3 C<isl> is a thread-safe C library for manipulating
4 sets and relations of integer points bounded by affine constraints.
5 The descriptions of the sets and relations may involve
6 both parameters and existentially quantified variables.
7 All computations are performed in exact integer arithmetic
9 The C<isl> library offers functionality that is similar
10 to that offered by the C<Omega> and C<Omega+> libraries,
11 but the underlying algorithms are in most cases completely different.
13 The library is by no means complete and some fairly basic
14 functionality is still missing.
15 Still, even in its current form, the library has been successfully
16 used as a backend polyhedral library for the polyhedral
17 scanner C<CLooG> and as part of an equivalence checker of
18 static affine programs.
22 The source of C<isl> can be obtained either as a tarball
23 or from the git repository. Both are available from
24 L<http://freshmeat.net/projects/isl/>.
25 The installation process depends on how you obtained
28 =head2 Installation from the git repository
32 =item 1 Clone or update the repository
34 The first time the source is obtained, you need to clone
37 git clone git://repo.or.cz/isl.git
39 To obtain updates, you need to pull in the latest changes
43 =item 2 Get submodule (optional)
45 C<isl> can optionally use the C<piplib> library and provides
46 this library as a submodule. If you want to use it, then
47 after you have cloned C<isl>, you need to grab the submodules
52 To obtain updates, you only need
56 Note that C<isl> currently does not use any C<piplib>
57 functionality by default.
59 =item 3 Generate C<configure>
65 After performing the above steps, continue
66 with the L<Common installation instructions>.
68 =head2 Common installation instructions
74 Building C<isl> requires C<GMP>, including its headers files.
75 Your distribution may not provide these header files by default
76 and you may need to install a package called C<gmp-devel> or something
77 similar. Alternatively, C<GMP> can be built from
78 source, available from L<http://gmplib.org/>.
82 C<isl> uses the standard C<autoconf> C<configure> script.
87 optionally followed by some configure options.
88 A complete list of options can be obtained by running
92 Below we discuss some of the more common options.
94 C<isl> can optionally use C<piplib>, but no
95 C<piplib> functionality is currently used by default.
96 The C<--with-piplib> option can
97 be used to specify which C<piplib>
98 library to use, either an installed version (C<system>),
99 an externally built version (C<build>), a bundled version (C<bundled>)
100 or no version (C<no>). The option C<build> is mostly useful
101 in C<configure> scripts of larger projects that bundle both C<isl>
108 Installation prefix for C<isl>
110 =item C<--with-gmp-prefix>
112 Installation prefix for C<GMP> (architecture-independent files).
114 =item C<--with-gmp-exec-prefix>
116 Installation prefix for C<GMP> (architecture-dependent files).
118 =item C<--with-piplib>
120 Which copy of C<piplib> to use, either C<no> (default), C<system>, C<build>
121 or C<bundled>. Note that C<bundled> only works if you have obtained
122 C<isl> and its submodules from the git repository.
124 =item C<--with-piplib-prefix>
126 Installation prefix for C<system> C<piplib> (architecture-independent files).
128 =item C<--with-piplib-exec-prefix>
130 Installation prefix for C<system> C<piplib> (architecture-dependent files).
132 =item C<--with-piplib-builddir>
134 Location where C<build> C<piplib> was built.
142 =item 4 Install (optional)
150 =head2 Initialization
152 All manipulations of integer sets and relations occur within
153 the context of an C<isl_ctx>.
154 A given C<isl_ctx> can only be used within a single thread.
155 All arguments of a function are required to have been allocated
156 within the same context.
157 There are currently no functions available for moving an object
158 from one C<isl_ctx> to another C<isl_ctx>. This means that
159 there is currently no way of safely moving an object from one
160 thread to another, unless the whole C<isl_ctx> is moved.
162 An C<isl_ctx> can be allocated using C<isl_ctx_alloc> and
163 freed using C<isl_ctx_free>.
164 All objects allocated within an C<isl_ctx> should be freed
165 before the C<isl_ctx> itself is freed.
167 isl_ctx *isl_ctx_alloc();
168 void isl_ctx_free(isl_ctx *ctx);
172 All operations on integers, mainly the coefficients
173 of the constraints describing the sets and relations,
174 are performed in exact integer arithmetic using C<GMP>.
175 However, to allow future versions of C<isl> to optionally
176 support fixed integer arithmetic, all calls to C<GMP>
177 are wrapped inside C<isl> specific macros.
178 The basic type is C<isl_int> and the following operations
179 are available on this type.
180 The meanings of these operations are essentially the same
181 as their C<GMP> C<mpz_> counterparts.
182 As always with C<GMP> types, C<isl_int>s need to be
183 initialized with C<isl_int_init> before they can be used
184 and they need to be released with C<isl_int_clear>
189 =item isl_int_init(i)
191 =item isl_int_clear(i)
193 =item isl_int_set(r,i)
195 =item isl_int_set_si(r,i)
197 =item isl_int_abs(r,i)
199 =item isl_int_neg(r,i)
201 =item isl_int_swap(i,j)
203 =item isl_int_swap_or_set(i,j)
205 =item isl_int_add_ui(r,i,j)
207 =item isl_int_sub_ui(r,i,j)
209 =item isl_int_add(r,i,j)
211 =item isl_int_sub(r,i,j)
213 =item isl_int_mul(r,i,j)
215 =item isl_int_mul_ui(r,i,j)
217 =item isl_int_addmul(r,i,j)
219 =item isl_int_submul(r,i,j)
221 =item isl_int_gcd(r,i,j)
223 =item isl_int_lcm(r,i,j)
225 =item isl_int_divexact(r,i,j)
227 =item isl_int_cdiv_q(r,i,j)
229 =item isl_int_fdiv_q(r,i,j)
231 =item isl_int_fdiv_r(r,i,j)
233 =item isl_int_fdiv_q_ui(r,i,j)
235 =item isl_int_read(r,s)
237 =item isl_int_print(out,i,width)
241 =item isl_int_cmp(i,j)
243 =item isl_int_cmp_si(i,si)
245 =item isl_int_eq(i,j)
247 =item isl_int_ne(i,j)
249 =item isl_int_lt(i,j)
251 =item isl_int_le(i,j)
253 =item isl_int_gt(i,j)
255 =item isl_int_ge(i,j)
257 =item isl_int_abs_eq(i,j)
259 =item isl_int_abs_ne(i,j)
261 =item isl_int_abs_lt(i,j)
263 =item isl_int_abs_gt(i,j)
265 =item isl_int_abs_ge(i,j)
267 =item isl_int_is_zero(i)
269 =item isl_int_is_one(i)
271 =item isl_int_is_negone(i)
273 =item isl_int_is_pos(i)
275 =item isl_int_is_neg(i)
277 =item isl_int_is_nonpos(i)
279 =item isl_int_is_nonneg(i)
281 =item isl_int_is_divisible_by(i,j)
285 =head2 Sets and Relations
287 C<isl> uses four types of objects for representing sets and relations,
288 C<isl_basic_set>, C<isl_basic_map>, C<isl_set> and C<isl_map>.
289 C<isl_basic_set> and C<isl_basic_map> represent sets and relations that
290 can be described as a conjunction of affine constraints, while
291 C<isl_set> and C<isl_map> represent unions of
292 C<isl_basic_set>s and C<isl_basic_map>s, respectively.
293 The difference between sets and relations (maps) is that sets have
294 one set of variables, while relations have two sets of variables,
295 input variables and output variables.
297 =head2 Memory Management
299 Since a high-level operation on sets and/or relations usually involves
300 several substeps and since the user is usually not interested in
301 the intermediate results, most functions that return a new object
302 will also release all the objects passed as arguments.
303 If the user still wants to use one or more of these arguments
304 after the function call, she should pass along a copy of the
305 object rather than the object itself.
306 The user is then responsible for make sure that the original
307 object gets used somewhere else or is explicitly freed.
309 The arguments and return values of all documents functions are
310 annotated to make clear which arguments are released and which
311 arguments are preserved. In particular, the following annotations
318 C<__isl_give> means that a new object is returned.
319 The user should make sure that the returned pointer is
320 used exactly once as a value for an C<__isl_take> argument.
321 In between, it can be used as a value for as many
322 C<__isl_keep> arguments as the user likes.
323 There is one exception, and that is the case where the
324 pointer returned is C<NULL>. Is this case, the user
325 is free to use it as an C<__isl_take> argument or not.
329 C<__isl_take> means that the object the argument points to
330 is taken over by the function and may no longer be used
331 by the user as an argument to any other function.
332 The pointer value must be one returned by a function
333 returning an C<__isl_give> pointer.
334 If the user passes in a C<NULL> value, then this will
335 be treated as an error in the sense that the function will
336 not perform its usual operation. However, it will still
337 make sure that all the the other C<__isl_take> arguments
342 C<__isl_keep> means that the function will only use the object
343 temporarily. After the function has finished, the user
344 can still use it as an argument to other functions.
345 A C<NULL> value will be treated in the same way as
346 a C<NULL> value for an C<__isl_take> argument.
350 =head2 Dimension Specifications
352 Whenever a new set or relation is created from scratch,
353 its dimension needs to be specified using an C<isl_dim>.
356 __isl_give isl_dim *isl_dim_alloc(isl_ctx *ctx,
357 unsigned nparam, unsigned n_in, unsigned n_out);
358 __isl_give isl_dim *isl_dim_set_alloc(isl_ctx *ctx,
359 unsigned nparam, unsigned dim);
360 __isl_give isl_dim *isl_dim_copy(__isl_keep isl_dim *dim);
361 void isl_dim_free(__isl_take isl_dim *dim);
362 unsigned isl_dim_size(__isl_keep isl_dim *dim,
363 enum isl_dim_type type);
365 The dimension specification used for creating a set
366 needs to be created using C<isl_dim_set_alloc>, while
367 that for creating a relation
368 needs to be created using C<isl_dim_alloc>.
369 C<isl_dim_size> can be used
370 to find out the number of dimensions of each type in
371 a dimension specification, where type may be
372 C<isl_dim_param>, C<isl_dim_in> (only for relations),
373 C<isl_dim_out> (only for relations), C<isl_dim_set>
374 (only for sets) or C<isl_dim_all>.
376 =head2 Input and Output
378 C<isl> supports its own input/output format, which is similar
379 to the C<Omega> format, but also supports the C<PolyLib> format
384 The C<isl> format is similar to that of C<Omega>, but has a different
385 syntax for describing the parameters and allows for the definition
386 of an existentially quantified variable as the integer division
387 of an affine expression.
388 For example, the set of integers C<i> between C<0> and C<n>
389 such that C<i % 10 <= 6> can be described as
391 [n] -> { [i] : exists (a = [i/10] : 0 <= i and i <= n and
394 A set or relation can have several disjuncts, separated
395 by the keyword C<or>. Each disjunct is either a conjunction
396 of constraints or a projection (C<exists>) of a conjunction
397 of constraints. The constraints are separated by the keyword
400 =head3 C<PolyLib> format
402 If the represented set is a union, then the first line
403 contains a single number representing the number of disjuncts.
404 Otherwise, a line containing the number C<1> is optional.
406 Each disjunct is represented by a matrix of constraints.
407 The first line contains two numbers representing
408 the number of rows and columns,
409 where the number of rows is equal to the number of constraints
410 and the number of columns is equal to two plus the number of variables.
411 The following lines contain the actual rows of the constraint matrix.
412 In each row, the first column indicates whether the constraint
413 is an equality (C<0>) or inequality (C<1>). The final column
414 corresponds to the constant term.
416 If the set is parametric, then the coefficients of the parameters
417 appear in the last columns before the constant column.
418 The coefficients of any existentially quantified variables appear
419 between those of the set variables and those of the parameters.
424 __isl_give isl_basic_set *isl_basic_set_read_from_file(
425 isl_ctx *ctx, FILE *input, int nparam);
426 __isl_give isl_basic_set *isl_basic_set_read_from_str(
427 isl_ctx *ctx, const char *str, int nparam);
428 __isl_give isl_set *isl_set_read_from_file(isl_ctx *ctx,
429 FILE *input, int nparam);
430 __isl_give isl_set *isl_set_read_from_str(isl_ctx *ctx,
431 const char *str, int nparam);
434 __isl_give isl_basic_map *isl_basic_map_read_from_file(
435 isl_ctx *ctx, FILE *input, int nparam);
436 __isl_give isl_basic_map *isl_basic_map_read_from_str(
437 isl_ctx *ctx, const char *str, int nparam);
438 __isl_give isl_map *isl_map_read_from_file(
439 struct isl_ctx *ctx, FILE *input, int nparam);
440 __isl_give isl_map *isl_map_read_from_str(isl_ctx *ctx,
441 const char *str, int nparam);
443 The input format is autodetected and may be either the C<PolyLib> format
444 or the C<isl> format.
445 C<nparam> specifies how many of the final columns in
446 the C<PolyLib> format correspond to parameters.
447 If input is given in the C<isl> format, then the number
448 of parameters needs to be equal to C<nparam>.
449 If C<nparam> is negative, then any number of parameters
450 is accepted in the C<isl> format and zero parameters
451 are assumed in the C<PolyLib> format.
456 void isl_basic_set_print(__isl_keep isl_basic_set *bset,
457 FILE *out, int indent,
458 const char *prefix, const char *suffix,
459 unsigned output_format);
460 void isl_set_print(__isl_keep struct isl_set *set,
461 FILE *out, int indent, unsigned output_format);
464 void isl_basic_map_print(__isl_keep isl_basic_map *bmap,
465 FILE *out, int indent,
466 const char *prefix, const char *suffix,
467 unsigned output_format);
468 void isl_map_print(__isl_keep struct isl_map *map,
469 FILE *out, int indent, unsigned output_format);
471 The C<output_format> may be either C<ISL_FORMAT_ISL>, C<ISL_FORMAT_OMEGA>
472 or C<ISL_FORMAT_POLYLIB>.
473 Each line in the output is indented by C<indent> spaces,
474 prefixed by C<prefix> and suffixed by C<suffix>.
475 In the C<PolyLib> format output,
476 the coefficients of the existentially quantified variables
477 appear between those of the set variables and those
480 =head2 Creating New Sets and Relations
482 C<isl> has functions for creating some standard sets and relations.
486 =item * Empty sets and relations
488 __isl_give isl_basic_set *isl_basic_set_empty(
489 __isl_take isl_dim *dim);
490 __isl_give isl_basic_map *isl_basic_map_empty(
491 __isl_take isl_dim *dim);
492 __isl_give isl_set *isl_set_empty(
493 __isl_take isl_dim *dim);
494 __isl_give isl_map *isl_map_empty(
495 __isl_take isl_dim *dim);
497 =item * Universe sets and relations
499 __isl_give isl_basic_set *isl_basic_set_universe(
500 __isl_take isl_dim *dim);
501 __isl_give isl_basic_map *isl_basic_map_universe(
502 __isl_take isl_dim *dim);
503 __isl_give isl_set *isl_set_universe(
504 __isl_take isl_dim *dim);
505 __isl_give isl_map *isl_map_universe(
506 __isl_take isl_dim *dim);
508 =item * Identity relations
510 __isl_give isl_basic_map *isl_basic_map_identity(
511 __isl_take isl_dim *set_dim);
512 __isl_give isl_map *isl_map_identity(
513 __isl_take isl_dim *set_dim);
515 These functions take a dimension specification for a B<set>
516 and return an identity relation between two such sets.
518 =item * Lexicographic order
520 __isl_give isl_map *isl_map_lex_lt(
521 __isl_take isl_dim *set_dim);
522 __isl_give isl_map *isl_map_lex_le(
523 __isl_take isl_dim *set_dim);
524 __isl_give isl_map *isl_map_lex_gt(
525 __isl_take isl_dim *set_dim);
526 __isl_give isl_map *isl_map_lex_ge(
527 __isl_take isl_dim *set_dim);
529 These functions take a dimension specification for a B<set>
530 and return relations that express that the elements in the domain
531 are lexicographically less
532 (C<isl_map_lex_lt>), less or equal (C<isl_map_lex_le>),
533 greater (C<isl_map_lex_gt>) or greater or equal (C<isl_map_lex_ge>)
534 than the elements in the range.
538 A basic set or relation can be converted to a set or relation
539 using the following functions.
541 __isl_give isl_set *isl_set_from_basic_set(
542 __isl_take isl_basic_set *bset);
543 __isl_give isl_map *isl_map_from_basic_map(
544 __isl_take isl_basic_map *bmap);
546 Sets and relations can be copied and freed again using the following
549 __isl_give isl_basic_set *isl_basic_set_copy(
550 __isl_keep isl_basic_set *bset);
551 __isl_give isl_set *isl_set_copy(__isl_keep isl_set *set);
552 __isl_give isl_basic_map *isl_basic_map_copy(
553 __isl_keep isl_basic_map *bmap);
554 __isl_give isl_map *isl_map_copy(__isl_keep isl_map *map);
555 void isl_basic_set_free(__isl_take isl_basic_set *bset);
556 void isl_set_free(__isl_take isl_set *set);
557 void isl_basic_map_free(__isl_take isl_basic_map *bmap);
558 void isl_map_free(__isl_take isl_map *map);
560 Other sets and relations can be constructed by starting
561 from a universe set or relation, adding equality and/or
562 inequality constraints and then projecting out the
563 existentially quantified variables, if any.
564 Constraints can be constructed, manipulated and
565 added to basic sets and relations using the following functions.
567 #include <isl_constraint.h>
568 __isl_give isl_constraint *isl_equality_alloc(
569 __isl_take isl_dim *dim);
570 __isl_give isl_constraint *isl_inequality_alloc(
571 __isl_take isl_dim *dim);
572 void isl_constraint_set_constant(
573 __isl_keep isl_constraint *constraint, isl_int v);
574 void isl_constraint_set_coefficient(
575 __isl_keep isl_constraint *constraint,
576 enum isl_dim_type type, int pos, isl_int v);
577 __isl_give isl_basic_map *isl_basic_map_add_constraint(
578 __isl_take isl_basic_map *bmap,
579 __isl_take isl_constraint *constraint);
580 __isl_give isl_basic_set *isl_basic_set_add_constraint(
581 __isl_take isl_basic_set *bset,
582 __isl_take isl_constraint *constraint);
584 For example, to create a set containing the even integers
585 between 10 and 42, you would use the following code.
589 struct isl_constraint *c;
590 struct isl_basic_set *bset;
593 dim = isl_dim_set_alloc(ctx, 0, 2);
594 bset = isl_basic_set_universe(isl_dim_copy(dim));
596 c = isl_equality_alloc(isl_dim_copy(dim));
597 isl_int_set_si(v, -1);
598 isl_constraint_set_coefficient(c, isl_dim_set, 0, v);
599 isl_int_set_si(v, 2);
600 isl_constraint_set_coefficient(c, isl_dim_set, 1, v);
601 bset = isl_basic_set_add_constraint(bset, c);
603 c = isl_inequality_alloc(isl_dim_copy(dim));
604 isl_int_set_si(v, -10);
605 isl_constraint_set_constant(c, v);
606 isl_int_set_si(v, 1);
607 isl_constraint_set_coefficient(c, isl_dim_set, 0, v);
608 bset = isl_basic_set_add_constraint(bset, c);
610 c = isl_inequality_alloc(dim);
611 isl_int_set_si(v, 42);
612 isl_constraint_set_constant(c, v);
613 isl_int_set_si(v, -1);
614 isl_constraint_set_coefficient(c, isl_dim_set, 0, v);
615 bset = isl_basic_set_add_constraint(bset, c);
617 bset = isl_basic_set_project_out(bset, isl_dim_set, 1, 1);
623 struct isl_basic_set *bset;
624 bset = isl_basic_set_read_from_str(ctx,
625 "{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}", -1);
627 =head2 Inspecting Sets and Relations
629 Usually, the user should not have to care about the actual constraints
630 of the sets and maps, but should instead apply the abstract operations
631 explained in the following sections.
632 Occasionally, however, it may be required to inspect the individual
633 coefficients of the constraints. This section explains how to do so.
634 In these cases, it may also be useful to have C<isl> compute
635 an explicit representation of the existentially quantified variables.
637 __isl_give isl_set *isl_set_compute_divs(
638 __isl_take isl_set *set);
639 __isl_give isl_map *isl_map_compute_divs(
640 __isl_take isl_map *map);
642 This explicit representation defines the existentially quantified
643 variables as integer divisions of the other variables, possibly
644 including earlier existentially quantified variables.
645 An explicitly represented existentially quantified variable therefore
646 has a unique value when the values of the other variables are known.
647 If, furthermore, the same existentials, i.e., existentials
648 with the same explicit representations, should appear in the
649 same order in each of the disjuncts of a set or map, then the user should call
650 either of the following functions.
652 __isl_give isl_set *isl_set_align_divs(
653 __isl_take isl_set *set);
654 __isl_give isl_map *isl_map_align_divs(
655 __isl_take isl_map *map);
657 To iterate over all the basic sets or maps in a set or map, use
659 int isl_set_foreach_basic_set(__isl_keep isl_set *set,
660 int (*fn)(__isl_take isl_basic_set *bset, void *user),
662 int isl_map_foreach_basic_map(__isl_keep isl_map *map,
663 int (*fn)(__isl_take isl_basic_map *bmap, void *user),
666 The callback function C<fn> should return 0 if successful and
667 -1 if an error occurs. In the latter case, or if any other error
668 occurs, the above functions will return -1.
670 It should be noted that C<isl> does not guarantee that
671 the basic sets or maps passed to C<fn> are disjoint.
672 If this is required, then the user should call one of
673 the following functions first.
675 __isl_give isl_set *isl_set_make_disjoint(
676 __isl_take isl_set *set);
677 __isl_give isl_map *isl_map_make_disjoint(
678 __isl_take isl_map *map);
680 To iterate over the constraints of a basic set or map, use
682 #include <isl_constraint.h>
684 int isl_basic_map_foreach_constraint(
685 __isl_keep isl_basic_map *bmap,
686 int (*fn)(__isl_take isl_constraint *c, void *user),
688 void isl_constraint_free(struct isl_constraint *c);
690 Again, the callback function C<fn> should return 0 if successful and
691 -1 if an error occurs. In the latter case, or if any other error
692 occurs, the above functions will return -1.
694 The coefficients of the constraints can be inspected using
695 the following functions.
697 void isl_constraint_get_constant(
698 __isl_keep isl_constraint *constraint, isl_int *v);
699 void isl_constraint_get_coefficient(
700 __isl_keep isl_constraint *constraint,
701 enum isl_dim_type type, int pos, isl_int *v);
703 The explicit representations of the existentially quantified
704 variables can be inspected using the following functions.
705 Note that the user is only allowed to use these functions
706 if the inspected set or map is the result of a call
707 to C<isl_set_compute_divs> or C<isl_map_compute_divs>.
709 __isl_give isl_div *isl_constraint_div(
710 __isl_keep isl_constraint *constraint, int pos);
711 void isl_div_get_constant(__isl_keep isl_div *div,
713 void isl_div_get_denominator(__isl_keep isl_div *div,
715 void isl_div_get_coefficient(__isl_keep isl_div *div,
716 enum isl_dim_type type, int pos, isl_int *v);
720 =head3 Unary Properties
726 The following functions test whether the given set or relation
727 contains any integer points. The ``fast'' variants do not perform
728 any computations, but simply check if the given set or relation
729 is already known to be empty.
731 int isl_basic_set_fast_is_empty(__isl_keep isl_basic_set *bset);
732 int isl_basic_set_is_empty(__isl_keep isl_basic_set *bset);
733 int isl_set_is_empty(__isl_keep isl_set *set);
734 int isl_basic_map_fast_is_empty(__isl_keep isl_basic_map *bmap);
735 int isl_basic_map_is_empty(__isl_keep isl_basic_map *bmap);
736 int isl_map_fast_is_empty(__isl_keep isl_map *map);
737 int isl_map_is_empty(__isl_keep isl_map *map);
741 int isl_basic_set_is_universe(__isl_keep isl_basic_set *bset);
742 int isl_basic_map_is_universe(__isl_keep isl_basic_map *bmap);
743 int isl_set_fast_is_universe(__isl_keep isl_set *set);
747 =head3 Binary Properties
753 int isl_set_fast_is_equal(__isl_keep isl_set *set1,
754 __isl_keep isl_set *set2);
755 int isl_set_is_equal(__isl_keep isl_set *set1,
756 __isl_keep isl_set *set2);
757 int isl_map_is_equal(__isl_keep isl_map *map1,
758 __isl_keep isl_map *map2);
759 int isl_map_fast_is_equal(__isl_keep isl_map *map1,
760 __isl_keep isl_map *map2);
761 int isl_basic_map_is_equal(
762 __isl_keep isl_basic_map *bmap1,
763 __isl_keep isl_basic_map *bmap2);
767 int isl_set_fast_is_disjoint(__isl_keep isl_set *set1,
768 __isl_keep isl_set *set2);
772 int isl_set_is_subset(__isl_keep isl_set *set1,
773 __isl_keep isl_set *set2);
774 int isl_set_is_strict_subset(
775 __isl_keep isl_set *set1,
776 __isl_keep isl_set *set2);
777 int isl_basic_map_is_subset(
778 __isl_keep isl_basic_map *bmap1,
779 __isl_keep isl_basic_map *bmap2);
780 int isl_basic_map_is_strict_subset(
781 __isl_keep isl_basic_map *bmap1,
782 __isl_keep isl_basic_map *bmap2);
783 int isl_map_is_subset(
784 __isl_keep isl_map *map1,
785 __isl_keep isl_map *map2);
786 int isl_map_is_strict_subset(
787 __isl_keep isl_map *map1,
788 __isl_keep isl_map *map2);
792 =head2 Unary Operations
798 __isl_give isl_set *isl_set_complement(
799 __isl_take isl_set *set);
803 __isl_give isl_basic_set *isl_basic_set_project_out(
804 __isl_take isl_basic_set *bset,
805 enum isl_dim_type type, unsigned first, unsigned n);
806 __isl_give isl_basic_map *isl_basic_map_project_out(
807 __isl_take isl_basic_map *bmap,
808 enum isl_dim_type type, unsigned first, unsigned n);
809 __isl_give isl_set *isl_set_project_out(__isl_take isl_set *set,
810 enum isl_dim_type type, unsigned first, unsigned n);
811 __isl_give isl_map *isl_map_project_out(__isl_take isl_map *map,
812 enum isl_dim_type type, unsigned first, unsigned n);
813 __isl_give isl_basic_set *isl_basic_map_domain(
814 __isl_take isl_basic_map *bmap);
815 __isl_give isl_basic_set *isl_basic_map_range(
816 __isl_take isl_basic_map *bmap);
817 __isl_give isl_set *isl_map_domain(
818 __isl_take isl_map *bmap);
819 __isl_give isl_set *isl_map_range(
820 __isl_take isl_map *map);
824 Simplify the representation of a set or relation by trying
825 to combine pairs of basic sets or relations into a single
826 basic set or relation.
828 __isl_give isl_set *isl_set_coalesce(__isl_take isl_set *set);
829 __isl_give isl_map *isl_map_coalesce(__isl_take isl_map *map);
833 __isl_give isl_basic_set *isl_set_convex_hull(
834 __isl_take isl_set *set);
835 __isl_give isl_basic_map *isl_map_convex_hull(
836 __isl_take isl_map *map);
838 If the input set or relation has any existentially quantified
839 variables, then the result of these operations is currently undefined.
843 __isl_give isl_basic_set *isl_basic_set_affine_hull(
844 __isl_take isl_basic_set *bset);
845 __isl_give isl_basic_set *isl_set_affine_hull(
846 __isl_take isl_set *set);
847 __isl_give isl_basic_map *isl_basic_map_affine_hull(
848 __isl_take isl_basic_map *bmap);
849 __isl_give isl_basic_map *isl_map_affine_hull(
850 __isl_take isl_map *map);
854 __isl_give isl_map *isl_map_power(__isl_take isl_map *map,
855 unsigned param, int *exact);
857 Compute a parametric representation for all positive powers I<k> of C<map>.
858 The power I<k> is equated to the parameter at position C<param>.
859 The result may be an overapproximation. If the result is exact,
860 then C<*exact> is set to C<1>.
861 The current implementation only produces exact results for particular
862 cases of piecewise translations (i.e., piecewise uniform dependences).
864 =item * Transitive closure
866 __isl_give isl_map *isl_map_transitive_closure(
867 __isl_take isl_map *map, int *exact);
869 Compute the transitive closure of C<map>.
870 The result may be an overapproximation. If the result is known to be exact,
871 then C<*exact> is set to C<1>.
872 The current implementation only produces exact results for particular
873 cases of piecewise translations (i.e., piecewise uniform dependences).
877 =head2 Binary Operations
879 The two arguments of a binary operation not only need to live
880 in the same C<isl_ctx>, they currently also need to have
881 the same (number of) parameters.
883 =head3 Basic Operations
889 __isl_give isl_basic_set *isl_basic_set_intersect(
890 __isl_take isl_basic_set *bset1,
891 __isl_take isl_basic_set *bset2);
892 __isl_give isl_set *isl_set_intersect(
893 __isl_take isl_set *set1,
894 __isl_take isl_set *set2);
895 __isl_give isl_basic_map *isl_basic_map_intersect_domain(
896 __isl_take isl_basic_map *bmap,
897 __isl_take isl_basic_set *bset);
898 __isl_give isl_basic_map *isl_basic_map_intersect_range(
899 __isl_take isl_basic_map *bmap,
900 __isl_take isl_basic_set *bset);
901 __isl_give isl_basic_map *isl_basic_map_intersect(
902 __isl_take isl_basic_map *bmap1,
903 __isl_take isl_basic_map *bmap2);
904 __isl_give isl_map *isl_map_intersect_domain(
905 __isl_take isl_map *map,
906 __isl_take isl_set *set);
907 __isl_give isl_map *isl_map_intersect_range(
908 __isl_take isl_map *map,
909 __isl_take isl_set *set);
910 __isl_give isl_map *isl_map_intersect(
911 __isl_take isl_map *map1,
912 __isl_take isl_map *map2);
916 __isl_give isl_set *isl_basic_set_union(
917 __isl_take isl_basic_set *bset1,
918 __isl_take isl_basic_set *bset2);
919 __isl_give isl_map *isl_basic_map_union(
920 __isl_take isl_basic_map *bmap1,
921 __isl_take isl_basic_map *bmap2);
922 __isl_give isl_set *isl_set_union(
923 __isl_take isl_set *set1,
924 __isl_take isl_set *set2);
925 __isl_give isl_map *isl_map_union(
926 __isl_take isl_map *map1,
927 __isl_take isl_map *map2);
929 =item * Set difference
931 __isl_give isl_set *isl_set_subtract(
932 __isl_take isl_set *set1,
933 __isl_take isl_set *set2);
934 __isl_give isl_map *isl_map_subtract(
935 __isl_take isl_map *map1,
936 __isl_take isl_map *map2);
940 __isl_give isl_basic_set *isl_basic_set_apply(
941 __isl_take isl_basic_set *bset,
942 __isl_take isl_basic_map *bmap);
943 __isl_give isl_set *isl_set_apply(
944 __isl_take isl_set *set,
945 __isl_take isl_map *map);
946 __isl_give isl_basic_map *isl_basic_map_apply_domain(
947 __isl_take isl_basic_map *bmap1,
948 __isl_take isl_basic_map *bmap2);
949 __isl_give isl_basic_map *isl_basic_map_apply_range(
950 __isl_take isl_basic_map *bmap1,
951 __isl_take isl_basic_map *bmap2);
952 __isl_give isl_map *isl_map_apply_domain(
953 __isl_take isl_map *map1,
954 __isl_take isl_map *map2);
955 __isl_give isl_map *isl_map_apply_range(
956 __isl_take isl_map *map1,
957 __isl_take isl_map *map2);
961 =head3 Lexicographic Optimization
963 Given a (basic) set C<set> (or C<bset>) and a zero-dimensional domain C<dom>,
964 the following functions
965 compute a set that contains the lexicographic minimum or maximum
966 of the elements in C<set> (or C<bset>) for those values of the parameters
968 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
969 that contains the parameter values in C<dom> for which C<set> (or C<bset>)
971 In other words, the union of the parameter values
972 for which the result is non-empty and of C<*empty>
975 __isl_give isl_set *isl_basic_set_partial_lexmin(
976 __isl_take isl_basic_set *bset,
977 __isl_take isl_basic_set *dom,
978 __isl_give isl_set **empty);
979 __isl_give isl_set *isl_basic_set_partial_lexmax(
980 __isl_take isl_basic_set *bset,
981 __isl_take isl_basic_set *dom,
982 __isl_give isl_set **empty);
983 __isl_give isl_set *isl_set_partial_lexmin(
984 __isl_take isl_set *set, __isl_take isl_set *dom,
985 __isl_give isl_set **empty);
986 __isl_give isl_set *isl_set_partial_lexmax(
987 __isl_take isl_set *set, __isl_take isl_set *dom,
988 __isl_give isl_set **empty);
990 Given a (basic) set C<set> (or C<bset>), the following functions simply
991 return a set containing the lexicographic minimum or maximum
992 of the elements in C<set> (or C<bset>).
994 __isl_give isl_set *isl_basic_set_lexmin(
995 __isl_take isl_basic_set *bset);
996 __isl_give isl_set *isl_basic_set_lexmax(
997 __isl_take isl_basic_set *bset);
998 __isl_give isl_set *isl_set_lexmin(
999 __isl_take isl_set *set);
1000 __isl_give isl_set *isl_set_lexmax(
1001 __isl_take isl_set *set);
1003 Given a (basic) relation C<map> (or C<bmap>) and a domain C<dom>,
1004 the following functions
1005 compute a relation that maps each element of C<dom>
1006 to the single lexicographic minimum or maximum
1007 of the elements that are associated to that same
1008 element in C<map> (or C<bmap>).
1009 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
1010 that contains the elements in C<dom> that do not map
1011 to any elements in C<map> (or C<bmap>).
1012 In other words, the union of the domain of the result and of C<*empty>
1015 __isl_give isl_map *isl_basic_map_partial_lexmax(
1016 __isl_take isl_basic_map *bmap,
1017 __isl_take isl_basic_set *dom,
1018 __isl_give isl_set **empty);
1019 __isl_give isl_map *isl_basic_map_partial_lexmin(
1020 __isl_take isl_basic_map *bmap,
1021 __isl_take isl_basic_set *dom,
1022 __isl_give isl_set **empty);
1023 __isl_give isl_map *isl_map_partial_lexmax(
1024 __isl_take isl_map *map, __isl_take isl_set *dom,
1025 __isl_give isl_set **empty);
1026 __isl_give isl_map *isl_map_partial_lexmin(
1027 __isl_take isl_map *map, __isl_take isl_set *dom,
1028 __isl_give isl_set **empty);
1030 Given a (basic) map C<map> (or C<bmap>), the following functions simply
1031 return a map mapping each element in the domain of
1032 C<map> (or C<bmap>) to the lexicographic minimum or maximum
1033 of all elements associated to that element.
1035 __isl_give isl_map *isl_basic_map_lexmin(
1036 __isl_take isl_basic_map *bmap);
1037 __isl_give isl_map *isl_basic_map_lexmax(
1038 __isl_take isl_basic_map *bmap);
1039 __isl_give isl_map *isl_map_lexmin(
1040 __isl_take isl_map *map);
1041 __isl_give isl_map *isl_map_lexmax(
1042 __isl_take isl_map *map);
1046 Points are elements of a set. They can be used to construct
1047 simple sets (boxes) or they can be used to represent the
1048 individual elements of a set.
1049 The zero point (the origin) can be created using
1051 __isl_give isl_point *isl_point_zero(__isl_take isl_dim *dim);
1053 The coordinates of a point can be inspected, set and changed
1056 void isl_point_get_coordinate(__isl_keep isl_point *pnt,
1057 enum isl_dim_type type, int pos, isl_int *v);
1058 __isl_give isl_point *isl_point_set_coordinate(
1059 __isl_take isl_point *pnt,
1060 enum isl_dim_type type, int pos, isl_int v);
1062 __isl_give isl_point *isl_point_add_ui(
1063 __isl_take isl_point *pnt,
1064 enum isl_dim_type type, int pos, unsigned val);
1065 __isl_give isl_point *isl_point_sub_ui(
1066 __isl_take isl_point *pnt,
1067 enum isl_dim_type type, int pos, unsigned val);
1069 Points can be copied or freed using
1071 __isl_give isl_point *isl_point_copy(
1072 __isl_keep isl_point *pnt);
1073 void isl_point_free(__isl_take isl_point *pnt);
1075 A box can be created from two opposite extremal points using
1077 __isl_give isl_set *isl_set_box_from_points(
1078 __isl_take isl_point *pnt1,
1079 __isl_take isl_point *pnt2);
1081 All elements of a B<bounded> set can be enumerated using
1082 the following function.
1084 int isl_set_foreach_point(__isl_keep isl_set *set,
1085 int (*fn)(__isl_take isl_point *pnt, void *user),
1088 The function C<fn> is called for each integer point in
1089 C<set> with as second argument the last argument of
1090 the C<isl_set_foreach_point> call. The function C<fn>
1091 should return C<0> on success and C<-1> on failure.
1092 In the latter case, C<isl_set_foreach_point> will stop
1093 enumerating and return C<-1> as well.
1094 If the enumeration is performed successfully and to completion,
1095 then C<isl_set_foreach_point> returns C<0>.
1097 =head2 Dependence Analysis
1099 C<isl> contains specialized functionality for performing
1100 array dataflow analysis. That is, given a I<sink> access relation
1101 and a collection of possible I<source> access relations,
1102 C<isl> can compute relations that describe
1103 for each iteration of the sink access, which iteration
1104 of which of the source access relations was the last
1105 to access the same data element before the given iteration
1107 To compute standard flow dependences, the sink should be
1108 a read, while the sources should be writes.
1110 #include <isl_flow.h>
1112 __isl_give isl_access_info *isl_access_info_alloc(
1113 __isl_take isl_map *sink,
1114 void *sink_user, isl_access_level_before fn,
1116 __isl_give isl_access_info *isl_access_info_add_source(
1117 __isl_take isl_access_info *acc,
1118 __isl_take isl_map *source, void *source_user);
1120 __isl_give isl_flow *isl_access_info_compute_flow(
1121 __isl_take isl_access_info *acc);
1123 int isl_flow_foreach(__isl_keep isl_flow *deps,
1124 int (*fn)(__isl_take isl_map *dep, void *dep_user,
1127 __isl_give isl_set *isl_flow_get_no_source(
1128 __isl_keep isl_flow *deps);
1129 void isl_flow_free(__isl_take isl_flow *deps);
1131 The function C<isl_access_info_compute_flow> performs the actual
1132 dependence analysis. The other functions are used to construct
1133 the input for this function or to read off the output.
1135 The input is collected in an C<isl_access_info>, which can
1136 be created through a call to C<isl_access_info_alloc>.
1137 The arguments to this functions are the sink access relation
1138 C<sink>, a token C<sink_user> used to identify the sink
1139 access to the user, a callback function for specifying the
1140 relative order of source and sink accesses, and the number
1141 of source access relations that will be added.
1142 The callback function has type C<int (*)(void *first, void *second)>.
1143 The function is called with two user supplied tokens identifying
1144 either a source or the sink and it should return the shared nesting
1145 level and the relative order of the two accesses.
1146 In particular, let I<n> be the number of loops shared by
1147 the two accesses. If C<first> precedes C<second> textually,
1148 then the function should return I<2 * n + 1>; otherwise,
1149 it should return I<2 * n>.
1150 The sources can be added to the C<isl_access_info> by performing
1151 (at most) C<max_source> calls to C<isl_access_info_add_source>.
1152 The C<source_user> token is again used to identify
1153 the source access. The range of the source access relation
1154 C<source> should have the same dimension as the range
1155 of the sink access relation.
1157 The result of the dependence analysis is collected in an
1158 C<isl_flow>. There may be elements in the domain of
1159 the sink access for which no preceding source access could be
1160 find. The set of these elements can be obtained through
1161 a call to C<isl_flow_get_no_source>.
1162 In the case of standard flow dependence analysis,
1163 this set corresponds to the reads from uninitialized
1165 The actual flow dependences can be extracted using
1166 C<isl_flow_foreach>. This function will call the user-specified
1167 callback function C<fn> for each B<non-empty> dependence between
1168 a source and the sink. The callback function is called
1169 with three arguments, the actual flow dependence relation
1170 mapping source iterations to sink iterations, a token
1171 identifying the source and an additional C<void *> with value
1172 equal to the third argument of the C<isl_flow_foreach> call.
1174 After finishing with an C<isl_flow>, the user should call
1175 C<isl_flow_free> to free all associated memory.
1179 Although C<isl> is mainly meant to be used as a library,
1180 it also contains some basic applications that use some
1181 of the functionality of C<isl>.
1182 The input may specified either in the L<isl format>
1183 or the L<PolyLib format>.
1185 =head2 C<isl_polyhedron_sample>
1187 C<isl_polyhedron_sample> takes a polyhedron as input and prints
1188 an integer element of the polyhedron, if there is any.
1189 The first column in the output is the denominator and is always
1190 equal to 1. If the polyhedron contains no integer points,
1191 then a vector of length zero is printed.
1195 C<isl_pip> takes the same input as the C<example> program
1196 from the C<piplib> distribution, i.e., a set of constraints
1197 on the parameters, a line contains only -1 and finally a set
1198 of constraints on a parametric polyhedron.
1199 The coefficients of the parameters appear in the last columns
1200 (but before the final constant column).
1201 The output is the lexicographic minimum of the parametric polyhedron.
1202 As C<isl> currently does not have its own output format, the output
1203 is just a dump of the internal state.
1205 =head2 C<isl_polyhedron_minimize>
1207 C<isl_polyhedron_minimize> computes the minimum of some linear
1208 or affine objective function over the integer points in a polyhedron.
1209 If an affine objective function
1210 is given, then the constant should appear in the last column.
1212 =head2 C<isl_polytope_scan>
1214 Given a polytope, C<isl_polytope_scan> prints
1215 all integer points in the polytope.
1217 =head1 C<isl-polylib>
1219 The C<isl-polylib> library provides the following functions for converting
1220 between C<isl> objects and C<PolyLib> objects.
1221 The library is distributed separately for licensing reasons.
1223 #include <isl_set_polylib.h>
1224 __isl_give isl_basic_set *isl_basic_set_new_from_polylib(
1225 Polyhedron *P, __isl_take isl_dim *dim);
1226 Polyhedron *isl_basic_set_to_polylib(
1227 __isl_keep isl_basic_set *bset);
1228 __isl_give isl_set *isl_set_new_from_polylib(Polyhedron *D,
1229 __isl_take isl_dim *dim);
1230 Polyhedron *isl_set_to_polylib(__isl_keep isl_set *set);
1232 #include <isl_map_polylib.h>
1233 __isl_give isl_basic_map *isl_basic_map_new_from_polylib(
1234 Polyhedron *P, __isl_take isl_dim *dim);
1235 __isl_give isl_map *isl_map_new_from_polylib(Polyhedron *D,
1236 __isl_take isl_dim *dim);
1237 Polyhedron *isl_basic_map_to_polylib(
1238 __isl_keep isl_basic_map *bmap);
1239 Polyhedron *isl_map_to_polylib(__isl_keep isl_map *map);