3 C<isl> is a thread-safe C library for manipulating
4 sets and relations of integer points bounded by affine constraints.
5 The descriptions of the sets and relations may involve
6 both parameters and existentially quantified variables.
7 All computations are performed in exact integer arithmetic
9 The C<isl> library offers functionality that is similar
10 to that offered by the C<Omega> and C<Omega+> libraries,
11 but the underlying algorithms are in most cases completely different.
13 The library is by no means complete and some fairly basic
14 functionality is still missing.
15 Still, even in its current form, the library has been successfully
16 used as a backend polyhedral library for the polyhedral
17 scanner C<CLooG> and as part of an equivalence checker of
18 static affine programs.
22 The source of C<isl> can be obtained either as a tarball
23 or from the git repository. Both are available from
24 L<http://freshmeat.net/projects/isl/>.
25 The installation process depends on how you obtained
28 =head2 Installation from the git repository
32 =item 1 Clone or update the repository
34 The first time the source is obtained, you need to clone
37 git clone git://repo.or.cz/isl.git
39 To obtain updates, you need to pull in the latest changes
43 =item 2 Get submodule (optional)
45 C<isl> can optionally use the C<piplib> library and provides
46 this library as a submodule. If you want to use it, then
47 after you have cloned C<isl>, you need to grab the submodules
52 To obtain updates, you only need
56 Note that C<isl> currently does not use any C<piplib>
57 functionality by default.
59 =item 3 Generate C<configure>
65 After performing the above steps, continue
66 with the L<Common installation instructions>.
68 =head2 Common installation instructions
74 Building C<isl> requires C<GMP>, including its headers files.
75 Your distribution may not provide these header files by default
76 and you may need to install a package called C<gmp-devel> or something
77 similar. Alternatively, C<GMP> can be built from
78 source, available from L<http://gmplib.org/>.
82 C<isl> uses the standard C<autoconf> C<configure> script.
87 optionally followed by some configure options.
88 A complete list of options can be obtained by running
92 Below we discuss some of the more common options.
94 C<isl> can optionally use C<piplib>, but no
95 C<piplib> functionality is currently used by default.
96 The C<--with-piplib> option can
97 be used to specify which C<piplib>
98 library to use, either an installed version (C<system>),
99 an externally built version (C<build>)
100 or no version (C<no>). The option C<build> is mostly useful
101 in C<configure> scripts of larger projects that bundle both C<isl>
108 Installation prefix for C<isl>
110 =item C<--with-gmp-prefix>
112 Installation prefix for C<GMP> (architecture-independent files).
114 =item C<--with-gmp-exec-prefix>
116 Installation prefix for C<GMP> (architecture-dependent files).
118 =item C<--with-piplib>
120 Which copy of C<piplib> to use, either C<no> (default), C<system> or C<build>.
122 =item C<--with-piplib-prefix>
124 Installation prefix for C<system> C<piplib> (architecture-independent files).
126 =item C<--with-piplib-exec-prefix>
128 Installation prefix for C<system> C<piplib> (architecture-dependent files).
130 =item C<--with-piplib-builddir>
132 Location where C<build> C<piplib> was built.
140 =item 4 Install (optional)
148 =head2 Initialization
150 All manipulations of integer sets and relations occur within
151 the context of an C<isl_ctx>.
152 A given C<isl_ctx> can only be used within a single thread.
153 All arguments of a function are required to have been allocated
154 within the same context.
155 There are currently no functions available for moving an object
156 from one C<isl_ctx> to another C<isl_ctx>. This means that
157 there is currently no way of safely moving an object from one
158 thread to another, unless the whole C<isl_ctx> is moved.
160 An C<isl_ctx> can be allocated using C<isl_ctx_alloc> and
161 freed using C<isl_ctx_free>.
162 All objects allocated within an C<isl_ctx> should be freed
163 before the C<isl_ctx> itself is freed.
165 isl_ctx *isl_ctx_alloc();
166 void isl_ctx_free(isl_ctx *ctx);
170 All operations on integers, mainly the coefficients
171 of the constraints describing the sets and relations,
172 are performed in exact integer arithmetic using C<GMP>.
173 However, to allow future versions of C<isl> to optionally
174 support fixed integer arithmetic, all calls to C<GMP>
175 are wrapped inside C<isl> specific macros.
176 The basic type is C<isl_int> and the following operations
177 are available on this type.
178 The meanings of these operations are essentially the same
179 as their C<GMP> C<mpz_> counterparts.
180 As always with C<GMP> types, C<isl_int>s need to be
181 initialized with C<isl_int_init> before they can be used
182 and they need to be released with C<isl_int_clear>
187 =item isl_int_init(i)
189 =item isl_int_clear(i)
191 =item isl_int_set(r,i)
193 =item isl_int_set_si(r,i)
195 =item isl_int_abs(r,i)
197 =item isl_int_neg(r,i)
199 =item isl_int_swap(i,j)
201 =item isl_int_swap_or_set(i,j)
203 =item isl_int_add_ui(r,i,j)
205 =item isl_int_sub_ui(r,i,j)
207 =item isl_int_add(r,i,j)
209 =item isl_int_sub(r,i,j)
211 =item isl_int_mul(r,i,j)
213 =item isl_int_mul_ui(r,i,j)
215 =item isl_int_addmul(r,i,j)
217 =item isl_int_submul(r,i,j)
219 =item isl_int_gcd(r,i,j)
221 =item isl_int_lcm(r,i,j)
223 =item isl_int_divexact(r,i,j)
225 =item isl_int_cdiv_q(r,i,j)
227 =item isl_int_fdiv_q(r,i,j)
229 =item isl_int_fdiv_r(r,i,j)
231 =item isl_int_fdiv_q_ui(r,i,j)
233 =item isl_int_read(r,s)
235 =item isl_int_print(out,i,width)
239 =item isl_int_cmp(i,j)
241 =item isl_int_cmp_si(i,si)
243 =item isl_int_eq(i,j)
245 =item isl_int_ne(i,j)
247 =item isl_int_lt(i,j)
249 =item isl_int_le(i,j)
251 =item isl_int_gt(i,j)
253 =item isl_int_ge(i,j)
255 =item isl_int_abs_eq(i,j)
257 =item isl_int_abs_ne(i,j)
259 =item isl_int_abs_lt(i,j)
261 =item isl_int_abs_gt(i,j)
263 =item isl_int_abs_ge(i,j)
265 =item isl_int_is_zero(i)
267 =item isl_int_is_one(i)
269 =item isl_int_is_negone(i)
271 =item isl_int_is_pos(i)
273 =item isl_int_is_neg(i)
275 =item isl_int_is_nonpos(i)
277 =item isl_int_is_nonneg(i)
279 =item isl_int_is_divisible_by(i,j)
283 =head2 Sets and Relations
285 C<isl> uses four types of objects for representing sets and relations,
286 C<isl_basic_set>, C<isl_basic_map>, C<isl_set> and C<isl_map>.
287 C<isl_basic_set> and C<isl_basic_map> represent sets and relations that
288 can be described as a conjunction of affine constraints, while
289 C<isl_set> and C<isl_map> represent unions of
290 C<isl_basic_set>s and C<isl_basic_map>s, respectively.
291 The difference between sets and relations (maps) is that sets have
292 one set of variables, while relations have two sets of variables,
293 input variables and output variables.
295 =head2 Memory Management
297 Since a high-level operation on sets and/or relations usually involves
298 several substeps and since the user is usually not interested in
299 the intermediate results, most functions that return a new object
300 will also release all the objects passed as arguments.
301 If the user still wants to use one or more of these arguments
302 after the function call, she should pass along a copy of the
303 object rather than the object itself.
304 The user is then responsible for make sure that the original
305 object gets used somewhere else or is explicitly freed.
307 The arguments and return values of all documents functions are
308 annotated to make clear which arguments are released and which
309 arguments are preserved. In particular, the following annotations
316 C<__isl_give> means that a new object is returned.
317 The user should make sure that the returned pointer is
318 used exactly once as a value for an C<__isl_take> argument.
319 In between, it can be used as a value for as many
320 C<__isl_keep> arguments as the user likes.
321 There is one exception, and that is the case where the
322 pointer returned is C<NULL>. Is this case, the user
323 is free to use it as an C<__isl_take> argument or not.
327 C<__isl_take> means that the object the argument points to
328 is taken over by the function and may no longer be used
329 by the user as an argument to any other function.
330 The pointer value must be one returned by a function
331 returning an C<__isl_give> pointer.
332 If the user passes in a C<NULL> value, then this will
333 be treated as an error in the sense that the function will
334 not perform its usual operation. However, it will still
335 make sure that all the the other C<__isl_take> arguments
340 C<__isl_keep> means that the function will only use the object
341 temporarily. After the function has finished, the user
342 can still use it as an argument to other functions.
343 A C<NULL> value will be treated in the same way as
344 a C<NULL> value for an C<__isl_take> argument.
348 =head2 Dimension Specifications
350 Whenever a new set or relation is created from scratch,
351 its dimension needs to be specified using an C<isl_dim>.
354 __isl_give isl_dim *isl_dim_alloc(isl_ctx *ctx,
355 unsigned nparam, unsigned n_in, unsigned n_out);
356 __isl_give isl_dim *isl_dim_set_alloc(isl_ctx *ctx,
357 unsigned nparam, unsigned dim);
358 __isl_give isl_dim *isl_dim_copy(__isl_keep isl_dim *dim);
359 void isl_dim_free(__isl_take isl_dim *dim);
360 unsigned isl_dim_size(__isl_keep isl_dim *dim,
361 enum isl_dim_type type);
363 The dimension specification used for creating a set
364 needs to be created using C<isl_dim_set_alloc>, while
365 that for creating a relation
366 needs to be created using C<isl_dim_alloc>.
367 C<isl_dim_size> can be used
368 to find out the number of dimensions of each type in
369 a dimension specification, where type may be
370 C<isl_dim_param>, C<isl_dim_in> (only for relations),
371 C<isl_dim_out> (only for relations), C<isl_dim_set>
372 (only for sets) or C<isl_dim_all>.
374 =head2 Input and Output
376 C<isl> supports its own input/output format, which is similar
377 to the C<Omega> format, but also supports the C<PolyLib> format
382 The C<isl> format is similar to that of C<Omega>, but has a different
383 syntax for describing the parameters and allows for the definition
384 of an existentially quantified variable as the integer division
385 of an affine expression.
386 For example, the set of integers C<i> between C<0> and C<n>
387 such that C<i % 10 <= 6> can be described as
389 [n] -> { [i] : exists (a = [i/10] : 0 <= i and i <= n and
392 A set or relation can have several disjuncts, separated
393 by the keyword C<or>. Each disjunct is either a conjunction
394 of constraints or a projection (C<exists>) of a conjunction
395 of constraints. The constraints are separated by the keyword
398 =head3 C<PolyLib> format
400 If the represented set is a union, then the first line
401 contains a single number representing the number of disjuncts.
402 Otherwise, a line containing the number C<1> is optional.
404 Each disjunct is represented by a matrix of constraints.
405 The first line contains two numbers representing
406 the number of rows and columns,
407 where the number of rows is equal to the number of constraints
408 and the number of columns is equal to two plus the number of variables.
409 The following lines contain the actual rows of the constraint matrix.
410 In each row, the first column indicates whether the constraint
411 is an equality (C<0>) or inequality (C<1>). The final column
412 corresponds to the constant term.
414 If the set is parametric, then the coefficients of the parameters
415 appear in the last columns before the constant column.
416 The coefficients of any existentially quantified variables appear
417 between those of the set variables and those of the parameters.
422 __isl_give isl_basic_set *isl_basic_set_read_from_file(
423 isl_ctx *ctx, FILE *input, int nparam);
424 __isl_give isl_basic_set *isl_basic_set_read_from_str(
425 isl_ctx *ctx, const char *str, int nparam);
426 __isl_give isl_set *isl_set_read_from_file(isl_ctx *ctx,
427 FILE *input, int nparam);
428 __isl_give isl_set *isl_set_read_from_str(isl_ctx *ctx,
429 const char *str, int nparam);
432 __isl_give isl_basic_map *isl_basic_map_read_from_file(
433 isl_ctx *ctx, FILE *input, int nparam);
434 __isl_give isl_basic_map *isl_basic_map_read_from_str(
435 isl_ctx *ctx, const char *str, int nparam);
436 __isl_give isl_map *isl_map_read_from_file(
437 struct isl_ctx *ctx, FILE *input, int nparam);
438 __isl_give isl_map *isl_map_read_from_str(isl_ctx *ctx,
439 const char *str, int nparam);
441 The input format is autodetected and may be either the C<PolyLib> format
442 or the C<isl> format.
443 C<nparam> specifies how many of the final columns in
444 the C<PolyLib> format correspond to parameters.
445 If input is given in the C<isl> format, then the number
446 of parameters needs to be equal to C<nparam>.
447 If C<nparam> is negative, then any number of parameters
448 is accepted in the C<isl> format and zero parameters
449 are assumed in the C<PolyLib> format.
453 Before anything can be printed, an C<isl_printer> needs to
456 __isl_give isl_printer *isl_printer_to_file(isl_ctx *ctx,
458 __isl_give isl_printer *isl_printer_to_str(isl_ctx *ctx);
459 void isl_printer_free(__isl_take isl_printer *printer);
460 __isl_give char *isl_printer_get_str(
461 __isl_keep isl_printer *printer);
463 The behavior of the printer can be modified in various ways
465 __isl_give isl_printer *isl_printer_set_output_format(
466 __isl_take isl_printer *p, int output_format);
467 __isl_give isl_printer *isl_printer_set_indent(
468 __isl_take isl_printer *p, int indent);
469 __isl_give isl_printer *isl_printer_set_prefix(
470 __isl_take isl_printer *p, const char *prefix);
471 __isl_give isl_printer *isl_printer_set_suffix(
472 __isl_take isl_printer *p, const char *suffix);
474 The C<output_format> may be either C<ISL_FORMAT_ISL>, C<ISL_FORMAT_OMEGA>
475 or C<ISL_FORMAT_POLYLIB> and defaults to C<ISL_FORMAT_ISL>.
476 Each line in the output is indented by C<indent> spaces
477 (default: 0), prefixed by C<prefix> and suffixed by C<suffix>.
478 In the C<PolyLib> format output,
479 the coefficients of the existentially quantified variables
480 appear between those of the set variables and those
483 To actually print something, use
486 __isl_give isl_printer *isl_printer_print_basic_set(
487 __isl_take isl_printer *printer,
488 __isl_keep isl_basic_set *bset);
489 __isl_give isl_printer *isl_printer_print_set(
490 __isl_take isl_printer *printer,
491 __isl_keep isl_set *set);
494 __isl_give isl_printer *isl_printer_print_basic_map(
495 __isl_take isl_printer *printer,
496 __isl_keep isl_basic_map *bmap);
497 __isl_give isl_printer *isl_printer_print_map(
498 __isl_take isl_printer *printer,
499 __isl_keep isl_map *map);
501 =head2 Creating New Sets and Relations
503 C<isl> has functions for creating some standard sets and relations.
507 =item * Empty sets and relations
509 __isl_give isl_basic_set *isl_basic_set_empty(
510 __isl_take isl_dim *dim);
511 __isl_give isl_basic_map *isl_basic_map_empty(
512 __isl_take isl_dim *dim);
513 __isl_give isl_set *isl_set_empty(
514 __isl_take isl_dim *dim);
515 __isl_give isl_map *isl_map_empty(
516 __isl_take isl_dim *dim);
518 =item * Universe sets and relations
520 __isl_give isl_basic_set *isl_basic_set_universe(
521 __isl_take isl_dim *dim);
522 __isl_give isl_basic_map *isl_basic_map_universe(
523 __isl_take isl_dim *dim);
524 __isl_give isl_set *isl_set_universe(
525 __isl_take isl_dim *dim);
526 __isl_give isl_map *isl_map_universe(
527 __isl_take isl_dim *dim);
529 =item * Identity relations
531 __isl_give isl_basic_map *isl_basic_map_identity(
532 __isl_take isl_dim *set_dim);
533 __isl_give isl_map *isl_map_identity(
534 __isl_take isl_dim *set_dim);
536 These functions take a dimension specification for a B<set>
537 and return an identity relation between two such sets.
539 =item * Lexicographic order
541 __isl_give isl_map *isl_map_lex_lt(
542 __isl_take isl_dim *set_dim);
543 __isl_give isl_map *isl_map_lex_le(
544 __isl_take isl_dim *set_dim);
545 __isl_give isl_map *isl_map_lex_gt(
546 __isl_take isl_dim *set_dim);
547 __isl_give isl_map *isl_map_lex_ge(
548 __isl_take isl_dim *set_dim);
550 These functions take a dimension specification for a B<set>
551 and return relations that express that the elements in the domain
552 are lexicographically less
553 (C<isl_map_lex_lt>), less or equal (C<isl_map_lex_le>),
554 greater (C<isl_map_lex_gt>) or greater or equal (C<isl_map_lex_ge>)
555 than the elements in the range.
559 A basic set or relation can be converted to a set or relation
560 using the following functions.
562 __isl_give isl_set *isl_set_from_basic_set(
563 __isl_take isl_basic_set *bset);
564 __isl_give isl_map *isl_map_from_basic_map(
565 __isl_take isl_basic_map *bmap);
567 Sets and relations can be copied and freed again using the following
570 __isl_give isl_basic_set *isl_basic_set_copy(
571 __isl_keep isl_basic_set *bset);
572 __isl_give isl_set *isl_set_copy(__isl_keep isl_set *set);
573 __isl_give isl_basic_map *isl_basic_map_copy(
574 __isl_keep isl_basic_map *bmap);
575 __isl_give isl_map *isl_map_copy(__isl_keep isl_map *map);
576 void isl_basic_set_free(__isl_take isl_basic_set *bset);
577 void isl_set_free(__isl_take isl_set *set);
578 void isl_basic_map_free(__isl_take isl_basic_map *bmap);
579 void isl_map_free(__isl_take isl_map *map);
581 Other sets and relations can be constructed by starting
582 from a universe set or relation, adding equality and/or
583 inequality constraints and then projecting out the
584 existentially quantified variables, if any.
585 Constraints can be constructed, manipulated and
586 added to basic sets and relations using the following functions.
588 #include <isl_constraint.h>
589 __isl_give isl_constraint *isl_equality_alloc(
590 __isl_take isl_dim *dim);
591 __isl_give isl_constraint *isl_inequality_alloc(
592 __isl_take isl_dim *dim);
593 void isl_constraint_set_constant(
594 __isl_keep isl_constraint *constraint, isl_int v);
595 void isl_constraint_set_coefficient(
596 __isl_keep isl_constraint *constraint,
597 enum isl_dim_type type, int pos, isl_int v);
598 __isl_give isl_basic_map *isl_basic_map_add_constraint(
599 __isl_take isl_basic_map *bmap,
600 __isl_take isl_constraint *constraint);
601 __isl_give isl_basic_set *isl_basic_set_add_constraint(
602 __isl_take isl_basic_set *bset,
603 __isl_take isl_constraint *constraint);
605 For example, to create a set containing the even integers
606 between 10 and 42, you would use the following code.
610 struct isl_constraint *c;
611 struct isl_basic_set *bset;
614 dim = isl_dim_set_alloc(ctx, 0, 2);
615 bset = isl_basic_set_universe(isl_dim_copy(dim));
617 c = isl_equality_alloc(isl_dim_copy(dim));
618 isl_int_set_si(v, -1);
619 isl_constraint_set_coefficient(c, isl_dim_set, 0, v);
620 isl_int_set_si(v, 2);
621 isl_constraint_set_coefficient(c, isl_dim_set, 1, v);
622 bset = isl_basic_set_add_constraint(bset, c);
624 c = isl_inequality_alloc(isl_dim_copy(dim));
625 isl_int_set_si(v, -10);
626 isl_constraint_set_constant(c, v);
627 isl_int_set_si(v, 1);
628 isl_constraint_set_coefficient(c, isl_dim_set, 0, v);
629 bset = isl_basic_set_add_constraint(bset, c);
631 c = isl_inequality_alloc(dim);
632 isl_int_set_si(v, 42);
633 isl_constraint_set_constant(c, v);
634 isl_int_set_si(v, -1);
635 isl_constraint_set_coefficient(c, isl_dim_set, 0, v);
636 bset = isl_basic_set_add_constraint(bset, c);
638 bset = isl_basic_set_project_out(bset, isl_dim_set, 1, 1);
644 struct isl_basic_set *bset;
645 bset = isl_basic_set_read_from_str(ctx,
646 "{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}", -1);
648 =head2 Inspecting Sets and Relations
650 Usually, the user should not have to care about the actual constraints
651 of the sets and maps, but should instead apply the abstract operations
652 explained in the following sections.
653 Occasionally, however, it may be required to inspect the individual
654 coefficients of the constraints. This section explains how to do so.
655 In these cases, it may also be useful to have C<isl> compute
656 an explicit representation of the existentially quantified variables.
658 __isl_give isl_set *isl_set_compute_divs(
659 __isl_take isl_set *set);
660 __isl_give isl_map *isl_map_compute_divs(
661 __isl_take isl_map *map);
663 This explicit representation defines the existentially quantified
664 variables as integer divisions of the other variables, possibly
665 including earlier existentially quantified variables.
666 An explicitly represented existentially quantified variable therefore
667 has a unique value when the values of the other variables are known.
668 If, furthermore, the same existentials, i.e., existentials
669 with the same explicit representations, should appear in the
670 same order in each of the disjuncts of a set or map, then the user should call
671 either of the following functions.
673 __isl_give isl_set *isl_set_align_divs(
674 __isl_take isl_set *set);
675 __isl_give isl_map *isl_map_align_divs(
676 __isl_take isl_map *map);
678 To iterate over all the basic sets or maps in a set or map, use
680 int isl_set_foreach_basic_set(__isl_keep isl_set *set,
681 int (*fn)(__isl_take isl_basic_set *bset, void *user),
683 int isl_map_foreach_basic_map(__isl_keep isl_map *map,
684 int (*fn)(__isl_take isl_basic_map *bmap, void *user),
687 The callback function C<fn> should return 0 if successful and
688 -1 if an error occurs. In the latter case, or if any other error
689 occurs, the above functions will return -1.
691 It should be noted that C<isl> does not guarantee that
692 the basic sets or maps passed to C<fn> are disjoint.
693 If this is required, then the user should call one of
694 the following functions first.
696 __isl_give isl_set *isl_set_make_disjoint(
697 __isl_take isl_set *set);
698 __isl_give isl_map *isl_map_make_disjoint(
699 __isl_take isl_map *map);
701 To iterate over the constraints of a basic set or map, use
703 #include <isl_constraint.h>
705 int isl_basic_map_foreach_constraint(
706 __isl_keep isl_basic_map *bmap,
707 int (*fn)(__isl_take isl_constraint *c, void *user),
709 void isl_constraint_free(struct isl_constraint *c);
711 Again, the callback function C<fn> should return 0 if successful and
712 -1 if an error occurs. In the latter case, or if any other error
713 occurs, the above functions will return -1.
715 The coefficients of the constraints can be inspected using
716 the following functions.
718 void isl_constraint_get_constant(
719 __isl_keep isl_constraint *constraint, isl_int *v);
720 void isl_constraint_get_coefficient(
721 __isl_keep isl_constraint *constraint,
722 enum isl_dim_type type, int pos, isl_int *v);
724 The explicit representations of the existentially quantified
725 variables can be inspected using the following functions.
726 Note that the user is only allowed to use these functions
727 if the inspected set or map is the result of a call
728 to C<isl_set_compute_divs> or C<isl_map_compute_divs>.
730 __isl_give isl_div *isl_constraint_div(
731 __isl_keep isl_constraint *constraint, int pos);
732 void isl_div_get_constant(__isl_keep isl_div *div,
734 void isl_div_get_denominator(__isl_keep isl_div *div,
736 void isl_div_get_coefficient(__isl_keep isl_div *div,
737 enum isl_dim_type type, int pos, isl_int *v);
741 =head3 Unary Properties
747 The following functions test whether the given set or relation
748 contains any integer points. The ``fast'' variants do not perform
749 any computations, but simply check if the given set or relation
750 is already known to be empty.
752 int isl_basic_set_fast_is_empty(__isl_keep isl_basic_set *bset);
753 int isl_basic_set_is_empty(__isl_keep isl_basic_set *bset);
754 int isl_set_is_empty(__isl_keep isl_set *set);
755 int isl_basic_map_fast_is_empty(__isl_keep isl_basic_map *bmap);
756 int isl_basic_map_is_empty(__isl_keep isl_basic_map *bmap);
757 int isl_map_fast_is_empty(__isl_keep isl_map *map);
758 int isl_map_is_empty(__isl_keep isl_map *map);
762 int isl_basic_set_is_universe(__isl_keep isl_basic_set *bset);
763 int isl_basic_map_is_universe(__isl_keep isl_basic_map *bmap);
764 int isl_set_fast_is_universe(__isl_keep isl_set *set);
768 =head3 Binary Properties
774 int isl_set_fast_is_equal(__isl_keep isl_set *set1,
775 __isl_keep isl_set *set2);
776 int isl_set_is_equal(__isl_keep isl_set *set1,
777 __isl_keep isl_set *set2);
778 int isl_map_is_equal(__isl_keep isl_map *map1,
779 __isl_keep isl_map *map2);
780 int isl_map_fast_is_equal(__isl_keep isl_map *map1,
781 __isl_keep isl_map *map2);
782 int isl_basic_map_is_equal(
783 __isl_keep isl_basic_map *bmap1,
784 __isl_keep isl_basic_map *bmap2);
788 int isl_set_fast_is_disjoint(__isl_keep isl_set *set1,
789 __isl_keep isl_set *set2);
793 int isl_set_is_subset(__isl_keep isl_set *set1,
794 __isl_keep isl_set *set2);
795 int isl_set_is_strict_subset(
796 __isl_keep isl_set *set1,
797 __isl_keep isl_set *set2);
798 int isl_basic_map_is_subset(
799 __isl_keep isl_basic_map *bmap1,
800 __isl_keep isl_basic_map *bmap2);
801 int isl_basic_map_is_strict_subset(
802 __isl_keep isl_basic_map *bmap1,
803 __isl_keep isl_basic_map *bmap2);
804 int isl_map_is_subset(
805 __isl_keep isl_map *map1,
806 __isl_keep isl_map *map2);
807 int isl_map_is_strict_subset(
808 __isl_keep isl_map *map1,
809 __isl_keep isl_map *map2);
813 =head2 Unary Operations
819 __isl_give isl_set *isl_set_complement(
820 __isl_take isl_set *set);
824 __isl_give isl_basic_set *isl_basic_set_project_out(
825 __isl_take isl_basic_set *bset,
826 enum isl_dim_type type, unsigned first, unsigned n);
827 __isl_give isl_basic_map *isl_basic_map_project_out(
828 __isl_take isl_basic_map *bmap,
829 enum isl_dim_type type, unsigned first, unsigned n);
830 __isl_give isl_set *isl_set_project_out(__isl_take isl_set *set,
831 enum isl_dim_type type, unsigned first, unsigned n);
832 __isl_give isl_map *isl_map_project_out(__isl_take isl_map *map,
833 enum isl_dim_type type, unsigned first, unsigned n);
834 __isl_give isl_basic_set *isl_basic_map_domain(
835 __isl_take isl_basic_map *bmap);
836 __isl_give isl_basic_set *isl_basic_map_range(
837 __isl_take isl_basic_map *bmap);
838 __isl_give isl_set *isl_map_domain(
839 __isl_take isl_map *bmap);
840 __isl_give isl_set *isl_map_range(
841 __isl_take isl_map *map);
845 Simplify the representation of a set or relation by trying
846 to combine pairs of basic sets or relations into a single
847 basic set or relation.
849 __isl_give isl_set *isl_set_coalesce(__isl_take isl_set *set);
850 __isl_give isl_map *isl_map_coalesce(__isl_take isl_map *map);
854 __isl_give isl_basic_set *isl_set_convex_hull(
855 __isl_take isl_set *set);
856 __isl_give isl_basic_map *isl_map_convex_hull(
857 __isl_take isl_map *map);
859 If the input set or relation has any existentially quantified
860 variables, then the result of these operations is currently undefined.
864 __isl_give isl_basic_set *isl_basic_set_affine_hull(
865 __isl_take isl_basic_set *bset);
866 __isl_give isl_basic_set *isl_set_affine_hull(
867 __isl_take isl_set *set);
868 __isl_give isl_basic_map *isl_basic_map_affine_hull(
869 __isl_take isl_basic_map *bmap);
870 __isl_give isl_basic_map *isl_map_affine_hull(
871 __isl_take isl_map *map);
875 __isl_give isl_map *isl_map_power(__isl_take isl_map *map,
876 unsigned param, int *exact);
878 Compute a parametric representation for all positive powers I<k> of C<map>.
879 The power I<k> is equated to the parameter at position C<param>.
880 The result may be an overapproximation. If the result is exact,
881 then C<*exact> is set to C<1>.
882 The current implementation only produces exact results for particular
883 cases of piecewise translations (i.e., piecewise uniform dependences).
885 =item * Transitive closure
887 __isl_give isl_map *isl_map_transitive_closure(
888 __isl_take isl_map *map, int *exact);
890 Compute the transitive closure of C<map>.
891 The result may be an overapproximation. If the result is known to be exact,
892 then C<*exact> is set to C<1>.
893 The current implementation only produces exact results for particular
894 cases of piecewise translations (i.e., piecewise uniform dependences).
898 =head2 Binary Operations
900 The two arguments of a binary operation not only need to live
901 in the same C<isl_ctx>, they currently also need to have
902 the same (number of) parameters.
904 =head3 Basic Operations
910 __isl_give isl_basic_set *isl_basic_set_intersect(
911 __isl_take isl_basic_set *bset1,
912 __isl_take isl_basic_set *bset2);
913 __isl_give isl_set *isl_set_intersect(
914 __isl_take isl_set *set1,
915 __isl_take isl_set *set2);
916 __isl_give isl_basic_map *isl_basic_map_intersect_domain(
917 __isl_take isl_basic_map *bmap,
918 __isl_take isl_basic_set *bset);
919 __isl_give isl_basic_map *isl_basic_map_intersect_range(
920 __isl_take isl_basic_map *bmap,
921 __isl_take isl_basic_set *bset);
922 __isl_give isl_basic_map *isl_basic_map_intersect(
923 __isl_take isl_basic_map *bmap1,
924 __isl_take isl_basic_map *bmap2);
925 __isl_give isl_map *isl_map_intersect_domain(
926 __isl_take isl_map *map,
927 __isl_take isl_set *set);
928 __isl_give isl_map *isl_map_intersect_range(
929 __isl_take isl_map *map,
930 __isl_take isl_set *set);
931 __isl_give isl_map *isl_map_intersect(
932 __isl_take isl_map *map1,
933 __isl_take isl_map *map2);
937 __isl_give isl_set *isl_basic_set_union(
938 __isl_take isl_basic_set *bset1,
939 __isl_take isl_basic_set *bset2);
940 __isl_give isl_map *isl_basic_map_union(
941 __isl_take isl_basic_map *bmap1,
942 __isl_take isl_basic_map *bmap2);
943 __isl_give isl_set *isl_set_union(
944 __isl_take isl_set *set1,
945 __isl_take isl_set *set2);
946 __isl_give isl_map *isl_map_union(
947 __isl_take isl_map *map1,
948 __isl_take isl_map *map2);
950 =item * Set difference
952 __isl_give isl_set *isl_set_subtract(
953 __isl_take isl_set *set1,
954 __isl_take isl_set *set2);
955 __isl_give isl_map *isl_map_subtract(
956 __isl_take isl_map *map1,
957 __isl_take isl_map *map2);
961 __isl_give isl_basic_set *isl_basic_set_apply(
962 __isl_take isl_basic_set *bset,
963 __isl_take isl_basic_map *bmap);
964 __isl_give isl_set *isl_set_apply(
965 __isl_take isl_set *set,
966 __isl_take isl_map *map);
967 __isl_give isl_basic_map *isl_basic_map_apply_domain(
968 __isl_take isl_basic_map *bmap1,
969 __isl_take isl_basic_map *bmap2);
970 __isl_give isl_basic_map *isl_basic_map_apply_range(
971 __isl_take isl_basic_map *bmap1,
972 __isl_take isl_basic_map *bmap2);
973 __isl_give isl_map *isl_map_apply_domain(
974 __isl_take isl_map *map1,
975 __isl_take isl_map *map2);
976 __isl_give isl_map *isl_map_apply_range(
977 __isl_take isl_map *map1,
978 __isl_take isl_map *map2);
982 =head3 Lexicographic Optimization
984 Given a (basic) set C<set> (or C<bset>) and a zero-dimensional domain C<dom>,
985 the following functions
986 compute a set that contains the lexicographic minimum or maximum
987 of the elements in C<set> (or C<bset>) for those values of the parameters
989 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
990 that contains the parameter values in C<dom> for which C<set> (or C<bset>)
992 In other words, the union of the parameter values
993 for which the result is non-empty and of C<*empty>
996 __isl_give isl_set *isl_basic_set_partial_lexmin(
997 __isl_take isl_basic_set *bset,
998 __isl_take isl_basic_set *dom,
999 __isl_give isl_set **empty);
1000 __isl_give isl_set *isl_basic_set_partial_lexmax(
1001 __isl_take isl_basic_set *bset,
1002 __isl_take isl_basic_set *dom,
1003 __isl_give isl_set **empty);
1004 __isl_give isl_set *isl_set_partial_lexmin(
1005 __isl_take isl_set *set, __isl_take isl_set *dom,
1006 __isl_give isl_set **empty);
1007 __isl_give isl_set *isl_set_partial_lexmax(
1008 __isl_take isl_set *set, __isl_take isl_set *dom,
1009 __isl_give isl_set **empty);
1011 Given a (basic) set C<set> (or C<bset>), the following functions simply
1012 return a set containing the lexicographic minimum or maximum
1013 of the elements in C<set> (or C<bset>).
1015 __isl_give isl_set *isl_basic_set_lexmin(
1016 __isl_take isl_basic_set *bset);
1017 __isl_give isl_set *isl_basic_set_lexmax(
1018 __isl_take isl_basic_set *bset);
1019 __isl_give isl_set *isl_set_lexmin(
1020 __isl_take isl_set *set);
1021 __isl_give isl_set *isl_set_lexmax(
1022 __isl_take isl_set *set);
1024 Given a (basic) relation C<map> (or C<bmap>) and a domain C<dom>,
1025 the following functions
1026 compute a relation that maps each element of C<dom>
1027 to the single lexicographic minimum or maximum
1028 of the elements that are associated to that same
1029 element in C<map> (or C<bmap>).
1030 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
1031 that contains the elements in C<dom> that do not map
1032 to any elements in C<map> (or C<bmap>).
1033 In other words, the union of the domain of the result and of C<*empty>
1036 __isl_give isl_map *isl_basic_map_partial_lexmax(
1037 __isl_take isl_basic_map *bmap,
1038 __isl_take isl_basic_set *dom,
1039 __isl_give isl_set **empty);
1040 __isl_give isl_map *isl_basic_map_partial_lexmin(
1041 __isl_take isl_basic_map *bmap,
1042 __isl_take isl_basic_set *dom,
1043 __isl_give isl_set **empty);
1044 __isl_give isl_map *isl_map_partial_lexmax(
1045 __isl_take isl_map *map, __isl_take isl_set *dom,
1046 __isl_give isl_set **empty);
1047 __isl_give isl_map *isl_map_partial_lexmin(
1048 __isl_take isl_map *map, __isl_take isl_set *dom,
1049 __isl_give isl_set **empty);
1051 Given a (basic) map C<map> (or C<bmap>), the following functions simply
1052 return a map mapping each element in the domain of
1053 C<map> (or C<bmap>) to the lexicographic minimum or maximum
1054 of all elements associated to that element.
1056 __isl_give isl_map *isl_basic_map_lexmin(
1057 __isl_take isl_basic_map *bmap);
1058 __isl_give isl_map *isl_basic_map_lexmax(
1059 __isl_take isl_basic_map *bmap);
1060 __isl_give isl_map *isl_map_lexmin(
1061 __isl_take isl_map *map);
1062 __isl_give isl_map *isl_map_lexmax(
1063 __isl_take isl_map *map);
1067 Points are elements of a set. They can be used to construct
1068 simple sets (boxes) or they can be used to represent the
1069 individual elements of a set.
1070 The zero point (the origin) can be created using
1072 __isl_give isl_point *isl_point_zero(__isl_take isl_dim *dim);
1074 The coordinates of a point can be inspected, set and changed
1077 void isl_point_get_coordinate(__isl_keep isl_point *pnt,
1078 enum isl_dim_type type, int pos, isl_int *v);
1079 __isl_give isl_point *isl_point_set_coordinate(
1080 __isl_take isl_point *pnt,
1081 enum isl_dim_type type, int pos, isl_int v);
1083 __isl_give isl_point *isl_point_add_ui(
1084 __isl_take isl_point *pnt,
1085 enum isl_dim_type type, int pos, unsigned val);
1086 __isl_give isl_point *isl_point_sub_ui(
1087 __isl_take isl_point *pnt,
1088 enum isl_dim_type type, int pos, unsigned val);
1090 Points can be copied or freed using
1092 __isl_give isl_point *isl_point_copy(
1093 __isl_keep isl_point *pnt);
1094 void isl_point_free(__isl_take isl_point *pnt);
1096 A singleton set can be created from a point using
1098 __isl_give isl_set *isl_set_from_point(
1099 __isl_take isl_point *pnt);
1101 and a box can be created from two opposite extremal points using
1103 __isl_give isl_set *isl_set_box_from_points(
1104 __isl_take isl_point *pnt1,
1105 __isl_take isl_point *pnt2);
1107 All elements of a B<bounded> set can be enumerated using
1108 the following function.
1110 int isl_set_foreach_point(__isl_keep isl_set *set,
1111 int (*fn)(__isl_take isl_point *pnt, void *user),
1114 The function C<fn> is called for each integer point in
1115 C<set> with as second argument the last argument of
1116 the C<isl_set_foreach_point> call. The function C<fn>
1117 should return C<0> on success and C<-1> on failure.
1118 In the latter case, C<isl_set_foreach_point> will stop
1119 enumerating and return C<-1> as well.
1120 If the enumeration is performed successfully and to completion,
1121 then C<isl_set_foreach_point> returns C<0>.
1123 To obtain a single point of a set, use
1125 __isl_give isl_point *isl_set_sample_point(
1126 __isl_take isl_set *set);
1128 If C<set> does not contain any (integer) points, then the
1129 resulting point will be ``void'', a property that can be
1132 int isl_point_is_void(__isl_keep isl_point *pnt);
1134 =head2 Piecewise Quasipolynomials
1136 A piecewise quasipolynomial is a particular kind of function that maps
1137 a parametric point to a rational value.
1138 More specifically, a quasipolynomial is a polynomial expression in greatest
1139 integer parts of affine expressions of parameters and variables.
1140 A piecewise quasipolynomial is a subdivision of a given parametric
1141 domain into disjoint cells with a quasipolynomial associated to
1142 each cell. The value of the piecewise quasipolynomial at a given
1143 point is the value of the quasipolynomial associated to the cell
1144 that contains the point. Outside of the union of cells,
1145 the value is assumed to be zero.
1146 For example, the piecewise quasipolynomial
1148 [n] -> { [x] -> ((1 + n) - x) : x <= n and x >= 0 }
1150 maps C<x> to C<1 + n - x> for values of C<x> between C<0> and C<n>.
1151 Piecewise quasipolynomials are mainly used by the C<barvinok>
1152 library for representing the number of elements in a parametric set or map.
1153 For example, the piecewise quasipolynomial above represents
1154 the number of point in the map
1156 [n] -> { [x] -> [y] : x,y >= 0 and 0 <= x + y <= n }
1158 =head3 Printing (Piecewise) Quasipolynomials
1160 Quasipolynomials and piecewise quasipolynomials can be printed
1161 using the following functions.
1163 __isl_give isl_printer *isl_printer_print_qpolynomial(
1164 __isl_take isl_printer *p,
1165 __isl_keep isl_qpolynomial *qp);
1167 __isl_give isl_printer *isl_printer_print_pw_qpolynomial(
1168 __isl_take isl_printer *p,
1169 __isl_keep isl_pw_qpolynomial *pwqp);
1171 The output format of the printer
1172 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
1174 =head3 Creating New (Piecewise) Quasipolynomials
1176 Some simple quasipolynomials can be created using the following functions.
1177 More complicated quasipolynomials can be created by applying
1178 operations such as addition and multiplication
1179 on the resulting quasipolynomials
1181 __isl_give isl_qpolynomial *isl_qpolynomial_zero(
1182 __isl_take isl_dim *dim);
1183 __isl_give isl_qpolynomial *isl_qpolynomial_infty(
1184 __isl_take isl_dim *dim);
1185 __isl_give isl_qpolynomial *isl_qpolynomial_nan(
1186 __isl_take isl_dim *dim);
1187 __isl_give isl_qpolynomial *isl_qpolynomial_rat_cst(
1188 __isl_take isl_dim *dim,
1189 const isl_int n, const isl_int d);
1190 __isl_give isl_qpolynomial *isl_qpolynomial_div(
1191 __isl_take isl_div *div);
1192 __isl_give isl_qpolynomial *isl_qpolynomial_var(
1193 __isl_take isl_dim *dim,
1194 enum isl_dim_type type, unsigned pos);
1196 The zero piecewise quasipolynomial or a piecewise quasipolynomial
1197 with a single cell can be created using the following functions.
1198 Multiple of these single cell piecewise quasipolynomials can
1199 be combined to create more complicated piecewise quasipolynomials.
1201 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_zero(
1202 __isl_take isl_dim *dim);
1203 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_alloc(
1204 __isl_take isl_set *set,
1205 __isl_take isl_qpolynomial *qp);
1207 Quasipolynomials can be copied and freed again using the following
1210 __isl_give isl_qpolynomial *isl_qpolynomial_copy(
1211 __isl_keep isl_qpolynomial *qp);
1212 void isl_qpolynomial_free(__isl_take isl_qpolynomial *qp);
1214 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_copy(
1215 __isl_keep isl_pw_qpolynomial *pwqp);
1216 void isl_pw_qpolynomial_free(
1217 __isl_take isl_pw_qpolynomial *pwqp);
1219 =head3 Inspecting (Piecewise) Quasipolynomials
1221 To iterate over the cells in a piecewise quasipolynomial,
1222 use either of the following two functions
1224 int isl_pw_qpolynomial_foreach_piece(
1225 __isl_keep isl_pw_qpolynomial *pwqp,
1226 int (*fn)(__isl_take isl_set *set,
1227 __isl_take isl_qpolynomial *qp,
1228 void *user), void *user);
1229 int isl_pw_qpolynomial_foreach_lifted_piece(
1230 __isl_keep isl_pw_qpolynomial *pwqp,
1231 int (*fn)(__isl_take isl_set *set,
1232 __isl_take isl_qpolynomial *qp,
1233 void *user), void *user);
1235 As usual, the function C<fn> should return C<0> on success
1236 and C<-1> on failure. The difference between
1237 C<isl_pw_qpolynomial_foreach_piece> and
1238 C<isl_pw_qpolynomial_foreach_lifted_piece> is that
1239 C<isl_pw_qpolynomial_foreach_lifted_piece> will first
1240 compute unique representations for all existentially quantified
1241 variables and then turn these existentially quantified variables
1242 into extra set variables, adapting the associated quasipolynomial
1243 accordingly. This means that the C<set> passed to C<fn>
1244 will not have any existentially quantified variables, but that
1245 the dimensions of the sets may be different for different
1246 invocations of C<fn>.
1248 To iterate over all terms in a quasipolynomial,
1251 int isl_qpolynomial_foreach_term(
1252 __isl_keep isl_qpolynomial *qp,
1253 int (*fn)(__isl_take isl_term *term,
1254 void *user), void *user);
1256 The terms themselves can be inspected and freed using
1259 unsigned isl_term_dim(__isl_keep isl_term *term,
1260 enum isl_dim_type type);
1261 void isl_term_get_num(__isl_keep isl_term *term,
1263 void isl_term_get_den(__isl_keep isl_term *term,
1265 int isl_term_get_exp(__isl_keep isl_term *term,
1266 enum isl_dim_type type, unsigned pos);
1267 __isl_give isl_div *isl_term_get_div(
1268 __isl_keep isl_term *term, unsigned pos);
1269 void isl_term_free(__isl_take isl_term *term);
1271 Each term is a product of parameters, set variables and
1272 integer divisions. The function C<isl_term_get_exp>
1273 returns the exponent of a given dimensions in the given term.
1274 The C<isl_int>s in the arguments of C<isl_term_get_num>
1275 and C<isl_term_get_den> need to have been initialized
1276 using C<isl_int_init> before calling these functions.
1278 =head3 Properties of (Piecewise) Quasipolynomials
1280 To check whether a quasipolynomial is actually a constant,
1281 use the following function.
1283 int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp,
1284 isl_int *n, isl_int *d);
1286 If C<qp> is a constant and if C<n> and C<d> are not C<NULL>
1287 then the numerator and denominator of the constant
1288 are returned in C<*n> and C<*d>, respectively.
1290 =head3 Operations on (Piecewise) Quasipolynomials
1292 __isl_give isl_qpolynomial *isl_qpolynomial_neg(
1293 __isl_take isl_qpolynomial *qp);
1294 __isl_give isl_qpolynomial *isl_qpolynomial_add(
1295 __isl_take isl_qpolynomial *qp1,
1296 __isl_take isl_qpolynomial *qp2);
1297 __isl_give isl_qpolynomial *isl_qpolynomial_mul(
1298 __isl_take isl_qpolynomial *qp1,
1299 __isl_take isl_qpolynomial *qp2);
1301 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add(
1302 __isl_take isl_pw_qpolynomial *pwqp1,
1303 __isl_take isl_pw_qpolynomial *pwqp2);
1304 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_sub(
1305 __isl_take isl_pw_qpolynomial *pwqp1,
1306 __isl_take isl_pw_qpolynomial *pwqp2);
1307 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_disjoint(
1308 __isl_take isl_pw_qpolynomial *pwqp1,
1309 __isl_take isl_pw_qpolynomial *pwqp2);
1310 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_neg(
1311 __isl_take isl_pw_qpolynomial *pwqp);
1312 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
1313 __isl_take isl_pw_qpolynomial *pwqp1,
1314 __isl_take isl_pw_qpolynomial *pwqp2);
1316 __isl_give isl_qpolynomial *isl_pw_qpolynomial_eval(
1317 __isl_take isl_pw_qpolynomial *pwqp,
1318 __isl_take isl_point *pnt);
1320 __isl_give isl_set *isl_pw_qpolynomial_domain(
1321 __isl_take isl_pw_qpolynomial *pwqp);
1322 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_intersect_domain(
1323 __isl_take isl_pw_qpolynomial *pwpq,
1324 __isl_take isl_set *set);
1326 =head2 Dependence Analysis
1328 C<isl> contains specialized functionality for performing
1329 array dataflow analysis. That is, given a I<sink> access relation
1330 and a collection of possible I<source> access relations,
1331 C<isl> can compute relations that describe
1332 for each iteration of the sink access, which iteration
1333 of which of the source access relations was the last
1334 to access the same data element before the given iteration
1336 To compute standard flow dependences, the sink should be
1337 a read, while the sources should be writes.
1339 #include <isl_flow.h>
1341 __isl_give isl_access_info *isl_access_info_alloc(
1342 __isl_take isl_map *sink,
1343 void *sink_user, isl_access_level_before fn,
1345 __isl_give isl_access_info *isl_access_info_add_source(
1346 __isl_take isl_access_info *acc,
1347 __isl_take isl_map *source, void *source_user);
1349 __isl_give isl_flow *isl_access_info_compute_flow(
1350 __isl_take isl_access_info *acc);
1352 int isl_flow_foreach(__isl_keep isl_flow *deps,
1353 int (*fn)(__isl_take isl_map *dep, void *dep_user,
1356 __isl_give isl_set *isl_flow_get_no_source(
1357 __isl_keep isl_flow *deps);
1358 void isl_flow_free(__isl_take isl_flow *deps);
1360 The function C<isl_access_info_compute_flow> performs the actual
1361 dependence analysis. The other functions are used to construct
1362 the input for this function or to read off the output.
1364 The input is collected in an C<isl_access_info>, which can
1365 be created through a call to C<isl_access_info_alloc>.
1366 The arguments to this functions are the sink access relation
1367 C<sink>, a token C<sink_user> used to identify the sink
1368 access to the user, a callback function for specifying the
1369 relative order of source and sink accesses, and the number
1370 of source access relations that will be added.
1371 The callback function has type C<int (*)(void *first, void *second)>.
1372 The function is called with two user supplied tokens identifying
1373 either a source or the sink and it should return the shared nesting
1374 level and the relative order of the two accesses.
1375 In particular, let I<n> be the number of loops shared by
1376 the two accesses. If C<first> precedes C<second> textually,
1377 then the function should return I<2 * n + 1>; otherwise,
1378 it should return I<2 * n>.
1379 The sources can be added to the C<isl_access_info> by performing
1380 (at most) C<max_source> calls to C<isl_access_info_add_source>.
1381 The C<source_user> token is again used to identify
1382 the source access. The range of the source access relation
1383 C<source> should have the same dimension as the range
1384 of the sink access relation.
1386 The result of the dependence analysis is collected in an
1387 C<isl_flow>. There may be elements in the domain of
1388 the sink access for which no preceding source access could be
1389 find. The set of these elements can be obtained through
1390 a call to C<isl_flow_get_no_source>.
1391 In the case of standard flow dependence analysis,
1392 this set corresponds to the reads from uninitialized
1394 The actual flow dependences can be extracted using
1395 C<isl_flow_foreach>. This function will call the user-specified
1396 callback function C<fn> for each B<non-empty> dependence between
1397 a source and the sink. The callback function is called
1398 with three arguments, the actual flow dependence relation
1399 mapping source iterations to sink iterations, a token
1400 identifying the source and an additional C<void *> with value
1401 equal to the third argument of the C<isl_flow_foreach> call.
1403 After finishing with an C<isl_flow>, the user should call
1404 C<isl_flow_free> to free all associated memory.
1408 Although C<isl> is mainly meant to be used as a library,
1409 it also contains some basic applications that use some
1410 of the functionality of C<isl>.
1411 The input may be specified in either the L<isl format>
1412 or the L<PolyLib format>.
1414 =head2 C<isl_polyhedron_sample>
1416 C<isl_polyhedron_sample> takes a polyhedron as input and prints
1417 an integer element of the polyhedron, if there is any.
1418 The first column in the output is the denominator and is always
1419 equal to 1. If the polyhedron contains no integer points,
1420 then a vector of length zero is printed.
1424 C<isl_pip> takes the same input as the C<example> program
1425 from the C<piplib> distribution, i.e., a set of constraints
1426 on the parameters, a line contains only -1 and finally a set
1427 of constraints on a parametric polyhedron.
1428 The coefficients of the parameters appear in the last columns
1429 (but before the final constant column).
1430 The output is the lexicographic minimum of the parametric polyhedron.
1431 As C<isl> currently does not have its own output format, the output
1432 is just a dump of the internal state.
1434 =head2 C<isl_polyhedron_minimize>
1436 C<isl_polyhedron_minimize> computes the minimum of some linear
1437 or affine objective function over the integer points in a polyhedron.
1438 If an affine objective function
1439 is given, then the constant should appear in the last column.
1441 =head2 C<isl_polytope_scan>
1443 Given a polytope, C<isl_polytope_scan> prints
1444 all integer points in the polytope.
1446 =head1 C<isl-polylib>
1448 The C<isl-polylib> library provides the following functions for converting
1449 between C<isl> objects and C<PolyLib> objects.
1450 The library is distributed separately for licensing reasons.
1452 #include <isl_set_polylib.h>
1453 __isl_give isl_basic_set *isl_basic_set_new_from_polylib(
1454 Polyhedron *P, __isl_take isl_dim *dim);
1455 Polyhedron *isl_basic_set_to_polylib(
1456 __isl_keep isl_basic_set *bset);
1457 __isl_give isl_set *isl_set_new_from_polylib(Polyhedron *D,
1458 __isl_take isl_dim *dim);
1459 Polyhedron *isl_set_to_polylib(__isl_keep isl_set *set);
1461 #include <isl_map_polylib.h>
1462 __isl_give isl_basic_map *isl_basic_map_new_from_polylib(
1463 Polyhedron *P, __isl_take isl_dim *dim);
1464 __isl_give isl_map *isl_map_new_from_polylib(Polyhedron *D,
1465 __isl_take isl_dim *dim);
1466 Polyhedron *isl_basic_map_to_polylib(
1467 __isl_keep isl_basic_map *bmap);
1468 Polyhedron *isl_map_to_polylib(__isl_keep isl_map *map);