3 C<isl> is a thread-safe C library for manipulating
4 sets and relations of integer points bounded by affine constraints.
5 The descriptions of the sets and relations may involve
6 both parameters and existentially quantified variables.
7 All computations are performed in exact integer arithmetic
9 The C<isl> library offers functionality that is similar
10 to that offered by the C<Omega> and C<Omega+> libraries,
11 but the underlying algorithms are in most cases completely different.
13 The library is by no means complete and some fairly basic
14 functionality is still missing.
15 Still, even in its current form, the library has been successfully
16 used as a backend polyhedral library for the polyhedral
17 scanner C<CLooG> and as part of an equivalence checker of
18 static affine programs.
19 For bug reports, feature requests and questions,
20 visit the the discussion group at
21 L<http://groups.google.com/group/isl-development>.
23 =head2 Backward Incompatible Changes
25 =head3 Changes since isl-0.02
29 =item * The old printing functions have been deprecated
30 and replaced by C<isl_printer> functions, see L<Input and Output>.
32 =item * Most functions related to dependence analysis have acquired
33 an extra C<must> argument. To obtain the old behavior, this argument
34 should be given the value 1. See L<Dependence Analysis>.
38 =head3 Changes since isl-0.03
42 =item * The function C<isl_pw_qpolynomial_fold_add> has been
43 renamed to C<isl_pw_qpolynomial_fold_fold>.
44 Similarly, C<isl_union_pw_qpolynomial_fold_add> has been
45 renamed to C<isl_union_pw_qpolynomial_fold_fold>.
49 =head3 Changes since isl-0.04
53 =item * All header files have been renamed from C<isl_header.h>
58 =head3 Changes since isl-0.05
62 =item * The functions C<isl_printer_print_basic_set> and
63 C<isl_printer_print_basic_map> no longer print a newline.
65 =item * The functions C<isl_flow_get_no_source>
66 and C<isl_union_map_compute_flow> now return
67 the accesses for which no source could be found instead of
68 the iterations where those accesses occur.
70 =item * The functions C<isl_basic_map_identity> and
71 C<isl_map_identity> now take the dimension specification
72 of a B<map> as input. An old call
73 C<isl_map_identity(dim)> can be rewritten to
74 C<isl_map_identity(isl_dim_map_from_set(dim))>.
80 The source of C<isl> can be obtained either as a tarball
81 or from the git repository. Both are available from
82 L<http://freshmeat.net/projects/isl/>.
83 The installation process depends on how you obtained
86 =head2 Installation from the git repository
90 =item 1 Clone or update the repository
92 The first time the source is obtained, you need to clone
95 git clone git://repo.or.cz/isl.git
97 To obtain updates, you need to pull in the latest changes
101 =item 2 Generate C<configure>
107 After performing the above steps, continue
108 with the L<Common installation instructions>.
110 =head2 Common installation instructions
114 =item 1 Obtain C<GMP>
116 Building C<isl> requires C<GMP>, including its headers files.
117 Your distribution may not provide these header files by default
118 and you may need to install a package called C<gmp-devel> or something
119 similar. Alternatively, C<GMP> can be built from
120 source, available from L<http://gmplib.org/>.
124 C<isl> uses the standard C<autoconf> C<configure> script.
129 optionally followed by some configure options.
130 A complete list of options can be obtained by running
134 Below we discuss some of the more common options.
136 C<isl> can optionally use C<piplib>, but no
137 C<piplib> functionality is currently used by default.
138 The C<--with-piplib> option can
139 be used to specify which C<piplib>
140 library to use, either an installed version (C<system>),
141 an externally built version (C<build>)
142 or no version (C<no>). The option C<build> is mostly useful
143 in C<configure> scripts of larger projects that bundle both C<isl>
150 Installation prefix for C<isl>
152 =item C<--with-gmp-prefix>
154 Installation prefix for C<GMP> (architecture-independent files).
156 =item C<--with-gmp-exec-prefix>
158 Installation prefix for C<GMP> (architecture-dependent files).
160 =item C<--with-piplib>
162 Which copy of C<piplib> to use, either C<no> (default), C<system> or C<build>.
164 =item C<--with-piplib-prefix>
166 Installation prefix for C<system> C<piplib> (architecture-independent files).
168 =item C<--with-piplib-exec-prefix>
170 Installation prefix for C<system> C<piplib> (architecture-dependent files).
172 =item C<--with-piplib-builddir>
174 Location where C<build> C<piplib> was built.
182 =item 4 Install (optional)
190 =head2 Initialization
192 All manipulations of integer sets and relations occur within
193 the context of an C<isl_ctx>.
194 A given C<isl_ctx> can only be used within a single thread.
195 All arguments of a function are required to have been allocated
196 within the same context.
197 There are currently no functions available for moving an object
198 from one C<isl_ctx> to another C<isl_ctx>. This means that
199 there is currently no way of safely moving an object from one
200 thread to another, unless the whole C<isl_ctx> is moved.
202 An C<isl_ctx> can be allocated using C<isl_ctx_alloc> and
203 freed using C<isl_ctx_free>.
204 All objects allocated within an C<isl_ctx> should be freed
205 before the C<isl_ctx> itself is freed.
207 isl_ctx *isl_ctx_alloc();
208 void isl_ctx_free(isl_ctx *ctx);
212 All operations on integers, mainly the coefficients
213 of the constraints describing the sets and relations,
214 are performed in exact integer arithmetic using C<GMP>.
215 However, to allow future versions of C<isl> to optionally
216 support fixed integer arithmetic, all calls to C<GMP>
217 are wrapped inside C<isl> specific macros.
218 The basic type is C<isl_int> and the operations below
219 are available on this type.
220 The meanings of these operations are essentially the same
221 as their C<GMP> C<mpz_> counterparts.
222 As always with C<GMP> types, C<isl_int>s need to be
223 initialized with C<isl_int_init> before they can be used
224 and they need to be released with C<isl_int_clear>
226 The user should not assume that an C<isl_int> is represented
227 as a C<mpz_t>, but should instead explicitly convert between
228 C<mpz_t>s and C<isl_int>s using C<isl_int_set_gmp> and
229 C<isl_int_get_gmp> whenever a C<mpz_t> is required.
233 =item isl_int_init(i)
235 =item isl_int_clear(i)
237 =item isl_int_set(r,i)
239 =item isl_int_set_si(r,i)
241 =item isl_int_set_gmp(r,g)
243 =item isl_int_get_gmp(i,g)
245 =item isl_int_abs(r,i)
247 =item isl_int_neg(r,i)
249 =item isl_int_swap(i,j)
251 =item isl_int_swap_or_set(i,j)
253 =item isl_int_add_ui(r,i,j)
255 =item isl_int_sub_ui(r,i,j)
257 =item isl_int_add(r,i,j)
259 =item isl_int_sub(r,i,j)
261 =item isl_int_mul(r,i,j)
263 =item isl_int_mul_ui(r,i,j)
265 =item isl_int_addmul(r,i,j)
267 =item isl_int_submul(r,i,j)
269 =item isl_int_gcd(r,i,j)
271 =item isl_int_lcm(r,i,j)
273 =item isl_int_divexact(r,i,j)
275 =item isl_int_cdiv_q(r,i,j)
277 =item isl_int_fdiv_q(r,i,j)
279 =item isl_int_fdiv_r(r,i,j)
281 =item isl_int_fdiv_q_ui(r,i,j)
283 =item isl_int_read(r,s)
285 =item isl_int_print(out,i,width)
289 =item isl_int_cmp(i,j)
291 =item isl_int_cmp_si(i,si)
293 =item isl_int_eq(i,j)
295 =item isl_int_ne(i,j)
297 =item isl_int_lt(i,j)
299 =item isl_int_le(i,j)
301 =item isl_int_gt(i,j)
303 =item isl_int_ge(i,j)
305 =item isl_int_abs_eq(i,j)
307 =item isl_int_abs_ne(i,j)
309 =item isl_int_abs_lt(i,j)
311 =item isl_int_abs_gt(i,j)
313 =item isl_int_abs_ge(i,j)
315 =item isl_int_is_zero(i)
317 =item isl_int_is_one(i)
319 =item isl_int_is_negone(i)
321 =item isl_int_is_pos(i)
323 =item isl_int_is_neg(i)
325 =item isl_int_is_nonpos(i)
327 =item isl_int_is_nonneg(i)
329 =item isl_int_is_divisible_by(i,j)
333 =head2 Sets and Relations
335 C<isl> uses six types of objects for representing sets and relations,
336 C<isl_basic_set>, C<isl_basic_map>, C<isl_set>, C<isl_map>,
337 C<isl_union_set> and C<isl_union_map>.
338 C<isl_basic_set> and C<isl_basic_map> represent sets and relations that
339 can be described as a conjunction of affine constraints, while
340 C<isl_set> and C<isl_map> represent unions of
341 C<isl_basic_set>s and C<isl_basic_map>s, respectively.
342 However, all C<isl_basic_set>s or C<isl_basic_map>s in the union need
343 to have the same dimension. C<isl_union_set>s and C<isl_union_map>s
344 represent unions of C<isl_set>s or C<isl_map>s of I<different> dimensions,
345 where dimensions with different space names
346 (see L<Dimension Specifications>) are considered different as well.
347 The difference between sets and relations (maps) is that sets have
348 one set of variables, while relations have two sets of variables,
349 input variables and output variables.
351 =head2 Memory Management
353 Since a high-level operation on sets and/or relations usually involves
354 several substeps and since the user is usually not interested in
355 the intermediate results, most functions that return a new object
356 will also release all the objects passed as arguments.
357 If the user still wants to use one or more of these arguments
358 after the function call, she should pass along a copy of the
359 object rather than the object itself.
360 The user is then responsible for making sure that the original
361 object gets used somewhere else or is explicitly freed.
363 The arguments and return values of all documents functions are
364 annotated to make clear which arguments are released and which
365 arguments are preserved. In particular, the following annotations
372 C<__isl_give> means that a new object is returned.
373 The user should make sure that the returned pointer is
374 used exactly once as a value for an C<__isl_take> argument.
375 In between, it can be used as a value for as many
376 C<__isl_keep> arguments as the user likes.
377 There is one exception, and that is the case where the
378 pointer returned is C<NULL>. Is this case, the user
379 is free to use it as an C<__isl_take> argument or not.
383 C<__isl_take> means that the object the argument points to
384 is taken over by the function and may no longer be used
385 by the user as an argument to any other function.
386 The pointer value must be one returned by a function
387 returning an C<__isl_give> pointer.
388 If the user passes in a C<NULL> value, then this will
389 be treated as an error in the sense that the function will
390 not perform its usual operation. However, it will still
391 make sure that all the the other C<__isl_take> arguments
396 C<__isl_keep> means that the function will only use the object
397 temporarily. After the function has finished, the user
398 can still use it as an argument to other functions.
399 A C<NULL> value will be treated in the same way as
400 a C<NULL> value for an C<__isl_take> argument.
404 =head2 Dimension Specifications
406 Whenever a new set or relation is created from scratch,
407 its dimension needs to be specified using an C<isl_dim>.
410 __isl_give isl_dim *isl_dim_alloc(isl_ctx *ctx,
411 unsigned nparam, unsigned n_in, unsigned n_out);
412 __isl_give isl_dim *isl_dim_set_alloc(isl_ctx *ctx,
413 unsigned nparam, unsigned dim);
414 __isl_give isl_dim *isl_dim_copy(__isl_keep isl_dim *dim);
415 void isl_dim_free(__isl_take isl_dim *dim);
416 unsigned isl_dim_size(__isl_keep isl_dim *dim,
417 enum isl_dim_type type);
419 The dimension specification used for creating a set
420 needs to be created using C<isl_dim_set_alloc>, while
421 that for creating a relation
422 needs to be created using C<isl_dim_alloc>.
423 C<isl_dim_size> can be used
424 to find out the number of dimensions of each type in
425 a dimension specification, where type may be
426 C<isl_dim_param>, C<isl_dim_in> (only for relations),
427 C<isl_dim_out> (only for relations), C<isl_dim_set>
428 (only for sets) or C<isl_dim_all>.
430 It is often useful to create objects that live in the
431 same space as some other object. This can be accomplished
432 by creating the new objects
433 (see L<Creating New Sets and Relations> or
434 L<Creating New (Piecewise) Quasipolynomials>) based on the dimension
435 specification of the original object.
438 __isl_give isl_dim *isl_basic_set_get_dim(
439 __isl_keep isl_basic_set *bset);
440 __isl_give isl_dim *isl_set_get_dim(__isl_keep isl_set *set);
442 #include <isl/union_set.h>
443 __isl_give isl_dim *isl_union_set_get_dim(
444 __isl_keep isl_union_set *uset);
447 __isl_give isl_dim *isl_basic_map_get_dim(
448 __isl_keep isl_basic_map *bmap);
449 __isl_give isl_dim *isl_map_get_dim(__isl_keep isl_map *map);
451 #include <isl/union_map.h>
452 __isl_give isl_dim *isl_union_map_get_dim(
453 __isl_keep isl_union_map *umap);
455 #include <isl/polynomial.h>
456 __isl_give isl_dim *isl_qpolynomial_get_dim(
457 __isl_keep isl_qpolynomial *qp);
458 __isl_give isl_dim *isl_pw_qpolynomial_get_dim(
459 __isl_keep isl_pw_qpolynomial *pwqp);
460 __isl_give isl_dim *isl_union_pw_qpolynomial_get_dim(
461 __isl_keep isl_union_pw_qpolynomial *upwqp);
462 __isl_give isl_dim *isl_union_pw_qpolynomial_fold_get_dim(
463 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
465 The names of the individual dimensions may be set or read off
466 using the following functions.
469 __isl_give isl_dim *isl_dim_set_name(__isl_take isl_dim *dim,
470 enum isl_dim_type type, unsigned pos,
471 __isl_keep const char *name);
472 __isl_keep const char *isl_dim_get_name(__isl_keep isl_dim *dim,
473 enum isl_dim_type type, unsigned pos);
475 Note that C<isl_dim_get_name> returns a pointer to some internal
476 data structure, so the result can only be used while the
477 corresponding C<isl_dim> is alive.
478 Also note that every function that operates on two sets or relations
479 requires that both arguments have the same parameters. This also
480 means that if one of the arguments has named parameters, then the
481 other needs to have named parameters too and the names need to match.
482 Pairs of C<isl_union_set> and/or C<isl_union_map> arguments may
483 have different parameters (as long as they are named), in which case
484 the result will have as parameters the union of the parameters of
487 The names of entire spaces may be set or read off
488 using the following functions.
491 __isl_give isl_dim *isl_dim_set_tuple_name(
492 __isl_take isl_dim *dim,
493 enum isl_dim_type type, const char *s);
494 const char *isl_dim_get_tuple_name(__isl_keep isl_dim *dim,
495 enum isl_dim_type type);
497 The C<dim> argument needs to be one of C<isl_dim_in>, C<isl_dim_out>
498 or C<isl_dim_set>. As with C<isl_dim_get_name>,
499 the C<isl_dim_get_tuple_name> function returns a pointer to some internal
501 Binary operations require the corresponding spaces of their arguments
502 to have the same name.
504 Spaces can be nested. In particular, the domain of a set or
505 the domain or range of a relation can be a nested relation.
506 The following functions can be used to construct and deconstruct
507 such nested dimension specifications.
510 int isl_dim_is_wrapping(__isl_keep isl_dim *dim);
511 __isl_give isl_dim *isl_dim_wrap(__isl_take isl_dim *dim);
512 __isl_give isl_dim *isl_dim_unwrap(__isl_take isl_dim *dim);
514 The input to C<isl_dim_is_wrapping> and C<isl_dim_unwrap> should
515 be the dimension specification of a set, while that of
516 C<isl_dim_wrap> should be the dimension specification of a relation.
517 Conversely, the output of C<isl_dim_unwrap> is the dimension specification
518 of a relation, while that of C<isl_dim_wrap> is the dimension specification
521 Dimension specifications can be created from other dimension
522 specifications using the following functions.
524 __isl_give isl_dim *isl_dim_domain(__isl_take isl_dim *dim);
525 __isl_give isl_dim *isl_dim_from_domain(__isl_take isl_dim *dim);
526 __isl_give isl_dim *isl_dim_range(__isl_take isl_dim *dim);
527 __isl_give isl_dim *isl_dim_from_range(__isl_take isl_dim *dim);
528 __isl_give isl_dim *isl_dim_reverse(__isl_take isl_dim *dim);
529 __isl_give isl_dim *isl_dim_join(__isl_take isl_dim *left,
530 __isl_take isl_dim *right);
531 __isl_give isl_dim *isl_dim_insert(__isl_take isl_dim *dim,
532 enum isl_dim_type type, unsigned pos, unsigned n);
533 __isl_give isl_dim *isl_dim_add(__isl_take isl_dim *dim,
534 enum isl_dim_type type, unsigned n);
535 __isl_give isl_dim *isl_dim_drop(__isl_take isl_dim *dim,
536 enum isl_dim_type type, unsigned first, unsigned n);
537 __isl_give isl_dim *isl_dim_map_from_set(
538 __isl_take isl_dim *dim);
540 Note that if dimensions are added or removed from a space, then
541 the name and the internal structure are lost.
543 =head2 Input and Output
545 C<isl> supports its own input/output format, which is similar
546 to the C<Omega> format, but also supports the C<PolyLib> format
551 The C<isl> format is similar to that of C<Omega>, but has a different
552 syntax for describing the parameters and allows for the definition
553 of an existentially quantified variable as the integer division
554 of an affine expression.
555 For example, the set of integers C<i> between C<0> and C<n>
556 such that C<i % 10 <= 6> can be described as
558 [n] -> { [i] : exists (a = [i/10] : 0 <= i and i <= n and
561 A set or relation can have several disjuncts, separated
562 by the keyword C<or>. Each disjunct is either a conjunction
563 of constraints or a projection (C<exists>) of a conjunction
564 of constraints. The constraints are separated by the keyword
567 =head3 C<PolyLib> format
569 If the represented set is a union, then the first line
570 contains a single number representing the number of disjuncts.
571 Otherwise, a line containing the number C<1> is optional.
573 Each disjunct is represented by a matrix of constraints.
574 The first line contains two numbers representing
575 the number of rows and columns,
576 where the number of rows is equal to the number of constraints
577 and the number of columns is equal to two plus the number of variables.
578 The following lines contain the actual rows of the constraint matrix.
579 In each row, the first column indicates whether the constraint
580 is an equality (C<0>) or inequality (C<1>). The final column
581 corresponds to the constant term.
583 If the set is parametric, then the coefficients of the parameters
584 appear in the last columns before the constant column.
585 The coefficients of any existentially quantified variables appear
586 between those of the set variables and those of the parameters.
588 =head3 Extended C<PolyLib> format
590 The extended C<PolyLib> format is nearly identical to the
591 C<PolyLib> format. The only difference is that the line
592 containing the number of rows and columns of a constraint matrix
593 also contains four additional numbers:
594 the number of output dimensions, the number of input dimensions,
595 the number of local dimensions (i.e., the number of existentially
596 quantified variables) and the number of parameters.
597 For sets, the number of ``output'' dimensions is equal
598 to the number of set dimensions, while the number of ``input''
604 __isl_give isl_basic_set *isl_basic_set_read_from_file(
605 isl_ctx *ctx, FILE *input, int nparam);
606 __isl_give isl_basic_set *isl_basic_set_read_from_str(
607 isl_ctx *ctx, const char *str, int nparam);
608 __isl_give isl_set *isl_set_read_from_file(isl_ctx *ctx,
609 FILE *input, int nparam);
610 __isl_give isl_set *isl_set_read_from_str(isl_ctx *ctx,
611 const char *str, int nparam);
614 __isl_give isl_basic_map *isl_basic_map_read_from_file(
615 isl_ctx *ctx, FILE *input, int nparam);
616 __isl_give isl_basic_map *isl_basic_map_read_from_str(
617 isl_ctx *ctx, const char *str, int nparam);
618 __isl_give isl_map *isl_map_read_from_file(
619 struct isl_ctx *ctx, FILE *input, int nparam);
620 __isl_give isl_map *isl_map_read_from_str(isl_ctx *ctx,
621 const char *str, int nparam);
623 #include <isl/union_set.h>
624 __isl_give isl_union_set *isl_union_set_read_from_file(
625 isl_ctx *ctx, FILE *input);
626 __isl_give isl_union_set *isl_union_set_read_from_str(
627 struct isl_ctx *ctx, const char *str);
629 #include <isl/union_map.h>
630 __isl_give isl_union_map *isl_union_map_read_from_file(
631 isl_ctx *ctx, FILE *input);
632 __isl_give isl_union_map *isl_union_map_read_from_str(
633 struct isl_ctx *ctx, const char *str);
635 The input format is autodetected and may be either the C<PolyLib> format
636 or the C<isl> format.
637 C<nparam> specifies how many of the final columns in
638 the C<PolyLib> format correspond to parameters.
639 If input is given in the C<isl> format, then the number
640 of parameters needs to be equal to C<nparam>.
641 If C<nparam> is negative, then any number of parameters
642 is accepted in the C<isl> format and zero parameters
643 are assumed in the C<PolyLib> format.
647 Before anything can be printed, an C<isl_printer> needs to
650 __isl_give isl_printer *isl_printer_to_file(isl_ctx *ctx,
652 __isl_give isl_printer *isl_printer_to_str(isl_ctx *ctx);
653 void isl_printer_free(__isl_take isl_printer *printer);
654 __isl_give char *isl_printer_get_str(
655 __isl_keep isl_printer *printer);
657 The behavior of the printer can be modified in various ways
659 __isl_give isl_printer *isl_printer_set_output_format(
660 __isl_take isl_printer *p, int output_format);
661 __isl_give isl_printer *isl_printer_set_indent(
662 __isl_take isl_printer *p, int indent);
663 __isl_give isl_printer *isl_printer_set_prefix(
664 __isl_take isl_printer *p, const char *prefix);
665 __isl_give isl_printer *isl_printer_set_suffix(
666 __isl_take isl_printer *p, const char *suffix);
668 The C<output_format> may be either C<ISL_FORMAT_ISL>, C<ISL_FORMAT_OMEGA>,
669 C<ISL_FORMAT_POLYLIB>, C<ISL_FORMAT_EXT_POLYLIB> or C<ISL_FORMAT_LATEX>
670 and defaults to C<ISL_FORMAT_ISL>.
671 Each line in the output is indented by C<indent> spaces
672 (default: 0), prefixed by C<prefix> and suffixed by C<suffix>.
673 In the C<PolyLib> format output,
674 the coefficients of the existentially quantified variables
675 appear between those of the set variables and those
678 To actually print something, use
681 __isl_give isl_printer *isl_printer_print_basic_set(
682 __isl_take isl_printer *printer,
683 __isl_keep isl_basic_set *bset);
684 __isl_give isl_printer *isl_printer_print_set(
685 __isl_take isl_printer *printer,
686 __isl_keep isl_set *set);
689 __isl_give isl_printer *isl_printer_print_basic_map(
690 __isl_take isl_printer *printer,
691 __isl_keep isl_basic_map *bmap);
692 __isl_give isl_printer *isl_printer_print_map(
693 __isl_take isl_printer *printer,
694 __isl_keep isl_map *map);
696 #include <isl/union_set.h>
697 __isl_give isl_printer *isl_printer_print_union_set(
698 __isl_take isl_printer *p,
699 __isl_keep isl_union_set *uset);
701 #include <isl/union_map.h>
702 __isl_give isl_printer *isl_printer_print_union_map(
703 __isl_take isl_printer *p,
704 __isl_keep isl_union_map *umap);
706 When called on a file printer, the following function flushes
707 the file. When called on a string printer, the buffer is cleared.
709 __isl_give isl_printer *isl_printer_flush(
710 __isl_take isl_printer *p);
712 =head2 Creating New Sets and Relations
714 C<isl> has functions for creating some standard sets and relations.
718 =item * Empty sets and relations
720 __isl_give isl_basic_set *isl_basic_set_empty(
721 __isl_take isl_dim *dim);
722 __isl_give isl_basic_map *isl_basic_map_empty(
723 __isl_take isl_dim *dim);
724 __isl_give isl_set *isl_set_empty(
725 __isl_take isl_dim *dim);
726 __isl_give isl_map *isl_map_empty(
727 __isl_take isl_dim *dim);
728 __isl_give isl_union_set *isl_union_set_empty(
729 __isl_take isl_dim *dim);
730 __isl_give isl_union_map *isl_union_map_empty(
731 __isl_take isl_dim *dim);
733 For C<isl_union_set>s and C<isl_union_map>s, the dimensions specification
734 is only used to specify the parameters.
736 =item * Universe sets and relations
738 __isl_give isl_basic_set *isl_basic_set_universe(
739 __isl_take isl_dim *dim);
740 __isl_give isl_basic_map *isl_basic_map_universe(
741 __isl_take isl_dim *dim);
742 __isl_give isl_set *isl_set_universe(
743 __isl_take isl_dim *dim);
744 __isl_give isl_map *isl_map_universe(
745 __isl_take isl_dim *dim);
747 The sets and relations constructed by the functions above
748 contain all integer values, while those constructed by the
749 functions below only contain non-negative values.
751 __isl_give isl_basic_set *isl_basic_set_nat_universe(
752 __isl_take isl_dim *dim);
753 __isl_give isl_basic_map *isl_basic_map_nat_universe(
754 __isl_take isl_dim *dim);
755 __isl_give isl_set *isl_set_nat_universe(
756 __isl_take isl_dim *dim);
757 __isl_give isl_map *isl_map_nat_universe(
758 __isl_take isl_dim *dim);
760 =item * Identity relations
762 __isl_give isl_basic_map *isl_basic_map_identity(
763 __isl_take isl_dim *dim);
764 __isl_give isl_map *isl_map_identity(
765 __isl_take isl_dim *dim);
767 The number of input and output dimensions in C<dim> needs
770 =item * Lexicographic order
772 __isl_give isl_map *isl_map_lex_lt(
773 __isl_take isl_dim *set_dim);
774 __isl_give isl_map *isl_map_lex_le(
775 __isl_take isl_dim *set_dim);
776 __isl_give isl_map *isl_map_lex_gt(
777 __isl_take isl_dim *set_dim);
778 __isl_give isl_map *isl_map_lex_ge(
779 __isl_take isl_dim *set_dim);
780 __isl_give isl_map *isl_map_lex_lt_first(
781 __isl_take isl_dim *dim, unsigned n);
782 __isl_give isl_map *isl_map_lex_le_first(
783 __isl_take isl_dim *dim, unsigned n);
784 __isl_give isl_map *isl_map_lex_gt_first(
785 __isl_take isl_dim *dim, unsigned n);
786 __isl_give isl_map *isl_map_lex_ge_first(
787 __isl_take isl_dim *dim, unsigned n);
789 The first four functions take a dimension specification for a B<set>
790 and return relations that express that the elements in the domain
791 are lexicographically less
792 (C<isl_map_lex_lt>), less or equal (C<isl_map_lex_le>),
793 greater (C<isl_map_lex_gt>) or greater or equal (C<isl_map_lex_ge>)
794 than the elements in the range.
795 The last four functions take a dimension specification for a map
796 and return relations that express that the first C<n> dimensions
797 in the domain are lexicographically less
798 (C<isl_map_lex_lt_first>), less or equal (C<isl_map_lex_le_first>),
799 greater (C<isl_map_lex_gt_first>) or greater or equal (C<isl_map_lex_ge_first>)
800 than the first C<n> dimensions in the range.
804 A basic set or relation can be converted to a set or relation
805 using the following functions.
807 __isl_give isl_set *isl_set_from_basic_set(
808 __isl_take isl_basic_set *bset);
809 __isl_give isl_map *isl_map_from_basic_map(
810 __isl_take isl_basic_map *bmap);
812 Sets and relations can be converted to union sets and relations
813 using the following functions.
815 __isl_give isl_union_map *isl_union_map_from_map(
816 __isl_take isl_map *map);
817 __isl_give isl_union_set *isl_union_set_from_set(
818 __isl_take isl_set *set);
820 Sets and relations can be copied and freed again using the following
823 __isl_give isl_basic_set *isl_basic_set_copy(
824 __isl_keep isl_basic_set *bset);
825 __isl_give isl_set *isl_set_copy(__isl_keep isl_set *set);
826 __isl_give isl_union_set *isl_union_set_copy(
827 __isl_keep isl_union_set *uset);
828 __isl_give isl_basic_map *isl_basic_map_copy(
829 __isl_keep isl_basic_map *bmap);
830 __isl_give isl_map *isl_map_copy(__isl_keep isl_map *map);
831 __isl_give isl_union_map *isl_union_map_copy(
832 __isl_keep isl_union_map *umap);
833 void isl_basic_set_free(__isl_take isl_basic_set *bset);
834 void isl_set_free(__isl_take isl_set *set);
835 void isl_union_set_free(__isl_take isl_union_set *uset);
836 void isl_basic_map_free(__isl_take isl_basic_map *bmap);
837 void isl_map_free(__isl_take isl_map *map);
838 void isl_union_map_free(__isl_take isl_union_map *umap);
840 Other sets and relations can be constructed by starting
841 from a universe set or relation, adding equality and/or
842 inequality constraints and then projecting out the
843 existentially quantified variables, if any.
844 Constraints can be constructed, manipulated and
845 added to basic sets and relations using the following functions.
847 #include <isl/constraint.h>
848 __isl_give isl_constraint *isl_equality_alloc(
849 __isl_take isl_dim *dim);
850 __isl_give isl_constraint *isl_inequality_alloc(
851 __isl_take isl_dim *dim);
852 void isl_constraint_set_constant(
853 __isl_keep isl_constraint *constraint, isl_int v);
854 void isl_constraint_set_coefficient(
855 __isl_keep isl_constraint *constraint,
856 enum isl_dim_type type, int pos, isl_int v);
857 __isl_give isl_basic_map *isl_basic_map_add_constraint(
858 __isl_take isl_basic_map *bmap,
859 __isl_take isl_constraint *constraint);
860 __isl_give isl_basic_set *isl_basic_set_add_constraint(
861 __isl_take isl_basic_set *bset,
862 __isl_take isl_constraint *constraint);
864 For example, to create a set containing the even integers
865 between 10 and 42, you would use the following code.
869 struct isl_constraint *c;
870 struct isl_basic_set *bset;
873 dim = isl_dim_set_alloc(ctx, 0, 2);
874 bset = isl_basic_set_universe(isl_dim_copy(dim));
876 c = isl_equality_alloc(isl_dim_copy(dim));
877 isl_int_set_si(v, -1);
878 isl_constraint_set_coefficient(c, isl_dim_set, 0, v);
879 isl_int_set_si(v, 2);
880 isl_constraint_set_coefficient(c, isl_dim_set, 1, v);
881 bset = isl_basic_set_add_constraint(bset, c);
883 c = isl_inequality_alloc(isl_dim_copy(dim));
884 isl_int_set_si(v, -10);
885 isl_constraint_set_constant(c, v);
886 isl_int_set_si(v, 1);
887 isl_constraint_set_coefficient(c, isl_dim_set, 0, v);
888 bset = isl_basic_set_add_constraint(bset, c);
890 c = isl_inequality_alloc(dim);
891 isl_int_set_si(v, 42);
892 isl_constraint_set_constant(c, v);
893 isl_int_set_si(v, -1);
894 isl_constraint_set_coefficient(c, isl_dim_set, 0, v);
895 bset = isl_basic_set_add_constraint(bset, c);
897 bset = isl_basic_set_project_out(bset, isl_dim_set, 1, 1);
903 struct isl_basic_set *bset;
904 bset = isl_basic_set_read_from_str(ctx,
905 "{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}", -1);
907 A basic set or relation can also be constructed from two matrices
908 describing the equalities and the inequalities.
910 __isl_give isl_basic_set *isl_basic_set_from_constraint_matrices(
911 __isl_take isl_dim *dim,
912 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
913 enum isl_dim_type c1,
914 enum isl_dim_type c2, enum isl_dim_type c3,
915 enum isl_dim_type c4);
916 __isl_give isl_basic_map *isl_basic_map_from_constraint_matrices(
917 __isl_take isl_dim *dim,
918 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
919 enum isl_dim_type c1,
920 enum isl_dim_type c2, enum isl_dim_type c3,
921 enum isl_dim_type c4, enum isl_dim_type c5);
923 The C<isl_dim_type> arguments indicate the order in which
924 different kinds of variables appear in the input matrices
925 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
926 C<isl_dim_set> and C<isl_dim_div> for sets and
927 of C<isl_dim_cst>, C<isl_dim_param>,
928 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div> for relations.
930 =head2 Inspecting Sets and Relations
932 Usually, the user should not have to care about the actual constraints
933 of the sets and maps, but should instead apply the abstract operations
934 explained in the following sections.
935 Occasionally, however, it may be required to inspect the individual
936 coefficients of the constraints. This section explains how to do so.
937 In these cases, it may also be useful to have C<isl> compute
938 an explicit representation of the existentially quantified variables.
940 __isl_give isl_set *isl_set_compute_divs(
941 __isl_take isl_set *set);
942 __isl_give isl_map *isl_map_compute_divs(
943 __isl_take isl_map *map);
944 __isl_give isl_union_set *isl_union_set_compute_divs(
945 __isl_take isl_union_set *uset);
946 __isl_give isl_union_map *isl_union_map_compute_divs(
947 __isl_take isl_union_map *umap);
949 This explicit representation defines the existentially quantified
950 variables as integer divisions of the other variables, possibly
951 including earlier existentially quantified variables.
952 An explicitly represented existentially quantified variable therefore
953 has a unique value when the values of the other variables are known.
954 If, furthermore, the same existentials, i.e., existentials
955 with the same explicit representations, should appear in the
956 same order in each of the disjuncts of a set or map, then the user should call
957 either of the following functions.
959 __isl_give isl_set *isl_set_align_divs(
960 __isl_take isl_set *set);
961 __isl_give isl_map *isl_map_align_divs(
962 __isl_take isl_map *map);
964 Alternatively, the existentially quantified variables can be removed
965 using the following functions, which compute an overapproximation.
967 __isl_give isl_basic_set *isl_basic_set_remove_divs(
968 __isl_take isl_basic_set *bset);
969 __isl_give isl_basic_map *isl_basic_map_remove_divs(
970 __isl_take isl_basic_map *bmap);
971 __isl_give isl_set *isl_set_remove_divs(
972 __isl_take isl_set *set);
974 To iterate over all the sets or maps in a union set or map, use
976 int isl_union_set_foreach_set(__isl_keep isl_union_set *uset,
977 int (*fn)(__isl_take isl_set *set, void *user),
979 int isl_union_map_foreach_map(__isl_keep isl_union_map *umap,
980 int (*fn)(__isl_take isl_map *map, void *user),
983 The number of sets or maps in a union set or map can be obtained
986 int isl_union_set_n_set(__isl_keep isl_union_set *uset);
987 int isl_union_map_n_map(__isl_keep isl_union_map *umap);
989 To extract the set or map from a union with a given dimension
992 __isl_give isl_set *isl_union_set_extract_set(
993 __isl_keep isl_union_set *uset,
994 __isl_take isl_dim *dim);
995 __isl_give isl_map *isl_union_map_extract_map(
996 __isl_keep isl_union_map *umap,
997 __isl_take isl_dim *dim);
999 To iterate over all the basic sets or maps in a set or map, use
1001 int isl_set_foreach_basic_set(__isl_keep isl_set *set,
1002 int (*fn)(__isl_take isl_basic_set *bset, void *user),
1004 int isl_map_foreach_basic_map(__isl_keep isl_map *map,
1005 int (*fn)(__isl_take isl_basic_map *bmap, void *user),
1008 The callback function C<fn> should return 0 if successful and
1009 -1 if an error occurs. In the latter case, or if any other error
1010 occurs, the above functions will return -1.
1012 It should be noted that C<isl> does not guarantee that
1013 the basic sets or maps passed to C<fn> are disjoint.
1014 If this is required, then the user should call one of
1015 the following functions first.
1017 __isl_give isl_set *isl_set_make_disjoint(
1018 __isl_take isl_set *set);
1019 __isl_give isl_map *isl_map_make_disjoint(
1020 __isl_take isl_map *map);
1022 The number of basic sets in a set can be obtained
1025 int isl_set_n_basic_set(__isl_keep isl_set *set);
1027 To iterate over the constraints of a basic set or map, use
1029 #include <isl/constraint.h>
1031 int isl_basic_map_foreach_constraint(
1032 __isl_keep isl_basic_map *bmap,
1033 int (*fn)(__isl_take isl_constraint *c, void *user),
1035 void isl_constraint_free(struct isl_constraint *c);
1037 Again, the callback function C<fn> should return 0 if successful and
1038 -1 if an error occurs. In the latter case, or if any other error
1039 occurs, the above functions will return -1.
1040 The constraint C<c> represents either an equality or an inequality.
1041 Use the following function to find out whether a constraint
1042 represents an equality. If not, it represents an inequality.
1044 int isl_constraint_is_equality(
1045 __isl_keep isl_constraint *constraint);
1047 The coefficients of the constraints can be inspected using
1048 the following functions.
1050 void isl_constraint_get_constant(
1051 __isl_keep isl_constraint *constraint, isl_int *v);
1052 void isl_constraint_get_coefficient(
1053 __isl_keep isl_constraint *constraint,
1054 enum isl_dim_type type, int pos, isl_int *v);
1056 The explicit representations of the existentially quantified
1057 variables can be inspected using the following functions.
1058 Note that the user is only allowed to use these functions
1059 if the inspected set or map is the result of a call
1060 to C<isl_set_compute_divs> or C<isl_map_compute_divs>.
1062 __isl_give isl_div *isl_constraint_div(
1063 __isl_keep isl_constraint *constraint, int pos);
1064 void isl_div_get_constant(__isl_keep isl_div *div,
1066 void isl_div_get_denominator(__isl_keep isl_div *div,
1068 void isl_div_get_coefficient(__isl_keep isl_div *div,
1069 enum isl_dim_type type, int pos, isl_int *v);
1071 To obtain the constraints of a basic set or map in matrix
1072 form, use the following functions.
1074 __isl_give isl_mat *isl_basic_set_equalities_matrix(
1075 __isl_keep isl_basic_set *bset,
1076 enum isl_dim_type c1, enum isl_dim_type c2,
1077 enum isl_dim_type c3, enum isl_dim_type c4);
1078 __isl_give isl_mat *isl_basic_set_inequalities_matrix(
1079 __isl_keep isl_basic_set *bset,
1080 enum isl_dim_type c1, enum isl_dim_type c2,
1081 enum isl_dim_type c3, enum isl_dim_type c4);
1082 __isl_give isl_mat *isl_basic_map_equalities_matrix(
1083 __isl_keep isl_basic_map *bmap,
1084 enum isl_dim_type c1,
1085 enum isl_dim_type c2, enum isl_dim_type c3,
1086 enum isl_dim_type c4, enum isl_dim_type c5);
1087 __isl_give isl_mat *isl_basic_map_inequalities_matrix(
1088 __isl_keep isl_basic_map *bmap,
1089 enum isl_dim_type c1,
1090 enum isl_dim_type c2, enum isl_dim_type c3,
1091 enum isl_dim_type c4, enum isl_dim_type c5);
1093 The C<isl_dim_type> arguments dictate the order in which
1094 different kinds of variables appear in the resulting matrix
1095 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
1096 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div>.
1098 The names of the domain and range spaces of a set or relation can be
1099 read off using the following functions.
1101 const char *isl_basic_set_get_tuple_name(
1102 __isl_keep isl_basic_set *bset);
1103 const char *isl_set_get_tuple_name(
1104 __isl_keep isl_set *set);
1105 const char *isl_basic_map_get_tuple_name(
1106 __isl_keep isl_basic_map *bmap,
1107 enum isl_dim_type type);
1108 const char *isl_map_get_tuple_name(
1109 __isl_keep isl_map *map,
1110 enum isl_dim_type type);
1112 As with C<isl_dim_get_tuple_name>, the value returned points to
1113 an internal data structure.
1114 The names of individual dimensions can be read off using
1115 the following functions.
1117 const char *isl_constraint_get_dim_name(
1118 __isl_keep isl_constraint *constraint,
1119 enum isl_dim_type type, unsigned pos);
1120 const char *isl_basic_set_get_dim_name(
1121 __isl_keep isl_basic_set *bset,
1122 enum isl_dim_type type, unsigned pos);
1123 const char *isl_set_get_dim_name(
1124 __isl_keep isl_set *set,
1125 enum isl_dim_type type, unsigned pos);
1126 const char *isl_basic_map_get_dim_name(
1127 __isl_keep isl_basic_map *bmap,
1128 enum isl_dim_type type, unsigned pos);
1129 const char *isl_map_get_dim_name(
1130 __isl_keep isl_map *map,
1131 enum isl_dim_type type, unsigned pos);
1133 These functions are mostly useful to obtain the names
1138 =head3 Unary Properties
1144 The following functions test whether the given set or relation
1145 contains any integer points. The ``fast'' variants do not perform
1146 any computations, but simply check if the given set or relation
1147 is already known to be empty.
1149 int isl_basic_set_fast_is_empty(__isl_keep isl_basic_set *bset);
1150 int isl_basic_set_is_empty(__isl_keep isl_basic_set *bset);
1151 int isl_set_is_empty(__isl_keep isl_set *set);
1152 int isl_union_set_is_empty(__isl_keep isl_union_set *uset);
1153 int isl_basic_map_fast_is_empty(__isl_keep isl_basic_map *bmap);
1154 int isl_basic_map_is_empty(__isl_keep isl_basic_map *bmap);
1155 int isl_map_fast_is_empty(__isl_keep isl_map *map);
1156 int isl_map_is_empty(__isl_keep isl_map *map);
1157 int isl_union_map_is_empty(__isl_keep isl_union_map *umap);
1159 =item * Universality
1161 int isl_basic_set_is_universe(__isl_keep isl_basic_set *bset);
1162 int isl_basic_map_is_universe(__isl_keep isl_basic_map *bmap);
1163 int isl_set_fast_is_universe(__isl_keep isl_set *set);
1165 =item * Single-valuedness
1167 int isl_map_is_single_valued(__isl_keep isl_map *map);
1171 int isl_map_is_bijective(__isl_keep isl_map *map);
1175 The followning functions check whether the domain of the given
1176 (basic) set is a wrapped relation.
1178 int isl_basic_set_is_wrapping(
1179 __isl_keep isl_basic_set *bset);
1180 int isl_set_is_wrapping(__isl_keep isl_set *set);
1184 =head3 Binary Properties
1190 int isl_set_fast_is_equal(__isl_keep isl_set *set1,
1191 __isl_keep isl_set *set2);
1192 int isl_set_is_equal(__isl_keep isl_set *set1,
1193 __isl_keep isl_set *set2);
1194 int isl_union_set_is_equal(
1195 __isl_keep isl_union_set *uset1,
1196 __isl_keep isl_union_set *uset2);
1197 int isl_basic_map_is_equal(
1198 __isl_keep isl_basic_map *bmap1,
1199 __isl_keep isl_basic_map *bmap2);
1200 int isl_map_is_equal(__isl_keep isl_map *map1,
1201 __isl_keep isl_map *map2);
1202 int isl_map_fast_is_equal(__isl_keep isl_map *map1,
1203 __isl_keep isl_map *map2);
1204 int isl_union_map_is_equal(
1205 __isl_keep isl_union_map *umap1,
1206 __isl_keep isl_union_map *umap2);
1208 =item * Disjointness
1210 int isl_set_fast_is_disjoint(__isl_keep isl_set *set1,
1211 __isl_keep isl_set *set2);
1215 int isl_set_is_subset(__isl_keep isl_set *set1,
1216 __isl_keep isl_set *set2);
1217 int isl_set_is_strict_subset(
1218 __isl_keep isl_set *set1,
1219 __isl_keep isl_set *set2);
1220 int isl_union_set_is_subset(
1221 __isl_keep isl_union_set *uset1,
1222 __isl_keep isl_union_set *uset2);
1223 int isl_union_set_is_strict_subset(
1224 __isl_keep isl_union_set *uset1,
1225 __isl_keep isl_union_set *uset2);
1226 int isl_basic_map_is_subset(
1227 __isl_keep isl_basic_map *bmap1,
1228 __isl_keep isl_basic_map *bmap2);
1229 int isl_basic_map_is_strict_subset(
1230 __isl_keep isl_basic_map *bmap1,
1231 __isl_keep isl_basic_map *bmap2);
1232 int isl_map_is_subset(
1233 __isl_keep isl_map *map1,
1234 __isl_keep isl_map *map2);
1235 int isl_map_is_strict_subset(
1236 __isl_keep isl_map *map1,
1237 __isl_keep isl_map *map2);
1238 int isl_union_map_is_subset(
1239 __isl_keep isl_union_map *umap1,
1240 __isl_keep isl_union_map *umap2);
1241 int isl_union_map_is_strict_subset(
1242 __isl_keep isl_union_map *umap1,
1243 __isl_keep isl_union_map *umap2);
1247 =head2 Unary Operations
1253 __isl_give isl_set *isl_set_complement(
1254 __isl_take isl_set *set);
1258 __isl_give isl_basic_map *isl_basic_map_reverse(
1259 __isl_take isl_basic_map *bmap);
1260 __isl_give isl_map *isl_map_reverse(
1261 __isl_take isl_map *map);
1262 __isl_give isl_union_map *isl_union_map_reverse(
1263 __isl_take isl_union_map *umap);
1267 __isl_give isl_basic_set *isl_basic_set_project_out(
1268 __isl_take isl_basic_set *bset,
1269 enum isl_dim_type type, unsigned first, unsigned n);
1270 __isl_give isl_basic_map *isl_basic_map_project_out(
1271 __isl_take isl_basic_map *bmap,
1272 enum isl_dim_type type, unsigned first, unsigned n);
1273 __isl_give isl_set *isl_set_project_out(__isl_take isl_set *set,
1274 enum isl_dim_type type, unsigned first, unsigned n);
1275 __isl_give isl_map *isl_map_project_out(__isl_take isl_map *map,
1276 enum isl_dim_type type, unsigned first, unsigned n);
1277 __isl_give isl_basic_set *isl_basic_map_domain(
1278 __isl_take isl_basic_map *bmap);
1279 __isl_give isl_basic_set *isl_basic_map_range(
1280 __isl_take isl_basic_map *bmap);
1281 __isl_give isl_set *isl_map_domain(
1282 __isl_take isl_map *bmap);
1283 __isl_give isl_set *isl_map_range(
1284 __isl_take isl_map *map);
1285 __isl_give isl_union_set *isl_union_map_domain(
1286 __isl_take isl_union_map *umap);
1287 __isl_give isl_union_set *isl_union_map_range(
1288 __isl_take isl_union_map *umap);
1290 __isl_give isl_basic_map *isl_basic_map_domain_map(
1291 __isl_take isl_basic_map *bmap);
1292 __isl_give isl_basic_map *isl_basic_map_range_map(
1293 __isl_take isl_basic_map *bmap);
1294 __isl_give isl_map *isl_map_domain_map(__isl_take isl_map *map);
1295 __isl_give isl_map *isl_map_range_map(__isl_take isl_map *map);
1296 __isl_give isl_union_map *isl_union_map_domain_map(
1297 __isl_take isl_union_map *umap);
1298 __isl_give isl_union_map *isl_union_map_range_map(
1299 __isl_take isl_union_map *umap);
1301 The functions above construct a (basic, regular or union) relation
1302 that maps (a wrapped version of) the input relation to its domain or range.
1306 __isl_give isl_map *isl_set_identity(
1307 __isl_take isl_set *set);
1308 __isl_give isl_union_map *isl_union_set_identity(
1309 __isl_take isl_union_set *uset);
1311 Construct an identity relation on the given (union) set.
1315 __isl_give isl_basic_set *isl_basic_map_deltas(
1316 __isl_take isl_basic_map *bmap);
1317 __isl_give isl_set *isl_map_deltas(__isl_take isl_map *map);
1318 __isl_give isl_union_set *isl_union_map_deltas(
1319 __isl_take isl_union_map *umap);
1321 These functions return a (basic) set containing the differences
1322 between image elements and corresponding domain elements in the input.
1326 Simplify the representation of a set or relation by trying
1327 to combine pairs of basic sets or relations into a single
1328 basic set or relation.
1330 __isl_give isl_set *isl_set_coalesce(__isl_take isl_set *set);
1331 __isl_give isl_map *isl_map_coalesce(__isl_take isl_map *map);
1332 __isl_give isl_union_set *isl_union_set_coalesce(
1333 __isl_take isl_union_set *uset);
1334 __isl_give isl_union_map *isl_union_map_coalesce(
1335 __isl_take isl_union_map *umap);
1337 =item * Detecting equalities
1339 __isl_give isl_basic_set *isl_basic_set_detect_equalities(
1340 __isl_take isl_basic_set *bset);
1341 __isl_give isl_basic_map *isl_basic_map_detect_equalities(
1342 __isl_take isl_basic_map *bmap);
1343 __isl_give isl_set *isl_set_detect_equalities(
1344 __isl_take isl_set *set);
1345 __isl_give isl_map *isl_map_detect_equalities(
1346 __isl_take isl_map *map);
1347 __isl_give isl_union_set *isl_union_set_detect_equalities(
1348 __isl_take isl_union_set *uset);
1349 __isl_give isl_union_map *isl_union_map_detect_equalities(
1350 __isl_take isl_union_map *umap);
1352 Simplify the representation of a set or relation by detecting implicit
1357 __isl_give isl_basic_set *isl_set_convex_hull(
1358 __isl_take isl_set *set);
1359 __isl_give isl_basic_map *isl_map_convex_hull(
1360 __isl_take isl_map *map);
1362 If the input set or relation has any existentially quantified
1363 variables, then the result of these operations is currently undefined.
1367 __isl_give isl_basic_set *isl_set_simple_hull(
1368 __isl_take isl_set *set);
1369 __isl_give isl_basic_map *isl_map_simple_hull(
1370 __isl_take isl_map *map);
1371 __isl_give isl_union_map *isl_union_map_simple_hull(
1372 __isl_take isl_union_map *umap);
1374 These functions compute a single basic set or relation
1375 that contains the whole input set or relation.
1376 In particular, the output is described by translates
1377 of the constraints describing the basic sets or relations in the input.
1381 (See \autoref{s:simple hull}.)
1387 __isl_give isl_basic_set *isl_basic_set_affine_hull(
1388 __isl_take isl_basic_set *bset);
1389 __isl_give isl_basic_set *isl_set_affine_hull(
1390 __isl_take isl_set *set);
1391 __isl_give isl_union_set *isl_union_set_affine_hull(
1392 __isl_take isl_union_set *uset);
1393 __isl_give isl_basic_map *isl_basic_map_affine_hull(
1394 __isl_take isl_basic_map *bmap);
1395 __isl_give isl_basic_map *isl_map_affine_hull(
1396 __isl_take isl_map *map);
1397 __isl_give isl_union_map *isl_union_map_affine_hull(
1398 __isl_take isl_union_map *umap);
1400 In case of union sets and relations, the affine hull is computed
1403 =item * Polyhedral hull
1405 __isl_give isl_basic_set *isl_set_polyhedral_hull(
1406 __isl_take isl_set *set);
1407 __isl_give isl_basic_map *isl_map_polyhedral_hull(
1408 __isl_take isl_map *map);
1409 __isl_give isl_union_set *isl_union_set_polyhedral_hull(
1410 __isl_take isl_union_set *uset);
1411 __isl_give isl_union_map *isl_union_map_polyhedral_hull(
1412 __isl_take isl_union_map *umap);
1414 These functions compute a single basic set or relation
1415 not involving any existentially quantified variables
1416 that contains the whole input set or relation.
1417 In case of union sets and relations, the polyhedral hull is computed
1422 __isl_give isl_map *isl_map_power(__isl_take isl_map *map,
1423 unsigned param, int *exact);
1425 Compute a parametric representation for all positive powers I<k> of C<map>.
1426 The power I<k> is equated to the parameter at position C<param>.
1427 The result may be an overapproximation. If the result is known to be exact,
1428 then C<*exact> is set to C<1>.
1430 =item * Transitive closure
1432 __isl_give isl_map *isl_map_transitive_closure(
1433 __isl_take isl_map *map, int *exact);
1434 __isl_give isl_union_map *isl_union_map_transitive_closure(
1435 __isl_take isl_union_map *umap, int *exact);
1437 Compute the transitive closure of C<map>.
1438 The result may be an overapproximation. If the result is known to be exact,
1439 then C<*exact> is set to C<1>.
1441 =item * Reaching path lengths
1443 __isl_give isl_map *isl_map_reaching_path_lengths(
1444 __isl_take isl_map *map, int *exact);
1446 Compute a relation that maps each element in the range of C<map>
1447 to the lengths of all paths composed of edges in C<map> that
1448 end up in the given element.
1449 The result may be an overapproximation. If the result is known to be exact,
1450 then C<*exact> is set to C<1>.
1451 To compute the I<maximal> path length, the resulting relation
1452 should be postprocessed by C<isl_map_lexmax>.
1453 In particular, if the input relation is a dependence relation
1454 (mapping sources to sinks), then the maximal path length corresponds
1455 to the free schedule.
1456 Note, however, that C<isl_map_lexmax> expects the maximum to be
1457 finite, so if the path lengths are unbounded (possibly due to
1458 the overapproximation), then you will get an error message.
1462 __isl_give isl_basic_set *isl_basic_map_wrap(
1463 __isl_take isl_basic_map *bmap);
1464 __isl_give isl_set *isl_map_wrap(
1465 __isl_take isl_map *map);
1466 __isl_give isl_union_set *isl_union_map_wrap(
1467 __isl_take isl_union_map *umap);
1468 __isl_give isl_basic_map *isl_basic_set_unwrap(
1469 __isl_take isl_basic_set *bset);
1470 __isl_give isl_map *isl_set_unwrap(
1471 __isl_take isl_set *set);
1472 __isl_give isl_union_map *isl_union_set_unwrap(
1473 __isl_take isl_union_set *uset);
1477 Remove any internal structure of domain (and range) of the given
1478 set or relation. If there is any such internal structure in the input,
1479 then the name of the space is also removed.
1481 __isl_give isl_basic_set *isl_basic_set_flatten(
1482 __isl_take isl_basic_set *bset);
1483 __isl_give isl_set *isl_set_flatten(
1484 __isl_take isl_set *set);
1485 __isl_give isl_basic_map *isl_basic_map_flatten(
1486 __isl_take isl_basic_map *bmap);
1487 __isl_give isl_map *isl_map_flatten(
1488 __isl_take isl_map *map);
1490 __isl_give isl_map *isl_set_flatten_map(
1491 __isl_take isl_set *set);
1493 The function above constructs a relation
1494 that maps the input set to a flattened version of the set.
1496 =item * Dimension manipulation
1498 __isl_give isl_set *isl_set_add_dims(
1499 __isl_take isl_set *set,
1500 enum isl_dim_type type, unsigned n);
1501 __isl_give isl_map *isl_map_add_dims(
1502 __isl_take isl_map *map,
1503 enum isl_dim_type type, unsigned n);
1505 It is usually not advisable to directly change the (input or output)
1506 space of a set or a relation as this removes the name and the internal
1507 structure of the space. However, the above functions can be useful
1508 to add new parameters.
1512 =head2 Binary Operations
1514 The two arguments of a binary operation not only need to live
1515 in the same C<isl_ctx>, they currently also need to have
1516 the same (number of) parameters.
1518 =head3 Basic Operations
1522 =item * Intersection
1524 __isl_give isl_basic_set *isl_basic_set_intersect(
1525 __isl_take isl_basic_set *bset1,
1526 __isl_take isl_basic_set *bset2);
1527 __isl_give isl_set *isl_set_intersect(
1528 __isl_take isl_set *set1,
1529 __isl_take isl_set *set2);
1530 __isl_give isl_union_set *isl_union_set_intersect(
1531 __isl_take isl_union_set *uset1,
1532 __isl_take isl_union_set *uset2);
1533 __isl_give isl_basic_map *isl_basic_map_intersect_domain(
1534 __isl_take isl_basic_map *bmap,
1535 __isl_take isl_basic_set *bset);
1536 __isl_give isl_basic_map *isl_basic_map_intersect_range(
1537 __isl_take isl_basic_map *bmap,
1538 __isl_take isl_basic_set *bset);
1539 __isl_give isl_basic_map *isl_basic_map_intersect(
1540 __isl_take isl_basic_map *bmap1,
1541 __isl_take isl_basic_map *bmap2);
1542 __isl_give isl_map *isl_map_intersect_domain(
1543 __isl_take isl_map *map,
1544 __isl_take isl_set *set);
1545 __isl_give isl_map *isl_map_intersect_range(
1546 __isl_take isl_map *map,
1547 __isl_take isl_set *set);
1548 __isl_give isl_map *isl_map_intersect(
1549 __isl_take isl_map *map1,
1550 __isl_take isl_map *map2);
1551 __isl_give isl_union_map *isl_union_map_intersect_domain(
1552 __isl_take isl_union_map *umap,
1553 __isl_take isl_union_set *uset);
1554 __isl_give isl_union_map *isl_union_map_intersect_range(
1555 __isl_take isl_union_map *umap,
1556 __isl_take isl_union_set *uset);
1557 __isl_give isl_union_map *isl_union_map_intersect(
1558 __isl_take isl_union_map *umap1,
1559 __isl_take isl_union_map *umap2);
1563 __isl_give isl_set *isl_basic_set_union(
1564 __isl_take isl_basic_set *bset1,
1565 __isl_take isl_basic_set *bset2);
1566 __isl_give isl_map *isl_basic_map_union(
1567 __isl_take isl_basic_map *bmap1,
1568 __isl_take isl_basic_map *bmap2);
1569 __isl_give isl_set *isl_set_union(
1570 __isl_take isl_set *set1,
1571 __isl_take isl_set *set2);
1572 __isl_give isl_map *isl_map_union(
1573 __isl_take isl_map *map1,
1574 __isl_take isl_map *map2);
1575 __isl_give isl_union_set *isl_union_set_union(
1576 __isl_take isl_union_set *uset1,
1577 __isl_take isl_union_set *uset2);
1578 __isl_give isl_union_map *isl_union_map_union(
1579 __isl_take isl_union_map *umap1,
1580 __isl_take isl_union_map *umap2);
1582 =item * Set difference
1584 __isl_give isl_set *isl_set_subtract(
1585 __isl_take isl_set *set1,
1586 __isl_take isl_set *set2);
1587 __isl_give isl_map *isl_map_subtract(
1588 __isl_take isl_map *map1,
1589 __isl_take isl_map *map2);
1590 __isl_give isl_union_set *isl_union_set_subtract(
1591 __isl_take isl_union_set *uset1,
1592 __isl_take isl_union_set *uset2);
1593 __isl_give isl_union_map *isl_union_map_subtract(
1594 __isl_take isl_union_map *umap1,
1595 __isl_take isl_union_map *umap2);
1599 __isl_give isl_basic_set *isl_basic_set_apply(
1600 __isl_take isl_basic_set *bset,
1601 __isl_take isl_basic_map *bmap);
1602 __isl_give isl_set *isl_set_apply(
1603 __isl_take isl_set *set,
1604 __isl_take isl_map *map);
1605 __isl_give isl_union_set *isl_union_set_apply(
1606 __isl_take isl_union_set *uset,
1607 __isl_take isl_union_map *umap);
1608 __isl_give isl_basic_map *isl_basic_map_apply_domain(
1609 __isl_take isl_basic_map *bmap1,
1610 __isl_take isl_basic_map *bmap2);
1611 __isl_give isl_basic_map *isl_basic_map_apply_range(
1612 __isl_take isl_basic_map *bmap1,
1613 __isl_take isl_basic_map *bmap2);
1614 __isl_give isl_map *isl_map_apply_domain(
1615 __isl_take isl_map *map1,
1616 __isl_take isl_map *map2);
1617 __isl_give isl_union_map *isl_union_map_apply_domain(
1618 __isl_take isl_union_map *umap1,
1619 __isl_take isl_union_map *umap2);
1620 __isl_give isl_map *isl_map_apply_range(
1621 __isl_take isl_map *map1,
1622 __isl_take isl_map *map2);
1623 __isl_give isl_union_map *isl_union_map_apply_range(
1624 __isl_take isl_union_map *umap1,
1625 __isl_take isl_union_map *umap2);
1627 =item * Cartesian Product
1629 __isl_give isl_set *isl_set_product(
1630 __isl_take isl_set *set1,
1631 __isl_take isl_set *set2);
1632 __isl_give isl_union_set *isl_union_set_product(
1633 __isl_take isl_union_set *uset1,
1634 __isl_take isl_union_set *uset2);
1635 __isl_give isl_basic_map *isl_basic_map_range_product(
1636 __isl_take isl_basic_map *bmap1,
1637 __isl_take isl_basic_map *bmap2);
1638 __isl_give isl_map *isl_map_range_product(
1639 __isl_take isl_map *map1,
1640 __isl_take isl_map *map2);
1641 __isl_give isl_union_map *isl_union_map_range_product(
1642 __isl_take isl_union_map *umap1,
1643 __isl_take isl_union_map *umap2);
1644 __isl_give isl_map *isl_map_product(
1645 __isl_take isl_map *map1,
1646 __isl_take isl_map *map2);
1647 __isl_give isl_union_map *isl_union_map_product(
1648 __isl_take isl_union_map *umap1,
1649 __isl_take isl_union_map *umap2);
1651 The above functions compute the cross product of the given
1652 sets or relations. The domains and ranges of the results
1653 are wrapped maps between domains and ranges of the inputs.
1654 To obtain a ``flat'' product, use the following functions
1657 __isl_give isl_basic_set *isl_basic_set_flat_product(
1658 __isl_take isl_basic_set *bset1,
1659 __isl_take isl_basic_set *bset2);
1660 __isl_give isl_set *isl_set_flat_product(
1661 __isl_take isl_set *set1,
1662 __isl_take isl_set *set2);
1663 __isl_give isl_basic_map *isl_basic_map_flat_product(
1664 __isl_take isl_basic_map *bmap1,
1665 __isl_take isl_basic_map *bmap2);
1666 __isl_give isl_map *isl_map_flat_product(
1667 __isl_take isl_map *map1,
1668 __isl_take isl_map *map2);
1670 =item * Simplification
1672 __isl_give isl_basic_set *isl_basic_set_gist(
1673 __isl_take isl_basic_set *bset,
1674 __isl_take isl_basic_set *context);
1675 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
1676 __isl_take isl_set *context);
1677 __isl_give isl_union_set *isl_union_set_gist(
1678 __isl_take isl_union_set *uset,
1679 __isl_take isl_union_set *context);
1680 __isl_give isl_basic_map *isl_basic_map_gist(
1681 __isl_take isl_basic_map *bmap,
1682 __isl_take isl_basic_map *context);
1683 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
1684 __isl_take isl_map *context);
1685 __isl_give isl_union_map *isl_union_map_gist(
1686 __isl_take isl_union_map *umap,
1687 __isl_take isl_union_map *context);
1689 The gist operation returns a set or relation that has the
1690 same intersection with the context as the input set or relation.
1691 Any implicit equality in the intersection is made explicit in the result,
1692 while all inequalities that are redundant with respect to the intersection
1694 In case of union sets and relations, the gist operation is performed
1699 =head3 Lexicographic Optimization
1701 Given a (basic) set C<set> (or C<bset>) and a zero-dimensional domain C<dom>,
1702 the following functions
1703 compute a set that contains the lexicographic minimum or maximum
1704 of the elements in C<set> (or C<bset>) for those values of the parameters
1705 that satisfy C<dom>.
1706 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
1707 that contains the parameter values in C<dom> for which C<set> (or C<bset>)
1709 In other words, the union of the parameter values
1710 for which the result is non-empty and of C<*empty>
1713 __isl_give isl_set *isl_basic_set_partial_lexmin(
1714 __isl_take isl_basic_set *bset,
1715 __isl_take isl_basic_set *dom,
1716 __isl_give isl_set **empty);
1717 __isl_give isl_set *isl_basic_set_partial_lexmax(
1718 __isl_take isl_basic_set *bset,
1719 __isl_take isl_basic_set *dom,
1720 __isl_give isl_set **empty);
1721 __isl_give isl_set *isl_set_partial_lexmin(
1722 __isl_take isl_set *set, __isl_take isl_set *dom,
1723 __isl_give isl_set **empty);
1724 __isl_give isl_set *isl_set_partial_lexmax(
1725 __isl_take isl_set *set, __isl_take isl_set *dom,
1726 __isl_give isl_set **empty);
1728 Given a (basic) set C<set> (or C<bset>), the following functions simply
1729 return a set containing the lexicographic minimum or maximum
1730 of the elements in C<set> (or C<bset>).
1731 In case of union sets, the optimum is computed per space.
1733 __isl_give isl_set *isl_basic_set_lexmin(
1734 __isl_take isl_basic_set *bset);
1735 __isl_give isl_set *isl_basic_set_lexmax(
1736 __isl_take isl_basic_set *bset);
1737 __isl_give isl_set *isl_set_lexmin(
1738 __isl_take isl_set *set);
1739 __isl_give isl_set *isl_set_lexmax(
1740 __isl_take isl_set *set);
1741 __isl_give isl_union_set *isl_union_set_lexmin(
1742 __isl_take isl_union_set *uset);
1743 __isl_give isl_union_set *isl_union_set_lexmax(
1744 __isl_take isl_union_set *uset);
1746 Given a (basic) relation C<map> (or C<bmap>) and a domain C<dom>,
1747 the following functions
1748 compute a relation that maps each element of C<dom>
1749 to the single lexicographic minimum or maximum
1750 of the elements that are associated to that same
1751 element in C<map> (or C<bmap>).
1752 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
1753 that contains the elements in C<dom> that do not map
1754 to any elements in C<map> (or C<bmap>).
1755 In other words, the union of the domain of the result and of C<*empty>
1758 __isl_give isl_map *isl_basic_map_partial_lexmax(
1759 __isl_take isl_basic_map *bmap,
1760 __isl_take isl_basic_set *dom,
1761 __isl_give isl_set **empty);
1762 __isl_give isl_map *isl_basic_map_partial_lexmin(
1763 __isl_take isl_basic_map *bmap,
1764 __isl_take isl_basic_set *dom,
1765 __isl_give isl_set **empty);
1766 __isl_give isl_map *isl_map_partial_lexmax(
1767 __isl_take isl_map *map, __isl_take isl_set *dom,
1768 __isl_give isl_set **empty);
1769 __isl_give isl_map *isl_map_partial_lexmin(
1770 __isl_take isl_map *map, __isl_take isl_set *dom,
1771 __isl_give isl_set **empty);
1773 Given a (basic) map C<map> (or C<bmap>), the following functions simply
1774 return a map mapping each element in the domain of
1775 C<map> (or C<bmap>) to the lexicographic minimum or maximum
1776 of all elements associated to that element.
1777 In case of union relations, the optimum is computed per space.
1779 __isl_give isl_map *isl_basic_map_lexmin(
1780 __isl_take isl_basic_map *bmap);
1781 __isl_give isl_map *isl_basic_map_lexmax(
1782 __isl_take isl_basic_map *bmap);
1783 __isl_give isl_map *isl_map_lexmin(
1784 __isl_take isl_map *map);
1785 __isl_give isl_map *isl_map_lexmax(
1786 __isl_take isl_map *map);
1787 __isl_give isl_union_map *isl_union_map_lexmin(
1788 __isl_take isl_union_map *umap);
1789 __isl_give isl_union_map *isl_union_map_lexmax(
1790 __isl_take isl_union_map *umap);
1794 Matrices can be created, copied and freed using the following functions.
1796 #include <isl/mat.h>
1797 __isl_give isl_mat *isl_mat_alloc(struct isl_ctx *ctx,
1798 unsigned n_row, unsigned n_col);
1799 __isl_give isl_mat *isl_mat_copy(__isl_keep isl_mat *mat);
1800 void isl_mat_free(__isl_take isl_mat *mat);
1802 Note that the elements of a newly created matrix may have arbitrary values.
1803 The elements can be changed and inspected using the following functions.
1805 int isl_mat_rows(__isl_keep isl_mat *mat);
1806 int isl_mat_cols(__isl_keep isl_mat *mat);
1807 int isl_mat_get_element(__isl_keep isl_mat *mat,
1808 int row, int col, isl_int *v);
1809 __isl_give isl_mat *isl_mat_set_element(__isl_take isl_mat *mat,
1810 int row, int col, isl_int v);
1812 C<isl_mat_get_element> will return a negative value if anything went wrong.
1813 In that case, the value of C<*v> is undefined.
1815 The following function can be used to compute the (right) inverse
1816 of a matrix, i.e., a matrix such that the product of the original
1817 and the inverse (in that order) is a multiple of the identity matrix.
1818 The input matrix is assumed to be of full row-rank.
1820 __isl_give isl_mat *isl_mat_right_inverse(__isl_take isl_mat *mat);
1822 The following function can be used to compute the (right) kernel
1823 (or null space) of a matrix, i.e., a matrix such that the product of
1824 the original and the kernel (in that order) is the zero matrix.
1826 __isl_give isl_mat *isl_mat_right_kernel(__isl_take isl_mat *mat);
1830 Points are elements of a set. They can be used to construct
1831 simple sets (boxes) or they can be used to represent the
1832 individual elements of a set.
1833 The zero point (the origin) can be created using
1835 __isl_give isl_point *isl_point_zero(__isl_take isl_dim *dim);
1837 The coordinates of a point can be inspected, set and changed
1840 void isl_point_get_coordinate(__isl_keep isl_point *pnt,
1841 enum isl_dim_type type, int pos, isl_int *v);
1842 __isl_give isl_point *isl_point_set_coordinate(
1843 __isl_take isl_point *pnt,
1844 enum isl_dim_type type, int pos, isl_int v);
1846 __isl_give isl_point *isl_point_add_ui(
1847 __isl_take isl_point *pnt,
1848 enum isl_dim_type type, int pos, unsigned val);
1849 __isl_give isl_point *isl_point_sub_ui(
1850 __isl_take isl_point *pnt,
1851 enum isl_dim_type type, int pos, unsigned val);
1853 Points can be copied or freed using
1855 __isl_give isl_point *isl_point_copy(
1856 __isl_keep isl_point *pnt);
1857 void isl_point_free(__isl_take isl_point *pnt);
1859 A singleton set can be created from a point using
1861 __isl_give isl_basic_set *isl_basic_set_from_point(
1862 __isl_take isl_point *pnt);
1863 __isl_give isl_set *isl_set_from_point(
1864 __isl_take isl_point *pnt);
1866 and a box can be created from two opposite extremal points using
1868 __isl_give isl_basic_set *isl_basic_set_box_from_points(
1869 __isl_take isl_point *pnt1,
1870 __isl_take isl_point *pnt2);
1871 __isl_give isl_set *isl_set_box_from_points(
1872 __isl_take isl_point *pnt1,
1873 __isl_take isl_point *pnt2);
1875 All elements of a B<bounded> (union) set can be enumerated using
1876 the following functions.
1878 int isl_set_foreach_point(__isl_keep isl_set *set,
1879 int (*fn)(__isl_take isl_point *pnt, void *user),
1881 int isl_union_set_foreach_point(__isl_keep isl_union_set *uset,
1882 int (*fn)(__isl_take isl_point *pnt, void *user),
1885 The function C<fn> is called for each integer point in
1886 C<set> with as second argument the last argument of
1887 the C<isl_set_foreach_point> call. The function C<fn>
1888 should return C<0> on success and C<-1> on failure.
1889 In the latter case, C<isl_set_foreach_point> will stop
1890 enumerating and return C<-1> as well.
1891 If the enumeration is performed successfully and to completion,
1892 then C<isl_set_foreach_point> returns C<0>.
1894 To obtain a single point of a (basic) set, use
1896 __isl_give isl_point *isl_basic_set_sample_point(
1897 __isl_take isl_basic_set *bset);
1898 __isl_give isl_point *isl_set_sample_point(
1899 __isl_take isl_set *set);
1901 If C<set> does not contain any (integer) points, then the
1902 resulting point will be ``void'', a property that can be
1905 int isl_point_is_void(__isl_keep isl_point *pnt);
1907 =head2 Piecewise Quasipolynomials
1909 A piecewise quasipolynomial is a particular kind of function that maps
1910 a parametric point to a rational value.
1911 More specifically, a quasipolynomial is a polynomial expression in greatest
1912 integer parts of affine expressions of parameters and variables.
1913 A piecewise quasipolynomial is a subdivision of a given parametric
1914 domain into disjoint cells with a quasipolynomial associated to
1915 each cell. The value of the piecewise quasipolynomial at a given
1916 point is the value of the quasipolynomial associated to the cell
1917 that contains the point. Outside of the union of cells,
1918 the value is assumed to be zero.
1919 For example, the piecewise quasipolynomial
1921 [n] -> { [x] -> ((1 + n) - x) : x <= n and x >= 0 }
1923 maps C<x> to C<1 + n - x> for values of C<x> between C<0> and C<n>.
1924 A given piecewise quasipolynomial has a fixed domain dimension.
1925 Union piecewise quasipolynomials are used to contain piecewise quasipolynomials
1926 defined over different domains.
1927 Piecewise quasipolynomials are mainly used by the C<barvinok>
1928 library for representing the number of elements in a parametric set or map.
1929 For example, the piecewise quasipolynomial above represents
1930 the number of points in the map
1932 [n] -> { [x] -> [y] : x,y >= 0 and 0 <= x + y <= n }
1934 =head3 Printing (Piecewise) Quasipolynomials
1936 Quasipolynomials and piecewise quasipolynomials can be printed
1937 using the following functions.
1939 __isl_give isl_printer *isl_printer_print_qpolynomial(
1940 __isl_take isl_printer *p,
1941 __isl_keep isl_qpolynomial *qp);
1943 __isl_give isl_printer *isl_printer_print_pw_qpolynomial(
1944 __isl_take isl_printer *p,
1945 __isl_keep isl_pw_qpolynomial *pwqp);
1947 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial(
1948 __isl_take isl_printer *p,
1949 __isl_keep isl_union_pw_qpolynomial *upwqp);
1951 The output format of the printer
1952 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
1953 For C<isl_printer_print_union_pw_qpolynomial>, only C<ISL_FORMAT_ISL>
1955 In case of printing in C<ISL_FORMAT_C>, the user may want
1956 to set the names of all dimensions
1958 __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name(
1959 __isl_take isl_qpolynomial *qp,
1960 enum isl_dim_type type, unsigned pos,
1962 __isl_give isl_pw_qpolynomial *
1963 isl_pw_qpolynomial_set_dim_name(
1964 __isl_take isl_pw_qpolynomial *pwqp,
1965 enum isl_dim_type type, unsigned pos,
1968 =head3 Creating New (Piecewise) Quasipolynomials
1970 Some simple quasipolynomials can be created using the following functions.
1971 More complicated quasipolynomials can be created by applying
1972 operations such as addition and multiplication
1973 on the resulting quasipolynomials
1975 __isl_give isl_qpolynomial *isl_qpolynomial_zero(
1976 __isl_take isl_dim *dim);
1977 __isl_give isl_qpolynomial *isl_qpolynomial_one(
1978 __isl_take isl_dim *dim);
1979 __isl_give isl_qpolynomial *isl_qpolynomial_infty(
1980 __isl_take isl_dim *dim);
1981 __isl_give isl_qpolynomial *isl_qpolynomial_neginfty(
1982 __isl_take isl_dim *dim);
1983 __isl_give isl_qpolynomial *isl_qpolynomial_nan(
1984 __isl_take isl_dim *dim);
1985 __isl_give isl_qpolynomial *isl_qpolynomial_rat_cst(
1986 __isl_take isl_dim *dim,
1987 const isl_int n, const isl_int d);
1988 __isl_give isl_qpolynomial *isl_qpolynomial_div(
1989 __isl_take isl_div *div);
1990 __isl_give isl_qpolynomial *isl_qpolynomial_var(
1991 __isl_take isl_dim *dim,
1992 enum isl_dim_type type, unsigned pos);
1994 The zero piecewise quasipolynomial or a piecewise quasipolynomial
1995 with a single cell can be created using the following functions.
1996 Multiple of these single cell piecewise quasipolynomials can
1997 be combined to create more complicated piecewise quasipolynomials.
1999 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_zero(
2000 __isl_take isl_dim *dim);
2001 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_alloc(
2002 __isl_take isl_set *set,
2003 __isl_take isl_qpolynomial *qp);
2005 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_zero(
2006 __isl_take isl_dim *dim);
2007 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_from_pw_qpolynomial(
2008 __isl_take isl_pw_qpolynomial *pwqp);
2009 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add_pw_qpolynomial(
2010 __isl_take isl_union_pw_qpolynomial *upwqp,
2011 __isl_take isl_pw_qpolynomial *pwqp);
2013 Quasipolynomials can be copied and freed again using the following
2016 __isl_give isl_qpolynomial *isl_qpolynomial_copy(
2017 __isl_keep isl_qpolynomial *qp);
2018 void isl_qpolynomial_free(__isl_take isl_qpolynomial *qp);
2020 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_copy(
2021 __isl_keep isl_pw_qpolynomial *pwqp);
2022 void isl_pw_qpolynomial_free(
2023 __isl_take isl_pw_qpolynomial *pwqp);
2025 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_copy(
2026 __isl_keep isl_union_pw_qpolynomial *upwqp);
2027 void isl_union_pw_qpolynomial_free(
2028 __isl_take isl_union_pw_qpolynomial *upwqp);
2030 =head3 Inspecting (Piecewise) Quasipolynomials
2032 To iterate over all piecewise quasipolynomials in a union
2033 piecewise quasipolynomial, use the following function
2035 int isl_union_pw_qpolynomial_foreach_pw_qpolynomial(
2036 __isl_keep isl_union_pw_qpolynomial *upwqp,
2037 int (*fn)(__isl_take isl_pw_qpolynomial *pwqp, void *user),
2040 To extract the piecewise quasipolynomial from a union with a given dimension
2043 __isl_give isl_pw_qpolynomial *
2044 isl_union_pw_qpolynomial_extract_pw_qpolynomial(
2045 __isl_keep isl_union_pw_qpolynomial *upwqp,
2046 __isl_take isl_dim *dim);
2048 To iterate over the cells in a piecewise quasipolynomial,
2049 use either of the following two functions
2051 int isl_pw_qpolynomial_foreach_piece(
2052 __isl_keep isl_pw_qpolynomial *pwqp,
2053 int (*fn)(__isl_take isl_set *set,
2054 __isl_take isl_qpolynomial *qp,
2055 void *user), void *user);
2056 int isl_pw_qpolynomial_foreach_lifted_piece(
2057 __isl_keep isl_pw_qpolynomial *pwqp,
2058 int (*fn)(__isl_take isl_set *set,
2059 __isl_take isl_qpolynomial *qp,
2060 void *user), void *user);
2062 As usual, the function C<fn> should return C<0> on success
2063 and C<-1> on failure. The difference between
2064 C<isl_pw_qpolynomial_foreach_piece> and
2065 C<isl_pw_qpolynomial_foreach_lifted_piece> is that
2066 C<isl_pw_qpolynomial_foreach_lifted_piece> will first
2067 compute unique representations for all existentially quantified
2068 variables and then turn these existentially quantified variables
2069 into extra set variables, adapting the associated quasipolynomial
2070 accordingly. This means that the C<set> passed to C<fn>
2071 will not have any existentially quantified variables, but that
2072 the dimensions of the sets may be different for different
2073 invocations of C<fn>.
2075 To iterate over all terms in a quasipolynomial,
2078 int isl_qpolynomial_foreach_term(
2079 __isl_keep isl_qpolynomial *qp,
2080 int (*fn)(__isl_take isl_term *term,
2081 void *user), void *user);
2083 The terms themselves can be inspected and freed using
2086 unsigned isl_term_dim(__isl_keep isl_term *term,
2087 enum isl_dim_type type);
2088 void isl_term_get_num(__isl_keep isl_term *term,
2090 void isl_term_get_den(__isl_keep isl_term *term,
2092 int isl_term_get_exp(__isl_keep isl_term *term,
2093 enum isl_dim_type type, unsigned pos);
2094 __isl_give isl_div *isl_term_get_div(
2095 __isl_keep isl_term *term, unsigned pos);
2096 void isl_term_free(__isl_take isl_term *term);
2098 Each term is a product of parameters, set variables and
2099 integer divisions. The function C<isl_term_get_exp>
2100 returns the exponent of a given dimensions in the given term.
2101 The C<isl_int>s in the arguments of C<isl_term_get_num>
2102 and C<isl_term_get_den> need to have been initialized
2103 using C<isl_int_init> before calling these functions.
2105 =head3 Properties of (Piecewise) Quasipolynomials
2107 To check whether a quasipolynomial is actually a constant,
2108 use the following function.
2110 int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp,
2111 isl_int *n, isl_int *d);
2113 If C<qp> is a constant and if C<n> and C<d> are not C<NULL>
2114 then the numerator and denominator of the constant
2115 are returned in C<*n> and C<*d>, respectively.
2117 =head3 Operations on (Piecewise) Quasipolynomials
2119 __isl_give isl_qpolynomial *isl_qpolynomial_neg(
2120 __isl_take isl_qpolynomial *qp);
2121 __isl_give isl_qpolynomial *isl_qpolynomial_add(
2122 __isl_take isl_qpolynomial *qp1,
2123 __isl_take isl_qpolynomial *qp2);
2124 __isl_give isl_qpolynomial *isl_qpolynomial_sub(
2125 __isl_take isl_qpolynomial *qp1,
2126 __isl_take isl_qpolynomial *qp2);
2127 __isl_give isl_qpolynomial *isl_qpolynomial_mul(
2128 __isl_take isl_qpolynomial *qp1,
2129 __isl_take isl_qpolynomial *qp2);
2130 __isl_give isl_qpolynomial *isl_qpolynomial_pow(
2131 __isl_take isl_qpolynomial *qp, unsigned exponent);
2133 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add(
2134 __isl_take isl_pw_qpolynomial *pwqp1,
2135 __isl_take isl_pw_qpolynomial *pwqp2);
2136 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_sub(
2137 __isl_take isl_pw_qpolynomial *pwqp1,
2138 __isl_take isl_pw_qpolynomial *pwqp2);
2139 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_disjoint(
2140 __isl_take isl_pw_qpolynomial *pwqp1,
2141 __isl_take isl_pw_qpolynomial *pwqp2);
2142 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_neg(
2143 __isl_take isl_pw_qpolynomial *pwqp);
2144 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
2145 __isl_take isl_pw_qpolynomial *pwqp1,
2146 __isl_take isl_pw_qpolynomial *pwqp2);
2148 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add(
2149 __isl_take isl_union_pw_qpolynomial *upwqp1,
2150 __isl_take isl_union_pw_qpolynomial *upwqp2);
2151 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_sub(
2152 __isl_take isl_union_pw_qpolynomial *upwqp1,
2153 __isl_take isl_union_pw_qpolynomial *upwqp2);
2154 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul(
2155 __isl_take isl_union_pw_qpolynomial *upwqp1,
2156 __isl_take isl_union_pw_qpolynomial *upwqp2);
2158 __isl_give isl_qpolynomial *isl_pw_qpolynomial_eval(
2159 __isl_take isl_pw_qpolynomial *pwqp,
2160 __isl_take isl_point *pnt);
2162 __isl_give isl_qpolynomial *isl_union_pw_qpolynomial_eval(
2163 __isl_take isl_union_pw_qpolynomial *upwqp,
2164 __isl_take isl_point *pnt);
2166 __isl_give isl_set *isl_pw_qpolynomial_domain(
2167 __isl_take isl_pw_qpolynomial *pwqp);
2168 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_intersect_domain(
2169 __isl_take isl_pw_qpolynomial *pwpq,
2170 __isl_take isl_set *set);
2172 __isl_give isl_union_set *isl_union_pw_qpolynomial_domain(
2173 __isl_take isl_union_pw_qpolynomial *upwqp);
2174 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_intersect_domain(
2175 __isl_take isl_union_pw_qpolynomial *upwpq,
2176 __isl_take isl_union_set *uset);
2178 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_coalesce(
2179 __isl_take isl_union_pw_qpolynomial *upwqp);
2181 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist(
2182 __isl_take isl_pw_qpolynomial *pwqp,
2183 __isl_take isl_set *context);
2185 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_gist(
2186 __isl_take isl_union_pw_qpolynomial *upwqp,
2187 __isl_take isl_union_set *context);
2189 The gist operation applies the gist operation to each of
2190 the cells in the domain of the input piecewise quasipolynomial.
2191 The context is also exploited
2192 to simplify the quasipolynomials associated to each cell.
2194 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial(
2195 __isl_take isl_pw_qpolynomial *pwqp, int sign);
2196 __isl_give isl_union_pw_qpolynomial *
2197 isl_union_pw_qpolynomial_to_polynomial(
2198 __isl_take isl_union_pw_qpolynomial *upwqp, int sign);
2200 Approximate each quasipolynomial by a polynomial. If C<sign> is positive,
2201 the polynomial will be an overapproximation. If C<sign> is negative,
2202 it will be an underapproximation. If C<sign> is zero, the approximation
2203 will lie somewhere in between.
2205 =head2 Bounds on Piecewise Quasipolynomials and Piecewise Quasipolynomial Reductions
2207 A piecewise quasipolynomial reduction is a piecewise
2208 reduction (or fold) of quasipolynomials.
2209 In particular, the reduction can be maximum or a minimum.
2210 The objects are mainly used to represent the result of
2211 an upper or lower bound on a quasipolynomial over its domain,
2212 i.e., as the result of the following function.
2214 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_bound(
2215 __isl_take isl_pw_qpolynomial *pwqp,
2216 enum isl_fold type, int *tight);
2218 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_bound(
2219 __isl_take isl_union_pw_qpolynomial *upwqp,
2220 enum isl_fold type, int *tight);
2222 The C<type> argument may be either C<isl_fold_min> or C<isl_fold_max>.
2223 If C<tight> is not C<NULL>, then C<*tight> is set to C<1>
2224 is the returned bound is known be tight, i.e., for each value
2225 of the parameters there is at least
2226 one element in the domain that reaches the bound.
2227 If the domain of C<pwqp> is not wrapping, then the bound is computed
2228 over all elements in that domain and the result has a purely parametric
2229 domain. If the domain of C<pwqp> is wrapping, then the bound is
2230 computed over the range of the wrapped relation. The domain of the
2231 wrapped relation becomes the domain of the result.
2233 A (piecewise) quasipolynomial reduction can be copied or freed using the
2234 following functions.
2236 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_copy(
2237 __isl_keep isl_qpolynomial_fold *fold);
2238 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_copy(
2239 __isl_keep isl_pw_qpolynomial_fold *pwf);
2240 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_copy(
2241 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
2242 void isl_qpolynomial_fold_free(
2243 __isl_take isl_qpolynomial_fold *fold);
2244 void isl_pw_qpolynomial_fold_free(
2245 __isl_take isl_pw_qpolynomial_fold *pwf);
2246 void isl_union_pw_qpolynomial_fold_free(
2247 __isl_take isl_union_pw_qpolynomial_fold *upwf);
2249 =head3 Printing Piecewise Quasipolynomial Reductions
2251 Piecewise quasipolynomial reductions can be printed
2252 using the following function.
2254 __isl_give isl_printer *isl_printer_print_pw_qpolynomial_fold(
2255 __isl_take isl_printer *p,
2256 __isl_keep isl_pw_qpolynomial_fold *pwf);
2257 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial_fold(
2258 __isl_take isl_printer *p,
2259 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
2261 For C<isl_printer_print_pw_qpolynomial_fold>,
2262 output format of the printer
2263 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
2264 For C<isl_printer_print_union_pw_qpolynomial_fold>,
2265 output format of the printer
2266 needs to be set to C<ISL_FORMAT_ISL>.
2267 In case of printing in C<ISL_FORMAT_C>, the user may want
2268 to set the names of all dimensions
2270 __isl_give isl_pw_qpolynomial_fold *
2271 isl_pw_qpolynomial_fold_set_dim_name(
2272 __isl_take isl_pw_qpolynomial_fold *pwf,
2273 enum isl_dim_type type, unsigned pos,
2276 =head3 Inspecting (Piecewise) Quasipolynomial Reductions
2278 To iterate over all piecewise quasipolynomial reductions in a union
2279 piecewise quasipolynomial reduction, use the following function
2281 int isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold(
2282 __isl_keep isl_union_pw_qpolynomial_fold *upwf,
2283 int (*fn)(__isl_take isl_pw_qpolynomial_fold *pwf,
2284 void *user), void *user);
2286 To iterate over the cells in a piecewise quasipolynomial reduction,
2287 use either of the following two functions
2289 int isl_pw_qpolynomial_fold_foreach_piece(
2290 __isl_keep isl_pw_qpolynomial_fold *pwf,
2291 int (*fn)(__isl_take isl_set *set,
2292 __isl_take isl_qpolynomial_fold *fold,
2293 void *user), void *user);
2294 int isl_pw_qpolynomial_fold_foreach_lifted_piece(
2295 __isl_keep isl_pw_qpolynomial_fold *pwf,
2296 int (*fn)(__isl_take isl_set *set,
2297 __isl_take isl_qpolynomial_fold *fold,
2298 void *user), void *user);
2300 See L<Inspecting (Piecewise) Quasipolynomials> for an explanation
2301 of the difference between these two functions.
2303 To iterate over all quasipolynomials in a reduction, use
2305 int isl_qpolynomial_fold_foreach_qpolynomial(
2306 __isl_keep isl_qpolynomial_fold *fold,
2307 int (*fn)(__isl_take isl_qpolynomial *qp,
2308 void *user), void *user);
2310 =head3 Operations on Piecewise Quasipolynomial Reductions
2312 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_add(
2313 __isl_take isl_pw_qpolynomial_fold *pwf1,
2314 __isl_take isl_pw_qpolynomial_fold *pwf2);
2316 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_fold(
2317 __isl_take isl_pw_qpolynomial_fold *pwf1,
2318 __isl_take isl_pw_qpolynomial_fold *pwf2);
2320 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_fold(
2321 __isl_take isl_union_pw_qpolynomial_fold *upwf1,
2322 __isl_take isl_union_pw_qpolynomial_fold *upwf2);
2324 __isl_give isl_qpolynomial *isl_pw_qpolynomial_fold_eval(
2325 __isl_take isl_pw_qpolynomial_fold *pwf,
2326 __isl_take isl_point *pnt);
2328 __isl_give isl_qpolynomial *isl_union_pw_qpolynomial_fold_eval(
2329 __isl_take isl_union_pw_qpolynomial_fold *upwf,
2330 __isl_take isl_point *pnt);
2332 __isl_give isl_union_set *isl_union_pw_qpolynomial_fold_domain(
2333 __isl_take isl_union_pw_qpolynomial_fold *upwf);
2334 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_intersect_domain(
2335 __isl_take isl_union_pw_qpolynomial_fold *upwf,
2336 __isl_take isl_union_set *uset);
2338 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_coalesce(
2339 __isl_take isl_pw_qpolynomial_fold *pwf);
2341 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_coalesce(
2342 __isl_take isl_union_pw_qpolynomial_fold *upwf);
2344 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_gist(
2345 __isl_take isl_pw_qpolynomial_fold *pwf,
2346 __isl_take isl_set *context);
2348 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_gist(
2349 __isl_take isl_union_pw_qpolynomial_fold *upwf,
2350 __isl_take isl_union_set *context);
2352 The gist operation applies the gist operation to each of
2353 the cells in the domain of the input piecewise quasipolynomial reduction.
2354 In future, the operation will also exploit the context
2355 to simplify the quasipolynomial reductions associated to each cell.
2357 __isl_give isl_pw_qpolynomial_fold *
2358 isl_set_apply_pw_qpolynomial_fold(
2359 __isl_take isl_set *set,
2360 __isl_take isl_pw_qpolynomial_fold *pwf,
2362 __isl_give isl_pw_qpolynomial_fold *
2363 isl_map_apply_pw_qpolynomial_fold(
2364 __isl_take isl_map *map,
2365 __isl_take isl_pw_qpolynomial_fold *pwf,
2367 __isl_give isl_union_pw_qpolynomial_fold *
2368 isl_union_set_apply_union_pw_qpolynomial_fold(
2369 __isl_take isl_union_set *uset,
2370 __isl_take isl_union_pw_qpolynomial_fold *upwf,
2372 __isl_give isl_union_pw_qpolynomial_fold *
2373 isl_union_map_apply_union_pw_qpolynomial_fold(
2374 __isl_take isl_union_map *umap,
2375 __isl_take isl_union_pw_qpolynomial_fold *upwf,
2378 The functions taking a map
2379 compose the given map with the given piecewise quasipolynomial reduction.
2380 That is, compute a bound (of the same type as C<pwf> or C<upwf> itself)
2381 over all elements in the intersection of the range of the map
2382 and the domain of the piecewise quasipolynomial reduction
2383 as a function of an element in the domain of the map.
2384 The functions taking a set compute a bound over all elements in the
2385 intersection of the set and the domain of the
2386 piecewise quasipolynomial reduction.
2388 =head2 Dependence Analysis
2390 C<isl> contains specialized functionality for performing
2391 array dataflow analysis. That is, given a I<sink> access relation
2392 and a collection of possible I<source> access relations,
2393 C<isl> can compute relations that describe
2394 for each iteration of the sink access, which iteration
2395 of which of the source access relations was the last
2396 to access the same data element before the given iteration
2398 To compute standard flow dependences, the sink should be
2399 a read, while the sources should be writes.
2400 If any of the source accesses are marked as being I<may>
2401 accesses, then there will be a dependence to the last
2402 I<must> access B<and> to any I<may> access that follows
2403 this last I<must> access.
2404 In particular, if I<all> sources are I<may> accesses,
2405 then memory based dependence analysis is performed.
2406 If, on the other hand, all sources are I<must> accesses,
2407 then value based dependence analysis is performed.
2409 #include <isl/flow.h>
2411 typedef int (*isl_access_level_before)(void *first, void *second);
2413 __isl_give isl_access_info *isl_access_info_alloc(
2414 __isl_take isl_map *sink,
2415 void *sink_user, isl_access_level_before fn,
2417 __isl_give isl_access_info *isl_access_info_add_source(
2418 __isl_take isl_access_info *acc,
2419 __isl_take isl_map *source, int must,
2421 void isl_access_info_free(__isl_take isl_access_info *acc);
2423 __isl_give isl_flow *isl_access_info_compute_flow(
2424 __isl_take isl_access_info *acc);
2426 int isl_flow_foreach(__isl_keep isl_flow *deps,
2427 int (*fn)(__isl_take isl_map *dep, int must,
2428 void *dep_user, void *user),
2430 __isl_give isl_map *isl_flow_get_no_source(
2431 __isl_keep isl_flow *deps, int must);
2432 void isl_flow_free(__isl_take isl_flow *deps);
2434 The function C<isl_access_info_compute_flow> performs the actual
2435 dependence analysis. The other functions are used to construct
2436 the input for this function or to read off the output.
2438 The input is collected in an C<isl_access_info>, which can
2439 be created through a call to C<isl_access_info_alloc>.
2440 The arguments to this functions are the sink access relation
2441 C<sink>, a token C<sink_user> used to identify the sink
2442 access to the user, a callback function for specifying the
2443 relative order of source and sink accesses, and the number
2444 of source access relations that will be added.
2445 The callback function has type C<int (*)(void *first, void *second)>.
2446 The function is called with two user supplied tokens identifying
2447 either a source or the sink and it should return the shared nesting
2448 level and the relative order of the two accesses.
2449 In particular, let I<n> be the number of loops shared by
2450 the two accesses. If C<first> precedes C<second> textually,
2451 then the function should return I<2 * n + 1>; otherwise,
2452 it should return I<2 * n>.
2453 The sources can be added to the C<isl_access_info> by performing
2454 (at most) C<max_source> calls to C<isl_access_info_add_source>.
2455 C<must> indicates whether the source is a I<must> access
2456 or a I<may> access. Note that a multi-valued access relation
2457 should only be marked I<must> if every iteration in the domain
2458 of the relation accesses I<all> elements in its image.
2459 The C<source_user> token is again used to identify
2460 the source access. The range of the source access relation
2461 C<source> should have the same dimension as the range
2462 of the sink access relation.
2463 The C<isl_access_info_free> function should usually not be
2464 called explicitly, because it is called implicitly by
2465 C<isl_access_info_compute_flow>.
2467 The result of the dependence analysis is collected in an
2468 C<isl_flow>. There may be elements of
2469 the sink access for which no preceding source access could be
2470 found or for which all preceding sources are I<may> accesses.
2471 The relations containing these elements can be obtained through
2472 calls to C<isl_flow_get_no_source>, the first with C<must> set
2473 and the second with C<must> unset.
2474 In the case of standard flow dependence analysis,
2475 with the sink a read and the sources I<must> writes,
2476 the first relation corresponds to the reads from uninitialized
2477 array elements and the second relation is empty.
2478 The actual flow dependences can be extracted using
2479 C<isl_flow_foreach>. This function will call the user-specified
2480 callback function C<fn> for each B<non-empty> dependence between
2481 a source and the sink. The callback function is called
2482 with four arguments, the actual flow dependence relation
2483 mapping source iterations to sink iterations, a boolean that
2484 indicates whether it is a I<must> or I<may> dependence, a token
2485 identifying the source and an additional C<void *> with value
2486 equal to the third argument of the C<isl_flow_foreach> call.
2487 A dependence is marked I<must> if it originates from a I<must>
2488 source and if it is not followed by any I<may> sources.
2490 After finishing with an C<isl_flow>, the user should call
2491 C<isl_flow_free> to free all associated memory.
2493 A higher-level interface to dependence analysis is provided
2494 by the following function.
2496 #include <isl/flow.h>
2498 int isl_union_map_compute_flow(__isl_take isl_union_map *sink,
2499 __isl_take isl_union_map *must_source,
2500 __isl_take isl_union_map *may_source,
2501 __isl_take isl_union_map *schedule,
2502 __isl_give isl_union_map **must_dep,
2503 __isl_give isl_union_map **may_dep,
2504 __isl_give isl_union_map **must_no_source,
2505 __isl_give isl_union_map **may_no_source);
2507 The arrays are identified by the tuple names of the ranges
2508 of the accesses. The iteration domains by the tuple names
2509 of the domains of the accesses and of the schedule.
2510 The relative order of the iteration domains is given by the
2511 schedule. The relations returned through C<must_no_source>
2512 and C<may_no_source> are subsets of C<sink>.
2513 Any of C<must_dep>, C<may_dep>, C<must_no_source>
2514 or C<may_no_source> may be C<NULL>, but a C<NULL> value for
2515 any of the other arguments is treated as an error.
2517 =head2 Parametric Vertex Enumeration
2519 The parametric vertex enumeration described in this section
2520 is mainly intended to be used internally and by the C<barvinok>
2523 #include <isl/vertices.h>
2524 __isl_give isl_vertices *isl_basic_set_compute_vertices(
2525 __isl_keep isl_basic_set *bset);
2527 The function C<isl_basic_set_compute_vertices> performs the
2528 actual computation of the parametric vertices and the chamber
2529 decomposition and store the result in an C<isl_vertices> object.
2530 This information can be queried by either iterating over all
2531 the vertices or iterating over all the chambers or cells
2532 and then iterating over all vertices that are active on the chamber.
2534 int isl_vertices_foreach_vertex(
2535 __isl_keep isl_vertices *vertices,
2536 int (*fn)(__isl_take isl_vertex *vertex, void *user),
2539 int isl_vertices_foreach_cell(
2540 __isl_keep isl_vertices *vertices,
2541 int (*fn)(__isl_take isl_cell *cell, void *user),
2543 int isl_cell_foreach_vertex(__isl_keep isl_cell *cell,
2544 int (*fn)(__isl_take isl_vertex *vertex, void *user),
2547 Other operations that can be performed on an C<isl_vertices> object are
2550 isl_ctx *isl_vertices_get_ctx(
2551 __isl_keep isl_vertices *vertices);
2552 int isl_vertices_get_n_vertices(
2553 __isl_keep isl_vertices *vertices);
2554 void isl_vertices_free(__isl_take isl_vertices *vertices);
2556 Vertices can be inspected and destroyed using the following functions.
2558 isl_ctx *isl_vertex_get_ctx(__isl_keep isl_vertex *vertex);
2559 int isl_vertex_get_id(__isl_keep isl_vertex *vertex);
2560 __isl_give isl_basic_set *isl_vertex_get_domain(
2561 __isl_keep isl_vertex *vertex);
2562 __isl_give isl_basic_set *isl_vertex_get_expr(
2563 __isl_keep isl_vertex *vertex);
2564 void isl_vertex_free(__isl_take isl_vertex *vertex);
2566 C<isl_vertex_get_expr> returns a singleton parametric set describing
2567 the vertex, while C<isl_vertex_get_domain> returns the activity domain
2569 Note that C<isl_vertex_get_domain> and C<isl_vertex_get_expr> return
2570 B<rational> basic sets, so they should mainly be used for inspection
2571 and should not be mixed with integer sets.
2573 Chambers can be inspected and destroyed using the following functions.
2575 isl_ctx *isl_cell_get_ctx(__isl_keep isl_cell *cell);
2576 __isl_give isl_basic_set *isl_cell_get_domain(
2577 __isl_keep isl_cell *cell);
2578 void isl_cell_free(__isl_take isl_cell *cell);
2582 Although C<isl> is mainly meant to be used as a library,
2583 it also contains some basic applications that use some
2584 of the functionality of C<isl>.
2585 The input may be specified in either the L<isl format>
2586 or the L<PolyLib format>.
2588 =head2 C<isl_polyhedron_sample>
2590 C<isl_polyhedron_sample> takes a polyhedron as input and prints
2591 an integer element of the polyhedron, if there is any.
2592 The first column in the output is the denominator and is always
2593 equal to 1. If the polyhedron contains no integer points,
2594 then a vector of length zero is printed.
2598 C<isl_pip> takes the same input as the C<example> program
2599 from the C<piplib> distribution, i.e., a set of constraints
2600 on the parameters, a line containing only -1 and finally a set
2601 of constraints on a parametric polyhedron.
2602 The coefficients of the parameters appear in the last columns
2603 (but before the final constant column).
2604 The output is the lexicographic minimum of the parametric polyhedron.
2605 As C<isl> currently does not have its own output format, the output
2606 is just a dump of the internal state.
2608 =head2 C<isl_polyhedron_minimize>
2610 C<isl_polyhedron_minimize> computes the minimum of some linear
2611 or affine objective function over the integer points in a polyhedron.
2612 If an affine objective function
2613 is given, then the constant should appear in the last column.
2615 =head2 C<isl_polytope_scan>
2617 Given a polytope, C<isl_polytope_scan> prints
2618 all integer points in the polytope.
2620 =head1 C<isl-polylib>
2622 The C<isl-polylib> library provides the following functions for converting
2623 between C<isl> objects and C<PolyLib> objects.
2624 The library is distributed separately for licensing reasons.
2626 #include <isl_set_polylib.h>
2627 __isl_give isl_basic_set *isl_basic_set_new_from_polylib(
2628 Polyhedron *P, __isl_take isl_dim *dim);
2629 Polyhedron *isl_basic_set_to_polylib(
2630 __isl_keep isl_basic_set *bset);
2631 __isl_give isl_set *isl_set_new_from_polylib(Polyhedron *D,
2632 __isl_take isl_dim *dim);
2633 Polyhedron *isl_set_to_polylib(__isl_keep isl_set *set);
2635 #include <isl_map_polylib.h>
2636 __isl_give isl_basic_map *isl_basic_map_new_from_polylib(
2637 Polyhedron *P, __isl_take isl_dim *dim);
2638 __isl_give isl_map *isl_map_new_from_polylib(Polyhedron *D,
2639 __isl_take isl_dim *dim);
2640 Polyhedron *isl_basic_map_to_polylib(
2641 __isl_keep isl_basic_map *bmap);
2642 Polyhedron *isl_map_to_polylib(__isl_keep isl_map *map);