3 C<isl> is a thread-safe C library for manipulating
4 sets and relations of integer points bounded by affine constraints.
5 The descriptions of the sets and relations may involve
6 both parameters and existentially quantified variables.
7 All computations are performed in exact integer arithmetic
9 The C<isl> library offers functionality that is similar
10 to that offered by the C<Omega> and C<Omega+> libraries,
11 but the underlying algorithms are in most cases completely different.
13 The library is by no means complete and some fairly basic
14 functionality is still missing.
15 Still, even in its current form, the library has been successfully
16 used as a backend polyhedral library for the polyhedral
17 scanner C<CLooG> and as part of an equivalence checker of
18 static affine programs.
19 For bug reports, feature requests and questions,
20 visit the the discussion group at
21 L<http://groups.google.com/group/isl-development>.
23 =head2 Backward Incompatible Changes
25 =head3 Changes since isl-0.02
29 =item * The old printing functions have been deprecated
30 and replaced by C<isl_printer> functions, see L<Input and Output>.
32 =item * Most functions related to dependence analysis have acquired
33 an extra C<must> argument. To obtain the old behavior, this argument
34 should be given the value 1. See L<Dependence Analysis>.
38 =head3 Changes since isl-0.03
42 =item * The function C<isl_pw_qpolynomial_fold_add> has been
43 renamed to C<isl_pw_qpolynomial_fold_fold>.
44 Similarly, C<isl_union_pw_qpolynomial_fold_add> has been
45 renamed to C<isl_union_pw_qpolynomial_fold_fold>.
49 =head3 Changes since isl-0.04
53 =item * All header files have been renamed from C<isl_header.h>
58 =head3 Changes since isl-0.05
62 =item * The functions C<isl_printer_print_basic_set> and
63 C<isl_printer_print_basic_map> no longer print a newline.
65 =item * The functions C<isl_flow_get_no_source>
66 and C<isl_union_map_compute_flow> now return
67 the accesses for which no source could be found instead of
68 the iterations where those accesses occur.
70 =item * The functions C<isl_basic_map_identity> and
71 C<isl_map_identity> now take a B<map> space as input. An old call
72 C<isl_map_identity(space)> can be rewritten to
73 C<isl_map_identity(isl_space_map_from_set(space))>.
75 =item * The function C<isl_map_power> no longer takes
76 a parameter position as input. Instead, the exponent
77 is now expressed as the domain of the resulting relation.
81 =head3 Changes since isl-0.06
85 =item * The format of C<isl_printer_print_qpolynomial>'s
86 C<ISL_FORMAT_ISL> output has changed.
87 Use C<ISL_FORMAT_C> to obtain the old output.
89 =item * The C<*_fast_*> functions have been renamed to C<*_plain_*>.
90 Some of the old names have been kept for backward compatibility,
91 but they will be removed in the future.
95 =head3 Changes since isl-0.07
99 =item * The function C<isl_pw_aff_max> has been renamed to
100 C<isl_pw_aff_union_max>.
102 =item * The C<isl_dim> type has been renamed to C<isl_space>
103 along with the associated functions.
104 Some of the old names have been kept for backward compatibility,
105 but they will be removed in the future.
111 The source of C<isl> can be obtained either as a tarball
112 or from the git repository. Both are available from
113 L<http://freshmeat.net/projects/isl/>.
114 The installation process depends on how you obtained
117 =head2 Installation from the git repository
121 =item 1 Clone or update the repository
123 The first time the source is obtained, you need to clone
126 git clone git://repo.or.cz/isl.git
128 To obtain updates, you need to pull in the latest changes
132 =item 2 Generate C<configure>
138 After performing the above steps, continue
139 with the L<Common installation instructions>.
141 =head2 Common installation instructions
145 =item 1 Obtain C<GMP>
147 Building C<isl> requires C<GMP>, including its headers files.
148 Your distribution may not provide these header files by default
149 and you may need to install a package called C<gmp-devel> or something
150 similar. Alternatively, C<GMP> can be built from
151 source, available from L<http://gmplib.org/>.
155 C<isl> uses the standard C<autoconf> C<configure> script.
160 optionally followed by some configure options.
161 A complete list of options can be obtained by running
165 Below we discuss some of the more common options.
167 C<isl> can optionally use C<piplib>, but no
168 C<piplib> functionality is currently used by default.
169 The C<--with-piplib> option can
170 be used to specify which C<piplib>
171 library to use, either an installed version (C<system>),
172 an externally built version (C<build>)
173 or no version (C<no>). The option C<build> is mostly useful
174 in C<configure> scripts of larger projects that bundle both C<isl>
181 Installation prefix for C<isl>
183 =item C<--with-gmp-prefix>
185 Installation prefix for C<GMP> (architecture-independent files).
187 =item C<--with-gmp-exec-prefix>
189 Installation prefix for C<GMP> (architecture-dependent files).
191 =item C<--with-piplib>
193 Which copy of C<piplib> to use, either C<no> (default), C<system> or C<build>.
195 =item C<--with-piplib-prefix>
197 Installation prefix for C<system> C<piplib> (architecture-independent files).
199 =item C<--with-piplib-exec-prefix>
201 Installation prefix for C<system> C<piplib> (architecture-dependent files).
203 =item C<--with-piplib-builddir>
205 Location where C<build> C<piplib> was built.
213 =item 4 Install (optional)
221 =head2 Initialization
223 All manipulations of integer sets and relations occur within
224 the context of an C<isl_ctx>.
225 A given C<isl_ctx> can only be used within a single thread.
226 All arguments of a function are required to have been allocated
227 within the same context.
228 There are currently no functions available for moving an object
229 from one C<isl_ctx> to another C<isl_ctx>. This means that
230 there is currently no way of safely moving an object from one
231 thread to another, unless the whole C<isl_ctx> is moved.
233 An C<isl_ctx> can be allocated using C<isl_ctx_alloc> and
234 freed using C<isl_ctx_free>.
235 All objects allocated within an C<isl_ctx> should be freed
236 before the C<isl_ctx> itself is freed.
238 isl_ctx *isl_ctx_alloc();
239 void isl_ctx_free(isl_ctx *ctx);
243 All operations on integers, mainly the coefficients
244 of the constraints describing the sets and relations,
245 are performed in exact integer arithmetic using C<GMP>.
246 However, to allow future versions of C<isl> to optionally
247 support fixed integer arithmetic, all calls to C<GMP>
248 are wrapped inside C<isl> specific macros.
249 The basic type is C<isl_int> and the operations below
250 are available on this type.
251 The meanings of these operations are essentially the same
252 as their C<GMP> C<mpz_> counterparts.
253 As always with C<GMP> types, C<isl_int>s need to be
254 initialized with C<isl_int_init> before they can be used
255 and they need to be released with C<isl_int_clear>
257 The user should not assume that an C<isl_int> is represented
258 as a C<mpz_t>, but should instead explicitly convert between
259 C<mpz_t>s and C<isl_int>s using C<isl_int_set_gmp> and
260 C<isl_int_get_gmp> whenever a C<mpz_t> is required.
264 =item isl_int_init(i)
266 =item isl_int_clear(i)
268 =item isl_int_set(r,i)
270 =item isl_int_set_si(r,i)
272 =item isl_int_set_gmp(r,g)
274 =item isl_int_get_gmp(i,g)
276 =item isl_int_abs(r,i)
278 =item isl_int_neg(r,i)
280 =item isl_int_swap(i,j)
282 =item isl_int_swap_or_set(i,j)
284 =item isl_int_add_ui(r,i,j)
286 =item isl_int_sub_ui(r,i,j)
288 =item isl_int_add(r,i,j)
290 =item isl_int_sub(r,i,j)
292 =item isl_int_mul(r,i,j)
294 =item isl_int_mul_ui(r,i,j)
296 =item isl_int_addmul(r,i,j)
298 =item isl_int_submul(r,i,j)
300 =item isl_int_gcd(r,i,j)
302 =item isl_int_lcm(r,i,j)
304 =item isl_int_divexact(r,i,j)
306 =item isl_int_cdiv_q(r,i,j)
308 =item isl_int_fdiv_q(r,i,j)
310 =item isl_int_fdiv_r(r,i,j)
312 =item isl_int_fdiv_q_ui(r,i,j)
314 =item isl_int_read(r,s)
316 =item isl_int_print(out,i,width)
320 =item isl_int_cmp(i,j)
322 =item isl_int_cmp_si(i,si)
324 =item isl_int_eq(i,j)
326 =item isl_int_ne(i,j)
328 =item isl_int_lt(i,j)
330 =item isl_int_le(i,j)
332 =item isl_int_gt(i,j)
334 =item isl_int_ge(i,j)
336 =item isl_int_abs_eq(i,j)
338 =item isl_int_abs_ne(i,j)
340 =item isl_int_abs_lt(i,j)
342 =item isl_int_abs_gt(i,j)
344 =item isl_int_abs_ge(i,j)
346 =item isl_int_is_zero(i)
348 =item isl_int_is_one(i)
350 =item isl_int_is_negone(i)
352 =item isl_int_is_pos(i)
354 =item isl_int_is_neg(i)
356 =item isl_int_is_nonpos(i)
358 =item isl_int_is_nonneg(i)
360 =item isl_int_is_divisible_by(i,j)
364 =head2 Sets and Relations
366 C<isl> uses six types of objects for representing sets and relations,
367 C<isl_basic_set>, C<isl_basic_map>, C<isl_set>, C<isl_map>,
368 C<isl_union_set> and C<isl_union_map>.
369 C<isl_basic_set> and C<isl_basic_map> represent sets and relations that
370 can be described as a conjunction of affine constraints, while
371 C<isl_set> and C<isl_map> represent unions of
372 C<isl_basic_set>s and C<isl_basic_map>s, respectively.
373 However, all C<isl_basic_set>s or C<isl_basic_map>s in the union need
374 to live in the same space. C<isl_union_set>s and C<isl_union_map>s
375 represent unions of C<isl_set>s or C<isl_map>s in I<different> spaces,
376 where spaces are considered different if they have a different number
377 of dimensions and/or different names (see L<"Spaces">).
378 The difference between sets and relations (maps) is that sets have
379 one set of variables, while relations have two sets of variables,
380 input variables and output variables.
382 =head2 Memory Management
384 Since a high-level operation on sets and/or relations usually involves
385 several substeps and since the user is usually not interested in
386 the intermediate results, most functions that return a new object
387 will also release all the objects passed as arguments.
388 If the user still wants to use one or more of these arguments
389 after the function call, she should pass along a copy of the
390 object rather than the object itself.
391 The user is then responsible for making sure that the original
392 object gets used somewhere else or is explicitly freed.
394 The arguments and return values of all documented functions are
395 annotated to make clear which arguments are released and which
396 arguments are preserved. In particular, the following annotations
403 C<__isl_give> means that a new object is returned.
404 The user should make sure that the returned pointer is
405 used exactly once as a value for an C<__isl_take> argument.
406 In between, it can be used as a value for as many
407 C<__isl_keep> arguments as the user likes.
408 There is one exception, and that is the case where the
409 pointer returned is C<NULL>. Is this case, the user
410 is free to use it as an C<__isl_take> argument or not.
414 C<__isl_take> means that the object the argument points to
415 is taken over by the function and may no longer be used
416 by the user as an argument to any other function.
417 The pointer value must be one returned by a function
418 returning an C<__isl_give> pointer.
419 If the user passes in a C<NULL> value, then this will
420 be treated as an error in the sense that the function will
421 not perform its usual operation. However, it will still
422 make sure that all the other C<__isl_take> arguments
427 C<__isl_keep> means that the function will only use the object
428 temporarily. After the function has finished, the user
429 can still use it as an argument to other functions.
430 A C<NULL> value will be treated in the same way as
431 a C<NULL> value for an C<__isl_take> argument.
437 Identifiers are used to identify both individual dimensions
438 and tuples of dimensions. They consist of a name and an optional
439 pointer. Identifiers with the same name but different pointer values
440 are considered to be distinct.
441 Identifiers can be constructed, copied, freed, inspected and printed
442 using the following functions.
445 __isl_give isl_id *isl_id_alloc(isl_ctx *ctx,
446 __isl_keep const char *name, void *user);
447 __isl_give isl_id *isl_id_copy(isl_id *id);
448 void *isl_id_free(__isl_take isl_id *id);
450 isl_ctx *isl_id_get_ctx(__isl_keep isl_id *id);
451 void *isl_id_get_user(__isl_keep isl_id *id);
452 __isl_keep const char *isl_id_get_name(__isl_keep isl_id *id);
454 __isl_give isl_printer *isl_printer_print_id(
455 __isl_take isl_printer *p, __isl_keep isl_id *id);
457 Note that C<isl_id_get_name> returns a pointer to some internal
458 data structure, so the result can only be used while the
459 corresponding C<isl_id> is alive.
463 Whenever a new set or relation is created from scratch,
464 the space in which it lives needs to be specified using an C<isl_space>.
466 #include <isl/space.h>
467 __isl_give isl_space *isl_space_alloc(isl_ctx *ctx,
468 unsigned nparam, unsigned n_in, unsigned n_out);
469 __isl_give isl_space *isl_space_params_alloc(isl_ctx *ctx,
471 __isl_give isl_space *isl_space_set_alloc(isl_ctx *ctx,
472 unsigned nparam, unsigned dim);
473 __isl_give isl_space *isl_space_copy(__isl_keep isl_space *space);
474 void isl_space_free(__isl_take isl_space *space);
475 unsigned isl_space_dim(__isl_keep isl_space *space,
476 enum isl_dim_type type);
478 The space used for creating a parameter domain
479 needs to be created using C<isl_space_params_alloc>.
480 For other sets, the space
481 needs to be created using C<isl_space_set_alloc>, while
482 for a relation, the space
483 needs to be created using C<isl_space_alloc>.
484 C<isl_space_dim> can be used
485 to find out the number of dimensions of each type in
486 a space, where type may be
487 C<isl_dim_param>, C<isl_dim_in> (only for relations),
488 C<isl_dim_out> (only for relations), C<isl_dim_set>
489 (only for sets) or C<isl_dim_all>.
491 It is often useful to create objects that live in the
492 same space as some other object. This can be accomplished
493 by creating the new objects
494 (see L<Creating New Sets and Relations> or
495 L<Creating New (Piecewise) Quasipolynomials>) based on the space
496 of the original object.
499 __isl_give isl_space *isl_basic_set_get_space(
500 __isl_keep isl_basic_set *bset);
501 __isl_give isl_space *isl_set_get_space(__isl_keep isl_set *set);
503 #include <isl/union_set.h>
504 __isl_give isl_space *isl_union_set_get_space(
505 __isl_keep isl_union_set *uset);
508 __isl_give isl_space *isl_basic_map_get_space(
509 __isl_keep isl_basic_map *bmap);
510 __isl_give isl_space *isl_map_get_space(__isl_keep isl_map *map);
512 #include <isl/union_map.h>
513 __isl_give isl_space *isl_union_map_get_space(
514 __isl_keep isl_union_map *umap);
516 #include <isl/constraint.h>
517 __isl_give isl_space *isl_constraint_get_space(
518 __isl_keep isl_constraint *constraint);
520 #include <isl/polynomial.h>
521 __isl_give isl_space *isl_qpolynomial_get_space(
522 __isl_keep isl_qpolynomial *qp);
523 __isl_give isl_space *isl_qpolynomial_fold_get_space(
524 __isl_keep isl_qpolynomial_fold *fold);
525 __isl_give isl_space *isl_pw_qpolynomial_get_space(
526 __isl_keep isl_pw_qpolynomial *pwqp);
527 __isl_give isl_space *isl_union_pw_qpolynomial_get_space(
528 __isl_keep isl_union_pw_qpolynomial *upwqp);
529 __isl_give isl_space *isl_union_pw_qpolynomial_fold_get_space(
530 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
533 __isl_give isl_space *isl_aff_get_space(
534 __isl_keep isl_aff *aff);
535 __isl_give isl_space *isl_pw_aff_get_space(
536 __isl_keep isl_pw_aff *pwaff);
538 #include <isl/point.h>
539 __isl_give isl_space *isl_point_get_space(
540 __isl_keep isl_point *pnt);
542 The identifiers or names of the individual dimensions may be set or read off
543 using the following functions.
545 #include <isl/space.h>
546 __isl_give isl_space *isl_space_set_dim_id(
547 __isl_take isl_space *space,
548 enum isl_dim_type type, unsigned pos,
549 __isl_take isl_id *id);
550 int isl_space_has_dim_id(__isl_keep isl_space *space,
551 enum isl_dim_type type, unsigned pos);
552 __isl_give isl_id *isl_space_get_dim_id(
553 __isl_keep isl_space *space,
554 enum isl_dim_type type, unsigned pos);
555 __isl_give isl_space *isl_space_set_dim_name(__isl_take isl_space *space,
556 enum isl_dim_type type, unsigned pos,
557 __isl_keep const char *name);
558 __isl_keep const char *isl_space_get_dim_name(__isl_keep isl_space *space,
559 enum isl_dim_type type, unsigned pos);
561 Note that C<isl_space_get_name> returns a pointer to some internal
562 data structure, so the result can only be used while the
563 corresponding C<isl_space> is alive.
564 Also note that every function that operates on two sets or relations
565 requires that both arguments have the same parameters. This also
566 means that if one of the arguments has named parameters, then the
567 other needs to have named parameters too and the names need to match.
568 Pairs of C<isl_set>, C<isl_map>, C<isl_union_set> and/or C<isl_union_map>
569 arguments may have different parameters (as long as they are named),
570 in which case the result will have as parameters the union of the parameters of
573 Given the identifier of a dimension (typically a parameter),
574 its position can be obtained from the following function.
576 #include <isl/space.h>
577 int isl_space_find_dim_by_id(__isl_keep isl_space *space,
578 enum isl_dim_type type, __isl_keep isl_id *id);
580 The identifiers or names of entire spaces may be set or read off
581 using the following functions.
583 #include <isl/space.h>
584 __isl_give isl_space *isl_space_set_tuple_id(
585 __isl_take isl_space *space,
586 enum isl_dim_type type, __isl_take isl_id *id);
587 __isl_give isl_space *isl_space_reset_tuple_id(
588 __isl_take isl_space *space, enum isl_dim_type type);
589 int isl_space_has_tuple_id(__isl_keep isl_space *space,
590 enum isl_dim_type type);
591 __isl_give isl_id *isl_space_get_tuple_id(
592 __isl_keep isl_space *space, enum isl_dim_type type);
593 __isl_give isl_space *isl_space_set_tuple_name(
594 __isl_take isl_space *space,
595 enum isl_dim_type type, const char *s);
596 const char *isl_space_get_tuple_name(__isl_keep isl_space *space,
597 enum isl_dim_type type);
599 The C<dim> argument needs to be one of C<isl_dim_in>, C<isl_dim_out>
600 or C<isl_dim_set>. As with C<isl_space_get_name>,
601 the C<isl_space_get_tuple_name> function returns a pointer to some internal
603 Binary operations require the corresponding spaces of their arguments
604 to have the same name.
606 Spaces can be nested. In particular, the domain of a set or
607 the domain or range of a relation can be a nested relation.
608 The following functions can be used to construct and deconstruct
611 #include <isl/space.h>
612 int isl_space_is_wrapping(__isl_keep isl_space *space);
613 __isl_give isl_space *isl_space_wrap(__isl_take isl_space *space);
614 __isl_give isl_space *isl_space_unwrap(__isl_take isl_space *space);
616 The input to C<isl_space_is_wrapping> and C<isl_space_unwrap> should
617 be the space of a set, while that of
618 C<isl_space_wrap> should be the space of a relation.
619 Conversely, the output of C<isl_space_unwrap> is the space
620 of a relation, while that of C<isl_space_wrap> is the space of a set.
622 Spaces can be created from other spaces
623 using the following functions.
625 __isl_give isl_space *isl_space_domain(__isl_take isl_space *space);
626 __isl_give isl_space *isl_space_from_domain(__isl_take isl_space *space);
627 __isl_give isl_space *isl_space_range(__isl_take isl_space *space);
628 __isl_give isl_space *isl_space_from_range(__isl_take isl_space *space);
629 __isl_give isl_space *isl_space_params(
630 __isl_take isl_space *space);
631 __isl_give isl_space *isl_space_reverse(__isl_take isl_space *space);
632 __isl_give isl_space *isl_space_join(__isl_take isl_space *left,
633 __isl_take isl_space *right);
634 __isl_give isl_space *isl_space_align_params(
635 __isl_take isl_space *space1, __isl_take isl_space *space2)
636 __isl_give isl_space *isl_space_insert_dims(__isl_take isl_space *space,
637 enum isl_dim_type type, unsigned pos, unsigned n);
638 __isl_give isl_space *isl_space_add_dims(__isl_take isl_space *space,
639 enum isl_dim_type type, unsigned n);
640 __isl_give isl_space *isl_space_drop_dims(__isl_take isl_space *space,
641 enum isl_dim_type type, unsigned first, unsigned n);
642 __isl_give isl_space *isl_space_move_dims(__isl_take isl_space *space,
643 enum isl_dim_type dst_type, unsigned dst_pos,
644 enum isl_dim_type src_type, unsigned src_pos,
646 __isl_give isl_space *isl_space_map_from_set(
647 __isl_take isl_space *space);
648 __isl_give isl_space *isl_space_zip(__isl_take isl_space *space);
650 Note that if dimensions are added or removed from a space, then
651 the name and the internal structure are lost.
655 A local space is essentially a space with
656 zero or more existentially quantified variables.
657 The local space of a basic set or relation can be obtained
658 using the following functions.
661 __isl_give isl_local_space *isl_basic_set_get_local_space(
662 __isl_keep isl_basic_set *bset);
665 __isl_give isl_local_space *isl_basic_map_get_local_space(
666 __isl_keep isl_basic_map *bmap);
668 A new local space can be created from a space using
670 #include <isl/local_space.h>
671 __isl_give isl_local_space *isl_local_space_from_space(
672 __isl_take isl_space *space);
674 They can be inspected, copied and freed using the following functions.
676 #include <isl/local_space.h>
677 isl_ctx *isl_local_space_get_ctx(
678 __isl_keep isl_local_space *ls);
679 int isl_local_space_dim(__isl_keep isl_local_space *ls,
680 enum isl_dim_type type);
681 const char *isl_local_space_get_dim_name(
682 __isl_keep isl_local_space *ls,
683 enum isl_dim_type type, unsigned pos);
684 __isl_give isl_local_space *isl_local_space_set_dim_name(
685 __isl_take isl_local_space *ls,
686 enum isl_dim_type type, unsigned pos, const char *s);
687 __isl_give isl_space *isl_local_space_get_space(
688 __isl_keep isl_local_space *ls);
689 __isl_give isl_div *isl_local_space_get_div(
690 __isl_keep isl_local_space *ls, int pos);
691 __isl_give isl_local_space *isl_local_space_copy(
692 __isl_keep isl_local_space *ls);
693 void *isl_local_space_free(__isl_take isl_local_space *ls);
695 Two local spaces can be compared using
697 int isl_local_space_is_equal(__isl_keep isl_local_space *ls1,
698 __isl_keep isl_local_space *ls2);
700 Local spaces can be created from other local spaces
701 using the following functions.
703 __isl_give isl_local_space *isl_local_space_from_domain(
704 __isl_take isl_local_space *ls);
705 __isl_give isl_local_space *isl_local_space_add_dims(
706 __isl_take isl_local_space *ls,
707 enum isl_dim_type type, unsigned n);
708 __isl_give isl_local_space *isl_local_space_insert_dims(
709 __isl_take isl_local_space *ls,
710 enum isl_dim_type type, unsigned first, unsigned n);
711 __isl_give isl_local_space *isl_local_space_drop_dims(
712 __isl_take isl_local_space *ls,
713 enum isl_dim_type type, unsigned first, unsigned n);
715 =head2 Input and Output
717 C<isl> supports its own input/output format, which is similar
718 to the C<Omega> format, but also supports the C<PolyLib> format
723 The C<isl> format is similar to that of C<Omega>, but has a different
724 syntax for describing the parameters and allows for the definition
725 of an existentially quantified variable as the integer division
726 of an affine expression.
727 For example, the set of integers C<i> between C<0> and C<n>
728 such that C<i % 10 <= 6> can be described as
730 [n] -> { [i] : exists (a = [i/10] : 0 <= i and i <= n and
733 A set or relation can have several disjuncts, separated
734 by the keyword C<or>. Each disjunct is either a conjunction
735 of constraints or a projection (C<exists>) of a conjunction
736 of constraints. The constraints are separated by the keyword
739 =head3 C<PolyLib> format
741 If the represented set is a union, then the first line
742 contains a single number representing the number of disjuncts.
743 Otherwise, a line containing the number C<1> is optional.
745 Each disjunct is represented by a matrix of constraints.
746 The first line contains two numbers representing
747 the number of rows and columns,
748 where the number of rows is equal to the number of constraints
749 and the number of columns is equal to two plus the number of variables.
750 The following lines contain the actual rows of the constraint matrix.
751 In each row, the first column indicates whether the constraint
752 is an equality (C<0>) or inequality (C<1>). The final column
753 corresponds to the constant term.
755 If the set is parametric, then the coefficients of the parameters
756 appear in the last columns before the constant column.
757 The coefficients of any existentially quantified variables appear
758 between those of the set variables and those of the parameters.
760 =head3 Extended C<PolyLib> format
762 The extended C<PolyLib> format is nearly identical to the
763 C<PolyLib> format. The only difference is that the line
764 containing the number of rows and columns of a constraint matrix
765 also contains four additional numbers:
766 the number of output dimensions, the number of input dimensions,
767 the number of local dimensions (i.e., the number of existentially
768 quantified variables) and the number of parameters.
769 For sets, the number of ``output'' dimensions is equal
770 to the number of set dimensions, while the number of ``input''
776 __isl_give isl_basic_set *isl_basic_set_read_from_file(
777 isl_ctx *ctx, FILE *input, int nparam);
778 __isl_give isl_basic_set *isl_basic_set_read_from_str(
779 isl_ctx *ctx, const char *str, int nparam);
780 __isl_give isl_set *isl_set_read_from_file(isl_ctx *ctx,
781 FILE *input, int nparam);
782 __isl_give isl_set *isl_set_read_from_str(isl_ctx *ctx,
783 const char *str, int nparam);
786 __isl_give isl_basic_map *isl_basic_map_read_from_file(
787 isl_ctx *ctx, FILE *input, int nparam);
788 __isl_give isl_basic_map *isl_basic_map_read_from_str(
789 isl_ctx *ctx, const char *str, int nparam);
790 __isl_give isl_map *isl_map_read_from_file(
791 isl_ctx *ctx, FILE *input, int nparam);
792 __isl_give isl_map *isl_map_read_from_str(isl_ctx *ctx,
793 const char *str, int nparam);
795 #include <isl/union_set.h>
796 __isl_give isl_union_set *isl_union_set_read_from_file(
797 isl_ctx *ctx, FILE *input);
798 __isl_give isl_union_set *isl_union_set_read_from_str(
799 isl_ctx *ctx, const char *str);
801 #include <isl/union_map.h>
802 __isl_give isl_union_map *isl_union_map_read_from_file(
803 isl_ctx *ctx, FILE *input);
804 __isl_give isl_union_map *isl_union_map_read_from_str(
805 isl_ctx *ctx, const char *str);
807 The input format is autodetected and may be either the C<PolyLib> format
808 or the C<isl> format.
809 C<nparam> specifies how many of the final columns in
810 the C<PolyLib> format correspond to parameters.
811 If input is given in the C<isl> format, then the number
812 of parameters needs to be equal to C<nparam>.
813 If C<nparam> is negative, then any number of parameters
814 is accepted in the C<isl> format and zero parameters
815 are assumed in the C<PolyLib> format.
819 Before anything can be printed, an C<isl_printer> needs to
822 __isl_give isl_printer *isl_printer_to_file(isl_ctx *ctx,
824 __isl_give isl_printer *isl_printer_to_str(isl_ctx *ctx);
825 void isl_printer_free(__isl_take isl_printer *printer);
826 __isl_give char *isl_printer_get_str(
827 __isl_keep isl_printer *printer);
829 The behavior of the printer can be modified in various ways
831 __isl_give isl_printer *isl_printer_set_output_format(
832 __isl_take isl_printer *p, int output_format);
833 __isl_give isl_printer *isl_printer_set_indent(
834 __isl_take isl_printer *p, int indent);
835 __isl_give isl_printer *isl_printer_indent(
836 __isl_take isl_printer *p, int indent);
837 __isl_give isl_printer *isl_printer_set_prefix(
838 __isl_take isl_printer *p, const char *prefix);
839 __isl_give isl_printer *isl_printer_set_suffix(
840 __isl_take isl_printer *p, const char *suffix);
842 The C<output_format> may be either C<ISL_FORMAT_ISL>, C<ISL_FORMAT_OMEGA>,
843 C<ISL_FORMAT_POLYLIB>, C<ISL_FORMAT_EXT_POLYLIB> or C<ISL_FORMAT_LATEX>
844 and defaults to C<ISL_FORMAT_ISL>.
845 Each line in the output is indented by C<indent> (set by
846 C<isl_printer_set_indent>) spaces
847 (default: 0), prefixed by C<prefix> and suffixed by C<suffix>.
848 In the C<PolyLib> format output,
849 the coefficients of the existentially quantified variables
850 appear between those of the set variables and those
852 The function C<isl_printer_indent> increases the indentation
853 by the specified amount (which may be negative).
855 To actually print something, use
858 __isl_give isl_printer *isl_printer_print_basic_set(
859 __isl_take isl_printer *printer,
860 __isl_keep isl_basic_set *bset);
861 __isl_give isl_printer *isl_printer_print_set(
862 __isl_take isl_printer *printer,
863 __isl_keep isl_set *set);
866 __isl_give isl_printer *isl_printer_print_basic_map(
867 __isl_take isl_printer *printer,
868 __isl_keep isl_basic_map *bmap);
869 __isl_give isl_printer *isl_printer_print_map(
870 __isl_take isl_printer *printer,
871 __isl_keep isl_map *map);
873 #include <isl/union_set.h>
874 __isl_give isl_printer *isl_printer_print_union_set(
875 __isl_take isl_printer *p,
876 __isl_keep isl_union_set *uset);
878 #include <isl/union_map.h>
879 __isl_give isl_printer *isl_printer_print_union_map(
880 __isl_take isl_printer *p,
881 __isl_keep isl_union_map *umap);
883 When called on a file printer, the following function flushes
884 the file. When called on a string printer, the buffer is cleared.
886 __isl_give isl_printer *isl_printer_flush(
887 __isl_take isl_printer *p);
889 =head2 Creating New Sets and Relations
891 C<isl> has functions for creating some standard sets and relations.
895 =item * Empty sets and relations
897 __isl_give isl_basic_set *isl_basic_set_empty(
898 __isl_take isl_space *space);
899 __isl_give isl_basic_map *isl_basic_map_empty(
900 __isl_take isl_space *space);
901 __isl_give isl_set *isl_set_empty(
902 __isl_take isl_space *space);
903 __isl_give isl_map *isl_map_empty(
904 __isl_take isl_space *space);
905 __isl_give isl_union_set *isl_union_set_empty(
906 __isl_take isl_space *space);
907 __isl_give isl_union_map *isl_union_map_empty(
908 __isl_take isl_space *space);
910 For C<isl_union_set>s and C<isl_union_map>s, the space
911 is only used to specify the parameters.
913 =item * Universe sets and relations
915 __isl_give isl_basic_set *isl_basic_set_universe(
916 __isl_take isl_space *space);
917 __isl_give isl_basic_map *isl_basic_map_universe(
918 __isl_take isl_space *space);
919 __isl_give isl_set *isl_set_universe(
920 __isl_take isl_space *space);
921 __isl_give isl_map *isl_map_universe(
922 __isl_take isl_space *space);
923 __isl_give isl_union_set *isl_union_set_universe(
924 __isl_take isl_union_set *uset);
925 __isl_give isl_union_map *isl_union_map_universe(
926 __isl_take isl_union_map *umap);
928 The sets and relations constructed by the functions above
929 contain all integer values, while those constructed by the
930 functions below only contain non-negative values.
932 __isl_give isl_basic_set *isl_basic_set_nat_universe(
933 __isl_take isl_space *space);
934 __isl_give isl_basic_map *isl_basic_map_nat_universe(
935 __isl_take isl_space *space);
936 __isl_give isl_set *isl_set_nat_universe(
937 __isl_take isl_space *space);
938 __isl_give isl_map *isl_map_nat_universe(
939 __isl_take isl_space *space);
941 =item * Identity relations
943 __isl_give isl_basic_map *isl_basic_map_identity(
944 __isl_take isl_space *space);
945 __isl_give isl_map *isl_map_identity(
946 __isl_take isl_space *space);
948 The number of input and output dimensions in C<space> needs
951 =item * Lexicographic order
953 __isl_give isl_map *isl_map_lex_lt(
954 __isl_take isl_space *set_space);
955 __isl_give isl_map *isl_map_lex_le(
956 __isl_take isl_space *set_space);
957 __isl_give isl_map *isl_map_lex_gt(
958 __isl_take isl_space *set_space);
959 __isl_give isl_map *isl_map_lex_ge(
960 __isl_take isl_space *set_space);
961 __isl_give isl_map *isl_map_lex_lt_first(
962 __isl_take isl_space *space, unsigned n);
963 __isl_give isl_map *isl_map_lex_le_first(
964 __isl_take isl_space *space, unsigned n);
965 __isl_give isl_map *isl_map_lex_gt_first(
966 __isl_take isl_space *space, unsigned n);
967 __isl_give isl_map *isl_map_lex_ge_first(
968 __isl_take isl_space *space, unsigned n);
970 The first four functions take a space for a B<set>
971 and return relations that express that the elements in the domain
972 are lexicographically less
973 (C<isl_map_lex_lt>), less or equal (C<isl_map_lex_le>),
974 greater (C<isl_map_lex_gt>) or greater or equal (C<isl_map_lex_ge>)
975 than the elements in the range.
976 The last four functions take a space for a map
977 and return relations that express that the first C<n> dimensions
978 in the domain are lexicographically less
979 (C<isl_map_lex_lt_first>), less or equal (C<isl_map_lex_le_first>),
980 greater (C<isl_map_lex_gt_first>) or greater or equal (C<isl_map_lex_ge_first>)
981 than the first C<n> dimensions in the range.
985 A basic set or relation can be converted to a set or relation
986 using the following functions.
988 __isl_give isl_set *isl_set_from_basic_set(
989 __isl_take isl_basic_set *bset);
990 __isl_give isl_map *isl_map_from_basic_map(
991 __isl_take isl_basic_map *bmap);
993 Sets and relations can be converted to union sets and relations
994 using the following functions.
996 __isl_give isl_union_map *isl_union_map_from_map(
997 __isl_take isl_map *map);
998 __isl_give isl_union_set *isl_union_set_from_set(
999 __isl_take isl_set *set);
1001 The inverse conversions below can only be used if the input
1002 union set or relation is known to contain elements in exactly one
1005 __isl_give isl_set *isl_set_from_union_set(
1006 __isl_take isl_union_set *uset);
1007 __isl_give isl_map *isl_map_from_union_map(
1008 __isl_take isl_union_map *umap);
1010 Sets and relations can be copied and freed again using the following
1013 __isl_give isl_basic_set *isl_basic_set_copy(
1014 __isl_keep isl_basic_set *bset);
1015 __isl_give isl_set *isl_set_copy(__isl_keep isl_set *set);
1016 __isl_give isl_union_set *isl_union_set_copy(
1017 __isl_keep isl_union_set *uset);
1018 __isl_give isl_basic_map *isl_basic_map_copy(
1019 __isl_keep isl_basic_map *bmap);
1020 __isl_give isl_map *isl_map_copy(__isl_keep isl_map *map);
1021 __isl_give isl_union_map *isl_union_map_copy(
1022 __isl_keep isl_union_map *umap);
1023 void isl_basic_set_free(__isl_take isl_basic_set *bset);
1024 void isl_set_free(__isl_take isl_set *set);
1025 void *isl_union_set_free(__isl_take isl_union_set *uset);
1026 void isl_basic_map_free(__isl_take isl_basic_map *bmap);
1027 void isl_map_free(__isl_take isl_map *map);
1028 void *isl_union_map_free(__isl_take isl_union_map *umap);
1030 Other sets and relations can be constructed by starting
1031 from a universe set or relation, adding equality and/or
1032 inequality constraints and then projecting out the
1033 existentially quantified variables, if any.
1034 Constraints can be constructed, manipulated and
1035 added to (or removed from) (basic) sets and relations
1036 using the following functions.
1038 #include <isl/constraint.h>
1039 __isl_give isl_constraint *isl_equality_alloc(
1040 __isl_take isl_space *space);
1041 __isl_give isl_constraint *isl_inequality_alloc(
1042 __isl_take isl_space *space);
1043 __isl_give isl_constraint *isl_constraint_set_constant(
1044 __isl_take isl_constraint *constraint, isl_int v);
1045 __isl_give isl_constraint *isl_constraint_set_constant_si(
1046 __isl_take isl_constraint *constraint, int v);
1047 __isl_give isl_constraint *isl_constraint_set_coefficient(
1048 __isl_take isl_constraint *constraint,
1049 enum isl_dim_type type, int pos, isl_int v);
1050 __isl_give isl_constraint *isl_constraint_set_coefficient_si(
1051 __isl_take isl_constraint *constraint,
1052 enum isl_dim_type type, int pos, int v);
1053 __isl_give isl_basic_map *isl_basic_map_add_constraint(
1054 __isl_take isl_basic_map *bmap,
1055 __isl_take isl_constraint *constraint);
1056 __isl_give isl_basic_set *isl_basic_set_add_constraint(
1057 __isl_take isl_basic_set *bset,
1058 __isl_take isl_constraint *constraint);
1059 __isl_give isl_map *isl_map_add_constraint(
1060 __isl_take isl_map *map,
1061 __isl_take isl_constraint *constraint);
1062 __isl_give isl_set *isl_set_add_constraint(
1063 __isl_take isl_set *set,
1064 __isl_take isl_constraint *constraint);
1065 __isl_give isl_basic_set *isl_basic_set_drop_constraint(
1066 __isl_take isl_basic_set *bset,
1067 __isl_take isl_constraint *constraint);
1069 For example, to create a set containing the even integers
1070 between 10 and 42, you would use the following code.
1075 isl_basic_set *bset;
1078 space = isl_space_set_alloc(ctx, 0, 2);
1079 bset = isl_basic_set_universe(isl_space_copy(space));
1081 c = isl_equality_alloc(isl_space_copy(space));
1082 isl_int_set_si(v, -1);
1083 isl_constraint_set_coefficient(c, isl_dim_set, 0, v);
1084 isl_int_set_si(v, 2);
1085 isl_constraint_set_coefficient(c, isl_dim_set, 1, v);
1086 bset = isl_basic_set_add_constraint(bset, c);
1088 c = isl_inequality_alloc(isl_space_copy(space));
1089 isl_int_set_si(v, -10);
1090 isl_constraint_set_constant(c, v);
1091 isl_int_set_si(v, 1);
1092 isl_constraint_set_coefficient(c, isl_dim_set, 0, v);
1093 bset = isl_basic_set_add_constraint(bset, c);
1095 c = isl_inequality_alloc(space);
1096 isl_int_set_si(v, 42);
1097 isl_constraint_set_constant(c, v);
1098 isl_int_set_si(v, -1);
1099 isl_constraint_set_coefficient(c, isl_dim_set, 0, v);
1100 bset = isl_basic_set_add_constraint(bset, c);
1102 bset = isl_basic_set_project_out(bset, isl_dim_set, 1, 1);
1108 isl_basic_set *bset;
1109 bset = isl_basic_set_read_from_str(ctx,
1110 "{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}", -1);
1112 A basic set or relation can also be constructed from two matrices
1113 describing the equalities and the inequalities.
1115 __isl_give isl_basic_set *isl_basic_set_from_constraint_matrices(
1116 __isl_take isl_space *space,
1117 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
1118 enum isl_dim_type c1,
1119 enum isl_dim_type c2, enum isl_dim_type c3,
1120 enum isl_dim_type c4);
1121 __isl_give isl_basic_map *isl_basic_map_from_constraint_matrices(
1122 __isl_take isl_space *space,
1123 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
1124 enum isl_dim_type c1,
1125 enum isl_dim_type c2, enum isl_dim_type c3,
1126 enum isl_dim_type c4, enum isl_dim_type c5);
1128 The C<isl_dim_type> arguments indicate the order in which
1129 different kinds of variables appear in the input matrices
1130 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
1131 C<isl_dim_set> and C<isl_dim_div> for sets and
1132 of C<isl_dim_cst>, C<isl_dim_param>,
1133 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div> for relations.
1135 A (basic) set or relation can also be constructed from a (piecewise)
1137 or a list of affine expressions (See L<"Piecewise Quasi Affine Expressions">).
1139 __isl_give isl_basic_map *isl_basic_map_from_aff(
1140 __isl_take isl_aff *aff);
1141 __isl_give isl_set *isl_set_from_pw_aff(
1142 __isl_take isl_pw_aff *pwaff);
1143 __isl_give isl_map *isl_map_from_pw_aff(
1144 __isl_take isl_pw_aff *pwaff);
1145 __isl_give isl_basic_map *isl_basic_map_from_aff_list(
1146 __isl_take isl_space *domain_space,
1147 __isl_take isl_aff_list *list);
1149 The C<domain_dim> argument describes the domain of the resulting
1150 basic relation. It is required because the C<list> may consist
1151 of zero affine expressions.
1153 =head2 Inspecting Sets and Relations
1155 Usually, the user should not have to care about the actual constraints
1156 of the sets and maps, but should instead apply the abstract operations
1157 explained in the following sections.
1158 Occasionally, however, it may be required to inspect the individual
1159 coefficients of the constraints. This section explains how to do so.
1160 In these cases, it may also be useful to have C<isl> compute
1161 an explicit representation of the existentially quantified variables.
1163 __isl_give isl_set *isl_set_compute_divs(
1164 __isl_take isl_set *set);
1165 __isl_give isl_map *isl_map_compute_divs(
1166 __isl_take isl_map *map);
1167 __isl_give isl_union_set *isl_union_set_compute_divs(
1168 __isl_take isl_union_set *uset);
1169 __isl_give isl_union_map *isl_union_map_compute_divs(
1170 __isl_take isl_union_map *umap);
1172 This explicit representation defines the existentially quantified
1173 variables as integer divisions of the other variables, possibly
1174 including earlier existentially quantified variables.
1175 An explicitly represented existentially quantified variable therefore
1176 has a unique value when the values of the other variables are known.
1177 If, furthermore, the same existentials, i.e., existentials
1178 with the same explicit representations, should appear in the
1179 same order in each of the disjuncts of a set or map, then the user should call
1180 either of the following functions.
1182 __isl_give isl_set *isl_set_align_divs(
1183 __isl_take isl_set *set);
1184 __isl_give isl_map *isl_map_align_divs(
1185 __isl_take isl_map *map);
1187 Alternatively, the existentially quantified variables can be removed
1188 using the following functions, which compute an overapproximation.
1190 __isl_give isl_basic_set *isl_basic_set_remove_divs(
1191 __isl_take isl_basic_set *bset);
1192 __isl_give isl_basic_map *isl_basic_map_remove_divs(
1193 __isl_take isl_basic_map *bmap);
1194 __isl_give isl_set *isl_set_remove_divs(
1195 __isl_take isl_set *set);
1196 __isl_give isl_map *isl_map_remove_divs(
1197 __isl_take isl_map *map);
1199 To iterate over all the sets or maps in a union set or map, use
1201 int isl_union_set_foreach_set(__isl_keep isl_union_set *uset,
1202 int (*fn)(__isl_take isl_set *set, void *user),
1204 int isl_union_map_foreach_map(__isl_keep isl_union_map *umap,
1205 int (*fn)(__isl_take isl_map *map, void *user),
1208 The number of sets or maps in a union set or map can be obtained
1211 int isl_union_set_n_set(__isl_keep isl_union_set *uset);
1212 int isl_union_map_n_map(__isl_keep isl_union_map *umap);
1214 To extract the set or map in a given space from a union, use
1216 __isl_give isl_set *isl_union_set_extract_set(
1217 __isl_keep isl_union_set *uset,
1218 __isl_take isl_space *space);
1219 __isl_give isl_map *isl_union_map_extract_map(
1220 __isl_keep isl_union_map *umap,
1221 __isl_take isl_space *space);
1223 To iterate over all the basic sets or maps in a set or map, use
1225 int isl_set_foreach_basic_set(__isl_keep isl_set *set,
1226 int (*fn)(__isl_take isl_basic_set *bset, void *user),
1228 int isl_map_foreach_basic_map(__isl_keep isl_map *map,
1229 int (*fn)(__isl_take isl_basic_map *bmap, void *user),
1232 The callback function C<fn> should return 0 if successful and
1233 -1 if an error occurs. In the latter case, or if any other error
1234 occurs, the above functions will return -1.
1236 It should be noted that C<isl> does not guarantee that
1237 the basic sets or maps passed to C<fn> are disjoint.
1238 If this is required, then the user should call one of
1239 the following functions first.
1241 __isl_give isl_set *isl_set_make_disjoint(
1242 __isl_take isl_set *set);
1243 __isl_give isl_map *isl_map_make_disjoint(
1244 __isl_take isl_map *map);
1246 The number of basic sets in a set can be obtained
1249 int isl_set_n_basic_set(__isl_keep isl_set *set);
1251 To iterate over the constraints of a basic set or map, use
1253 #include <isl/constraint.h>
1255 int isl_basic_map_foreach_constraint(
1256 __isl_keep isl_basic_map *bmap,
1257 int (*fn)(__isl_take isl_constraint *c, void *user),
1259 void *isl_constraint_free(__isl_take isl_constraint *c);
1261 Again, the callback function C<fn> should return 0 if successful and
1262 -1 if an error occurs. In the latter case, or if any other error
1263 occurs, the above functions will return -1.
1264 The constraint C<c> represents either an equality or an inequality.
1265 Use the following function to find out whether a constraint
1266 represents an equality. If not, it represents an inequality.
1268 int isl_constraint_is_equality(
1269 __isl_keep isl_constraint *constraint);
1271 The coefficients of the constraints can be inspected using
1272 the following functions.
1274 void isl_constraint_get_constant(
1275 __isl_keep isl_constraint *constraint, isl_int *v);
1276 void isl_constraint_get_coefficient(
1277 __isl_keep isl_constraint *constraint,
1278 enum isl_dim_type type, int pos, isl_int *v);
1279 int isl_constraint_involves_dims(
1280 __isl_keep isl_constraint *constraint,
1281 enum isl_dim_type type, unsigned first, unsigned n);
1283 The explicit representations of the existentially quantified
1284 variables can be inspected using the following functions.
1285 Note that the user is only allowed to use these functions
1286 if the inspected set or map is the result of a call
1287 to C<isl_set_compute_divs> or C<isl_map_compute_divs>.
1289 __isl_give isl_div *isl_constraint_div(
1290 __isl_keep isl_constraint *constraint, int pos);
1291 isl_ctx *isl_div_get_ctx(__isl_keep isl_div *div);
1292 void isl_div_get_constant(__isl_keep isl_div *div,
1294 void isl_div_get_denominator(__isl_keep isl_div *div,
1296 void isl_div_get_coefficient(__isl_keep isl_div *div,
1297 enum isl_dim_type type, int pos, isl_int *v);
1299 To obtain the constraints of a basic set or map in matrix
1300 form, use the following functions.
1302 __isl_give isl_mat *isl_basic_set_equalities_matrix(
1303 __isl_keep isl_basic_set *bset,
1304 enum isl_dim_type c1, enum isl_dim_type c2,
1305 enum isl_dim_type c3, enum isl_dim_type c4);
1306 __isl_give isl_mat *isl_basic_set_inequalities_matrix(
1307 __isl_keep isl_basic_set *bset,
1308 enum isl_dim_type c1, enum isl_dim_type c2,
1309 enum isl_dim_type c3, enum isl_dim_type c4);
1310 __isl_give isl_mat *isl_basic_map_equalities_matrix(
1311 __isl_keep isl_basic_map *bmap,
1312 enum isl_dim_type c1,
1313 enum isl_dim_type c2, enum isl_dim_type c3,
1314 enum isl_dim_type c4, enum isl_dim_type c5);
1315 __isl_give isl_mat *isl_basic_map_inequalities_matrix(
1316 __isl_keep isl_basic_map *bmap,
1317 enum isl_dim_type c1,
1318 enum isl_dim_type c2, enum isl_dim_type c3,
1319 enum isl_dim_type c4, enum isl_dim_type c5);
1321 The C<isl_dim_type> arguments dictate the order in which
1322 different kinds of variables appear in the resulting matrix
1323 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
1324 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div>.
1326 The number of parameters, input, output or set dimensions can
1327 be obtained using the following functions.
1329 unsigned isl_basic_set_dim(__isl_keep isl_basic_set *bset,
1330 enum isl_dim_type type);
1331 unsigned isl_basic_map_dim(__isl_keep isl_basic_map *bmap,
1332 enum isl_dim_type type);
1333 unsigned isl_set_dim(__isl_keep isl_set *set,
1334 enum isl_dim_type type);
1335 unsigned isl_map_dim(__isl_keep isl_map *map,
1336 enum isl_dim_type type);
1338 To check whether the description of a set or relation depends
1339 on one or more given dimensions, it is not necessary to iterate over all
1340 constraints. Instead the following functions can be used.
1342 int isl_basic_set_involves_dims(
1343 __isl_keep isl_basic_set *bset,
1344 enum isl_dim_type type, unsigned first, unsigned n);
1345 int isl_set_involves_dims(__isl_keep isl_set *set,
1346 enum isl_dim_type type, unsigned first, unsigned n);
1347 int isl_basic_map_involves_dims(
1348 __isl_keep isl_basic_map *bmap,
1349 enum isl_dim_type type, unsigned first, unsigned n);
1350 int isl_map_involves_dims(__isl_keep isl_map *map,
1351 enum isl_dim_type type, unsigned first, unsigned n);
1353 Similarly, the following functions can be used to check whether
1354 a given dimension is involved in any lower or upper bound.
1356 int isl_set_dim_has_lower_bound(__isl_keep isl_set *set,
1357 enum isl_dim_type type, unsigned pos);
1358 int isl_set_dim_has_upper_bound(__isl_keep isl_set *set,
1359 enum isl_dim_type type, unsigned pos);
1361 The identifiers or names of the domain and range spaces of a set
1362 or relation can be read off or set using the following functions.
1364 __isl_give isl_set *isl_set_set_tuple_id(
1365 __isl_take isl_set *set, __isl_take isl_id *id);
1366 __isl_give isl_set *isl_set_reset_tuple_id(
1367 __isl_take isl_set *set);
1368 int isl_set_has_tuple_id(__isl_keep isl_set *set);
1369 __isl_give isl_id *isl_set_get_tuple_id(
1370 __isl_keep isl_set *set);
1371 __isl_give isl_map *isl_map_set_tuple_id(
1372 __isl_take isl_map *map, enum isl_dim_type type,
1373 __isl_take isl_id *id);
1374 __isl_give isl_map *isl_map_reset_tuple_id(
1375 __isl_take isl_map *map, enum isl_dim_type type);
1376 int isl_map_has_tuple_id(__isl_keep isl_map *map,
1377 enum isl_dim_type type);
1378 __isl_give isl_id *isl_map_get_tuple_id(
1379 __isl_keep isl_map *map, enum isl_dim_type type);
1381 const char *isl_basic_set_get_tuple_name(
1382 __isl_keep isl_basic_set *bset);
1383 __isl_give isl_basic_set *isl_basic_set_set_tuple_name(
1384 __isl_take isl_basic_set *set, const char *s);
1385 const char *isl_set_get_tuple_name(
1386 __isl_keep isl_set *set);
1387 const char *isl_basic_map_get_tuple_name(
1388 __isl_keep isl_basic_map *bmap,
1389 enum isl_dim_type type);
1390 const char *isl_map_get_tuple_name(
1391 __isl_keep isl_map *map,
1392 enum isl_dim_type type);
1394 As with C<isl_space_get_tuple_name>, the value returned points to
1395 an internal data structure.
1396 The identifiers, positions or names of individual dimensions can be
1397 read off using the following functions.
1399 __isl_give isl_set *isl_set_set_dim_id(
1400 __isl_take isl_set *set, enum isl_dim_type type,
1401 unsigned pos, __isl_take isl_id *id);
1402 int isl_set_has_dim_id(__isl_keep isl_set *set,
1403 enum isl_dim_type type, unsigned pos);
1404 __isl_give isl_id *isl_set_get_dim_id(
1405 __isl_keep isl_set *set, enum isl_dim_type type,
1407 __isl_give isl_map *isl_map_set_dim_id(
1408 __isl_take isl_map *map, enum isl_dim_type type,
1409 unsigned pos, __isl_take isl_id *id);
1410 int isl_map_has_dim_id(__isl_keep isl_map *map,
1411 enum isl_dim_type type, unsigned pos);
1412 __isl_give isl_id *isl_map_get_dim_id(
1413 __isl_keep isl_map *map, enum isl_dim_type type,
1416 int isl_set_find_dim_by_id(__isl_keep isl_set *set,
1417 enum isl_dim_type type, __isl_keep isl_id *id);
1418 int isl_map_find_dim_by_id(__isl_keep isl_map *map,
1419 enum isl_dim_type type, __isl_keep isl_id *id);
1421 const char *isl_constraint_get_dim_name(
1422 __isl_keep isl_constraint *constraint,
1423 enum isl_dim_type type, unsigned pos);
1424 const char *isl_basic_set_get_dim_name(
1425 __isl_keep isl_basic_set *bset,
1426 enum isl_dim_type type, unsigned pos);
1427 const char *isl_set_get_dim_name(
1428 __isl_keep isl_set *set,
1429 enum isl_dim_type type, unsigned pos);
1430 const char *isl_basic_map_get_dim_name(
1431 __isl_keep isl_basic_map *bmap,
1432 enum isl_dim_type type, unsigned pos);
1433 const char *isl_map_get_dim_name(
1434 __isl_keep isl_map *map,
1435 enum isl_dim_type type, unsigned pos);
1437 These functions are mostly useful to obtain the identifiers, positions
1438 or names of the parameters. Identifiers of individual dimensions are
1439 essentially only useful for printing. They are ignored by all other
1440 operations and may not be preserved across those operations.
1444 =head3 Unary Properties
1450 The following functions test whether the given set or relation
1451 contains any integer points. The ``plain'' variants do not perform
1452 any computations, but simply check if the given set or relation
1453 is already known to be empty.
1455 int isl_basic_set_plain_is_empty(__isl_keep isl_basic_set *bset);
1456 int isl_basic_set_is_empty(__isl_keep isl_basic_set *bset);
1457 int isl_set_plain_is_empty(__isl_keep isl_set *set);
1458 int isl_set_is_empty(__isl_keep isl_set *set);
1459 int isl_union_set_is_empty(__isl_keep isl_union_set *uset);
1460 int isl_basic_map_plain_is_empty(__isl_keep isl_basic_map *bmap);
1461 int isl_basic_map_is_empty(__isl_keep isl_basic_map *bmap);
1462 int isl_map_plain_is_empty(__isl_keep isl_map *map);
1463 int isl_map_is_empty(__isl_keep isl_map *map);
1464 int isl_union_map_is_empty(__isl_keep isl_union_map *umap);
1466 =item * Universality
1468 int isl_basic_set_is_universe(__isl_keep isl_basic_set *bset);
1469 int isl_basic_map_is_universe(__isl_keep isl_basic_map *bmap);
1470 int isl_set_plain_is_universe(__isl_keep isl_set *set);
1472 =item * Single-valuedness
1474 int isl_map_is_single_valued(__isl_keep isl_map *map);
1475 int isl_union_map_is_single_valued(__isl_keep isl_union_map *umap);
1479 int isl_map_plain_is_injective(__isl_keep isl_map *map);
1480 int isl_map_is_injective(__isl_keep isl_map *map);
1481 int isl_union_map_plain_is_injective(
1482 __isl_keep isl_union_map *umap);
1483 int isl_union_map_is_injective(
1484 __isl_keep isl_union_map *umap);
1488 int isl_map_is_bijective(__isl_keep isl_map *map);
1489 int isl_union_map_is_bijective(__isl_keep isl_union_map *umap);
1493 int isl_basic_map_plain_is_fixed(
1494 __isl_keep isl_basic_map *bmap,
1495 enum isl_dim_type type, unsigned pos,
1497 int isl_map_plain_is_fixed(__isl_keep isl_map *map,
1498 enum isl_dim_type type, unsigned pos,
1501 Check if the relation obviously lies on a hyperplane where the given dimension
1502 has a fixed value and if so, return that value in C<*val>.
1506 The following functions check whether the domain of the given
1507 (basic) set is a wrapped relation.
1509 int isl_basic_set_is_wrapping(
1510 __isl_keep isl_basic_set *bset);
1511 int isl_set_is_wrapping(__isl_keep isl_set *set);
1513 =item * Internal Product
1515 int isl_basic_map_can_zip(
1516 __isl_keep isl_basic_map *bmap);
1517 int isl_map_can_zip(__isl_keep isl_map *map);
1519 Check whether the product of domain and range of the given relation
1521 i.e., whether both domain and range are nested relations.
1525 =head3 Binary Properties
1531 int isl_set_plain_is_equal(__isl_keep isl_set *set1,
1532 __isl_keep isl_set *set2);
1533 int isl_set_is_equal(__isl_keep isl_set *set1,
1534 __isl_keep isl_set *set2);
1535 int isl_union_set_is_equal(
1536 __isl_keep isl_union_set *uset1,
1537 __isl_keep isl_union_set *uset2);
1538 int isl_basic_map_is_equal(
1539 __isl_keep isl_basic_map *bmap1,
1540 __isl_keep isl_basic_map *bmap2);
1541 int isl_map_is_equal(__isl_keep isl_map *map1,
1542 __isl_keep isl_map *map2);
1543 int isl_map_plain_is_equal(__isl_keep isl_map *map1,
1544 __isl_keep isl_map *map2);
1545 int isl_union_map_is_equal(
1546 __isl_keep isl_union_map *umap1,
1547 __isl_keep isl_union_map *umap2);
1549 =item * Disjointness
1551 int isl_set_plain_is_disjoint(__isl_keep isl_set *set1,
1552 __isl_keep isl_set *set2);
1556 int isl_set_is_subset(__isl_keep isl_set *set1,
1557 __isl_keep isl_set *set2);
1558 int isl_set_is_strict_subset(
1559 __isl_keep isl_set *set1,
1560 __isl_keep isl_set *set2);
1561 int isl_union_set_is_subset(
1562 __isl_keep isl_union_set *uset1,
1563 __isl_keep isl_union_set *uset2);
1564 int isl_union_set_is_strict_subset(
1565 __isl_keep isl_union_set *uset1,
1566 __isl_keep isl_union_set *uset2);
1567 int isl_basic_map_is_subset(
1568 __isl_keep isl_basic_map *bmap1,
1569 __isl_keep isl_basic_map *bmap2);
1570 int isl_basic_map_is_strict_subset(
1571 __isl_keep isl_basic_map *bmap1,
1572 __isl_keep isl_basic_map *bmap2);
1573 int isl_map_is_subset(
1574 __isl_keep isl_map *map1,
1575 __isl_keep isl_map *map2);
1576 int isl_map_is_strict_subset(
1577 __isl_keep isl_map *map1,
1578 __isl_keep isl_map *map2);
1579 int isl_union_map_is_subset(
1580 __isl_keep isl_union_map *umap1,
1581 __isl_keep isl_union_map *umap2);
1582 int isl_union_map_is_strict_subset(
1583 __isl_keep isl_union_map *umap1,
1584 __isl_keep isl_union_map *umap2);
1588 =head2 Unary Operations
1594 __isl_give isl_set *isl_set_complement(
1595 __isl_take isl_set *set);
1599 __isl_give isl_basic_map *isl_basic_map_reverse(
1600 __isl_take isl_basic_map *bmap);
1601 __isl_give isl_map *isl_map_reverse(
1602 __isl_take isl_map *map);
1603 __isl_give isl_union_map *isl_union_map_reverse(
1604 __isl_take isl_union_map *umap);
1608 __isl_give isl_basic_set *isl_basic_set_project_out(
1609 __isl_take isl_basic_set *bset,
1610 enum isl_dim_type type, unsigned first, unsigned n);
1611 __isl_give isl_basic_map *isl_basic_map_project_out(
1612 __isl_take isl_basic_map *bmap,
1613 enum isl_dim_type type, unsigned first, unsigned n);
1614 __isl_give isl_set *isl_set_project_out(__isl_take isl_set *set,
1615 enum isl_dim_type type, unsigned first, unsigned n);
1616 __isl_give isl_map *isl_map_project_out(__isl_take isl_map *map,
1617 enum isl_dim_type type, unsigned first, unsigned n);
1618 __isl_give isl_basic_set *isl_basic_set_params(
1619 __isl_take isl_basic_set *bset);
1620 __isl_give isl_basic_set *isl_basic_map_domain(
1621 __isl_take isl_basic_map *bmap);
1622 __isl_give isl_basic_set *isl_basic_map_range(
1623 __isl_take isl_basic_map *bmap);
1624 __isl_give isl_set *isl_set_params(__isl_take isl_set *set);
1625 __isl_give isl_set *isl_map_domain(
1626 __isl_take isl_map *bmap);
1627 __isl_give isl_set *isl_map_range(
1628 __isl_take isl_map *map);
1629 __isl_give isl_union_set *isl_union_map_domain(
1630 __isl_take isl_union_map *umap);
1631 __isl_give isl_union_set *isl_union_map_range(
1632 __isl_take isl_union_map *umap);
1634 __isl_give isl_basic_map *isl_basic_map_domain_map(
1635 __isl_take isl_basic_map *bmap);
1636 __isl_give isl_basic_map *isl_basic_map_range_map(
1637 __isl_take isl_basic_map *bmap);
1638 __isl_give isl_map *isl_map_domain_map(__isl_take isl_map *map);
1639 __isl_give isl_map *isl_map_range_map(__isl_take isl_map *map);
1640 __isl_give isl_union_map *isl_union_map_domain_map(
1641 __isl_take isl_union_map *umap);
1642 __isl_give isl_union_map *isl_union_map_range_map(
1643 __isl_take isl_union_map *umap);
1645 The functions above construct a (basic, regular or union) relation
1646 that maps (a wrapped version of) the input relation to its domain or range.
1650 __isl_give isl_set *isl_set_eliminate(
1651 __isl_take isl_set *set, enum isl_dim_type type,
1652 unsigned first, unsigned n);
1654 Eliminate the coefficients for the given dimensions from the constraints,
1655 without removing the dimensions.
1659 __isl_give isl_basic_set *isl_basic_set_fix(
1660 __isl_take isl_basic_set *bset,
1661 enum isl_dim_type type, unsigned pos,
1663 __isl_give isl_basic_set *isl_basic_set_fix_si(
1664 __isl_take isl_basic_set *bset,
1665 enum isl_dim_type type, unsigned pos, int value);
1666 __isl_give isl_set *isl_set_fix(__isl_take isl_set *set,
1667 enum isl_dim_type type, unsigned pos,
1669 __isl_give isl_set *isl_set_fix_si(__isl_take isl_set *set,
1670 enum isl_dim_type type, unsigned pos, int value);
1671 __isl_give isl_basic_map *isl_basic_map_fix_si(
1672 __isl_take isl_basic_map *bmap,
1673 enum isl_dim_type type, unsigned pos, int value);
1674 __isl_give isl_map *isl_map_fix_si(__isl_take isl_map *map,
1675 enum isl_dim_type type, unsigned pos, int value);
1677 Intersect the set or relation with the hyperplane where the given
1678 dimension has the fixed given value.
1680 __isl_give isl_set *isl_set_equate(__isl_take isl_set *set,
1681 enum isl_dim_type type1, int pos1,
1682 enum isl_dim_type type2, int pos2);
1683 __isl_give isl_map *isl_map_equate(__isl_take isl_map *map,
1684 enum isl_dim_type type1, int pos1,
1685 enum isl_dim_type type2, int pos2);
1687 Intersect the set or relation with the hyperplane where the given
1688 dimensions are equal to each other.
1690 __isl_give isl_map *isl_map_oppose(__isl_take isl_map *map,
1691 enum isl_dim_type type1, int pos1,
1692 enum isl_dim_type type2, int pos2);
1694 Intersect the relation with the hyperplane where the given
1695 dimensions have opposite values.
1699 __isl_give isl_map *isl_set_identity(
1700 __isl_take isl_set *set);
1701 __isl_give isl_union_map *isl_union_set_identity(
1702 __isl_take isl_union_set *uset);
1704 Construct an identity relation on the given (union) set.
1708 __isl_give isl_basic_set *isl_basic_map_deltas(
1709 __isl_take isl_basic_map *bmap);
1710 __isl_give isl_set *isl_map_deltas(__isl_take isl_map *map);
1711 __isl_give isl_union_set *isl_union_map_deltas(
1712 __isl_take isl_union_map *umap);
1714 These functions return a (basic) set containing the differences
1715 between image elements and corresponding domain elements in the input.
1717 __isl_give isl_basic_map *isl_basic_map_deltas_map(
1718 __isl_take isl_basic_map *bmap);
1719 __isl_give isl_map *isl_map_deltas_map(
1720 __isl_take isl_map *map);
1721 __isl_give isl_union_map *isl_union_map_deltas_map(
1722 __isl_take isl_union_map *umap);
1724 The functions above construct a (basic, regular or union) relation
1725 that maps (a wrapped version of) the input relation to its delta set.
1729 Simplify the representation of a set or relation by trying
1730 to combine pairs of basic sets or relations into a single
1731 basic set or relation.
1733 __isl_give isl_set *isl_set_coalesce(__isl_take isl_set *set);
1734 __isl_give isl_map *isl_map_coalesce(__isl_take isl_map *map);
1735 __isl_give isl_union_set *isl_union_set_coalesce(
1736 __isl_take isl_union_set *uset);
1737 __isl_give isl_union_map *isl_union_map_coalesce(
1738 __isl_take isl_union_map *umap);
1740 =item * Detecting equalities
1742 __isl_give isl_basic_set *isl_basic_set_detect_equalities(
1743 __isl_take isl_basic_set *bset);
1744 __isl_give isl_basic_map *isl_basic_map_detect_equalities(
1745 __isl_take isl_basic_map *bmap);
1746 __isl_give isl_set *isl_set_detect_equalities(
1747 __isl_take isl_set *set);
1748 __isl_give isl_map *isl_map_detect_equalities(
1749 __isl_take isl_map *map);
1750 __isl_give isl_union_set *isl_union_set_detect_equalities(
1751 __isl_take isl_union_set *uset);
1752 __isl_give isl_union_map *isl_union_map_detect_equalities(
1753 __isl_take isl_union_map *umap);
1755 Simplify the representation of a set or relation by detecting implicit
1758 =item * Removing redundant constraints
1760 __isl_give isl_basic_set *isl_basic_set_remove_redundancies(
1761 __isl_take isl_basic_set *bset);
1762 __isl_give isl_set *isl_set_remove_redundancies(
1763 __isl_take isl_set *set);
1764 __isl_give isl_basic_map *isl_basic_map_remove_redundancies(
1765 __isl_take isl_basic_map *bmap);
1766 __isl_give isl_map *isl_map_remove_redundancies(
1767 __isl_take isl_map *map);
1771 __isl_give isl_basic_set *isl_set_convex_hull(
1772 __isl_take isl_set *set);
1773 __isl_give isl_basic_map *isl_map_convex_hull(
1774 __isl_take isl_map *map);
1776 If the input set or relation has any existentially quantified
1777 variables, then the result of these operations is currently undefined.
1781 __isl_give isl_basic_set *isl_set_simple_hull(
1782 __isl_take isl_set *set);
1783 __isl_give isl_basic_map *isl_map_simple_hull(
1784 __isl_take isl_map *map);
1785 __isl_give isl_union_map *isl_union_map_simple_hull(
1786 __isl_take isl_union_map *umap);
1788 These functions compute a single basic set or relation
1789 that contains the whole input set or relation.
1790 In particular, the output is described by translates
1791 of the constraints describing the basic sets or relations in the input.
1795 (See \autoref{s:simple hull}.)
1801 __isl_give isl_basic_set *isl_basic_set_affine_hull(
1802 __isl_take isl_basic_set *bset);
1803 __isl_give isl_basic_set *isl_set_affine_hull(
1804 __isl_take isl_set *set);
1805 __isl_give isl_union_set *isl_union_set_affine_hull(
1806 __isl_take isl_union_set *uset);
1807 __isl_give isl_basic_map *isl_basic_map_affine_hull(
1808 __isl_take isl_basic_map *bmap);
1809 __isl_give isl_basic_map *isl_map_affine_hull(
1810 __isl_take isl_map *map);
1811 __isl_give isl_union_map *isl_union_map_affine_hull(
1812 __isl_take isl_union_map *umap);
1814 In case of union sets and relations, the affine hull is computed
1817 =item * Polyhedral hull
1819 __isl_give isl_basic_set *isl_set_polyhedral_hull(
1820 __isl_take isl_set *set);
1821 __isl_give isl_basic_map *isl_map_polyhedral_hull(
1822 __isl_take isl_map *map);
1823 __isl_give isl_union_set *isl_union_set_polyhedral_hull(
1824 __isl_take isl_union_set *uset);
1825 __isl_give isl_union_map *isl_union_map_polyhedral_hull(
1826 __isl_take isl_union_map *umap);
1828 These functions compute a single basic set or relation
1829 not involving any existentially quantified variables
1830 that contains the whole input set or relation.
1831 In case of union sets and relations, the polyhedral hull is computed
1834 =item * Optimization
1836 #include <isl/ilp.h>
1837 enum isl_lp_result isl_basic_set_max(
1838 __isl_keep isl_basic_set *bset,
1839 __isl_keep isl_aff *obj, isl_int *opt)
1840 enum isl_lp_result isl_set_min(__isl_keep isl_set *set,
1841 __isl_keep isl_aff *obj, isl_int *opt);
1842 enum isl_lp_result isl_set_max(__isl_keep isl_set *set,
1843 __isl_keep isl_aff *obj, isl_int *opt);
1845 Compute the minimum or maximum of the integer affine expression C<obj>
1846 over the points in C<set>, returning the result in C<opt>.
1847 The return value may be one of C<isl_lp_error>,
1848 C<isl_lp_ok>, C<isl_lp_unbounded> or C<isl_lp_empty>.
1850 =item * Parametric optimization
1852 __isl_give isl_pw_aff *isl_set_dim_min(
1853 __isl_take isl_set *set, int pos);
1854 __isl_give isl_pw_aff *isl_set_dim_max(
1855 __isl_take isl_set *set, int pos);
1857 Compute the minimum or maximum of the given set dimension as a function of the
1858 parameters, but independently of the other set dimensions.
1859 For lexicographic optimization, see L<"Lexicographic Optimization">.
1863 The following functions compute either the set of (rational) coefficient
1864 values of valid constraints for the given set or the set of (rational)
1865 values satisfying the constraints with coefficients from the given set.
1866 Internally, these two sets of functions perform essentially the
1867 same operations, except that the set of coefficients is assumed to
1868 be a cone, while the set of values may be any polyhedron.
1869 The current implementation is based on the Farkas lemma and
1870 Fourier-Motzkin elimination, but this may change or be made optional
1871 in future. In particular, future implementations may use different
1872 dualization algorithms or skip the elimination step.
1874 __isl_give isl_basic_set *isl_basic_set_coefficients(
1875 __isl_take isl_basic_set *bset);
1876 __isl_give isl_basic_set *isl_set_coefficients(
1877 __isl_take isl_set *set);
1878 __isl_give isl_union_set *isl_union_set_coefficients(
1879 __isl_take isl_union_set *bset);
1880 __isl_give isl_basic_set *isl_basic_set_solutions(
1881 __isl_take isl_basic_set *bset);
1882 __isl_give isl_basic_set *isl_set_solutions(
1883 __isl_take isl_set *set);
1884 __isl_give isl_union_set *isl_union_set_solutions(
1885 __isl_take isl_union_set *bset);
1889 __isl_give isl_map *isl_map_power(__isl_take isl_map *map,
1891 __isl_give isl_union_map *isl_union_map_power(
1892 __isl_take isl_union_map *umap, int *exact);
1894 Compute a parametric representation for all positive powers I<k> of C<map>.
1895 The result maps I<k> to a nested relation corresponding to the
1896 I<k>th power of C<map>.
1897 The result may be an overapproximation. If the result is known to be exact,
1898 then C<*exact> is set to C<1>.
1900 =item * Transitive closure
1902 __isl_give isl_map *isl_map_transitive_closure(
1903 __isl_take isl_map *map, int *exact);
1904 __isl_give isl_union_map *isl_union_map_transitive_closure(
1905 __isl_take isl_union_map *umap, int *exact);
1907 Compute the transitive closure of C<map>.
1908 The result may be an overapproximation. If the result is known to be exact,
1909 then C<*exact> is set to C<1>.
1911 =item * Reaching path lengths
1913 __isl_give isl_map *isl_map_reaching_path_lengths(
1914 __isl_take isl_map *map, int *exact);
1916 Compute a relation that maps each element in the range of C<map>
1917 to the lengths of all paths composed of edges in C<map> that
1918 end up in the given element.
1919 The result may be an overapproximation. If the result is known to be exact,
1920 then C<*exact> is set to C<1>.
1921 To compute the I<maximal> path length, the resulting relation
1922 should be postprocessed by C<isl_map_lexmax>.
1923 In particular, if the input relation is a dependence relation
1924 (mapping sources to sinks), then the maximal path length corresponds
1925 to the free schedule.
1926 Note, however, that C<isl_map_lexmax> expects the maximum to be
1927 finite, so if the path lengths are unbounded (possibly due to
1928 the overapproximation), then you will get an error message.
1932 __isl_give isl_basic_set *isl_basic_map_wrap(
1933 __isl_take isl_basic_map *bmap);
1934 __isl_give isl_set *isl_map_wrap(
1935 __isl_take isl_map *map);
1936 __isl_give isl_union_set *isl_union_map_wrap(
1937 __isl_take isl_union_map *umap);
1938 __isl_give isl_basic_map *isl_basic_set_unwrap(
1939 __isl_take isl_basic_set *bset);
1940 __isl_give isl_map *isl_set_unwrap(
1941 __isl_take isl_set *set);
1942 __isl_give isl_union_map *isl_union_set_unwrap(
1943 __isl_take isl_union_set *uset);
1947 Remove any internal structure of domain (and range) of the given
1948 set or relation. If there is any such internal structure in the input,
1949 then the name of the space is also removed.
1951 __isl_give isl_basic_set *isl_basic_set_flatten(
1952 __isl_take isl_basic_set *bset);
1953 __isl_give isl_set *isl_set_flatten(
1954 __isl_take isl_set *set);
1955 __isl_give isl_basic_map *isl_basic_map_flatten_domain(
1956 __isl_take isl_basic_map *bmap);
1957 __isl_give isl_basic_map *isl_basic_map_flatten_range(
1958 __isl_take isl_basic_map *bmap);
1959 __isl_give isl_map *isl_map_flatten_range(
1960 __isl_take isl_map *map);
1961 __isl_give isl_map *isl_map_flatten_domain(
1962 __isl_take isl_map *map);
1963 __isl_give isl_basic_map *isl_basic_map_flatten(
1964 __isl_take isl_basic_map *bmap);
1965 __isl_give isl_map *isl_map_flatten(
1966 __isl_take isl_map *map);
1968 __isl_give isl_map *isl_set_flatten_map(
1969 __isl_take isl_set *set);
1971 The function above constructs a relation
1972 that maps the input set to a flattened version of the set.
1976 Lift the input set to a space with extra dimensions corresponding
1977 to the existentially quantified variables in the input.
1978 In particular, the result lives in a wrapped map where the domain
1979 is the original space and the range corresponds to the original
1980 existentially quantified variables.
1982 __isl_give isl_basic_set *isl_basic_set_lift(
1983 __isl_take isl_basic_set *bset);
1984 __isl_give isl_set *isl_set_lift(
1985 __isl_take isl_set *set);
1986 __isl_give isl_union_set *isl_union_set_lift(
1987 __isl_take isl_union_set *uset);
1989 =item * Internal Product
1991 __isl_give isl_basic_map *isl_basic_map_zip(
1992 __isl_take isl_basic_map *bmap);
1993 __isl_give isl_map *isl_map_zip(
1994 __isl_take isl_map *map);
1995 __isl_give isl_union_map *isl_union_map_zip(
1996 __isl_take isl_union_map *umap);
1998 Given a relation with nested relations for domain and range,
1999 interchange the range of the domain with the domain of the range.
2001 =item * Aligning parameters
2003 __isl_give isl_set *isl_set_align_params(
2004 __isl_take isl_set *set,
2005 __isl_take isl_space *model);
2006 __isl_give isl_map *isl_map_align_params(
2007 __isl_take isl_map *map,
2008 __isl_take isl_space *model);
2010 Change the order of the parameters of the given set or relation
2011 such that the first parameters match those of C<model>.
2012 This may involve the introduction of extra parameters.
2013 All parameters need to be named.
2015 =item * Dimension manipulation
2017 __isl_give isl_set *isl_set_add_dims(
2018 __isl_take isl_set *set,
2019 enum isl_dim_type type, unsigned n);
2020 __isl_give isl_map *isl_map_add_dims(
2021 __isl_take isl_map *map,
2022 enum isl_dim_type type, unsigned n);
2023 __isl_give isl_set *isl_set_insert_dims(
2024 __isl_take isl_set *set,
2025 enum isl_dim_type type, unsigned pos, unsigned n);
2026 __isl_give isl_map *isl_map_insert_dims(
2027 __isl_take isl_map *map,
2028 enum isl_dim_type type, unsigned pos, unsigned n);
2030 It is usually not advisable to directly change the (input or output)
2031 space of a set or a relation as this removes the name and the internal
2032 structure of the space. However, the above functions can be useful
2033 to add new parameters, assuming
2034 C<isl_set_align_params> and C<isl_map_align_params>
2039 =head2 Binary Operations
2041 The two arguments of a binary operation not only need to live
2042 in the same C<isl_ctx>, they currently also need to have
2043 the same (number of) parameters.
2045 =head3 Basic Operations
2049 =item * Intersection
2051 __isl_give isl_basic_set *isl_basic_set_intersect(
2052 __isl_take isl_basic_set *bset1,
2053 __isl_take isl_basic_set *bset2);
2054 __isl_give isl_set *isl_set_intersect_params(
2055 __isl_take isl_set *set,
2056 __isl_take isl_set *params);
2057 __isl_give isl_set *isl_set_intersect(
2058 __isl_take isl_set *set1,
2059 __isl_take isl_set *set2);
2060 __isl_give isl_union_set *isl_union_set_intersect(
2061 __isl_take isl_union_set *uset1,
2062 __isl_take isl_union_set *uset2);
2063 __isl_give isl_basic_map *isl_basic_map_intersect_domain(
2064 __isl_take isl_basic_map *bmap,
2065 __isl_take isl_basic_set *bset);
2066 __isl_give isl_basic_map *isl_basic_map_intersect_range(
2067 __isl_take isl_basic_map *bmap,
2068 __isl_take isl_basic_set *bset);
2069 __isl_give isl_basic_map *isl_basic_map_intersect(
2070 __isl_take isl_basic_map *bmap1,
2071 __isl_take isl_basic_map *bmap2);
2072 __isl_give isl_map *isl_map_intersect_params(
2073 __isl_take isl_map *map,
2074 __isl_take isl_set *params);
2075 __isl_give isl_map *isl_map_intersect_domain(
2076 __isl_take isl_map *map,
2077 __isl_take isl_set *set);
2078 __isl_give isl_map *isl_map_intersect_range(
2079 __isl_take isl_map *map,
2080 __isl_take isl_set *set);
2081 __isl_give isl_map *isl_map_intersect(
2082 __isl_take isl_map *map1,
2083 __isl_take isl_map *map2);
2084 __isl_give isl_union_map *isl_union_map_intersect_domain(
2085 __isl_take isl_union_map *umap,
2086 __isl_take isl_union_set *uset);
2087 __isl_give isl_union_map *isl_union_map_intersect_range(
2088 __isl_take isl_union_map *umap,
2089 __isl_take isl_union_set *uset);
2090 __isl_give isl_union_map *isl_union_map_intersect(
2091 __isl_take isl_union_map *umap1,
2092 __isl_take isl_union_map *umap2);
2096 __isl_give isl_set *isl_basic_set_union(
2097 __isl_take isl_basic_set *bset1,
2098 __isl_take isl_basic_set *bset2);
2099 __isl_give isl_map *isl_basic_map_union(
2100 __isl_take isl_basic_map *bmap1,
2101 __isl_take isl_basic_map *bmap2);
2102 __isl_give isl_set *isl_set_union(
2103 __isl_take isl_set *set1,
2104 __isl_take isl_set *set2);
2105 __isl_give isl_map *isl_map_union(
2106 __isl_take isl_map *map1,
2107 __isl_take isl_map *map2);
2108 __isl_give isl_union_set *isl_union_set_union(
2109 __isl_take isl_union_set *uset1,
2110 __isl_take isl_union_set *uset2);
2111 __isl_give isl_union_map *isl_union_map_union(
2112 __isl_take isl_union_map *umap1,
2113 __isl_take isl_union_map *umap2);
2115 =item * Set difference
2117 __isl_give isl_set *isl_set_subtract(
2118 __isl_take isl_set *set1,
2119 __isl_take isl_set *set2);
2120 __isl_give isl_map *isl_map_subtract(
2121 __isl_take isl_map *map1,
2122 __isl_take isl_map *map2);
2123 __isl_give isl_union_set *isl_union_set_subtract(
2124 __isl_take isl_union_set *uset1,
2125 __isl_take isl_union_set *uset2);
2126 __isl_give isl_union_map *isl_union_map_subtract(
2127 __isl_take isl_union_map *umap1,
2128 __isl_take isl_union_map *umap2);
2132 __isl_give isl_basic_set *isl_basic_set_apply(
2133 __isl_take isl_basic_set *bset,
2134 __isl_take isl_basic_map *bmap);
2135 __isl_give isl_set *isl_set_apply(
2136 __isl_take isl_set *set,
2137 __isl_take isl_map *map);
2138 __isl_give isl_union_set *isl_union_set_apply(
2139 __isl_take isl_union_set *uset,
2140 __isl_take isl_union_map *umap);
2141 __isl_give isl_basic_map *isl_basic_map_apply_domain(
2142 __isl_take isl_basic_map *bmap1,
2143 __isl_take isl_basic_map *bmap2);
2144 __isl_give isl_basic_map *isl_basic_map_apply_range(
2145 __isl_take isl_basic_map *bmap1,
2146 __isl_take isl_basic_map *bmap2);
2147 __isl_give isl_map *isl_map_apply_domain(
2148 __isl_take isl_map *map1,
2149 __isl_take isl_map *map2);
2150 __isl_give isl_union_map *isl_union_map_apply_domain(
2151 __isl_take isl_union_map *umap1,
2152 __isl_take isl_union_map *umap2);
2153 __isl_give isl_map *isl_map_apply_range(
2154 __isl_take isl_map *map1,
2155 __isl_take isl_map *map2);
2156 __isl_give isl_union_map *isl_union_map_apply_range(
2157 __isl_take isl_union_map *umap1,
2158 __isl_take isl_union_map *umap2);
2160 =item * Cartesian Product
2162 __isl_give isl_set *isl_set_product(
2163 __isl_take isl_set *set1,
2164 __isl_take isl_set *set2);
2165 __isl_give isl_union_set *isl_union_set_product(
2166 __isl_take isl_union_set *uset1,
2167 __isl_take isl_union_set *uset2);
2168 __isl_give isl_basic_map *isl_basic_map_domain_product(
2169 __isl_take isl_basic_map *bmap1,
2170 __isl_take isl_basic_map *bmap2);
2171 __isl_give isl_basic_map *isl_basic_map_range_product(
2172 __isl_take isl_basic_map *bmap1,
2173 __isl_take isl_basic_map *bmap2);
2174 __isl_give isl_map *isl_map_domain_product(
2175 __isl_take isl_map *map1,
2176 __isl_take isl_map *map2);
2177 __isl_give isl_map *isl_map_range_product(
2178 __isl_take isl_map *map1,
2179 __isl_take isl_map *map2);
2180 __isl_give isl_union_map *isl_union_map_range_product(
2181 __isl_take isl_union_map *umap1,
2182 __isl_take isl_union_map *umap2);
2183 __isl_give isl_map *isl_map_product(
2184 __isl_take isl_map *map1,
2185 __isl_take isl_map *map2);
2186 __isl_give isl_union_map *isl_union_map_product(
2187 __isl_take isl_union_map *umap1,
2188 __isl_take isl_union_map *umap2);
2190 The above functions compute the cross product of the given
2191 sets or relations. The domains and ranges of the results
2192 are wrapped maps between domains and ranges of the inputs.
2193 To obtain a ``flat'' product, use the following functions
2196 __isl_give isl_basic_set *isl_basic_set_flat_product(
2197 __isl_take isl_basic_set *bset1,
2198 __isl_take isl_basic_set *bset2);
2199 __isl_give isl_set *isl_set_flat_product(
2200 __isl_take isl_set *set1,
2201 __isl_take isl_set *set2);
2202 __isl_give isl_basic_map *isl_basic_map_flat_range_product(
2203 __isl_take isl_basic_map *bmap1,
2204 __isl_take isl_basic_map *bmap2);
2205 __isl_give isl_map *isl_map_flat_domain_product(
2206 __isl_take isl_map *map1,
2207 __isl_take isl_map *map2);
2208 __isl_give isl_map *isl_map_flat_range_product(
2209 __isl_take isl_map *map1,
2210 __isl_take isl_map *map2);
2211 __isl_give isl_union_map *isl_union_map_flat_range_product(
2212 __isl_take isl_union_map *umap1,
2213 __isl_take isl_union_map *umap2);
2214 __isl_give isl_basic_map *isl_basic_map_flat_product(
2215 __isl_take isl_basic_map *bmap1,
2216 __isl_take isl_basic_map *bmap2);
2217 __isl_give isl_map *isl_map_flat_product(
2218 __isl_take isl_map *map1,
2219 __isl_take isl_map *map2);
2221 =item * Simplification
2223 __isl_give isl_basic_set *isl_basic_set_gist(
2224 __isl_take isl_basic_set *bset,
2225 __isl_take isl_basic_set *context);
2226 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
2227 __isl_take isl_set *context);
2228 __isl_give isl_union_set *isl_union_set_gist(
2229 __isl_take isl_union_set *uset,
2230 __isl_take isl_union_set *context);
2231 __isl_give isl_basic_map *isl_basic_map_gist(
2232 __isl_take isl_basic_map *bmap,
2233 __isl_take isl_basic_map *context);
2234 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
2235 __isl_take isl_map *context);
2236 __isl_give isl_union_map *isl_union_map_gist(
2237 __isl_take isl_union_map *umap,
2238 __isl_take isl_union_map *context);
2240 The gist operation returns a set or relation that has the
2241 same intersection with the context as the input set or relation.
2242 Any implicit equality in the intersection is made explicit in the result,
2243 while all inequalities that are redundant with respect to the intersection
2245 In case of union sets and relations, the gist operation is performed
2250 =head3 Lexicographic Optimization
2252 Given a (basic) set C<set> (or C<bset>) and a zero-dimensional domain C<dom>,
2253 the following functions
2254 compute a set that contains the lexicographic minimum or maximum
2255 of the elements in C<set> (or C<bset>) for those values of the parameters
2256 that satisfy C<dom>.
2257 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
2258 that contains the parameter values in C<dom> for which C<set> (or C<bset>)
2260 In other words, the union of the parameter values
2261 for which the result is non-empty and of C<*empty>
2264 __isl_give isl_set *isl_basic_set_partial_lexmin(
2265 __isl_take isl_basic_set *bset,
2266 __isl_take isl_basic_set *dom,
2267 __isl_give isl_set **empty);
2268 __isl_give isl_set *isl_basic_set_partial_lexmax(
2269 __isl_take isl_basic_set *bset,
2270 __isl_take isl_basic_set *dom,
2271 __isl_give isl_set **empty);
2272 __isl_give isl_set *isl_set_partial_lexmin(
2273 __isl_take isl_set *set, __isl_take isl_set *dom,
2274 __isl_give isl_set **empty);
2275 __isl_give isl_set *isl_set_partial_lexmax(
2276 __isl_take isl_set *set, __isl_take isl_set *dom,
2277 __isl_give isl_set **empty);
2279 Given a (basic) set C<set> (or C<bset>), the following functions simply
2280 return a set containing the lexicographic minimum or maximum
2281 of the elements in C<set> (or C<bset>).
2282 In case of union sets, the optimum is computed per space.
2284 __isl_give isl_set *isl_basic_set_lexmin(
2285 __isl_take isl_basic_set *bset);
2286 __isl_give isl_set *isl_basic_set_lexmax(
2287 __isl_take isl_basic_set *bset);
2288 __isl_give isl_set *isl_set_lexmin(
2289 __isl_take isl_set *set);
2290 __isl_give isl_set *isl_set_lexmax(
2291 __isl_take isl_set *set);
2292 __isl_give isl_union_set *isl_union_set_lexmin(
2293 __isl_take isl_union_set *uset);
2294 __isl_give isl_union_set *isl_union_set_lexmax(
2295 __isl_take isl_union_set *uset);
2297 Given a (basic) relation C<map> (or C<bmap>) and a domain C<dom>,
2298 the following functions
2299 compute a relation that maps each element of C<dom>
2300 to the single lexicographic minimum or maximum
2301 of the elements that are associated to that same
2302 element in C<map> (or C<bmap>).
2303 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
2304 that contains the elements in C<dom> that do not map
2305 to any elements in C<map> (or C<bmap>).
2306 In other words, the union of the domain of the result and of C<*empty>
2309 __isl_give isl_map *isl_basic_map_partial_lexmax(
2310 __isl_take isl_basic_map *bmap,
2311 __isl_take isl_basic_set *dom,
2312 __isl_give isl_set **empty);
2313 __isl_give isl_map *isl_basic_map_partial_lexmin(
2314 __isl_take isl_basic_map *bmap,
2315 __isl_take isl_basic_set *dom,
2316 __isl_give isl_set **empty);
2317 __isl_give isl_map *isl_map_partial_lexmax(
2318 __isl_take isl_map *map, __isl_take isl_set *dom,
2319 __isl_give isl_set **empty);
2320 __isl_give isl_map *isl_map_partial_lexmin(
2321 __isl_take isl_map *map, __isl_take isl_set *dom,
2322 __isl_give isl_set **empty);
2324 Given a (basic) map C<map> (or C<bmap>), the following functions simply
2325 return a map mapping each element in the domain of
2326 C<map> (or C<bmap>) to the lexicographic minimum or maximum
2327 of all elements associated to that element.
2328 In case of union relations, the optimum is computed per space.
2330 __isl_give isl_map *isl_basic_map_lexmin(
2331 __isl_take isl_basic_map *bmap);
2332 __isl_give isl_map *isl_basic_map_lexmax(
2333 __isl_take isl_basic_map *bmap);
2334 __isl_give isl_map *isl_map_lexmin(
2335 __isl_take isl_map *map);
2336 __isl_give isl_map *isl_map_lexmax(
2337 __isl_take isl_map *map);
2338 __isl_give isl_union_map *isl_union_map_lexmin(
2339 __isl_take isl_union_map *umap);
2340 __isl_give isl_union_map *isl_union_map_lexmax(
2341 __isl_take isl_union_map *umap);
2345 Lists are defined over several element types, including
2346 C<isl_aff>, C<isl_pw_aff>, C<isl_basic_set> and C<isl_set>.
2347 Here we take lists of C<isl_set>s as an example.
2348 Lists can be created, copied and freed using the following functions.
2350 #include <isl/list.h>
2351 __isl_give isl_set_list *isl_set_list_from_set(
2352 __isl_take isl_set *el);
2353 __isl_give isl_set_list *isl_set_list_alloc(
2354 isl_ctx *ctx, int n);
2355 __isl_give isl_set_list *isl_set_list_copy(
2356 __isl_keep isl_set_list *list);
2357 __isl_give isl_set_list *isl_set_list_add(
2358 __isl_take isl_set_list *list,
2359 __isl_take isl_set *el);
2360 __isl_give isl_set_list *isl_set_list_concat(
2361 __isl_take isl_set_list *list1,
2362 __isl_take isl_set_list *list2);
2363 void *isl_set_list_free(__isl_take isl_set_list *list);
2365 C<isl_set_list_alloc> creates an empty list with a capacity for
2366 C<n> elements. C<isl_set_list_from_set> creates a list with a single
2369 Lists can be inspected using the following functions.
2371 #include <isl/list.h>
2372 isl_ctx *isl_set_list_get_ctx(__isl_keep isl_set_list *list);
2373 int isl_set_list_n_set(__isl_keep isl_set_list *list);
2374 __isl_give isl_set *isl_set_list_get_set(
2375 __isl_keep isl_set_list *list, int index);
2376 int isl_set_list_foreach(__isl_keep isl_set_list *list,
2377 int (*fn)(__isl_take isl_set *el, void *user),
2380 Lists can be printed using
2382 #include <isl/list.h>
2383 __isl_give isl_printer *isl_printer_print_set_list(
2384 __isl_take isl_printer *p,
2385 __isl_keep isl_set_list *list);
2389 Matrices can be created, copied and freed using the following functions.
2391 #include <isl/mat.h>
2392 __isl_give isl_mat *isl_mat_alloc(isl_ctx *ctx,
2393 unsigned n_row, unsigned n_col);
2394 __isl_give isl_mat *isl_mat_copy(__isl_keep isl_mat *mat);
2395 void isl_mat_free(__isl_take isl_mat *mat);
2397 Note that the elements of a newly created matrix may have arbitrary values.
2398 The elements can be changed and inspected using the following functions.
2400 isl_ctx *isl_mat_get_ctx(__isl_keep isl_mat *mat);
2401 int isl_mat_rows(__isl_keep isl_mat *mat);
2402 int isl_mat_cols(__isl_keep isl_mat *mat);
2403 int isl_mat_get_element(__isl_keep isl_mat *mat,
2404 int row, int col, isl_int *v);
2405 __isl_give isl_mat *isl_mat_set_element(__isl_take isl_mat *mat,
2406 int row, int col, isl_int v);
2407 __isl_give isl_mat *isl_mat_set_element_si(__isl_take isl_mat *mat,
2408 int row, int col, int v);
2410 C<isl_mat_get_element> will return a negative value if anything went wrong.
2411 In that case, the value of C<*v> is undefined.
2413 The following function can be used to compute the (right) inverse
2414 of a matrix, i.e., a matrix such that the product of the original
2415 and the inverse (in that order) is a multiple of the identity matrix.
2416 The input matrix is assumed to be of full row-rank.
2418 __isl_give isl_mat *isl_mat_right_inverse(__isl_take isl_mat *mat);
2420 The following function can be used to compute the (right) kernel
2421 (or null space) of a matrix, i.e., a matrix such that the product of
2422 the original and the kernel (in that order) is the zero matrix.
2424 __isl_give isl_mat *isl_mat_right_kernel(__isl_take isl_mat *mat);
2426 =head2 Piecewise Quasi Affine Expressions
2428 The zero quasi affine expression can be created using
2430 __isl_give isl_aff *isl_aff_zero(
2431 __isl_take isl_local_space *ls);
2433 A quasi affine expression can also be initialized from an C<isl_div>:
2435 #include <isl/div.h>
2436 __isl_give isl_aff *isl_aff_from_div(__isl_take isl_div *div);
2438 An empty piecewise quasi affine expression (one with no cells)
2439 or a piecewise quasi affine expression with a single cell can
2440 be created using the following functions.
2442 #include <isl/aff.h>
2443 __isl_give isl_pw_aff *isl_pw_aff_empty(
2444 __isl_take isl_space *space);
2445 __isl_give isl_pw_aff *isl_pw_aff_alloc(
2446 __isl_take isl_set *set, __isl_take isl_aff *aff);
2447 __isl_give isl_pw_aff *isl_pw_aff_from_aff(
2448 __isl_take isl_aff *aff);
2450 Quasi affine expressions can be copied and freed using
2452 #include <isl/aff.h>
2453 __isl_give isl_aff *isl_aff_copy(__isl_keep isl_aff *aff);
2454 void *isl_aff_free(__isl_take isl_aff *aff);
2456 __isl_give isl_pw_aff *isl_pw_aff_copy(
2457 __isl_keep isl_pw_aff *pwaff);
2458 void *isl_pw_aff_free(__isl_take isl_pw_aff *pwaff);
2460 A (rational) bound on a dimension can be extracted from an C<isl_constraint>
2461 using the following function. The constraint is required to have
2462 a non-zero coefficient for the specified dimension.
2464 #include <isl/constraint.h>
2465 __isl_give isl_aff *isl_constraint_get_bound(
2466 __isl_keep isl_constraint *constraint,
2467 enum isl_dim_type type, int pos);
2469 The entire affine expression of the constraint can also be extracted
2470 using the following function.
2472 #include <isl/constraint.h>
2473 __isl_give isl_aff *isl_constraint_get_aff(
2474 __isl_keep isl_constraint *constraint);
2476 Conversely, an equality constraint equating
2477 the affine expression to zero or an inequality constraint enforcing
2478 the affine expression to be non-negative, can be constructed using
2480 __isl_give isl_constraint *isl_equality_from_aff(
2481 __isl_take isl_aff *aff);
2482 __isl_give isl_constraint *isl_inequality_from_aff(
2483 __isl_take isl_aff *aff);
2485 The expression can be inspected using
2487 #include <isl/aff.h>
2488 isl_ctx *isl_aff_get_ctx(__isl_keep isl_aff *aff);
2489 int isl_aff_dim(__isl_keep isl_aff *aff,
2490 enum isl_dim_type type);
2491 __isl_give isl_local_space *isl_aff_get_local_space(
2492 __isl_keep isl_aff *aff);
2493 const char *isl_aff_get_dim_name(__isl_keep isl_aff *aff,
2494 enum isl_dim_type type, unsigned pos);
2495 int isl_aff_get_constant(__isl_keep isl_aff *aff,
2497 int isl_aff_get_coefficient(__isl_keep isl_aff *aff,
2498 enum isl_dim_type type, int pos, isl_int *v);
2499 int isl_aff_get_denominator(__isl_keep isl_aff *aff,
2501 __isl_give isl_div *isl_aff_get_div(
2502 __isl_keep isl_aff *aff, int pos);
2504 int isl_pw_aff_foreach_piece(__isl_keep isl_pw_aff *pwaff,
2505 int (*fn)(__isl_take isl_set *set,
2506 __isl_take isl_aff *aff,
2507 void *user), void *user);
2509 int isl_aff_is_cst(__isl_keep isl_aff *aff);
2510 int isl_pw_aff_is_cst(__isl_keep isl_pw_aff *pwaff);
2512 int isl_aff_involves_dims(__isl_keep isl_aff *aff,
2513 enum isl_dim_type type, unsigned first, unsigned n);
2514 int isl_pw_aff_involves_dims(__isl_keep isl_pw_aff *pwaff,
2515 enum isl_dim_type type, unsigned first, unsigned n);
2517 isl_ctx *isl_pw_aff_get_ctx(__isl_keep isl_pw_aff *pwaff);
2518 unsigned isl_pw_aff_dim(__isl_keep isl_pw_aff *pwaff,
2519 enum isl_dim_type type);
2520 int isl_pw_aff_is_empty(__isl_keep isl_pw_aff *pwaff);
2522 It can be modified using
2524 #include <isl/aff.h>
2525 __isl_give isl_pw_aff *isl_pw_aff_set_tuple_id(
2526 __isl_take isl_pw_aff *pwaff,
2527 __isl_take isl_id *id);
2528 __isl_give isl_aff *isl_aff_set_dim_name(
2529 __isl_take isl_aff *aff, enum isl_dim_type type,
2530 unsigned pos, const char *s);
2531 __isl_give isl_aff *isl_aff_set_constant(
2532 __isl_take isl_aff *aff, isl_int v);
2533 __isl_give isl_aff *isl_aff_set_constant_si(
2534 __isl_take isl_aff *aff, int v);
2535 __isl_give isl_aff *isl_aff_set_coefficient(
2536 __isl_take isl_aff *aff,
2537 enum isl_dim_type type, int pos, isl_int v);
2538 __isl_give isl_aff *isl_aff_set_coefficient_si(
2539 __isl_take isl_aff *aff,
2540 enum isl_dim_type type, int pos, int v);
2541 __isl_give isl_aff *isl_aff_set_denominator(
2542 __isl_take isl_aff *aff, isl_int v);
2544 __isl_give isl_aff *isl_aff_add_constant(
2545 __isl_take isl_aff *aff, isl_int v);
2546 __isl_give isl_aff *isl_aff_add_constant_si(
2547 __isl_take isl_aff *aff, int v);
2548 __isl_give isl_aff *isl_aff_add_coefficient(
2549 __isl_take isl_aff *aff,
2550 enum isl_dim_type type, int pos, isl_int v);
2551 __isl_give isl_aff *isl_aff_add_coefficient_si(
2552 __isl_take isl_aff *aff,
2553 enum isl_dim_type type, int pos, int v);
2555 __isl_give isl_aff *isl_aff_insert_dims(
2556 __isl_take isl_aff *aff,
2557 enum isl_dim_type type, unsigned first, unsigned n);
2558 __isl_give isl_pw_aff *isl_pw_aff_insert_dims(
2559 __isl_take isl_pw_aff *pwaff,
2560 enum isl_dim_type type, unsigned first, unsigned n);
2561 __isl_give isl_aff *isl_aff_add_dims(
2562 __isl_take isl_aff *aff,
2563 enum isl_dim_type type, unsigned n);
2564 __isl_give isl_pw_aff *isl_pw_aff_add_dims(
2565 __isl_take isl_pw_aff *pwaff,
2566 enum isl_dim_type type, unsigned n);
2567 __isl_give isl_aff *isl_aff_drop_dims(
2568 __isl_take isl_aff *aff,
2569 enum isl_dim_type type, unsigned first, unsigned n);
2570 __isl_give isl_pw_aff *isl_pw_aff_drop_dims(
2571 __isl_take isl_pw_aff *pwaff,
2572 enum isl_dim_type type, unsigned first, unsigned n);
2574 Note that the C<set_constant> and C<set_coefficient> functions
2575 set the I<numerator> of the constant or coefficient, while
2576 C<add_constant> and C<add_coefficient> add an integer value to
2577 the possibly rational constant or coefficient.
2579 To check whether an affine expressions is obviously zero
2580 or obviously equal to some other affine expression, use
2582 #include <isl/aff.h>
2583 int isl_aff_plain_is_zero(__isl_keep isl_aff *aff);
2584 int isl_aff_plain_is_equal(__isl_keep isl_aff *aff1,
2585 __isl_keep isl_aff *aff2);
2589 #include <isl/aff.h>
2590 __isl_give isl_aff *isl_aff_add(__isl_take isl_aff *aff1,
2591 __isl_take isl_aff *aff2);
2592 __isl_give isl_pw_aff *isl_pw_aff_add(
2593 __isl_take isl_pw_aff *pwaff1,
2594 __isl_take isl_pw_aff *pwaff2);
2595 __isl_give isl_pw_aff *isl_pw_aff_min(
2596 __isl_take isl_pw_aff *pwaff1,
2597 __isl_take isl_pw_aff *pwaff2);
2598 __isl_give isl_pw_aff *isl_pw_aff_max(
2599 __isl_take isl_pw_aff *pwaff1,
2600 __isl_take isl_pw_aff *pwaff2);
2601 __isl_give isl_aff *isl_aff_sub(__isl_take isl_aff *aff1,
2602 __isl_take isl_aff *aff2);
2603 __isl_give isl_pw_aff *isl_pw_aff_sub(
2604 __isl_take isl_pw_aff *pwaff1,
2605 __isl_take isl_pw_aff *pwaff2);
2606 __isl_give isl_aff *isl_aff_neg(__isl_take isl_aff *aff);
2607 __isl_give isl_pw_aff *isl_pw_aff_neg(
2608 __isl_take isl_pw_aff *pwaff);
2609 __isl_give isl_aff *isl_aff_ceil(__isl_take isl_aff *aff);
2610 __isl_give isl_pw_aff *isl_pw_aff_ceil(
2611 __isl_take isl_pw_aff *pwaff);
2612 __isl_give isl_aff *isl_aff_floor(__isl_take isl_aff *aff);
2613 __isl_give isl_pw_aff *isl_pw_aff_floor(
2614 __isl_take isl_pw_aff *pwaff);
2615 __isl_give isl_aff *isl_aff_mod(__isl_take isl_aff *aff,
2617 __isl_give isl_pw_aff *isl_pw_aff_mod(
2618 __isl_take isl_pw_aff *pwaff, isl_int mod);
2619 __isl_give isl_aff *isl_aff_scale(__isl_take isl_aff *aff,
2621 __isl_give isl_pw_aff *isl_pw_aff_scale(
2622 __isl_take isl_pw_aff *pwaff, isl_int f);
2623 __isl_give isl_aff *isl_aff_scale_down(__isl_take isl_aff *aff,
2625 __isl_give isl_aff *isl_aff_scale_down_ui(
2626 __isl_take isl_aff *aff, unsigned f);
2627 __isl_give isl_pw_aff *isl_pw_aff_scale_down(
2628 __isl_take isl_pw_aff *pwaff, isl_int f);
2630 __isl_give isl_pw_aff *isl_pw_aff_list_min(
2631 __isl_take isl_pw_aff_list *list);
2632 __isl_give isl_pw_aff *isl_pw_aff_list_max(
2633 __isl_take isl_pw_aff_list *list);
2635 __isl_give isl_pw_aff *isl_pw_aff_coalesce(
2636 __isl_take isl_pw_aff *pwqp);
2638 __isl_give isl_pw_aff *isl_pw_aff_align_params(
2639 __isl_take isl_pw_aff *pwaff,
2640 __isl_take isl_space *model);
2642 __isl_give isl_aff *isl_aff_gist(__isl_take isl_aff *aff,
2643 __isl_take isl_set *context);
2644 __isl_give isl_pw_aff *isl_pw_aff_gist(
2645 __isl_take isl_pw_aff *pwaff,
2646 __isl_take isl_set *context);
2648 __isl_give isl_set *isl_pw_aff_domain(
2649 __isl_take isl_pw_aff *pwaff);
2651 __isl_give isl_aff *isl_aff_mul(__isl_take isl_aff *aff1,
2652 __isl_take isl_aff *aff2);
2653 __isl_give isl_pw_aff *isl_pw_aff_mul(
2654 __isl_take isl_pw_aff *pwaff1,
2655 __isl_take isl_pw_aff *pwaff2);
2657 When multiplying two affine expressions, at least one of the two needs
2660 #include <isl/aff.h>
2661 __isl_give isl_basic_set *isl_aff_le_basic_set(
2662 __isl_take isl_aff *aff1, __isl_take isl_aff *aff2);
2663 __isl_give isl_basic_set *isl_aff_ge_basic_set(
2664 __isl_take isl_aff *aff1, __isl_take isl_aff *aff2);
2665 __isl_give isl_set *isl_pw_aff_eq_set(
2666 __isl_take isl_pw_aff *pwaff1,
2667 __isl_take isl_pw_aff *pwaff2);
2668 __isl_give isl_set *isl_pw_aff_ne_set(
2669 __isl_take isl_pw_aff *pwaff1,
2670 __isl_take isl_pw_aff *pwaff2);
2671 __isl_give isl_set *isl_pw_aff_le_set(
2672 __isl_take isl_pw_aff *pwaff1,
2673 __isl_take isl_pw_aff *pwaff2);
2674 __isl_give isl_set *isl_pw_aff_lt_set(
2675 __isl_take isl_pw_aff *pwaff1,
2676 __isl_take isl_pw_aff *pwaff2);
2677 __isl_give isl_set *isl_pw_aff_ge_set(
2678 __isl_take isl_pw_aff *pwaff1,
2679 __isl_take isl_pw_aff *pwaff2);
2680 __isl_give isl_set *isl_pw_aff_gt_set(
2681 __isl_take isl_pw_aff *pwaff1,
2682 __isl_take isl_pw_aff *pwaff2);
2684 __isl_give isl_set *isl_pw_aff_list_eq_set(
2685 __isl_take isl_pw_aff_list *list1,
2686 __isl_take isl_pw_aff_list *list2);
2687 __isl_give isl_set *isl_pw_aff_list_ne_set(
2688 __isl_take isl_pw_aff_list *list1,
2689 __isl_take isl_pw_aff_list *list2);
2690 __isl_give isl_set *isl_pw_aff_list_le_set(
2691 __isl_take isl_pw_aff_list *list1,
2692 __isl_take isl_pw_aff_list *list2);
2693 __isl_give isl_set *isl_pw_aff_list_lt_set(
2694 __isl_take isl_pw_aff_list *list1,
2695 __isl_take isl_pw_aff_list *list2);
2696 __isl_give isl_set *isl_pw_aff_list_ge_set(
2697 __isl_take isl_pw_aff_list *list1,
2698 __isl_take isl_pw_aff_list *list2);
2699 __isl_give isl_set *isl_pw_aff_list_gt_set(
2700 __isl_take isl_pw_aff_list *list1,
2701 __isl_take isl_pw_aff_list *list2);
2703 The function C<isl_aff_ge_basic_set> returns a basic set
2704 containing those elements in the shared space
2705 of C<aff1> and C<aff2> where C<aff1> is greater than or equal to C<aff2>.
2706 The function C<isl_aff_ge_set> returns a set
2707 containing those elements in the shared domain
2708 of C<pwaff1> and C<pwaff2> where C<pwaff1> is greater than or equal to C<pwaff2>.
2709 The functions operating on C<isl_pw_aff_list> apply the corresponding
2710 C<isl_pw_aff> function to each pair of elements in the two lists.
2712 #include <isl/aff.h>
2713 __isl_give isl_set *isl_pw_aff_nonneg_set(
2714 __isl_take isl_pw_aff *pwaff);
2715 __isl_give isl_set *isl_pw_aff_zero_set(
2716 __isl_take isl_pw_aff *pwaff);
2717 __isl_give isl_set *isl_pw_aff_non_zero_set(
2718 __isl_take isl_pw_aff *pwaff);
2720 The function C<isl_pw_aff_nonneg_set> returns a set
2721 containing those elements in the domain
2722 of C<pwaff> where C<pwaff> is non-negative.
2724 #include <isl/aff.h>
2725 __isl_give isl_pw_aff *isl_pw_aff_cond(
2726 __isl_take isl_set *cond,
2727 __isl_take isl_pw_aff *pwaff_true,
2728 __isl_take isl_pw_aff *pwaff_false);
2730 The function C<isl_pw_aff_cond> performs a conditional operator
2731 and returns an expression that is equal to C<pwaff_true>
2732 for elements in C<cond> and equal to C<pwaff_false> for elements
2735 #include <isl/aff.h>
2736 __isl_give isl_pw_aff *isl_pw_aff_union_min(
2737 __isl_take isl_pw_aff *pwaff1,
2738 __isl_take isl_pw_aff *pwaff2);
2739 __isl_give isl_pw_aff *isl_pw_aff_union_max(
2740 __isl_take isl_pw_aff *pwaff1,
2741 __isl_take isl_pw_aff *pwaff2);
2743 The function C<isl_pw_aff_union_max> computes a piecewise quasi-affine
2744 expression with a domain that is the union of those of C<pwaff1> and
2745 C<pwaff2> and such that on each cell, the quasi-affine expression is
2746 the maximum of those of C<pwaff1> and C<pwaff2>. If only one of
2747 C<pwaff1> or C<pwaff2> is defined on a given cell, then the
2748 associated expression is the defined one.
2750 An expression can be printed using
2752 #include <isl/aff.h>
2753 __isl_give isl_printer *isl_printer_print_aff(
2754 __isl_take isl_printer *p, __isl_keep isl_aff *aff);
2756 __isl_give isl_printer *isl_printer_print_pw_aff(
2757 __isl_take isl_printer *p,
2758 __isl_keep isl_pw_aff *pwaff);
2762 Points are elements of a set. They can be used to construct
2763 simple sets (boxes) or they can be used to represent the
2764 individual elements of a set.
2765 The zero point (the origin) can be created using
2767 __isl_give isl_point *isl_point_zero(__isl_take isl_space *space);
2769 The coordinates of a point can be inspected, set and changed
2772 void isl_point_get_coordinate(__isl_keep isl_point *pnt,
2773 enum isl_dim_type type, int pos, isl_int *v);
2774 __isl_give isl_point *isl_point_set_coordinate(
2775 __isl_take isl_point *pnt,
2776 enum isl_dim_type type, int pos, isl_int v);
2778 __isl_give isl_point *isl_point_add_ui(
2779 __isl_take isl_point *pnt,
2780 enum isl_dim_type type, int pos, unsigned val);
2781 __isl_give isl_point *isl_point_sub_ui(
2782 __isl_take isl_point *pnt,
2783 enum isl_dim_type type, int pos, unsigned val);
2785 Other properties can be obtained using
2787 isl_ctx *isl_point_get_ctx(__isl_keep isl_point *pnt);
2789 Points can be copied or freed using
2791 __isl_give isl_point *isl_point_copy(
2792 __isl_keep isl_point *pnt);
2793 void isl_point_free(__isl_take isl_point *pnt);
2795 A singleton set can be created from a point using
2797 __isl_give isl_basic_set *isl_basic_set_from_point(
2798 __isl_take isl_point *pnt);
2799 __isl_give isl_set *isl_set_from_point(
2800 __isl_take isl_point *pnt);
2802 and a box can be created from two opposite extremal points using
2804 __isl_give isl_basic_set *isl_basic_set_box_from_points(
2805 __isl_take isl_point *pnt1,
2806 __isl_take isl_point *pnt2);
2807 __isl_give isl_set *isl_set_box_from_points(
2808 __isl_take isl_point *pnt1,
2809 __isl_take isl_point *pnt2);
2811 All elements of a B<bounded> (union) set can be enumerated using
2812 the following functions.
2814 int isl_set_foreach_point(__isl_keep isl_set *set,
2815 int (*fn)(__isl_take isl_point *pnt, void *user),
2817 int isl_union_set_foreach_point(__isl_keep isl_union_set *uset,
2818 int (*fn)(__isl_take isl_point *pnt, void *user),
2821 The function C<fn> is called for each integer point in
2822 C<set> with as second argument the last argument of
2823 the C<isl_set_foreach_point> call. The function C<fn>
2824 should return C<0> on success and C<-1> on failure.
2825 In the latter case, C<isl_set_foreach_point> will stop
2826 enumerating and return C<-1> as well.
2827 If the enumeration is performed successfully and to completion,
2828 then C<isl_set_foreach_point> returns C<0>.
2830 To obtain a single point of a (basic) set, use
2832 __isl_give isl_point *isl_basic_set_sample_point(
2833 __isl_take isl_basic_set *bset);
2834 __isl_give isl_point *isl_set_sample_point(
2835 __isl_take isl_set *set);
2837 If C<set> does not contain any (integer) points, then the
2838 resulting point will be ``void'', a property that can be
2841 int isl_point_is_void(__isl_keep isl_point *pnt);
2843 =head2 Piecewise Quasipolynomials
2845 A piecewise quasipolynomial is a particular kind of function that maps
2846 a parametric point to a rational value.
2847 More specifically, a quasipolynomial is a polynomial expression in greatest
2848 integer parts of affine expressions of parameters and variables.
2849 A piecewise quasipolynomial is a subdivision of a given parametric
2850 domain into disjoint cells with a quasipolynomial associated to
2851 each cell. The value of the piecewise quasipolynomial at a given
2852 point is the value of the quasipolynomial associated to the cell
2853 that contains the point. Outside of the union of cells,
2854 the value is assumed to be zero.
2855 For example, the piecewise quasipolynomial
2857 [n] -> { [x] -> ((1 + n) - x) : x <= n and x >= 0 }
2859 maps C<x> to C<1 + n - x> for values of C<x> between C<0> and C<n>.
2860 A given piecewise quasipolynomial has a fixed domain dimension.
2861 Union piecewise quasipolynomials are used to contain piecewise quasipolynomials
2862 defined over different domains.
2863 Piecewise quasipolynomials are mainly used by the C<barvinok>
2864 library for representing the number of elements in a parametric set or map.
2865 For example, the piecewise quasipolynomial above represents
2866 the number of points in the map
2868 [n] -> { [x] -> [y] : x,y >= 0 and 0 <= x + y <= n }
2870 =head3 Printing (Piecewise) Quasipolynomials
2872 Quasipolynomials and piecewise quasipolynomials can be printed
2873 using the following functions.
2875 __isl_give isl_printer *isl_printer_print_qpolynomial(
2876 __isl_take isl_printer *p,
2877 __isl_keep isl_qpolynomial *qp);
2879 __isl_give isl_printer *isl_printer_print_pw_qpolynomial(
2880 __isl_take isl_printer *p,
2881 __isl_keep isl_pw_qpolynomial *pwqp);
2883 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial(
2884 __isl_take isl_printer *p,
2885 __isl_keep isl_union_pw_qpolynomial *upwqp);
2887 The output format of the printer
2888 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
2889 For C<isl_printer_print_union_pw_qpolynomial>, only C<ISL_FORMAT_ISL>
2891 In case of printing in C<ISL_FORMAT_C>, the user may want
2892 to set the names of all dimensions
2894 __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name(
2895 __isl_take isl_qpolynomial *qp,
2896 enum isl_dim_type type, unsigned pos,
2898 __isl_give isl_pw_qpolynomial *
2899 isl_pw_qpolynomial_set_dim_name(
2900 __isl_take isl_pw_qpolynomial *pwqp,
2901 enum isl_dim_type type, unsigned pos,
2904 =head3 Creating New (Piecewise) Quasipolynomials
2906 Some simple quasipolynomials can be created using the following functions.
2907 More complicated quasipolynomials can be created by applying
2908 operations such as addition and multiplication
2909 on the resulting quasipolynomials
2911 __isl_give isl_qpolynomial *isl_qpolynomial_zero(
2912 __isl_take isl_space *dim);
2913 __isl_give isl_qpolynomial *isl_qpolynomial_one(
2914 __isl_take isl_space *dim);
2915 __isl_give isl_qpolynomial *isl_qpolynomial_infty(
2916 __isl_take isl_space *dim);
2917 __isl_give isl_qpolynomial *isl_qpolynomial_neginfty(
2918 __isl_take isl_space *dim);
2919 __isl_give isl_qpolynomial *isl_qpolynomial_nan(
2920 __isl_take isl_space *dim);
2921 __isl_give isl_qpolynomial *isl_qpolynomial_rat_cst(
2922 __isl_take isl_space *dim,
2923 const isl_int n, const isl_int d);
2924 __isl_give isl_qpolynomial *isl_qpolynomial_div(
2925 __isl_take isl_div *div);
2926 __isl_give isl_qpolynomial *isl_qpolynomial_var(
2927 __isl_take isl_space *dim,
2928 enum isl_dim_type type, unsigned pos);
2929 __isl_give isl_qpolynomial *isl_qpolynomial_from_aff(
2930 __isl_take isl_aff *aff);
2932 The zero piecewise quasipolynomial or a piecewise quasipolynomial
2933 with a single cell can be created using the following functions.
2934 Multiple of these single cell piecewise quasipolynomials can
2935 be combined to create more complicated piecewise quasipolynomials.
2937 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_zero(
2938 __isl_take isl_space *space);
2939 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_alloc(
2940 __isl_take isl_set *set,
2941 __isl_take isl_qpolynomial *qp);
2942 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_qpolynomial(
2943 __isl_take isl_qpolynomial *qp);
2944 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_pw_aff(
2945 __isl_take isl_pw_aff *pwaff);
2947 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_zero(
2948 __isl_take isl_space *space);
2949 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_from_pw_qpolynomial(
2950 __isl_take isl_pw_qpolynomial *pwqp);
2951 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add_pw_qpolynomial(
2952 __isl_take isl_union_pw_qpolynomial *upwqp,
2953 __isl_take isl_pw_qpolynomial *pwqp);
2955 Quasipolynomials can be copied and freed again using the following
2958 __isl_give isl_qpolynomial *isl_qpolynomial_copy(
2959 __isl_keep isl_qpolynomial *qp);
2960 void *isl_qpolynomial_free(__isl_take isl_qpolynomial *qp);
2962 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_copy(
2963 __isl_keep isl_pw_qpolynomial *pwqp);
2964 void *isl_pw_qpolynomial_free(
2965 __isl_take isl_pw_qpolynomial *pwqp);
2967 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_copy(
2968 __isl_keep isl_union_pw_qpolynomial *upwqp);
2969 void isl_union_pw_qpolynomial_free(
2970 __isl_take isl_union_pw_qpolynomial *upwqp);
2972 =head3 Inspecting (Piecewise) Quasipolynomials
2974 To iterate over all piecewise quasipolynomials in a union
2975 piecewise quasipolynomial, use the following function
2977 int isl_union_pw_qpolynomial_foreach_pw_qpolynomial(
2978 __isl_keep isl_union_pw_qpolynomial *upwqp,
2979 int (*fn)(__isl_take isl_pw_qpolynomial *pwqp, void *user),
2982 To extract the piecewise quasipolynomial in a given space from a union, use
2984 __isl_give isl_pw_qpolynomial *
2985 isl_union_pw_qpolynomial_extract_pw_qpolynomial(
2986 __isl_keep isl_union_pw_qpolynomial *upwqp,
2987 __isl_take isl_space *space);
2989 To iterate over the cells in a piecewise quasipolynomial,
2990 use either of the following two functions
2992 int isl_pw_qpolynomial_foreach_piece(
2993 __isl_keep isl_pw_qpolynomial *pwqp,
2994 int (*fn)(__isl_take isl_set *set,
2995 __isl_take isl_qpolynomial *qp,
2996 void *user), void *user);
2997 int isl_pw_qpolynomial_foreach_lifted_piece(
2998 __isl_keep isl_pw_qpolynomial *pwqp,
2999 int (*fn)(__isl_take isl_set *set,
3000 __isl_take isl_qpolynomial *qp,
3001 void *user), void *user);
3003 As usual, the function C<fn> should return C<0> on success
3004 and C<-1> on failure. The difference between
3005 C<isl_pw_qpolynomial_foreach_piece> and
3006 C<isl_pw_qpolynomial_foreach_lifted_piece> is that
3007 C<isl_pw_qpolynomial_foreach_lifted_piece> will first
3008 compute unique representations for all existentially quantified
3009 variables and then turn these existentially quantified variables
3010 into extra set variables, adapting the associated quasipolynomial
3011 accordingly. This means that the C<set> passed to C<fn>
3012 will not have any existentially quantified variables, but that
3013 the dimensions of the sets may be different for different
3014 invocations of C<fn>.
3016 To iterate over all terms in a quasipolynomial,
3019 int isl_qpolynomial_foreach_term(
3020 __isl_keep isl_qpolynomial *qp,
3021 int (*fn)(__isl_take isl_term *term,
3022 void *user), void *user);
3024 The terms themselves can be inspected and freed using
3027 unsigned isl_term_dim(__isl_keep isl_term *term,
3028 enum isl_dim_type type);
3029 void isl_term_get_num(__isl_keep isl_term *term,
3031 void isl_term_get_den(__isl_keep isl_term *term,
3033 int isl_term_get_exp(__isl_keep isl_term *term,
3034 enum isl_dim_type type, unsigned pos);
3035 __isl_give isl_div *isl_term_get_div(
3036 __isl_keep isl_term *term, unsigned pos);
3037 void isl_term_free(__isl_take isl_term *term);
3039 Each term is a product of parameters, set variables and
3040 integer divisions. The function C<isl_term_get_exp>
3041 returns the exponent of a given dimensions in the given term.
3042 The C<isl_int>s in the arguments of C<isl_term_get_num>
3043 and C<isl_term_get_den> need to have been initialized
3044 using C<isl_int_init> before calling these functions.
3046 =head3 Properties of (Piecewise) Quasipolynomials
3048 To check whether a quasipolynomial is actually a constant,
3049 use the following function.
3051 int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp,
3052 isl_int *n, isl_int *d);
3054 If C<qp> is a constant and if C<n> and C<d> are not C<NULL>
3055 then the numerator and denominator of the constant
3056 are returned in C<*n> and C<*d>, respectively.
3058 =head3 Operations on (Piecewise) Quasipolynomials
3060 __isl_give isl_qpolynomial *isl_qpolynomial_scale(
3061 __isl_take isl_qpolynomial *qp, isl_int v);
3062 __isl_give isl_qpolynomial *isl_qpolynomial_neg(
3063 __isl_take isl_qpolynomial *qp);
3064 __isl_give isl_qpolynomial *isl_qpolynomial_add(
3065 __isl_take isl_qpolynomial *qp1,
3066 __isl_take isl_qpolynomial *qp2);
3067 __isl_give isl_qpolynomial *isl_qpolynomial_sub(
3068 __isl_take isl_qpolynomial *qp1,
3069 __isl_take isl_qpolynomial *qp2);
3070 __isl_give isl_qpolynomial *isl_qpolynomial_mul(
3071 __isl_take isl_qpolynomial *qp1,
3072 __isl_take isl_qpolynomial *qp2);
3073 __isl_give isl_qpolynomial *isl_qpolynomial_pow(
3074 __isl_take isl_qpolynomial *qp, unsigned exponent);
3076 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add(
3077 __isl_take isl_pw_qpolynomial *pwqp1,
3078 __isl_take isl_pw_qpolynomial *pwqp2);
3079 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_sub(
3080 __isl_take isl_pw_qpolynomial *pwqp1,
3081 __isl_take isl_pw_qpolynomial *pwqp2);
3082 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_disjoint(
3083 __isl_take isl_pw_qpolynomial *pwqp1,
3084 __isl_take isl_pw_qpolynomial *pwqp2);
3085 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_neg(
3086 __isl_take isl_pw_qpolynomial *pwqp);
3087 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
3088 __isl_take isl_pw_qpolynomial *pwqp1,
3089 __isl_take isl_pw_qpolynomial *pwqp2);
3090 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_pow(
3091 __isl_take isl_pw_qpolynomial *pwqp, unsigned exponent);
3093 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add(
3094 __isl_take isl_union_pw_qpolynomial *upwqp1,
3095 __isl_take isl_union_pw_qpolynomial *upwqp2);
3096 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_sub(
3097 __isl_take isl_union_pw_qpolynomial *upwqp1,
3098 __isl_take isl_union_pw_qpolynomial *upwqp2);
3099 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul(
3100 __isl_take isl_union_pw_qpolynomial *upwqp1,
3101 __isl_take isl_union_pw_qpolynomial *upwqp2);
3103 __isl_give isl_qpolynomial *isl_pw_qpolynomial_eval(
3104 __isl_take isl_pw_qpolynomial *pwqp,
3105 __isl_take isl_point *pnt);
3107 __isl_give isl_qpolynomial *isl_union_pw_qpolynomial_eval(
3108 __isl_take isl_union_pw_qpolynomial *upwqp,
3109 __isl_take isl_point *pnt);
3111 __isl_give isl_set *isl_pw_qpolynomial_domain(
3112 __isl_take isl_pw_qpolynomial *pwqp);
3113 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_intersect_domain(
3114 __isl_take isl_pw_qpolynomial *pwpq,
3115 __isl_take isl_set *set);
3117 __isl_give isl_union_set *isl_union_pw_qpolynomial_domain(
3118 __isl_take isl_union_pw_qpolynomial *upwqp);
3119 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_intersect_domain(
3120 __isl_take isl_union_pw_qpolynomial *upwpq,
3121 __isl_take isl_union_set *uset);
3123 __isl_give isl_qpolynomial *isl_qpolynomial_align_params(
3124 __isl_take isl_qpolynomial *qp,
3125 __isl_take isl_space *model);
3127 __isl_give isl_qpolynomial *isl_qpolynomial_project_domain_on_params(
3128 __isl_take isl_qpolynomial *qp);
3129 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_project_domain_on_params(
3130 __isl_take isl_pw_qpolynomial *pwqp);
3132 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_coalesce(
3133 __isl_take isl_union_pw_qpolynomial *upwqp);
3135 __isl_give isl_qpolynomial *isl_qpolynomial_gist(
3136 __isl_take isl_qpolynomial *qp,
3137 __isl_take isl_set *context);
3139 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist(
3140 __isl_take isl_pw_qpolynomial *pwqp,
3141 __isl_take isl_set *context);
3143 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_gist(
3144 __isl_take isl_union_pw_qpolynomial *upwqp,
3145 __isl_take isl_union_set *context);
3147 The gist operation applies the gist operation to each of
3148 the cells in the domain of the input piecewise quasipolynomial.
3149 The context is also exploited
3150 to simplify the quasipolynomials associated to each cell.
3152 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial(
3153 __isl_take isl_pw_qpolynomial *pwqp, int sign);
3154 __isl_give isl_union_pw_qpolynomial *
3155 isl_union_pw_qpolynomial_to_polynomial(
3156 __isl_take isl_union_pw_qpolynomial *upwqp, int sign);
3158 Approximate each quasipolynomial by a polynomial. If C<sign> is positive,
3159 the polynomial will be an overapproximation. If C<sign> is negative,
3160 it will be an underapproximation. If C<sign> is zero, the approximation
3161 will lie somewhere in between.
3163 =head2 Bounds on Piecewise Quasipolynomials and Piecewise Quasipolynomial Reductions
3165 A piecewise quasipolynomial reduction is a piecewise
3166 reduction (or fold) of quasipolynomials.
3167 In particular, the reduction can be maximum or a minimum.
3168 The objects are mainly used to represent the result of
3169 an upper or lower bound on a quasipolynomial over its domain,
3170 i.e., as the result of the following function.
3172 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_bound(
3173 __isl_take isl_pw_qpolynomial *pwqp,
3174 enum isl_fold type, int *tight);
3176 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_bound(
3177 __isl_take isl_union_pw_qpolynomial *upwqp,
3178 enum isl_fold type, int *tight);
3180 The C<type> argument may be either C<isl_fold_min> or C<isl_fold_max>.
3181 If C<tight> is not C<NULL>, then C<*tight> is set to C<1>
3182 is the returned bound is known be tight, i.e., for each value
3183 of the parameters there is at least
3184 one element in the domain that reaches the bound.
3185 If the domain of C<pwqp> is not wrapping, then the bound is computed
3186 over all elements in that domain and the result has a purely parametric
3187 domain. If the domain of C<pwqp> is wrapping, then the bound is
3188 computed over the range of the wrapped relation. The domain of the
3189 wrapped relation becomes the domain of the result.
3191 A (piecewise) quasipolynomial reduction can be copied or freed using the
3192 following functions.
3194 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_copy(
3195 __isl_keep isl_qpolynomial_fold *fold);
3196 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_copy(
3197 __isl_keep isl_pw_qpolynomial_fold *pwf);
3198 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_copy(
3199 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
3200 void isl_qpolynomial_fold_free(
3201 __isl_take isl_qpolynomial_fold *fold);
3202 void *isl_pw_qpolynomial_fold_free(
3203 __isl_take isl_pw_qpolynomial_fold *pwf);
3204 void isl_union_pw_qpolynomial_fold_free(
3205 __isl_take isl_union_pw_qpolynomial_fold *upwf);
3207 =head3 Printing Piecewise Quasipolynomial Reductions
3209 Piecewise quasipolynomial reductions can be printed
3210 using the following function.
3212 __isl_give isl_printer *isl_printer_print_pw_qpolynomial_fold(
3213 __isl_take isl_printer *p,
3214 __isl_keep isl_pw_qpolynomial_fold *pwf);
3215 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial_fold(
3216 __isl_take isl_printer *p,
3217 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
3219 For C<isl_printer_print_pw_qpolynomial_fold>,
3220 output format of the printer
3221 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
3222 For C<isl_printer_print_union_pw_qpolynomial_fold>,
3223 output format of the printer
3224 needs to be set to C<ISL_FORMAT_ISL>.
3225 In case of printing in C<ISL_FORMAT_C>, the user may want
3226 to set the names of all dimensions
3228 __isl_give isl_pw_qpolynomial_fold *
3229 isl_pw_qpolynomial_fold_set_dim_name(
3230 __isl_take isl_pw_qpolynomial_fold *pwf,
3231 enum isl_dim_type type, unsigned pos,
3234 =head3 Inspecting (Piecewise) Quasipolynomial Reductions
3236 To iterate over all piecewise quasipolynomial reductions in a union
3237 piecewise quasipolynomial reduction, use the following function
3239 int isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold(
3240 __isl_keep isl_union_pw_qpolynomial_fold *upwf,
3241 int (*fn)(__isl_take isl_pw_qpolynomial_fold *pwf,
3242 void *user), void *user);
3244 To iterate over the cells in a piecewise quasipolynomial reduction,
3245 use either of the following two functions
3247 int isl_pw_qpolynomial_fold_foreach_piece(
3248 __isl_keep isl_pw_qpolynomial_fold *pwf,
3249 int (*fn)(__isl_take isl_set *set,
3250 __isl_take isl_qpolynomial_fold *fold,
3251 void *user), void *user);
3252 int isl_pw_qpolynomial_fold_foreach_lifted_piece(
3253 __isl_keep isl_pw_qpolynomial_fold *pwf,
3254 int (*fn)(__isl_take isl_set *set,
3255 __isl_take isl_qpolynomial_fold *fold,
3256 void *user), void *user);
3258 See L<Inspecting (Piecewise) Quasipolynomials> for an explanation
3259 of the difference between these two functions.
3261 To iterate over all quasipolynomials in a reduction, use
3263 int isl_qpolynomial_fold_foreach_qpolynomial(
3264 __isl_keep isl_qpolynomial_fold *fold,
3265 int (*fn)(__isl_take isl_qpolynomial *qp,
3266 void *user), void *user);
3268 =head3 Operations on Piecewise Quasipolynomial Reductions
3270 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_scale(
3271 __isl_take isl_qpolynomial_fold *fold, isl_int v);
3273 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_add(
3274 __isl_take isl_pw_qpolynomial_fold *pwf1,
3275 __isl_take isl_pw_qpolynomial_fold *pwf2);
3277 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_fold(
3278 __isl_take isl_pw_qpolynomial_fold *pwf1,
3279 __isl_take isl_pw_qpolynomial_fold *pwf2);
3281 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_fold(
3282 __isl_take isl_union_pw_qpolynomial_fold *upwf1,
3283 __isl_take isl_union_pw_qpolynomial_fold *upwf2);
3285 __isl_give isl_qpolynomial *isl_pw_qpolynomial_fold_eval(
3286 __isl_take isl_pw_qpolynomial_fold *pwf,
3287 __isl_take isl_point *pnt);
3289 __isl_give isl_qpolynomial *isl_union_pw_qpolynomial_fold_eval(
3290 __isl_take isl_union_pw_qpolynomial_fold *upwf,
3291 __isl_take isl_point *pnt);
3293 __isl_give isl_union_set *isl_union_pw_qpolynomial_fold_domain(
3294 __isl_take isl_union_pw_qpolynomial_fold *upwf);
3295 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_intersect_domain(
3296 __isl_take isl_union_pw_qpolynomial_fold *upwf,
3297 __isl_take isl_union_set *uset);
3299 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_project_domain_on_params(
3300 __isl_take isl_pw_qpolynomial_fold *pwf);
3302 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_coalesce(
3303 __isl_take isl_pw_qpolynomial_fold *pwf);
3305 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_coalesce(
3306 __isl_take isl_union_pw_qpolynomial_fold *upwf);
3308 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_gist(
3309 __isl_take isl_pw_qpolynomial_fold *pwf,
3310 __isl_take isl_set *context);
3312 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_gist(
3313 __isl_take isl_union_pw_qpolynomial_fold *upwf,
3314 __isl_take isl_union_set *context);
3316 The gist operation applies the gist operation to each of
3317 the cells in the domain of the input piecewise quasipolynomial reduction.
3318 In future, the operation will also exploit the context
3319 to simplify the quasipolynomial reductions associated to each cell.
3321 __isl_give isl_pw_qpolynomial_fold *
3322 isl_set_apply_pw_qpolynomial_fold(
3323 __isl_take isl_set *set,
3324 __isl_take isl_pw_qpolynomial_fold *pwf,
3326 __isl_give isl_pw_qpolynomial_fold *
3327 isl_map_apply_pw_qpolynomial_fold(
3328 __isl_take isl_map *map,
3329 __isl_take isl_pw_qpolynomial_fold *pwf,
3331 __isl_give isl_union_pw_qpolynomial_fold *
3332 isl_union_set_apply_union_pw_qpolynomial_fold(
3333 __isl_take isl_union_set *uset,
3334 __isl_take isl_union_pw_qpolynomial_fold *upwf,
3336 __isl_give isl_union_pw_qpolynomial_fold *
3337 isl_union_map_apply_union_pw_qpolynomial_fold(
3338 __isl_take isl_union_map *umap,
3339 __isl_take isl_union_pw_qpolynomial_fold *upwf,
3342 The functions taking a map
3343 compose the given map with the given piecewise quasipolynomial reduction.
3344 That is, compute a bound (of the same type as C<pwf> or C<upwf> itself)
3345 over all elements in the intersection of the range of the map
3346 and the domain of the piecewise quasipolynomial reduction
3347 as a function of an element in the domain of the map.
3348 The functions taking a set compute a bound over all elements in the
3349 intersection of the set and the domain of the
3350 piecewise quasipolynomial reduction.
3352 =head2 Dependence Analysis
3354 C<isl> contains specialized functionality for performing
3355 array dataflow analysis. That is, given a I<sink> access relation
3356 and a collection of possible I<source> access relations,
3357 C<isl> can compute relations that describe
3358 for each iteration of the sink access, which iteration
3359 of which of the source access relations was the last
3360 to access the same data element before the given iteration
3362 To compute standard flow dependences, the sink should be
3363 a read, while the sources should be writes.
3364 If any of the source accesses are marked as being I<may>
3365 accesses, then there will be a dependence to the last
3366 I<must> access B<and> to any I<may> access that follows
3367 this last I<must> access.
3368 In particular, if I<all> sources are I<may> accesses,
3369 then memory based dependence analysis is performed.
3370 If, on the other hand, all sources are I<must> accesses,
3371 then value based dependence analysis is performed.
3373 #include <isl/flow.h>
3375 typedef int (*isl_access_level_before)(void *first, void *second);
3377 __isl_give isl_access_info *isl_access_info_alloc(
3378 __isl_take isl_map *sink,
3379 void *sink_user, isl_access_level_before fn,
3381 __isl_give isl_access_info *isl_access_info_add_source(
3382 __isl_take isl_access_info *acc,
3383 __isl_take isl_map *source, int must,
3385 void isl_access_info_free(__isl_take isl_access_info *acc);
3387 __isl_give isl_flow *isl_access_info_compute_flow(
3388 __isl_take isl_access_info *acc);
3390 int isl_flow_foreach(__isl_keep isl_flow *deps,
3391 int (*fn)(__isl_take isl_map *dep, int must,
3392 void *dep_user, void *user),
3394 __isl_give isl_map *isl_flow_get_no_source(
3395 __isl_keep isl_flow *deps, int must);
3396 void isl_flow_free(__isl_take isl_flow *deps);
3398 The function C<isl_access_info_compute_flow> performs the actual
3399 dependence analysis. The other functions are used to construct
3400 the input for this function or to read off the output.
3402 The input is collected in an C<isl_access_info>, which can
3403 be created through a call to C<isl_access_info_alloc>.
3404 The arguments to this functions are the sink access relation
3405 C<sink>, a token C<sink_user> used to identify the sink
3406 access to the user, a callback function for specifying the
3407 relative order of source and sink accesses, and the number
3408 of source access relations that will be added.
3409 The callback function has type C<int (*)(void *first, void *second)>.
3410 The function is called with two user supplied tokens identifying
3411 either a source or the sink and it should return the shared nesting
3412 level and the relative order of the two accesses.
3413 In particular, let I<n> be the number of loops shared by
3414 the two accesses. If C<first> precedes C<second> textually,
3415 then the function should return I<2 * n + 1>; otherwise,
3416 it should return I<2 * n>.
3417 The sources can be added to the C<isl_access_info> by performing
3418 (at most) C<max_source> calls to C<isl_access_info_add_source>.
3419 C<must> indicates whether the source is a I<must> access
3420 or a I<may> access. Note that a multi-valued access relation
3421 should only be marked I<must> if every iteration in the domain
3422 of the relation accesses I<all> elements in its image.
3423 The C<source_user> token is again used to identify
3424 the source access. The range of the source access relation
3425 C<source> should have the same dimension as the range
3426 of the sink access relation.
3427 The C<isl_access_info_free> function should usually not be
3428 called explicitly, because it is called implicitly by
3429 C<isl_access_info_compute_flow>.
3431 The result of the dependence analysis is collected in an
3432 C<isl_flow>. There may be elements of
3433 the sink access for which no preceding source access could be
3434 found or for which all preceding sources are I<may> accesses.
3435 The relations containing these elements can be obtained through
3436 calls to C<isl_flow_get_no_source>, the first with C<must> set
3437 and the second with C<must> unset.
3438 In the case of standard flow dependence analysis,
3439 with the sink a read and the sources I<must> writes,
3440 the first relation corresponds to the reads from uninitialized
3441 array elements and the second relation is empty.
3442 The actual flow dependences can be extracted using
3443 C<isl_flow_foreach>. This function will call the user-specified
3444 callback function C<fn> for each B<non-empty> dependence between
3445 a source and the sink. The callback function is called
3446 with four arguments, the actual flow dependence relation
3447 mapping source iterations to sink iterations, a boolean that
3448 indicates whether it is a I<must> or I<may> dependence, a token
3449 identifying the source and an additional C<void *> with value
3450 equal to the third argument of the C<isl_flow_foreach> call.
3451 A dependence is marked I<must> if it originates from a I<must>
3452 source and if it is not followed by any I<may> sources.
3454 After finishing with an C<isl_flow>, the user should call
3455 C<isl_flow_free> to free all associated memory.
3457 A higher-level interface to dependence analysis is provided
3458 by the following function.
3460 #include <isl/flow.h>
3462 int isl_union_map_compute_flow(__isl_take isl_union_map *sink,
3463 __isl_take isl_union_map *must_source,
3464 __isl_take isl_union_map *may_source,
3465 __isl_take isl_union_map *schedule,
3466 __isl_give isl_union_map **must_dep,
3467 __isl_give isl_union_map **may_dep,
3468 __isl_give isl_union_map **must_no_source,
3469 __isl_give isl_union_map **may_no_source);
3471 The arrays are identified by the tuple names of the ranges
3472 of the accesses. The iteration domains by the tuple names
3473 of the domains of the accesses and of the schedule.
3474 The relative order of the iteration domains is given by the
3475 schedule. The relations returned through C<must_no_source>
3476 and C<may_no_source> are subsets of C<sink>.
3477 Any of C<must_dep>, C<may_dep>, C<must_no_source>
3478 or C<may_no_source> may be C<NULL>, but a C<NULL> value for
3479 any of the other arguments is treated as an error.
3483 B<The functionality described in this section is fairly new
3484 and may be subject to change.>
3486 The following function can be used to compute a schedule
3487 for a union of domains. The generated schedule respects
3488 all C<validity> dependences. That is, all dependence distances
3489 over these dependences in the scheduled space are lexicographically
3490 positive. The generated schedule schedule also tries to minimize
3491 the dependence distances over C<proximity> dependences.
3492 Moreover, it tries to obtain sequences (bands) of schedule dimensions
3493 for groups of domains where the dependence distances have only
3494 non-negative values.
3495 The algorithm used to construct the schedule is similar to that
3498 #include <isl/schedule.h>
3499 __isl_give isl_schedule *isl_union_set_compute_schedule(
3500 __isl_take isl_union_set *domain,
3501 __isl_take isl_union_map *validity,
3502 __isl_take isl_union_map *proximity);
3503 void *isl_schedule_free(__isl_take isl_schedule *sched);
3505 A mapping from the domains to the scheduled space can be obtained
3506 from an C<isl_schedule> using the following function.
3508 __isl_give isl_union_map *isl_schedule_get_map(
3509 __isl_keep isl_schedule *sched);
3511 A representation of the schedule can be printed using
3513 __isl_give isl_printer *isl_printer_print_schedule(
3514 __isl_take isl_printer *p,
3515 __isl_keep isl_schedule *schedule);
3517 A representation of the schedule as a forest of bands can be obtained
3518 using the following function.
3520 __isl_give isl_band_list *isl_schedule_get_band_forest(
3521 __isl_keep isl_schedule *schedule);
3523 The list can be manipulated as explained in L<"Lists">.
3524 The bands inside the list can be copied and freed using the following
3527 #include <isl/band.h>
3528 __isl_give isl_band *isl_band_copy(
3529 __isl_keep isl_band *band);
3530 void *isl_band_free(__isl_take isl_band *band);
3532 Each band contains zero or more scheduling dimensions.
3533 These are referred to as the members of the band.
3534 The section of the schedule that corresponds to the band is
3535 referred to as the partial schedule of the band.
3536 For those nodes that participate in a band, the outer scheduling
3537 dimensions form the prefix schedule, while the inner scheduling
3538 dimensions form the suffix schedule.
3539 That is, if we take a cut of the band forest, then the union of
3540 the concatenations of the prefix, partial and suffix schedules of
3541 each band in the cut is equal to the entire schedule (modulo
3542 some possible padding at the end with zero scheduling dimensions).
3543 The properties of a band can be inspected using the following functions.
3545 #include <isl/band.h>
3546 isl_ctx *isl_band_get_ctx(__isl_keep isl_band *band);
3548 int isl_band_has_children(__isl_keep isl_band *band);
3549 __isl_give isl_band_list *isl_band_get_children(
3550 __isl_keep isl_band *band);
3552 __isl_give isl_union_map *isl_band_get_prefix_schedule(
3553 __isl_keep isl_band *band);
3554 __isl_give isl_union_map *isl_band_get_partial_schedule(
3555 __isl_keep isl_band *band);
3556 __isl_give isl_union_map *isl_band_get_suffix_schedule(
3557 __isl_keep isl_band *band);
3559 int isl_band_n_member(__isl_keep isl_band *band);
3560 int isl_band_member_is_zero_distance(
3561 __isl_keep isl_band *band, int pos);
3563 Note that a scheduling dimension is considered to be ``zero
3564 distance'' if it does not carry any proximity dependences
3566 That is, if the dependence distances of the proximity
3567 dependences are all zero in that direction (for fixed
3568 iterations of outer bands).
3570 A representation of the band can be printed using
3572 #include <isl/band.h>
3573 __isl_give isl_printer *isl_printer_print_band(
3574 __isl_take isl_printer *p,
3575 __isl_keep isl_band *band);
3577 =head2 Parametric Vertex Enumeration
3579 The parametric vertex enumeration described in this section
3580 is mainly intended to be used internally and by the C<barvinok>
3583 #include <isl/vertices.h>
3584 __isl_give isl_vertices *isl_basic_set_compute_vertices(
3585 __isl_keep isl_basic_set *bset);
3587 The function C<isl_basic_set_compute_vertices> performs the
3588 actual computation of the parametric vertices and the chamber
3589 decomposition and store the result in an C<isl_vertices> object.
3590 This information can be queried by either iterating over all
3591 the vertices or iterating over all the chambers or cells
3592 and then iterating over all vertices that are active on the chamber.
3594 int isl_vertices_foreach_vertex(
3595 __isl_keep isl_vertices *vertices,
3596 int (*fn)(__isl_take isl_vertex *vertex, void *user),
3599 int isl_vertices_foreach_cell(
3600 __isl_keep isl_vertices *vertices,
3601 int (*fn)(__isl_take isl_cell *cell, void *user),
3603 int isl_cell_foreach_vertex(__isl_keep isl_cell *cell,
3604 int (*fn)(__isl_take isl_vertex *vertex, void *user),
3607 Other operations that can be performed on an C<isl_vertices> object are
3610 isl_ctx *isl_vertices_get_ctx(
3611 __isl_keep isl_vertices *vertices);
3612 int isl_vertices_get_n_vertices(
3613 __isl_keep isl_vertices *vertices);
3614 void isl_vertices_free(__isl_take isl_vertices *vertices);
3616 Vertices can be inspected and destroyed using the following functions.
3618 isl_ctx *isl_vertex_get_ctx(__isl_keep isl_vertex *vertex);
3619 int isl_vertex_get_id(__isl_keep isl_vertex *vertex);
3620 __isl_give isl_basic_set *isl_vertex_get_domain(
3621 __isl_keep isl_vertex *vertex);
3622 __isl_give isl_basic_set *isl_vertex_get_expr(
3623 __isl_keep isl_vertex *vertex);
3624 void isl_vertex_free(__isl_take isl_vertex *vertex);
3626 C<isl_vertex_get_expr> returns a singleton parametric set describing
3627 the vertex, while C<isl_vertex_get_domain> returns the activity domain
3629 Note that C<isl_vertex_get_domain> and C<isl_vertex_get_expr> return
3630 B<rational> basic sets, so they should mainly be used for inspection
3631 and should not be mixed with integer sets.
3633 Chambers can be inspected and destroyed using the following functions.
3635 isl_ctx *isl_cell_get_ctx(__isl_keep isl_cell *cell);
3636 __isl_give isl_basic_set *isl_cell_get_domain(
3637 __isl_keep isl_cell *cell);
3638 void isl_cell_free(__isl_take isl_cell *cell);
3642 Although C<isl> is mainly meant to be used as a library,
3643 it also contains some basic applications that use some
3644 of the functionality of C<isl>.
3645 The input may be specified in either the L<isl format>
3646 or the L<PolyLib format>.
3648 =head2 C<isl_polyhedron_sample>
3650 C<isl_polyhedron_sample> takes a polyhedron as input and prints
3651 an integer element of the polyhedron, if there is any.
3652 The first column in the output is the denominator and is always
3653 equal to 1. If the polyhedron contains no integer points,
3654 then a vector of length zero is printed.
3658 C<isl_pip> takes the same input as the C<example> program
3659 from the C<piplib> distribution, i.e., a set of constraints
3660 on the parameters, a line containing only -1 and finally a set
3661 of constraints on a parametric polyhedron.
3662 The coefficients of the parameters appear in the last columns
3663 (but before the final constant column).
3664 The output is the lexicographic minimum of the parametric polyhedron.
3665 As C<isl> currently does not have its own output format, the output
3666 is just a dump of the internal state.
3668 =head2 C<isl_polyhedron_minimize>
3670 C<isl_polyhedron_minimize> computes the minimum of some linear
3671 or affine objective function over the integer points in a polyhedron.
3672 If an affine objective function
3673 is given, then the constant should appear in the last column.
3675 =head2 C<isl_polytope_scan>
3677 Given a polytope, C<isl_polytope_scan> prints
3678 all integer points in the polytope.