_keep isl_pw_qpolynomial_fold *pwf);
2161 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial_fold(
2162 __isl_take isl_printer *p,
2163 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
2165 For C<isl_printer_print_pw_qpolynomial_fold>,
2166 output format of the printer
2167 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
2168 For C<isl_printer_print_union_pw_qpolynomial_fold>,
2169 output format of the printer
2170 needs to be set to C<ISL_FORMAT_ISL>.
2171 In case of printing in C<ISL_FORMAT_C>, the user may want
2172 to set the names of all dimensions
2174 __isl_give isl_pw_qpolynomial_fold *
2175 isl_pw_qpolynomial_fold_set_dim_name(
2176 __isl_take isl_pw_qpolynomial_fold *pwf,
2177 enum isl_dim_type type, unsigned pos,
2180 =head3 Inspecting (Piecewise) Quasipolynomial Reductions
2182 To iterate over all piecewise quasipolynomial reductions in a union
2183 piecewise quasipolynomial reduction, use the following function
2185 int isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold(
2186 __isl_keep isl_union_pw_qpolynomial_fold *upwf,
2187 int (*fn)(__isl_take isl_pw_qpolynomial_fold *pwf,
2188 void *user), void *user);
2190 To iterate over the cells in a piecewise quasipolynomial reduction,
2191 use either of the following two functions
2193 int isl_pw_qpolynomial_fold_foreach_piece(
2194 __isl_keep isl_pw_qpolynomial_fold *pwf,
2195 int (*fn)(__isl_take isl_set *set,
2196 __isl_take isl_qpolynomial_fold *fold,
2197 void *user), void *user);
2198 int isl_pw_qpolynomial_fold_foreach_lifted_piece(
2199 __isl_keep isl_pw_qpolynomial_fold *pwf,
2200 int (*fn)(__isl_take isl_set *set,
2201 __isl_take isl_qpolynomial_fold *fold,
2202 void *user), void *user);
2204 See L<Inspecting (Piecewise) Quasipolynomials> for an explanation
2205 of the difference between these two functions.
2207 To iterate over all quasipolynomials in a reduction, use
2209 int isl_qpolynomial_fold_foreach_qpolynomial(
2210 __isl_keep isl_qpolynomial_fold *fold,
2211 int (*fn)(__isl_take isl_qpolynomial *qp,
2212 void *user), void *user);
2214 =head3 Operations on Piecewise Quasipolynomial Reductions
2216 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_add(
2217 __isl_take isl_pw_qpolynomial_fold *pwf1,
2218 __isl_take isl_pw_qpolynomial_fold *pwf2);
2220 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_fold(
2221 __isl_take isl_pw_qpolynomial_fold *pwf1,
2222 __isl_take isl_pw_qpolynomial_fold *pwf2);
2224 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_fold(
2225 __isl_take isl_union_pw_qpolynomial_fold *upwf1,
2226 __isl_take isl_union_pw_qpolynomial_fold *upwf2);
2228 __isl_give isl_qpolynomial *isl_pw_qpolynomial_fold_eval(
2229 __isl_take isl_pw_qpolynomial_fold *pwf,
2230 __isl_take isl_point *pnt);
2232 __isl_give isl_qpolynomial *isl_union_pw_qpolynomial_fold_eval(
2233 __isl_take isl_union_pw_qpolynomial_fold *upwf,
2234 __isl_take isl_point *pnt);
2236 __isl_give isl_union_set *isl_union_pw_qpolynomial_fold_domain(
2237 __isl_take isl_union_pw_qpolynomial_fold *upwf);
2238 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_intersect_domain(
2239 __isl_take isl_union_pw_qpolynomial_fold *upwf,
2240 __isl_take isl_union_set *uset);
2242 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_coalesce(
2243 __isl_take isl_pw_qpolynomial_fold *pwf);
2245 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_coalesce(
2246 __isl_take isl_union_pw_qpolynomial_fold *upwf);
2248 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_gist(
2249 __isl_take isl_pw_qpolynomial_fold *pwf,
2250 __isl_take isl_set *context);
2252 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_gist(
2253 __isl_take isl_union_pw_qpolynomial_fold *upwf,
2254 __isl_take isl_union_set *context);
2256 The gist operation applies the gist operation to each of
2257 the cells in the domain of the input piecewise quasipolynomial reduction.
2258 In future, the operation will also exploit the context
2259 to simplify the quasipolynomial reductions associated to each cell.
2261 __isl_give isl_pw_qpolynomial_fold *
2262 isl_map_apply_pw_qpolynomial_fold(
2263 __isl_take isl_map *map,
2264 __isl_take isl_pw_qpolynomial_fold *pwf,
2266 __isl_give isl_union_pw_qpolynomial_fold *
2267 isl_union_map_apply_union_pw_qpolynomial_fold(
2268 __isl_take isl_union_map *umap,
2269 __isl_take isl_union_pw_qpolynomial_fold *upwf,
2273 compose the given map with the given piecewise quasipolynomial reduction.
2274 That is, compute a bound (of the same type as C<pwf> or C<upwf> itself)
2275 over all elements in the intersection of the range of the map
2276 and the domain of the piecewise quasipolynomial reduction
2277 as a function of an element in the domain of the map.
2279 =head2 Dependence Analysis
2281 C<isl> contains specialized functionality for performing
2282 array dataflow analysis. That is, given a I<sink> access relation
2283 and a collection of possible I<source> access relations,
2284 C<isl> can compute relations that describe
2285 for each iteration of the sink access, which iteration
2286 of which of the source access relations was the last
2287 to access the same data element before the given iteration
2289 To compute standard flow dependences, the sink should be
2290 a read, while the sources should be writes.
2291 If any of the source accesses are marked as being I<may>
2292 accesses, then there will be a dependence to the last
2293 I<must> access B<and> to any I<may> access that follows
2294 this last I<must> access.
2295 In particular, if I<all> sources are I<may> accesses,
2296 then memory based dependence analysis is performed.
2297 If, on the other hand, all sources are I<must> accesses,
2298 then value based dependence analysis is performed.
2300 #include <isl/flow.h>
2302 typedef int (*isl_access_level_before)(void *first, void *second);
2304 __isl_give isl_access_info *isl_access_info_alloc(
2305 __isl_take isl_map *sink,
2306 void *sink_user, isl_access_level_before fn,
2308 __isl_give isl_access_info *isl_access_info_add_source(
2309 __isl_take isl_access_info *acc,
2310 __isl_take isl_map *source, int must,
2312 void isl_access_info_free(__isl_take isl_access_info *acc);
2314 __isl_give isl_flow *isl_access_info_compute_flow(
2315 __isl_take isl_access_info *acc);
2317 int isl_flow_foreach(__isl_keep isl_flow *deps,
2318 int (*fn)(__isl_take isl_map *dep, int must,
2319 void *dep_user, void *user),
2321 __isl_give isl_set *isl_flow_get_no_source(
2322 __isl_keep isl_flow *deps, int must);
2323 void isl_flow_free(__isl_take isl_flow *deps);
2325 The function C<isl_access_info_compute_flow> performs the actual
2326 dependence analysis. The other functions are used to construct
2327 the input for this function or to read off the output.
2329 The input is collected in an C<isl_access_info>, which can
2330 be created through a call to C<isl_access_info_alloc>.
2331 The arguments to this functions are the sink access relation
2332 C<sink>, a token C<sink_user> used to identify the sink
2333 access to the user, a callback function for specifying the
2334 relative order of source and sink accesses, and the number
2335 of source access relations that will be added.
2336 The callback function has type C<int (*)(void *first, void *second)>.
2337 The function is called with two user supplied tokens identifying
2338 either a source or the sink and it should return the shared nesting
2339 level and the relative order of the two accesses.
2340 In particular, let I<n> be the number of loops shared by
2341 the two accesses. If C<first> precedes C<second> textually,
2342 then the function should return I<2 * n + 1>; otherwise,
2343 it should return I<2 * n>.
2344 The sources can be added to the C<isl_access_info> by performing
2345 (at most) C<max_source> calls to C<isl_access_info_add_source>.
2346 C<must> indicates whether the source is a I<must> access
2347 or a I<may> access. Note that a multi-valued access relation
2348 should only be marked I<must> if every iteration in the domain
2349 of the relation accesses I<all> elements in its image.
2350 The C<source_user> token is again used to identify
2351 the source access. The range of the source access relation
2352 C<source> should have the same dimension as the range
2353 of the sink access relation.
2354 The C<isl_access_info_free> function should usually not be
2355 called explicitly, because it is called implicitly by
2356 C<isl_access_info_compute_flow>.
2358 The result of the dependence analysis is collected in an
2359 C<isl_flow>. There may be elements in the domain of
2360 the sink access for which no preceding source access could be
2361 found or for which all preceding sources are I<may> accesses.
2362 The sets of these elements can be obtained through
2363 calls to C<isl_flow_get_no_source>, the first with C<must> set
2364 and the second with C<must> unset.
2365 In the case of standard flow dependence analysis,
2366 with the sink a read and the sources I<must> writes,
2367 the first set corresponds to the reads from uninitialized
2368 array elements and the second set is empty.
2369 The actual flow dependences can be extracted using
2370 C<isl_flow_foreach>. This function will call the user-specified
2371 callback function C<fn> for each B<non-empty> dependence between
2372 a source and the sink. The callback function is called
2373 with four arguments, the actual flow dependence relation
2374 mapping source iterations to sink iterations, a boolean that
2375 indicates whether it is a I<must> or I<may> dependence, a token
2376 identifying the source and an additional C<void *> with value
2377 equal to the third argument of the C<isl_flow_foreach> call.
2378 A dependence is marked I<must> if it originates from a I<must>
2379 source and if it is not followed by any I<may> sources.
2381 After finishing with an C<isl_flow>, the user should call
2382 C<isl_flow_free> to free all associated memory.
2384 A higher-level interface to dependence analysis is provided
2385 by the following function.
2387 #include <isl/flow.h>
2389 int isl_union_map_compute_flow(__isl_take isl_union_map *sink,
2390 __isl_take isl_union_map *must_source,
2391 __isl_take isl_union_map *may_source,
2392 __isl_take isl_union_map *schedule,
2393 __isl_give isl_union_map **must_dep,
2394 __isl_give isl_union_map **may_dep,
2395 __isl_give isl_union_set **must_no_source,
2396 __isl_give isl_union_set **may_no_source);
2398 The arrays are identified by the tuple names of the ranges
2399 of the accesses. The iteration domains by the tuple names
2400 of the domains of the accesses and of the schedule.
2401 The relative order of the iteration domains is given by the
2402 schedule. Any of C<must_dep>, C<may_dep>, C<must_no_source>
2403 or C<may_no_source> may be C<NULL>, but a C<NULL> value for
2404 any of the other arguments is treated as an error.
2406 =head2 Parametric Vertex Enumeration
2408 The parametric vertex enumeration described in this section
2409 is mainly intended to be used internally and by the C<barvinok>
2412 #include <isl/vertices.h>
2413 __isl_give isl_vertices *isl_basic_set_compute_vertices(
2414 __isl_keep isl_basic_set *bset);
2416 The function C<isl_basic_set_compute_vertices> performs the
2417 actual computation of the parametric vertices and the chamber
2418 decomposition and store the result in an C<isl_vertices> object.
2419 This information can be queried by either iterating over all
2420 the vertices or iterating over all the chambers or cells
2421 and then iterating over all vertices that are active on the chamber.
2423 int isl_vertices_foreach_vertex(
2424 __isl_keep isl_vertices *vertices,
2425 int (*fn)(__isl_take isl_vertex *vertex, void *user),
2428 int isl_vertices_foreach_cell(
2429 __isl_keep isl_vertices *vertices,
2430 int (*fn)(__isl_take isl_cell *cell, void *user),
2432 int isl_cell_foreach_vertex(__isl_keep isl_cell *cell,
2433 int (*fn)(__isl_take isl_vertex *vertex, void *user),
2436 Other operations that can be performed on an C<isl_vertices> object are
2439 isl_ctx *isl_vertices_get_ctx(
2440 __isl_keep isl_vertices *vertices);
2441 int isl_vertices_get_n_vertices(
2442 __isl_keep isl_vertices *vertices);
2443 void isl_vertices_free(__isl_take isl_vertices *vertices);
2445 Vertices can be inspected and destroyed using the following functions.
2447 isl_ctx *isl_vertex_get_ctx(__isl_keep isl_vertex *vertex);
2448 int isl_vertex_get_id(__isl_keep isl_vertex *vertex);
2449 __isl_give isl_basic_set *isl_vertex_get_domain(
2450 __isl_keep isl_vertex *vertex);
2451 __isl_give isl_basic_set *isl_vertex_get_expr(
2452 __isl_keep isl_vertex *vertex);
2453 void isl_vertex_free(__isl_take isl_vertex *vertex);
2455 C<isl_vertex_get_expr> returns a singleton parametric set describing
2456 the vertex, while C<isl_vertex_get_domain> returns the activity domain
2458 Note that C<isl_vertex_get_domain> and C<isl_vertex_get_expr> return
2459 B<rational> basic sets, so they should mainly be used for inspection
2460 and should not be mixed with integer sets.
2462 Chambers can be inspected and destroyed using the following functions.
2464 isl_ctx *isl_cell_get_ctx(__isl_keep isl_cell *cell);
2465 __isl_give isl_basic_set *isl_cell_get_domain(
2466 __isl_keep isl_cell *cell);
2467 void isl_cell_free(__isl_take isl_cell *cell);
2471 Although C<isl> is mainly meant to be used as a library,
2472 it also contains some basic applications that use some
2473 of the functionality of C<isl>.
2474 The input may be specified in either the L<isl format>
2475 or the L<PolyLib format>.
2477 =head2 C<isl_polyhedron_sample>
2479 C<isl_polyhedron_sample> takes a polyhedron as input and prints
2480 an integer element of the polyhedron, if there is any.
2481 The first column in the output is the denominator and is always
2482 equal to 1. If the polyhedron contains no integer points,
2483 then a vector of length zero is printed.
2487 C<isl_pip> takes the same input as the C<example> program
2488 from the C<piplib> distribution, i.e., a set of constraints
2489 on the parameters, a line containing only -1 and finally a set
2490 of constraints on a parametric polyhedron.
2491 The coefficients of the parameters appear in the last columns
2492 (but before the final constant column).
2493 The output is the lexicographic minimum of the parametric polyhedron.
2494 As C<isl> currently does not have its own output format, the output
2495 is just a dump of the internal state.
2497 =head2 C<isl_polyhedron_minimize>
2499 C<isl_polyhedron_minimize> computes the minimum of some linear
2500 or affine objective function over the integer points in a polyhedron.
2501 If an affine objective function
2502 is given, then the constant should appear in the last column.
2504 =head2 C<isl_polytope_scan>
2506 Given a polytope, C<isl_polytope_scan> prints
2507 all integer points in the polytope.
2509 =head1 C<isl-polylib>
2511 The C<isl-polylib> library provides the following functions for converting
2512 between C<isl> objects and C<PolyLib> objects.
2513 The library is distributed separately for licensing reasons.
2515 #include <isl_set_polylib.h>
2516 __isl_give isl_basic_set *isl_basic_set_new_from_polylib(
2517 Polyhedron *P, __isl_take isl_dim *dim);
2518 Polyhedron *isl_basic_set_to_polylib(
2519 __isl_keep isl_basic_set *bset);
2520 __isl_give isl_set *isl_set_new_from_polylib(Polyhedron *D,
2521 __isl_take isl_dim *dim);
2522 Polyhedron *isl_set_to_polylib(__isl_keep isl_set *set);
2524 #include <isl_map_polylib.h>
2525 __isl_give isl_basic_map *isl_basic_map_new_from_polylib(
2526 Polyhedron *P, __isl_take isl_dim *dim);
2527 __isl_give isl_map *isl_map_new_from_polylib(Polyhedron *D,
2528 __isl_take isl_dim *dim);
2529 Polyhedron *isl_basic_map_to_polylib(
2530 __isl_keep isl_basic_map *bmap);
2531 Polyhedron *isl_map_to_polylib(__isl_keep isl_map *map);