3 C<isl> is a thread-safe C library for manipulating
4 sets and relations of integer points bounded by affine constraints.
5 The descriptions of the sets and relations may involve
6 both parameters and existentially quantified variables.
7 All computations are performed in exact integer arithmetic
9 The C<isl> library offers functionality that is similar
10 to that offered by the C<Omega> and C<Omega+> libraries,
11 but the underlying algorithms are in most cases completely different.
13 The library is by no means complete and some fairly basic
14 functionality is still missing.
15 Still, even in its current form, the library has been successfully
16 used as a backend polyhedral library for the polyhedral
17 scanner C<CLooG> and as part of an equivalence checker of
18 static affine programs.
19 For bug reports, feature requests and questions,
20 visit the the discussion group at
21 L<http://groups.google.com/group/isl-development>.
23 =head2 Backward Incompatible Changes
25 =head3 Changes since isl-0.02
29 =item * The old printing functions have been deprecated
30 and replaced by C<isl_printer> functions, see L<Input and Output>.
32 =item * Most functions related to dependence analysis have acquired
33 an extra C<must> argument. To obtain the old behavior, this argument
34 should be given the value 1. See L<Dependence Analysis>.
38 =head3 Changes since isl-0.03
42 =item * The function C<isl_pw_qpolynomial_fold_add> has been
43 renamed to C<isl_pw_qpolynomial_fold_fold>.
44 Similarly, C<isl_union_pw_qpolynomial_fold_add> has been
45 renamed to C<isl_union_pw_qpolynomial_fold_fold>.
51 The source of C<isl> can be obtained either as a tarball
52 or from the git repository. Both are available from
53 L<http://freshmeat.net/projects/isl/>.
54 The installation process depends on how you obtained
57 =head2 Installation from the git repository
61 =item 1 Clone or update the repository
63 The first time the source is obtained, you need to clone
66 git clone git://repo.or.cz/isl.git
68 To obtain updates, you need to pull in the latest changes
72 =item 2 Generate C<configure>
78 After performing the above steps, continue
79 with the L<Common installation instructions>.
81 =head2 Common installation instructions
87 Building C<isl> requires C<GMP>, including its headers files.
88 Your distribution may not provide these header files by default
89 and you may need to install a package called C<gmp-devel> or something
90 similar. Alternatively, C<GMP> can be built from
91 source, available from L<http://gmplib.org/>.
95 C<isl> uses the standard C<autoconf> C<configure> script.
100 optionally followed by some configure options.
101 A complete list of options can be obtained by running
105 Below we discuss some of the more common options.
107 C<isl> can optionally use C<piplib>, but no
108 C<piplib> functionality is currently used by default.
109 The C<--with-piplib> option can
110 be used to specify which C<piplib>
111 library to use, either an installed version (C<system>),
112 an externally built version (C<build>)
113 or no version (C<no>). The option C<build> is mostly useful
114 in C<configure> scripts of larger projects that bundle both C<isl>
121 Installation prefix for C<isl>
123 =item C<--with-gmp-prefix>
125 Installation prefix for C<GMP> (architecture-independent files).
127 =item C<--with-gmp-exec-prefix>
129 Installation prefix for C<GMP> (architecture-dependent files).
131 =item C<--with-piplib>
133 Which copy of C<piplib> to use, either C<no> (default), C<system> or C<build>.
135 =item C<--with-piplib-prefix>
137 Installation prefix for C<system> C<piplib> (architecture-independent files).
139 =item C<--with-piplib-exec-prefix>
141 Installation prefix for C<system> C<piplib> (architecture-dependent files).
143 =item C<--with-piplib-builddir>
145 Location where C<build> C<piplib> was built.
153 =item 4 Install (optional)
161 =head2 Initialization
163 All manipulations of integer sets and relations occur within
164 the context of an C<isl_ctx>.
165 A given C<isl_ctx> can only be used within a single thread.
166 All arguments of a function are required to have been allocated
167 within the same context.
168 There are currently no functions available for moving an object
169 from one C<isl_ctx> to another C<isl_ctx>. This means that
170 there is currently no way of safely moving an object from one
171 thread to another, unless the whole C<isl_ctx> is moved.
173 An C<isl_ctx> can be allocated using C<isl_ctx_alloc> and
174 freed using C<isl_ctx_free>.
175 All objects allocated within an C<isl_ctx> should be freed
176 before the C<isl_ctx> itself is freed.
178 isl_ctx *isl_ctx_alloc();
179 void isl_ctx_free(isl_ctx *ctx);
183 All operations on integers, mainly the coefficients
184 of the constraints describing the sets and relations,
185 are performed in exact integer arithmetic using C<GMP>.
186 However, to allow future versions of C<isl> to optionally
187 support fixed integer arithmetic, all calls to C<GMP>
188 are wrapped inside C<isl> specific macros.
189 The basic type is C<isl_int> and the following operations
190 are available on this type.
191 The meanings of these operations are essentially the same
192 as their C<GMP> C<mpz_> counterparts.
193 As always with C<GMP> types, C<isl_int>s need to be
194 initialized with C<isl_int_init> before they can be used
195 and they need to be released with C<isl_int_clear>
200 =item isl_int_init(i)
202 =item isl_int_clear(i)
204 =item isl_int_set(r,i)
206 =item isl_int_set_si(r,i)
208 =item isl_int_abs(r,i)
210 =item isl_int_neg(r,i)
212 =item isl_int_swap(i,j)
214 =item isl_int_swap_or_set(i,j)
216 =item isl_int_add_ui(r,i,j)
218 =item isl_int_sub_ui(r,i,j)
220 =item isl_int_add(r,i,j)
222 =item isl_int_sub(r,i,j)
224 =item isl_int_mul(r,i,j)
226 =item isl_int_mul_ui(r,i,j)
228 =item isl_int_addmul(r,i,j)
230 =item isl_int_submul(r,i,j)
232 =item isl_int_gcd(r,i,j)
234 =item isl_int_lcm(r,i,j)
236 =item isl_int_divexact(r,i,j)
238 =item isl_int_cdiv_q(r,i,j)
240 =item isl_int_fdiv_q(r,i,j)
242 =item isl_int_fdiv_r(r,i,j)
244 =item isl_int_fdiv_q_ui(r,i,j)
246 =item isl_int_read(r,s)
248 =item isl_int_print(out,i,width)
252 =item isl_int_cmp(i,j)
254 =item isl_int_cmp_si(i,si)
256 =item isl_int_eq(i,j)
258 =item isl_int_ne(i,j)
260 =item isl_int_lt(i,j)
262 =item isl_int_le(i,j)
264 =item isl_int_gt(i,j)
266 =item isl_int_ge(i,j)
268 =item isl_int_abs_eq(i,j)
270 =item isl_int_abs_ne(i,j)
272 =item isl_int_abs_lt(i,j)
274 =item isl_int_abs_gt(i,j)
276 =item isl_int_abs_ge(i,j)
278 =item isl_int_is_zero(i)
280 =item isl_int_is_one(i)
282 =item isl_int_is_negone(i)
284 =item isl_int_is_pos(i)
286 =item isl_int_is_neg(i)
288 =item isl_int_is_nonpos(i)
290 =item isl_int_is_nonneg(i)
292 =item isl_int_is_divisible_by(i,j)
296 =head2 Sets and Relations
298 C<isl> uses six types of objects for representing sets and relations,
299 C<isl_basic_set>, C<isl_basic_map>, C<isl_set>, C<isl_map>,
300 C<isl_union_set> and C<isl_union_map>.
301 C<isl_basic_set> and C<isl_basic_map> represent sets and relations that
302 can be described as a conjunction of affine constraints, while
303 C<isl_set> and C<isl_map> represent unions of
304 C<isl_basic_set>s and C<isl_basic_map>s, respectively.
305 However, all C<isl_basic_set>s or C<isl_basic_map>s in the union need
306 to have the same dimension. C<isl_union_set>s and C<isl_union_map>s
307 represent unions of C<isl_set>s or C<isl_map>s of I<different> dimensions,
308 where dimensions with different space names
309 (see L<Dimension Specifications>) are considered different as well.
310 The difference between sets and relations (maps) is that sets have
311 one set of variables, while relations have two sets of variables,
312 input variables and output variables.
314 =head2 Memory Management
316 Since a high-level operation on sets and/or relations usually involves
317 several substeps and since the user is usually not interested in
318 the intermediate results, most functions that return a new object
319 will also release all the objects passed as arguments.
320 If the user still wants to use one or more of these arguments
321 after the function call, she should pass along a copy of the
322 object rather than the object itself.
323 The user is then responsible for make sure that the original
324 object gets used somewhere else or is explicitly freed.
326 The arguments and return values of all documents functions are
327 annotated to make clear which arguments are released and which
328 arguments are preserved. In particular, the following annotations
335 C<__isl_give> means that a new object is returned.
336 The user should make sure that the returned pointer is
337 used exactly once as a value for an C<__isl_take> argument.
338 In between, it can be used as a value for as many
339 C<__isl_keep> arguments as the user likes.
340 There is one exception, and that is the case where the
341 pointer returned is C<NULL>. Is this case, the user
342 is free to use it as an C<__isl_take> argument or not.
346 C<__isl_take> means that the object the argument points to
347 is taken over by the function and may no longer be used
348 by the user as an argument to any other function.
349 The pointer value must be one returned by a function
350 returning an C<__isl_give> pointer.
351 If the user passes in a C<NULL> value, then this will
352 be treated as an error in the sense that the function will
353 not perform its usual operation. However, it will still
354 make sure that all the the other C<__isl_take> arguments
359 C<__isl_keep> means that the function will only use the object
360 temporarily. After the function has finished, the user
361 can still use it as an argument to other functions.
362 A C<NULL> value will be treated in the same way as
363 a C<NULL> value for an C<__isl_take> argument.
367 =head2 Dimension Specifications
369 Whenever a new set or relation is created from scratch,
370 its dimension needs to be specified using an C<isl_dim>.
373 __isl_give isl_dim *isl_dim_alloc(isl_ctx *ctx,
374 unsigned nparam, unsigned n_in, unsigned n_out);
375 __isl_give isl_dim *isl_dim_set_alloc(isl_ctx *ctx,
376 unsigned nparam, unsigned dim);
377 __isl_give isl_dim *isl_dim_copy(__isl_keep isl_dim *dim);
378 void isl_dim_free(__isl_take isl_dim *dim);
379 unsigned isl_dim_size(__isl_keep isl_dim *dim,
380 enum isl_dim_type type);
382 The dimension specification used for creating a set
383 needs to be created using C<isl_dim_set_alloc>, while
384 that for creating a relation
385 needs to be created using C<isl_dim_alloc>.
386 C<isl_dim_size> can be used
387 to find out the number of dimensions of each type in
388 a dimension specification, where type may be
389 C<isl_dim_param>, C<isl_dim_in> (only for relations),
390 C<isl_dim_out> (only for relations), C<isl_dim_set>
391 (only for sets) or C<isl_dim_all>.
393 It is often useful to create objects that live in the
394 same space as some other object. This can be accomplished
395 by creating the new objects
396 (see L<Creating New Sets and Relations> or
397 L<Creating New (Piecewise) Quasipolynomials>) based on the dimension
398 specification of the original object.
401 __isl_give isl_dim *isl_basic_set_get_dim(
402 __isl_keep isl_basic_set *bset);
403 __isl_give isl_dim *isl_set_get_dim(__isl_keep isl_set *set);
405 #include <isl_union_set.h>
406 __isl_give isl_dim *isl_union_set_get_dim(
407 __isl_keep isl_union_set *uset);
410 __isl_give isl_dim *isl_basic_map_get_dim(
411 __isl_keep isl_basic_map *bmap);
412 __isl_give isl_dim *isl_map_get_dim(__isl_keep isl_map *map);
414 #include <isl_union_map.h>
415 __isl_give isl_dim *isl_union_map_get_dim(
416 __isl_keep isl_union_map *umap);
418 #include <isl_polynomial.h>
419 __isl_give isl_dim *isl_qpolynomial_get_dim(
420 __isl_keep isl_qpolynomial *qp);
421 __isl_give isl_dim *isl_pw_qpolynomial_get_dim(
422 __isl_keep isl_pw_qpolynomial *pwqp);
423 __isl_give isl_dim *isl_union_pw_qpolynomial_get_dim(
424 __isl_keep isl_union_pw_qpolynomial *upwqp);
425 __isl_give isl_dim *isl_union_pw_qpolynomial_fold_get_dim(
426 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
428 The names of the individual dimensions may be set or read off
429 using the following functions.
432 __isl_give isl_dim *isl_dim_set_name(__isl_take isl_dim *dim,
433 enum isl_dim_type type, unsigned pos,
434 __isl_keep const char *name);
435 __isl_keep const char *isl_dim_get_name(__isl_keep isl_dim *dim,
436 enum isl_dim_type type, unsigned pos);
438 Note that C<isl_dim_get_name> returns a pointer to some internal
439 data structure, so the result can only be used while the
440 corresponding C<isl_dim> is alive.
441 Also note that every function that operates on two sets or relations
442 requires that both arguments have the same parameters. This also
443 means that if one of the arguments has named parameters, then the
444 other needs to have named parameters too and the names need to match.
445 Pairs of C<isl_union_set> and/or C<isl_union_map> arguments may
446 have different parameters (as long as they are named), in which case
447 the result will have as parameters the union of the parameters of
450 The names of entire spaces may be set or read off
451 using the following functions.
454 __isl_give isl_dim *isl_dim_set_tuple_name(
455 __isl_take isl_dim *dim,
456 enum isl_dim_type type, const char *s);
457 const char *isl_dim_get_tuple_name(__isl_keep isl_dim *dim,
458 enum isl_dim_type type);
460 The C<dim> argument needs to be one of C<isl_dim_in>, C<isl_dim_out>
461 or C<isl_dim_set>. As with C<isl_dim_get_name>,
462 the C<isl_dim_get_tuple_name> function returns a pointer to some internal
464 Binary operations require the corresponding spaces of their arguments
465 to have the same name.
467 Spaces can be nested. In particular, the domain of a set or
468 the domain or range of a relation can be a nested relation.
469 The following functions can be used to construct and deconstruct
470 such nested dimension specifications.
473 int isl_dim_is_wrapping(__isl_keep isl_dim *dim);
474 __isl_give isl_dim *isl_dim_wrap(__isl_take isl_dim *dim);
475 __isl_give isl_dim *isl_dim_unwrap(__isl_take isl_dim *dim);
477 The input to C<isl_dim_is_wrapping> and C<isl_dim_unwrap> should
478 be the dimension specification of a set, while that of
479 C<isl_dim_wrap> should be the dimension specification of a relation.
480 Conversely, the output of C<isl_dim_unwrap> is the dimension specification
481 of a relation, while that of C<isl_dim_wrap> is the dimension specification
484 Dimension specifications can be created from other dimension
485 specifications using the following functions.
487 __isl_give isl_dim *isl_dim_domain(__isl_take isl_dim *dim);
488 __isl_give isl_dim *isl_dim_from_domain(__isl_take isl_dim *dim);
489 __isl_give isl_dim *isl_dim_range(__isl_take isl_dim *dim);
490 __isl_give isl_dim *isl_dim_from_range(__isl_take isl_dim *dim);
491 __isl_give isl_dim *isl_dim_reverse(__isl_take isl_dim *dim);
492 __isl_give isl_dim *isl_dim_join(__isl_take isl_dim *left,
493 __isl_take isl_dim *right);
494 __isl_give isl_dim *isl_dim_insert(__isl_take isl_dim *dim,
495 enum isl_dim_type type, unsigned pos, unsigned n);
496 __isl_give isl_dim *isl_dim_add(__isl_take isl_dim *dim,
497 enum isl_dim_type type, unsigned n);
498 __isl_give isl_dim *isl_dim_drop(__isl_take isl_dim *dim,
499 enum isl_dim_type type, unsigned first, unsigned n);
501 Note that if dimensions are added or removed from a space, then
502 the name and the internal structure are lost.
504 =head2 Input and Output
506 C<isl> supports its own input/output format, which is similar
507 to the C<Omega> format, but also supports the C<PolyLib> format
512 The C<isl> format is similar to that of C<Omega>, but has a different
513 syntax for describing the parameters and allows for the definition
514 of an existentially quantified variable as the integer division
515 of an affine expression.
516 For example, the set of integers C<i> between C<0> and C<n>
517 such that C<i % 10 <= 6> can be described as
519 [n] -> { [i] : exists (a = [i/10] : 0 <= i and i <= n and
522 A set or relation can have several disjuncts, separated
523 by the keyword C<or>. Each disjunct is either a conjunction
524 of constraints or a projection (C<exists>) of a conjunction
525 of constraints. The constraints are separated by the keyword
528 =head3 C<PolyLib> format
530 If the represented set is a union, then the first line
531 contains a single number representing the number of disjuncts.
532 Otherwise, a line containing the number C<1> is optional.
534 Each disjunct is represented by a matrix of constraints.
535 The first line contains two numbers representing
536 the number of rows and columns,
537 where the number of rows is equal to the number of constraints
538 and the number of columns is equal to two plus the number of variables.
539 The following lines contain the actual rows of the constraint matrix.
540 In each row, the first column indicates whether the constraint
541 is an equality (C<0>) or inequality (C<1>). The final column
542 corresponds to the constant term.
544 If the set is parametric, then the coefficients of the parameters
545 appear in the last columns before the constant column.
546 The coefficients of any existentially quantified variables appear
547 between those of the set variables and those of the parameters.
552 __isl_give isl_basic_set *isl_basic_set_read_from_file(
553 isl_ctx *ctx, FILE *input, int nparam);
554 __isl_give isl_basic_set *isl_basic_set_read_from_str(
555 isl_ctx *ctx, const char *str, int nparam);
556 __isl_give isl_set *isl_set_read_from_file(isl_ctx *ctx,
557 FILE *input, int nparam);
558 __isl_give isl_set *isl_set_read_from_str(isl_ctx *ctx,
559 const char *str, int nparam);
562 __isl_give isl_basic_map *isl_basic_map_read_from_file(
563 isl_ctx *ctx, FILE *input, int nparam);
564 __isl_give isl_basic_map *isl_basic_map_read_from_str(
565 isl_ctx *ctx, const char *str, int nparam);
566 __isl_give isl_map *isl_map_read_from_file(
567 struct isl_ctx *ctx, FILE *input, int nparam);
568 __isl_give isl_map *isl_map_read_from_str(isl_ctx *ctx,
569 const char *str, int nparam);
571 The input format is autodetected and may be either the C<PolyLib> format
572 or the C<isl> format.
573 C<nparam> specifies how many of the final columns in
574 the C<PolyLib> format correspond to parameters.
575 If input is given in the C<isl> format, then the number
576 of parameters needs to be equal to C<nparam>.
577 If C<nparam> is negative, then any number of parameters
578 is accepted in the C<isl> format and zero parameters
579 are assumed in the C<PolyLib> format.
583 Before anything can be printed, an C<isl_printer> needs to
586 __isl_give isl_printer *isl_printer_to_file(isl_ctx *ctx,
588 __isl_give isl_printer *isl_printer_to_str(isl_ctx *ctx);
589 void isl_printer_free(__isl_take isl_printer *printer);
590 __isl_give char *isl_printer_get_str(
591 __isl_keep isl_printer *printer);
593 The behavior of the printer can be modified in various ways
595 __isl_give isl_printer *isl_printer_set_output_format(
596 __isl_take isl_printer *p, int output_format);
597 __isl_give isl_printer *isl_printer_set_indent(
598 __isl_take isl_printer *p, int indent);
599 __isl_give isl_printer *isl_printer_set_prefix(
600 __isl_take isl_printer *p, const char *prefix);
601 __isl_give isl_printer *isl_printer_set_suffix(
602 __isl_take isl_printer *p, const char *suffix);
604 The C<output_format> may be either C<ISL_FORMAT_ISL>, C<ISL_FORMAT_OMEGA>
605 or C<ISL_FORMAT_POLYLIB> and defaults to C<ISL_FORMAT_ISL>.
606 Each line in the output is indented by C<indent> spaces
607 (default: 0), prefixed by C<prefix> and suffixed by C<suffix>.
608 In the C<PolyLib> format output,
609 the coefficients of the existentially quantified variables
610 appear between those of the set variables and those
613 To actually print something, use
616 __isl_give isl_printer *isl_printer_print_basic_set(
617 __isl_take isl_printer *printer,
618 __isl_keep isl_basic_set *bset);
619 __isl_give isl_printer *isl_printer_print_set(
620 __isl_take isl_printer *printer,
621 __isl_keep isl_set *set);
624 __isl_give isl_printer *isl_printer_print_basic_map(
625 __isl_take isl_printer *printer,
626 __isl_keep isl_basic_map *bmap);
627 __isl_give isl_printer *isl_printer_print_map(
628 __isl_take isl_printer *printer,
629 __isl_keep isl_map *map);
631 #include <isl_union_set.h>
632 __isl_give isl_printer *isl_printer_print_union_set(
633 __isl_take isl_printer *p,
634 __isl_keep isl_union_set *uset);
636 #include <isl_union_map.h>
637 __isl_give isl_printer *isl_printer_print_union_map(
638 __isl_take isl_printer *p,
639 __isl_keep isl_union_map *umap);
641 When called on a file printer, the following function flushes
642 the file. When called on a string printer, the buffer is cleared.
644 __isl_give isl_printer *isl_printer_flush(
645 __isl_take isl_printer *p);
647 =head2 Creating New Sets and Relations
649 C<isl> has functions for creating some standard sets and relations.
653 =item * Empty sets and relations
655 __isl_give isl_basic_set *isl_basic_set_empty(
656 __isl_take isl_dim *dim);
657 __isl_give isl_basic_map *isl_basic_map_empty(
658 __isl_take isl_dim *dim);
659 __isl_give isl_set *isl_set_empty(
660 __isl_take isl_dim *dim);
661 __isl_give isl_map *isl_map_empty(
662 __isl_take isl_dim *dim);
663 __isl_give isl_union_set *isl_union_set_empty(
664 __isl_take isl_dim *dim);
665 __isl_give isl_union_map *isl_union_map_empty(
666 __isl_take isl_dim *dim);
668 For C<isl_union_set>s and C<isl_union_map>s, the dimensions specification
669 is only used to specify the parameters.
671 =item * Universe sets and relations
673 __isl_give isl_basic_set *isl_basic_set_universe(
674 __isl_take isl_dim *dim);
675 __isl_give isl_basic_map *isl_basic_map_universe(
676 __isl_take isl_dim *dim);
677 __isl_give isl_set *isl_set_universe(
678 __isl_take isl_dim *dim);
679 __isl_give isl_map *isl_map_universe(
680 __isl_take isl_dim *dim);
682 =item * Identity relations
684 __isl_give isl_basic_map *isl_basic_map_identity(
685 __isl_take isl_dim *set_dim);
686 __isl_give isl_map *isl_map_identity(
687 __isl_take isl_dim *set_dim);
689 These functions take a dimension specification for a B<set>
690 and return an identity relation between two such sets.
692 =item * Lexicographic order
694 __isl_give isl_map *isl_map_lex_lt(
695 __isl_take isl_dim *set_dim);
696 __isl_give isl_map *isl_map_lex_le(
697 __isl_take isl_dim *set_dim);
698 __isl_give isl_map *isl_map_lex_gt(
699 __isl_take isl_dim *set_dim);
700 __isl_give isl_map *isl_map_lex_ge(
701 __isl_take isl_dim *set_dim);
702 __isl_give isl_map *isl_map_lex_lt_first(
703 __isl_take isl_dim *dim, unsigned n);
704 __isl_give isl_map *isl_map_lex_le_first(
705 __isl_take isl_dim *dim, unsigned n);
706 __isl_give isl_map *isl_map_lex_gt_first(
707 __isl_take isl_dim *dim, unsigned n);
708 __isl_give isl_map *isl_map_lex_ge_first(
709 __isl_take isl_dim *dim, unsigned n);
711 The first four functions take a dimension specification for a B<set>
712 and return relations that express that the elements in the domain
713 are lexicographically less
714 (C<isl_map_lex_lt>), less or equal (C<isl_map_lex_le>),
715 greater (C<isl_map_lex_gt>) or greater or equal (C<isl_map_lex_ge>)
716 than the elements in the range.
717 The last four functions take a dimension specification for a map
718 and return relations that express that the first C<n> dimensions
719 in the domain are lexicographically less
720 (C<isl_map_lex_lt_first>), less or equal (C<isl_map_lex_le_first>),
721 greater (C<isl_map_lex_gt_first>) or greater or equal (C<isl_map_lex_ge_first>)
722 than the first C<n> dimensions in the range.
726 A basic set or relation can be converted to a set or relation
727 using the following functions.
729 __isl_give isl_set *isl_set_from_basic_set(
730 __isl_take isl_basic_set *bset);
731 __isl_give isl_map *isl_map_from_basic_map(
732 __isl_take isl_basic_map *bmap);
734 Sets and relations can be converted to union sets and relations
735 using the following functions.
737 __isl_give isl_union_map *isl_union_map_from_map(
738 __isl_take isl_map *map);
739 __isl_give isl_union_set *isl_union_set_from_set(
740 __isl_take isl_set *set);
742 Sets and relations can be copied and freed again using the following
745 __isl_give isl_basic_set *isl_basic_set_copy(
746 __isl_keep isl_basic_set *bset);
747 __isl_give isl_set *isl_set_copy(__isl_keep isl_set *set);
748 __isl_give isl_union_set *isl_union_set_copy(
749 __isl_keep isl_union_set *uset);
750 __isl_give isl_basic_map *isl_basic_map_copy(
751 __isl_keep isl_basic_map *bmap);
752 __isl_give isl_map *isl_map_copy(__isl_keep isl_map *map);
753 __isl_give isl_union_map *isl_union_map_copy(
754 __isl_keep isl_union_map *umap);
755 void isl_basic_set_free(__isl_take isl_basic_set *bset);
756 void isl_set_free(__isl_take isl_set *set);
757 void isl_union_set_free(__isl_take isl_union_set *uset);
758 void isl_basic_map_free(__isl_take isl_basic_map *bmap);
759 void isl_map_free(__isl_take isl_map *map);
760 void isl_union_map_free(__isl_take isl_union_map *umap);
762 Other sets and relations can be constructed by starting
763 from a universe set or relation, adding equality and/or
764 inequality constraints and then projecting out the
765 existentially quantified variables, if any.
766 Constraints can be constructed, manipulated and
767 added to basic sets and relations using the following functions.
769 #include <isl_constraint.h>
770 __isl_give isl_constraint *isl_equality_alloc(
771 __isl_take isl_dim *dim);
772 __isl_give isl_constraint *isl_inequality_alloc(
773 __isl_take isl_dim *dim);
774 void isl_constraint_set_constant(
775 __isl_keep isl_constraint *constraint, isl_int v);
776 void isl_constraint_set_coefficient(
777 __isl_keep isl_constraint *constraint,
778 enum isl_dim_type type, int pos, isl_int v);
779 __isl_give isl_basic_map *isl_basic_map_add_constraint(
780 __isl_take isl_basic_map *bmap,
781 __isl_take isl_constraint *constraint);
782 __isl_give isl_basic_set *isl_basic_set_add_constraint(
783 __isl_take isl_basic_set *bset,
784 __isl_take isl_constraint *constraint);
786 For example, to create a set containing the even integers
787 between 10 and 42, you would use the following code.
791 struct isl_constraint *c;
792 struct isl_basic_set *bset;
795 dim = isl_dim_set_alloc(ctx, 0, 2);
796 bset = isl_basic_set_universe(isl_dim_copy(dim));
798 c = isl_equality_alloc(isl_dim_copy(dim));
799 isl_int_set_si(v, -1);
800 isl_constraint_set_coefficient(c, isl_dim_set, 0, v);
801 isl_int_set_si(v, 2);
802 isl_constraint_set_coefficient(c, isl_dim_set, 1, v);
803 bset = isl_basic_set_add_constraint(bset, c);
805 c = isl_inequality_alloc(isl_dim_copy(dim));
806 isl_int_set_si(v, -10);
807 isl_constraint_set_constant(c, v);
808 isl_int_set_si(v, 1);
809 isl_constraint_set_coefficient(c, isl_dim_set, 0, v);
810 bset = isl_basic_set_add_constraint(bset, c);
812 c = isl_inequality_alloc(dim);
813 isl_int_set_si(v, 42);
814 isl_constraint_set_constant(c, v);
815 isl_int_set_si(v, -1);
816 isl_constraint_set_coefficient(c, isl_dim_set, 0, v);
817 bset = isl_basic_set_add_constraint(bset, c);
819 bset = isl_basic_set_project_out(bset, isl_dim_set, 1, 1);
825 struct isl_basic_set *bset;
826 bset = isl_basic_set_read_from_str(ctx,
827 "{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}", -1);
829 A basic set or relation can also be constructed from two matrices
830 describing the equalities and the inequalities.
832 __isl_give isl_basic_set *isl_basic_set_from_constraint_matrices(
833 __isl_take isl_dim *dim,
834 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
835 enum isl_dim_type c1,
836 enum isl_dim_type c2, enum isl_dim_type c3,
837 enum isl_dim_type c4);
838 __isl_give isl_basic_map *isl_basic_map_from_constraint_matrices(
839 __isl_take isl_dim *dim,
840 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
841 enum isl_dim_type c1,
842 enum isl_dim_type c2, enum isl_dim_type c3,
843 enum isl_dim_type c4, enum isl_dim_type c5);
845 The C<isl_dim_type> arguments indicate the order in which
846 different kinds of variables appear in the input matrices
847 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
848 C<isl_dim_set> and C<isl_dim_div> for sets and
849 of C<isl_dim_cst>, C<isl_dim_param>,
850 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div> for relations.
852 =head2 Inspecting Sets and Relations
854 Usually, the user should not have to care about the actual constraints
855 of the sets and maps, but should instead apply the abstract operations
856 explained in the following sections.
857 Occasionally, however, it may be required to inspect the individual
858 coefficients of the constraints. This section explains how to do so.
859 In these cases, it may also be useful to have C<isl> compute
860 an explicit representation of the existentially quantified variables.
862 __isl_give isl_set *isl_set_compute_divs(
863 __isl_take isl_set *set);
864 __isl_give isl_map *isl_map_compute_divs(
865 __isl_take isl_map *map);
866 __isl_give isl_union_set *isl_union_set_compute_divs(
867 __isl_take isl_union_set *uset);
868 __isl_give isl_union_map *isl_union_map_compute_divs(
869 __isl_take isl_union_map *umap);
871 This explicit representation defines the existentially quantified
872 variables as integer divisions of the other variables, possibly
873 including earlier existentially quantified variables.
874 An explicitly represented existentially quantified variable therefore
875 has a unique value when the values of the other variables are known.
876 If, furthermore, the same existentials, i.e., existentials
877 with the same explicit representations, should appear in the
878 same order in each of the disjuncts of a set or map, then the user should call
879 either of the following functions.
881 __isl_give isl_set *isl_set_align_divs(
882 __isl_take isl_set *set);
883 __isl_give isl_map *isl_map_align_divs(
884 __isl_take isl_map *map);
886 Alternatively, the existentially quantified variables can be removed
887 using the following functions, which compute an overapproximation.
889 __isl_give isl_basic_set *isl_basic_set_remove_divs(
890 __isl_take isl_basic_set *bset);
891 __isl_give isl_basic_map *isl_basic_map_remove_divs(
892 __isl_take isl_basic_map *bmap);
893 __isl_give isl_set *isl_set_remove_divs(
894 __isl_take isl_set *set);
896 To iterate over all the sets or maps in a union set or map, use
898 int isl_union_set_foreach_set(__isl_keep isl_union_set *uset,
899 int (*fn)(__isl_take isl_set *set, void *user),
901 int isl_union_map_foreach_map(__isl_keep isl_union_map *umap,
902 int (*fn)(__isl_take isl_map *map, void *user),
905 The number of sets or maps in a union set or map can be obtained
908 int isl_union_set_n_set(__isl_keep isl_union_set *uset);
909 int isl_union_map_n_map(__isl_keep isl_union_map *umap);
911 To extract the set or map from a union with a given dimension
914 __isl_give isl_set *isl_union_set_extract_set(
915 __isl_keep isl_union_set *uset,
916 __isl_take isl_dim *dim);
917 __isl_give isl_map *isl_union_map_extract_map(
918 __isl_keep isl_union_map *umap,
919 __isl_take isl_dim *dim);
921 To iterate over all the basic sets or maps in a set or map, use
923 int isl_set_foreach_basic_set(__isl_keep isl_set *set,
924 int (*fn)(__isl_take isl_basic_set *bset, void *user),
926 int isl_map_foreach_basic_map(__isl_keep isl_map *map,
927 int (*fn)(__isl_take isl_basic_map *bmap, void *user),
930 The callback function C<fn> should return 0 if successful and
931 -1 if an error occurs. In the latter case, or if any other error
932 occurs, the above functions will return -1.
934 It should be noted that C<isl> does not guarantee that
935 the basic sets or maps passed to C<fn> are disjoint.
936 If this is required, then the user should call one of
937 the following functions first.
939 __isl_give isl_set *isl_set_make_disjoint(
940 __isl_take isl_set *set);
941 __isl_give isl_map *isl_map_make_disjoint(
942 __isl_take isl_map *map);
944 To iterate over the constraints of a basic set or map, use
946 #include <isl_constraint.h>
948 int isl_basic_map_foreach_constraint(
949 __isl_keep isl_basic_map *bmap,
950 int (*fn)(__isl_take isl_constraint *c, void *user),
952 void isl_constraint_free(struct isl_constraint *c);
954 Again, the callback function C<fn> should return 0 if successful and
955 -1 if an error occurs. In the latter case, or if any other error
956 occurs, the above functions will return -1.
957 The constraint C<c> represents either an equality or an inequality.
958 Use the following function to find out whether a constraint
959 represents an equality. If not, it represents an inequality.
961 int isl_constraint_is_equality(
962 __isl_keep isl_constraint *constraint);
964 The coefficients of the constraints can be inspected using
965 the following functions.
967 void isl_constraint_get_constant(
968 __isl_keep isl_constraint *constraint, isl_int *v);
969 void isl_constraint_get_coefficient(
970 __isl_keep isl_constraint *constraint,
971 enum isl_dim_type type, int pos, isl_int *v);
973 The explicit representations of the existentially quantified
974 variables can be inspected using the following functions.
975 Note that the user is only allowed to use these functions
976 if the inspected set or map is the result of a call
977 to C<isl_set_compute_divs> or C<isl_map_compute_divs>.
979 __isl_give isl_div *isl_constraint_div(
980 __isl_keep isl_constraint *constraint, int pos);
981 void isl_div_get_constant(__isl_keep isl_div *div,
983 void isl_div_get_denominator(__isl_keep isl_div *div,
985 void isl_div_get_coefficient(__isl_keep isl_div *div,
986 enum isl_dim_type type, int pos, isl_int *v);
988 To obtain the constraints of a basic map in matrix
989 form, use the following functions.
991 __isl_give isl_mat *isl_basic_map_equalities_matrix(
992 __isl_keep isl_basic_map *bmap,
993 enum isl_dim_type c1,
994 enum isl_dim_type c2, enum isl_dim_type c3,
995 enum isl_dim_type c4, enum isl_dim_type c5);
996 __isl_give isl_mat *isl_basic_map_inequalities_matrix(
997 __isl_keep isl_basic_map *bmap,
998 enum isl_dim_type c1,
999 enum isl_dim_type c2, enum isl_dim_type c3,
1000 enum isl_dim_type c4, enum isl_dim_type c5);
1002 The C<isl_dim_type> arguments dictate the order in which
1003 different kinds of variables appear in the resulting matrix
1004 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
1005 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div>.
1007 The names of the domain and range spaces of a set or relation can be
1008 read off using the following functions.
1010 const char *isl_set_get_tuple_name(
1011 __isl_keep isl_set *set);
1012 const char *isl_basic_map_get_tuple_name(
1013 __isl_keep isl_basic_map *bmap,
1014 enum isl_dim_type type);
1015 const char *isl_map_get_tuple_name(
1016 __isl_keep isl_map *map,
1017 enum isl_dim_type type);
1019 As with C<isl_dim_get_tuple_name>, the value returned points to
1020 an internal data structure.
1021 The names of individual dimensions can be read off using
1022 the following functions.
1024 const char *isl_set_get_dim_name(
1025 __isl_keep isl_set *set,
1026 enum isl_dim_type type, unsigned pos);
1027 const char *isl_map_get_dim_name(
1028 __isl_keep isl_map *map,
1029 enum isl_dim_type type, unsigned pos);
1031 These functions are mostly useful to obtain the names
1036 =head3 Unary Properties
1042 The following functions test whether the given set or relation
1043 contains any integer points. The ``fast'' variants do not perform
1044 any computations, but simply check if the given set or relation
1045 is already known to be empty.
1047 int isl_basic_set_fast_is_empty(__isl_keep isl_basic_set *bset);
1048 int isl_basic_set_is_empty(__isl_keep isl_basic_set *bset);
1049 int isl_set_is_empty(__isl_keep isl_set *set);
1050 int isl_union_set_is_empty(__isl_keep isl_union_set *uset);
1051 int isl_basic_map_fast_is_empty(__isl_keep isl_basic_map *bmap);
1052 int isl_basic_map_is_empty(__isl_keep isl_basic_map *bmap);
1053 int isl_map_fast_is_empty(__isl_keep isl_map *map);
1054 int isl_map_is_empty(__isl_keep isl_map *map);
1055 int isl_union_map_is_empty(__isl_keep isl_union_map *umap);
1057 =item * Universality
1059 int isl_basic_set_is_universe(__isl_keep isl_basic_set *bset);
1060 int isl_basic_map_is_universe(__isl_keep isl_basic_map *bmap);
1061 int isl_set_fast_is_universe(__isl_keep isl_set *set);
1063 =item * Single-valuedness
1065 int isl_map_is_single_valued(__isl_keep isl_map *map);
1069 int isl_map_is_bijective(__isl_keep isl_map *map);
1073 The followning functions check whether the domain of the given
1074 (basic) set is a wrapped relation.
1076 int isl_basic_set_is_wrapping(
1077 __isl_keep isl_basic_set *bset);
1078 int isl_set_is_wrapping(__isl_keep isl_set *set);
1082 =head3 Binary Properties
1088 int isl_set_fast_is_equal(__isl_keep isl_set *set1,
1089 __isl_keep isl_set *set2);
1090 int isl_set_is_equal(__isl_keep isl_set *set1,
1091 __isl_keep isl_set *set2);
1092 int isl_basic_map_is_equal(
1093 __isl_keep isl_basic_map *bmap1,
1094 __isl_keep isl_basic_map *bmap2);
1095 int isl_map_is_equal(__isl_keep isl_map *map1,
1096 __isl_keep isl_map *map2);
1097 int isl_map_fast_is_equal(__isl_keep isl_map *map1,
1098 __isl_keep isl_map *map2);
1099 int isl_union_map_is_equal(
1100 __isl_keep isl_union_map *umap1,
1101 __isl_keep isl_union_map *umap2);
1103 =item * Disjointness
1105 int isl_set_fast_is_disjoint(__isl_keep isl_set *set1,
1106 __isl_keep isl_set *set2);
1110 int isl_set_is_subset(__isl_keep isl_set *set1,
1111 __isl_keep isl_set *set2);
1112 int isl_set_is_strict_subset(
1113 __isl_keep isl_set *set1,
1114 __isl_keep isl_set *set2);
1115 int isl_basic_map_is_subset(
1116 __isl_keep isl_basic_map *bmap1,
1117 __isl_keep isl_basic_map *bmap2);
1118 int isl_basic_map_is_strict_subset(
1119 __isl_keep isl_basic_map *bmap1,
1120 __isl_keep isl_basic_map *bmap2);
1121 int isl_map_is_subset(
1122 __isl_keep isl_map *map1,
1123 __isl_keep isl_map *map2);
1124 int isl_map_is_strict_subset(
1125 __isl_keep isl_map *map1,
1126 __isl_keep isl_map *map2);
1127 int isl_union_map_is_subset(
1128 __isl_keep isl_union_map *umap1,
1129 __isl_keep isl_union_map *umap2);
1130 int isl_union_map_is_strict_subset(
1131 __isl_keep isl_union_map *umap1,
1132 __isl_keep isl_union_map *umap2);
1136 =head2 Unary Operations
1142 __isl_give isl_set *isl_set_complement(
1143 __isl_take isl_set *set);
1147 __isl_give isl_basic_map *isl_basic_map_reverse(
1148 __isl_take isl_basic_map *bmap);
1149 __isl_give isl_map *isl_map_reverse(
1150 __isl_take isl_map *map);
1151 __isl_give isl_union_map *isl_union_map_reverse(
1152 __isl_take isl_union_map *umap);
1156 __isl_give isl_basic_set *isl_basic_set_project_out(
1157 __isl_take isl_basic_set *bset,
1158 enum isl_dim_type type, unsigned first, unsigned n);
1159 __isl_give isl_basic_map *isl_basic_map_project_out(
1160 __isl_take isl_basic_map *bmap,
1161 enum isl_dim_type type, unsigned first, unsigned n);
1162 __isl_give isl_set *isl_set_project_out(__isl_take isl_set *set,
1163 enum isl_dim_type type, unsigned first, unsigned n);
1164 __isl_give isl_map *isl_map_project_out(__isl_take isl_map *map,
1165 enum isl_dim_type type, unsigned first, unsigned n);
1166 __isl_give isl_basic_set *isl_basic_map_domain(
1167 __isl_take isl_basic_map *bmap);
1168 __isl_give isl_basic_set *isl_basic_map_range(
1169 __isl_take isl_basic_map *bmap);
1170 __isl_give isl_set *isl_map_domain(
1171 __isl_take isl_map *bmap);
1172 __isl_give isl_set *isl_map_range(
1173 __isl_take isl_map *map);
1174 __isl_give isl_union_set *isl_union_map_domain(
1175 __isl_take isl_union_map *umap);
1176 __isl_give isl_union_set *isl_union_map_range(
1177 __isl_take isl_union_map *umap);
1179 __isl_give isl_basic_map *isl_basic_map_domain_map(
1180 __isl_take isl_basic_map *bmap);
1181 __isl_give isl_basic_map *isl_basic_map_range_map(
1182 __isl_take isl_basic_map *bmap);
1183 __isl_give isl_map *isl_map_domain_map(__isl_take isl_map *map);
1184 __isl_give isl_map *isl_map_range_map(__isl_take isl_map *map);
1185 __isl_give isl_union_map *isl_union_map_domain_map(
1186 __isl_take isl_union_map *umap);
1187 __isl_give isl_union_map *isl_union_map_range_map(
1188 __isl_take isl_union_map *umap);
1190 The functions above construct a (basic, regular or union) relation
1191 that maps (a wrapped version of) the input relation to its domain or range.
1195 __isl_give isl_basic_set *isl_basic_map_deltas(
1196 __isl_take isl_basic_map *bmap);
1197 __isl_give isl_set *isl_map_deltas(__isl_take isl_map *map);
1198 __isl_give isl_union_set *isl_union_map_deltas(
1199 __isl_take isl_union_map *umap);
1201 These functions return a (basic) set containing the differences
1202 between image elements and corresponding domain elements in the input.
1206 Simplify the representation of a set or relation by trying
1207 to combine pairs of basic sets or relations into a single
1208 basic set or relation.
1210 __isl_give isl_set *isl_set_coalesce(__isl_take isl_set *set);
1211 __isl_give isl_map *isl_map_coalesce(__isl_take isl_map *map);
1212 __isl_give isl_union_set *isl_union_set_coalesce(
1213 __isl_take isl_union_set *uset);
1214 __isl_give isl_union_map *isl_union_map_coalesce(
1215 __isl_take isl_union_map *umap);
1219 __isl_give isl_basic_set *isl_set_convex_hull(
1220 __isl_take isl_set *set);
1221 __isl_give isl_basic_map *isl_map_convex_hull(
1222 __isl_take isl_map *map);
1224 If the input set or relation has any existentially quantified
1225 variables, then the result of these operations is currently undefined.
1229 __isl_give isl_basic_set *isl_set_simple_hull(
1230 __isl_take isl_set *set);
1231 __isl_give isl_basic_map *isl_map_simple_hull(
1232 __isl_take isl_map *map);
1234 These functions compute a single basic set or relation
1235 that contains the whole input set or relation.
1236 In particular, the output is described by translates
1237 of the constraints describing the basic sets or relations in the input.
1241 (See \autoref{s:simple hull}.)
1247 __isl_give isl_basic_set *isl_basic_set_affine_hull(
1248 __isl_take isl_basic_set *bset);
1249 __isl_give isl_basic_set *isl_set_affine_hull(
1250 __isl_take isl_set *set);
1251 __isl_give isl_union_set *isl_union_set_affine_hull(
1252 __isl_take isl_union_set *uset);
1253 __isl_give isl_basic_map *isl_basic_map_affine_hull(
1254 __isl_take isl_basic_map *bmap);
1255 __isl_give isl_basic_map *isl_map_affine_hull(
1256 __isl_take isl_map *map);
1257 __isl_give isl_union_map *isl_union_map_affine_hull(
1258 __isl_take isl_union_map *umap);
1260 In case of union sets and relations, the affine hull is computed
1265 __isl_give isl_map *isl_map_power(__isl_take isl_map *map,
1266 unsigned param, int *exact);
1268 Compute a parametric representation for all positive powers I<k> of C<map>.
1269 The power I<k> is equated to the parameter at position C<param>.
1270 The result may be an overapproximation. If the result is exact,
1271 then C<*exact> is set to C<1>.
1272 The current implementation only produces exact results for particular
1273 cases of piecewise translations (i.e., piecewise uniform dependences).
1275 =item * Transitive closure
1277 __isl_give isl_map *isl_map_transitive_closure(
1278 __isl_take isl_map *map, int *exact);
1279 __isl_give isl_union_map *isl_union_map_transitive_closure(
1280 __isl_take isl_union_map *umap, int *exact);
1282 Compute the transitive closure of C<map>.
1283 The result may be an overapproximation. If the result is known to be exact,
1284 then C<*exact> is set to C<1>.
1285 The current implementation only produces exact results for particular
1286 cases of piecewise translations (i.e., piecewise uniform dependences).
1288 =item * Reaching path lengths
1290 __isl_give isl_map *isl_map_reaching_path_lengths(
1291 __isl_take isl_map *map, int *exact);
1293 Compute a relation that maps each element in the range of C<map>
1294 to the lengths of all paths composed of edges in C<map> that
1295 end up in the given element.
1296 The result may be an overapproximation. If the result is known to be exact,
1297 then C<*exact> is set to C<1>.
1298 To compute the I<maximal> path length, the resulting relation
1299 should be postprocessed by C<isl_map_lexmax>.
1300 In particular, if the input relation is a dependence relation
1301 (mapping sources to sinks), then the maximal path length corresponds
1302 to the free schedule.
1303 Note, however, that C<isl_map_lexmax> expects the maximum to be
1304 finite, so if the path lengths are unbounded (possibly due to
1305 the overapproximation), then you will get an error message.
1309 __isl_give isl_basic_set *isl_basic_map_wrap(
1310 __isl_take isl_basic_map *bmap);
1311 __isl_give isl_set *isl_map_wrap(
1312 __isl_take isl_map *map);
1313 __isl_give isl_union_set *isl_union_map_wrap(
1314 __isl_take isl_union_map *umap);
1315 __isl_give isl_basic_map *isl_basic_set_unwrap(
1316 __isl_take isl_basic_set *bset);
1317 __isl_give isl_map *isl_set_unwrap(
1318 __isl_take isl_set *set);
1319 __isl_give isl_union_map *isl_union_set_unwrap(
1320 __isl_take isl_union_set *uset);
1322 =item * Dimension manipulation
1324 __isl_give isl_set *isl_set_add_dims(
1325 __isl_take isl_set *set,
1326 enum isl_dim_type type, unsigned n);
1327 __isl_give isl_map *isl_map_add_dims(
1328 __isl_take isl_map *map,
1329 enum isl_dim_type type, unsigned n);
1331 It is usually not advisable to directly change the (input or output)
1332 space of a set or a relation as this removes the name and the internal
1333 structure of the space. However, the above functions can be useful
1334 to add new parameters.
1338 =head2 Binary Operations
1340 The two arguments of a binary operation not only need to live
1341 in the same C<isl_ctx>, they currently also need to have
1342 the same (number of) parameters.
1344 =head3 Basic Operations
1348 =item * Intersection
1350 __isl_give isl_basic_set *isl_basic_set_intersect(
1351 __isl_take isl_basic_set *bset1,
1352 __isl_take isl_basic_set *bset2);
1353 __isl_give isl_set *isl_set_intersect(
1354 __isl_take isl_set *set1,
1355 __isl_take isl_set *set2);
1356 __isl_give isl_union_set *isl_union_set_intersect(
1357 __isl_take isl_union_set *uset1,
1358 __isl_take isl_union_set *uset2);
1359 __isl_give isl_basic_map *isl_basic_map_intersect_domain(
1360 __isl_take isl_basic_map *bmap,
1361 __isl_take isl_basic_set *bset);
1362 __isl_give isl_basic_map *isl_basic_map_intersect_range(
1363 __isl_take isl_basic_map *bmap,
1364 __isl_take isl_basic_set *bset);
1365 __isl_give isl_basic_map *isl_basic_map_intersect(
1366 __isl_take isl_basic_map *bmap1,
1367 __isl_take isl_basic_map *bmap2);
1368 __isl_give isl_map *isl_map_intersect_domain(
1369 __isl_take isl_map *map,
1370 __isl_take isl_set *set);
1371 __isl_give isl_map *isl_map_intersect_range(
1372 __isl_take isl_map *map,
1373 __isl_take isl_set *set);
1374 __isl_give isl_map *isl_map_intersect(
1375 __isl_take isl_map *map1,
1376 __isl_take isl_map *map2);
1377 __isl_give isl_union_map *isl_union_map_intersect_domain(
1378 __isl_take isl_union_map *umap,
1379 __isl_take isl_union_set *uset);
1380 __isl_give isl_union_map *isl_union_map_intersect(
1381 __isl_take isl_union_map *umap1,
1382 __isl_take isl_union_map *umap2);
1386 __isl_give isl_set *isl_basic_set_union(
1387 __isl_take isl_basic_set *bset1,
1388 __isl_take isl_basic_set *bset2);
1389 __isl_give isl_map *isl_basic_map_union(
1390 __isl_take isl_basic_map *bmap1,
1391 __isl_take isl_basic_map *bmap2);
1392 __isl_give isl_set *isl_set_union(
1393 __isl_take isl_set *set1,
1394 __isl_take isl_set *set2);
1395 __isl_give isl_map *isl_map_union(
1396 __isl_take isl_map *map1,
1397 __isl_take isl_map *map2);
1398 __isl_give isl_union_set *isl_union_set_union(
1399 __isl_take isl_union_set *uset1,
1400 __isl_take isl_union_set *uset2);
1401 __isl_give isl_union_map *isl_union_map_union(
1402 __isl_take isl_union_map *umap1,
1403 __isl_take isl_union_map *umap2);
1405 =item * Set difference
1407 __isl_give isl_set *isl_set_subtract(
1408 __isl_take isl_set *set1,
1409 __isl_take isl_set *set2);
1410 __isl_give isl_map *isl_map_subtract(
1411 __isl_take isl_map *map1,
1412 __isl_take isl_map *map2);
1413 __isl_give isl_union_set *isl_union_set_subtract(
1414 __isl_take isl_union_set *uset1,
1415 __isl_take isl_union_set *uset2);
1416 __isl_give isl_union_map *isl_union_map_subtract(
1417 __isl_take isl_union_map *umap1,
1418 __isl_take isl_union_map *umap2);
1422 __isl_give isl_basic_set *isl_basic_set_apply(
1423 __isl_take isl_basic_set *bset,
1424 __isl_take isl_basic_map *bmap);
1425 __isl_give isl_set *isl_set_apply(
1426 __isl_take isl_set *set,
1427 __isl_take isl_map *map);
1428 __isl_give isl_union_set *isl_union_set_apply(
1429 __isl_take isl_union_set *uset,
1430 __isl_take isl_union_map *umap);
1431 __isl_give isl_basic_map *isl_basic_map_apply_domain(
1432 __isl_take isl_basic_map *bmap1,
1433 __isl_take isl_basic_map *bmap2);
1434 __isl_give isl_basic_map *isl_basic_map_apply_range(
1435 __isl_take isl_basic_map *bmap1,
1436 __isl_take isl_basic_map *bmap2);
1437 __isl_give isl_map *isl_map_apply_domain(
1438 __isl_take isl_map *map1,
1439 __isl_take isl_map *map2);
1440 __isl_give isl_union_map *isl_union_map_apply_domain(
1441 __isl_take isl_union_map *umap1,
1442 __isl_take isl_union_map *umap2);
1443 __isl_give isl_map *isl_map_apply_range(
1444 __isl_take isl_map *map1,
1445 __isl_take isl_map *map2);
1446 __isl_give isl_union_map *isl_union_map_apply_range(
1447 __isl_take isl_union_map *umap1,
1448 __isl_take isl_union_map *umap2);
1450 =item * Simplification
1452 __isl_give isl_basic_set *isl_basic_set_gist(
1453 __isl_take isl_basic_set *bset,
1454 __isl_take isl_basic_set *context);
1455 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
1456 __isl_take isl_set *context);
1457 __isl_give isl_union_set *isl_union_set_gist(
1458 __isl_take isl_union_set *uset,
1459 __isl_take isl_union_set *context);
1460 __isl_give isl_basic_map *isl_basic_map_gist(
1461 __isl_take isl_basic_map *bmap,
1462 __isl_take isl_basic_map *context);
1463 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
1464 __isl_take isl_map *context);
1465 __isl_give isl_union_map *isl_union_map_gist(
1466 __isl_take isl_union_map *umap,
1467 __isl_take isl_union_map *context);
1469 The gist operation returns a set or relation that has the
1470 same intersection with the context as the input set or relation.
1471 Any implicit equality in the intersection is made explicit in the result,
1472 while all inequalities that are redundant with respect to the intersection
1474 In case of union sets and relations, the gist operation is performed
1479 =head3 Lexicographic Optimization
1481 Given a (basic) set C<set> (or C<bset>) and a zero-dimensional domain C<dom>,
1482 the following functions
1483 compute a set that contains the lexicographic minimum or maximum
1484 of the elements in C<set> (or C<bset>) for those values of the parameters
1485 that satisfy C<dom>.
1486 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
1487 that contains the parameter values in C<dom> for which C<set> (or C<bset>)
1489 In other words, the union of the parameter values
1490 for which the result is non-empty and of C<*empty>
1493 __isl_give isl_set *isl_basic_set_partial_lexmin(
1494 __isl_take isl_basic_set *bset,
1495 __isl_take isl_basic_set *dom,
1496 __isl_give isl_set **empty);
1497 __isl_give isl_set *isl_basic_set_partial_lexmax(
1498 __isl_take isl_basic_set *bset,
1499 __isl_take isl_basic_set *dom,
1500 __isl_give isl_set **empty);
1501 __isl_give isl_set *isl_set_partial_lexmin(
1502 __isl_take isl_set *set, __isl_take isl_set *dom,
1503 __isl_give isl_set **empty);
1504 __isl_give isl_set *isl_set_partial_lexmax(
1505 __isl_take isl_set *set, __isl_take isl_set *dom,
1506 __isl_give isl_set **empty);
1508 Given a (basic) set C<set> (or C<bset>), the following functions simply
1509 return a set containing the lexicographic minimum or maximum
1510 of the elements in C<set> (or C<bset>).
1511 In case of union sets, the optimum is computed per space.
1513 __isl_give isl_set *isl_basic_set_lexmin(
1514 __isl_take isl_basic_set *bset);
1515 __isl_give isl_set *isl_basic_set_lexmax(
1516 __isl_take isl_basic_set *bset);
1517 __isl_give isl_set *isl_set_lexmin(
1518 __isl_take isl_set *set);
1519 __isl_give isl_set *isl_set_lexmax(
1520 __isl_take isl_set *set);
1521 __isl_give isl_union_set *isl_union_set_lexmin(
1522 __isl_take isl_union_set *uset);
1523 __isl_give isl_union_set *isl_union_set_lexmax(
1524 __isl_take isl_union_set *uset);
1526 Given a (basic) relation C<map> (or C<bmap>) and a domain C<dom>,
1527 the following functions
1528 compute a relation that maps each element of C<dom>
1529 to the single lexicographic minimum or maximum
1530 of the elements that are associated to that same
1531 element in C<map> (or C<bmap>).
1532 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
1533 that contains the elements in C<dom> that do not map
1534 to any elements in C<map> (or C<bmap>).
1535 In other words, the union of the domain of the result and of C<*empty>
1538 __isl_give isl_map *isl_basic_map_partial_lexmax(
1539 __isl_take isl_basic_map *bmap,
1540 __isl_take isl_basic_set *dom,
1541 __isl_give isl_set **empty);
1542 __isl_give isl_map *isl_basic_map_partial_lexmin(
1543 __isl_take isl_basic_map *bmap,
1544 __isl_take isl_basic_set *dom,
1545 __isl_give isl_set **empty);
1546 __isl_give isl_map *isl_map_partial_lexmax(
1547 __isl_take isl_map *map, __isl_take isl_set *dom,
1548 __isl_give isl_set **empty);
1549 __isl_give isl_map *isl_map_partial_lexmin(
1550 __isl_take isl_map *map, __isl_take isl_set *dom,
1551 __isl_give isl_set **empty);
1553 Given a (basic) map C<map> (or C<bmap>), the following functions simply
1554 return a map mapping each element in the domain of
1555 C<map> (or C<bmap>) to the lexicographic minimum or maximum
1556 of all elements associated to that element.
1557 In case of union relations, the optimum is computed per space.
1559 __isl_give isl_map *isl_basic_map_lexmin(
1560 __isl_take isl_basic_map *bmap);
1561 __isl_give isl_map *isl_basic_map_lexmax(
1562 __isl_take isl_basic_map *bmap);
1563 __isl_give isl_map *isl_map_lexmin(
1564 __isl_take isl_map *map);
1565 __isl_give isl_map *isl_map_lexmax(
1566 __isl_take isl_map *map);
1567 __isl_give isl_union_map *isl_union_map_lexmin(
1568 __isl_take isl_union_map *umap);
1569 __isl_give isl_union_map *isl_union_map_lexmax(
1570 __isl_take isl_union_map *umap);
1574 Matrices can be created, copied and freed using the following functions.
1576 #include <isl_mat.h>
1577 __isl_give isl_mat *isl_mat_alloc(struct isl_ctx *ctx,
1578 unsigned n_row, unsigned n_col);
1579 __isl_give isl_mat *isl_mat_copy(__isl_keep isl_mat *mat);
1580 void isl_mat_free(__isl_take isl_mat *mat);
1582 Note that the elements of a newly created matrix may have arbitrary values.
1583 The elements can be changed and inspected using the following functions.
1585 int isl_mat_rows(__isl_keep isl_mat *mat);
1586 int isl_mat_cols(__isl_keep isl_mat *mat);
1587 int isl_mat_get_element(__isl_keep isl_mat *mat,
1588 int row, int col, isl_int *v);
1589 __isl_give isl_mat *isl_mat_set_element(__isl_take isl_mat *mat,
1590 int row, int col, isl_int v);
1592 C<isl_mat_get_element> will return a negative value if anything went wrong.
1593 In that case, the value of C<*v> is undefined.
1595 The following function can be used to compute the (right) inverse
1596 of a matrix, i.e., a matrix such that the product of the original
1597 and the inverse (in that order) is a multiple of the identity matrix.
1598 The input matrix is assumed to be of full row-rank.
1600 __isl_give isl_mat *isl_mat_right_inverse(__isl_take isl_mat *mat);
1602 The following function can be used to compute the (right) kernel
1603 (or null space) of a matrix, i.e., a matrix such that the product of
1604 the original and the kernel (in that order) is the zero matrix.
1606 __isl_give isl_mat *isl_mat_right_kernel(__isl_take isl_mat *mat);
1610 Points are elements of a set. They can be used to construct
1611 simple sets (boxes) or they can be used to represent the
1612 individual elements of a set.
1613 The zero point (the origin) can be created using
1615 __isl_give isl_point *isl_point_zero(__isl_take isl_dim *dim);
1617 The coordinates of a point can be inspected, set and changed
1620 void isl_point_get_coordinate(__isl_keep isl_point *pnt,
1621 enum isl_dim_type type, int pos, isl_int *v);
1622 __isl_give isl_point *isl_point_set_coordinate(
1623 __isl_take isl_point *pnt,
1624 enum isl_dim_type type, int pos, isl_int v);
1626 __isl_give isl_point *isl_point_add_ui(
1627 __isl_take isl_point *pnt,
1628 enum isl_dim_type type, int pos, unsigned val);
1629 __isl_give isl_point *isl_point_sub_ui(
1630 __isl_take isl_point *pnt,
1631 enum isl_dim_type type, int pos, unsigned val);
1633 Points can be copied or freed using
1635 __isl_give isl_point *isl_point_copy(
1636 __isl_keep isl_point *pnt);
1637 void isl_point_free(__isl_take isl_point *pnt);
1639 A singleton set can be created from a point using
1641 __isl_give isl_set *isl_set_from_point(
1642 __isl_take isl_point *pnt);
1644 and a box can be created from two opposite extremal points using
1646 __isl_give isl_set *isl_set_box_from_points(
1647 __isl_take isl_point *pnt1,
1648 __isl_take isl_point *pnt2);
1650 All elements of a B<bounded> (union) set can be enumerated using
1651 the following functions.
1653 int isl_set_foreach_point(__isl_keep isl_set *set,
1654 int (*fn)(__isl_take isl_point *pnt, void *user),
1656 int isl_union_set_foreach_point(__isl_keep isl_union_set *uset,
1657 int (*fn)(__isl_take isl_point *pnt, void *user),
1660 The function C<fn> is called for each integer point in
1661 C<set> with as second argument the last argument of
1662 the C<isl_set_foreach_point> call. The function C<fn>
1663 should return C<0> on success and C<-1> on failure.
1664 In the latter case, C<isl_set_foreach_point> will stop
1665 enumerating and return C<-1> as well.
1666 If the enumeration is performed successfully and to completion,
1667 then C<isl_set_foreach_point> returns C<0>.
1669 To obtain a single point of a set, use
1671 __isl_give isl_point *isl_set_sample_point(
1672 __isl_take isl_set *set);
1674 If C<set> does not contain any (integer) points, then the
1675 resulting point will be ``void'', a property that can be
1678 int isl_point_is_void(__isl_keep isl_point *pnt);
1680 =head2 Piecewise Quasipolynomials
1682 A piecewise quasipolynomial is a particular kind of function that maps
1683 a parametric point to a rational value.
1684 More specifically, a quasipolynomial is a polynomial expression in greatest
1685 integer parts of affine expressions of parameters and variables.
1686 A piecewise quasipolynomial is a subdivision of a given parametric
1687 domain into disjoint cells with a quasipolynomial associated to
1688 each cell. The value of the piecewise quasipolynomial at a given
1689 point is the value of the quasipolynomial associated to the cell
1690 that contains the point. Outside of the union of cells,
1691 the value is assumed to be zero.
1692 For example, the piecewise quasipolynomial
1694 [n] -> { [x] -> ((1 + n) - x) : x <= n and x >= 0 }
1696 maps C<x> to C<1 + n - x> for values of C<x> between C<0> and C<n>.
1697 A given piecewise quasipolynomial has a fixed domain dimension.
1698 Union piecewise quasipolynomials are used to contain piecewise quasipolynomials
1699 defined over different domains.
1700 Piecewise quasipolynomials are mainly used by the C<barvinok>
1701 library for representing the number of elements in a parametric set or map.
1702 For example, the piecewise quasipolynomial above represents
1703 the number of points in the map
1705 [n] -> { [x] -> [y] : x,y >= 0 and 0 <= x + y <= n }
1707 =head3 Printing (Piecewise) Quasipolynomials
1709 Quasipolynomials and piecewise quasipolynomials can be printed
1710 using the following functions.
1712 __isl_give isl_printer *isl_printer_print_qpolynomial(
1713 __isl_take isl_printer *p,
1714 __isl_keep isl_qpolynomial *qp);
1716 __isl_give isl_printer *isl_printer_print_pw_qpolynomial(
1717 __isl_take isl_printer *p,
1718 __isl_keep isl_pw_qpolynomial *pwqp);
1720 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial(
1721 __isl_take isl_printer *p,
1722 __isl_keep isl_union_pw_qpolynomial *upwqp);
1724 The output format of the printer
1725 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
1726 For C<isl_printer_print_union_pw_qpolynomial>, only C<ISL_FORMAT_ISL>
1729 =head3 Creating New (Piecewise) Quasipolynomials
1731 Some simple quasipolynomials can be created using the following functions.
1732 More complicated quasipolynomials can be created by applying
1733 operations such as addition and multiplication
1734 on the resulting quasipolynomials
1736 __isl_give isl_qpolynomial *isl_qpolynomial_zero(
1737 __isl_take isl_dim *dim);
1738 __isl_give isl_qpolynomial *isl_qpolynomial_one(
1739 __isl_take isl_dim *dim);
1740 __isl_give isl_qpolynomial *isl_qpolynomial_infty(
1741 __isl_take isl_dim *dim);
1742 __isl_give isl_qpolynomial *isl_qpolynomial_neginfty(
1743 __isl_take isl_dim *dim);
1744 __isl_give isl_qpolynomial *isl_qpolynomial_nan(
1745 __isl_take isl_dim *dim);
1746 __isl_give isl_qpolynomial *isl_qpolynomial_rat_cst(
1747 __isl_take isl_dim *dim,
1748 const isl_int n, const isl_int d);
1749 __isl_give isl_qpolynomial *isl_qpolynomial_div(
1750 __isl_take isl_div *div);
1751 __isl_give isl_qpolynomial *isl_qpolynomial_var(
1752 __isl_take isl_dim *dim,
1753 enum isl_dim_type type, unsigned pos);
1755 The zero piecewise quasipolynomial or a piecewise quasipolynomial
1756 with a single cell can be created using the following functions.
1757 Multiple of these single cell piecewise quasipolynomials can
1758 be combined to create more complicated piecewise quasipolynomials.
1760 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_zero(
1761 __isl_take isl_dim *dim);
1762 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_alloc(
1763 __isl_take isl_set *set,
1764 __isl_take isl_qpolynomial *qp);
1766 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_zero(
1767 __isl_take isl_dim *dim);
1768 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_from_pw_qpolynomial(
1769 __isl_take isl_pw_qpolynomial *pwqp);
1770 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add_pw_qpolynomial(
1771 __isl_take isl_union_pw_qpolynomial *upwqp,
1772 __isl_take isl_pw_qpolynomial *pwqp);
1774 Quasipolynomials can be copied and freed again using the following
1777 __isl_give isl_qpolynomial *isl_qpolynomial_copy(
1778 __isl_keep isl_qpolynomial *qp);
1779 void isl_qpolynomial_free(__isl_take isl_qpolynomial *qp);
1781 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_copy(
1782 __isl_keep isl_pw_qpolynomial *pwqp);
1783 void isl_pw_qpolynomial_free(
1784 __isl_take isl_pw_qpolynomial *pwqp);
1786 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_copy(
1787 __isl_keep isl_union_pw_qpolynomial *upwqp);
1788 void isl_union_pw_qpolynomial_free(
1789 __isl_take isl_union_pw_qpolynomial *upwqp);
1791 =head3 Inspecting (Piecewise) Quasipolynomials
1793 To iterate over all piecewise quasipolynomials in a union
1794 piecewise quasipolynomial, use the following function
1796 int isl_union_pw_qpolynomial_foreach_pw_qpolynomial(
1797 __isl_keep isl_union_pw_qpolynomial *upwqp,
1798 int (*fn)(__isl_take isl_pw_qpolynomial *pwqp, void *user),
1801 To iterate over the cells in a piecewise quasipolynomial,
1802 use either of the following two functions
1804 int isl_pw_qpolynomial_foreach_piece(
1805 __isl_keep isl_pw_qpolynomial *pwqp,
1806 int (*fn)(__isl_take isl_set *set,
1807 __isl_take isl_qpolynomial *qp,
1808 void *user), void *user);
1809 int isl_pw_qpolynomial_foreach_lifted_piece(
1810 __isl_keep isl_pw_qpolynomial *pwqp,
1811 int (*fn)(__isl_take isl_set *set,
1812 __isl_take isl_qpolynomial *qp,
1813 void *user), void *user);
1815 As usual, the function C<fn> should return C<0> on success
1816 and C<-1> on failure. The difference between
1817 C<isl_pw_qpolynomial_foreach_piece> and
1818 C<isl_pw_qpolynomial_foreach_lifted_piece> is that
1819 C<isl_pw_qpolynomial_foreach_lifted_piece> will first
1820 compute unique representations for all existentially quantified
1821 variables and then turn these existentially quantified variables
1822 into extra set variables, adapting the associated quasipolynomial
1823 accordingly. This means that the C<set> passed to C<fn>
1824 will not have any existentially quantified variables, but that
1825 the dimensions of the sets may be different for different
1826 invocations of C<fn>.
1828 To iterate over all terms in a quasipolynomial,
1831 int isl_qpolynomial_foreach_term(
1832 __isl_keep isl_qpolynomial *qp,
1833 int (*fn)(__isl_take isl_term *term,
1834 void *user), void *user);
1836 The terms themselves can be inspected and freed using
1839 unsigned isl_term_dim(__isl_keep isl_term *term,
1840 enum isl_dim_type type);
1841 void isl_term_get_num(__isl_keep isl_term *term,
1843 void isl_term_get_den(__isl_keep isl_term *term,
1845 int isl_term_get_exp(__isl_keep isl_term *term,
1846 enum isl_dim_type type, unsigned pos);
1847 __isl_give isl_div *isl_term_get_div(
1848 __isl_keep isl_term *term, unsigned pos);
1849 void isl_term_free(__isl_take isl_term *term);
1851 Each term is a product of parameters, set variables and
1852 integer divisions. The function C<isl_term_get_exp>
1853 returns the exponent of a given dimensions in the given term.
1854 The C<isl_int>s in the arguments of C<isl_term_get_num>
1855 and C<isl_term_get_den> need to have been initialized
1856 using C<isl_int_init> before calling these functions.
1858 =head3 Properties of (Piecewise) Quasipolynomials
1860 To check whether a quasipolynomial is actually a constant,
1861 use the following function.
1863 int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp,
1864 isl_int *n, isl_int *d);
1866 If C<qp> is a constant and if C<n> and C<d> are not C<NULL>
1867 then the numerator and denominator of the constant
1868 are returned in C<*n> and C<*d>, respectively.
1870 =head3 Operations on (Piecewise) Quasipolynomials
1872 __isl_give isl_qpolynomial *isl_qpolynomial_neg(
1873 __isl_take isl_qpolynomial *qp);
1874 __isl_give isl_qpolynomial *isl_qpolynomial_add(
1875 __isl_take isl_qpolynomial *qp1,
1876 __isl_take isl_qpolynomial *qp2);
1877 __isl_give isl_qpolynomial *isl_qpolynomial_sub(
1878 __isl_take isl_qpolynomial *qp1,
1879 __isl_take isl_qpolynomial *qp2);
1880 __isl_give isl_qpolynomial *isl_qpolynomial_mul(
1881 __isl_take isl_qpolynomial *qp1,
1882 __isl_take isl_qpolynomial *qp2);
1884 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add(
1885 __isl_take isl_pw_qpolynomial *pwqp1,
1886 __isl_take isl_pw_qpolynomial *pwqp2);
1887 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_sub(
1888 __isl_take isl_pw_qpolynomial *pwqp1,
1889 __isl_take isl_pw_qpolynomial *pwqp2);
1890 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_disjoint(
1891 __isl_take isl_pw_qpolynomial *pwqp1,
1892 __isl_take isl_pw_qpolynomial *pwqp2);
1893 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_neg(
1894 __isl_take isl_pw_qpolynomial *pwqp);
1895 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
1896 __isl_take isl_pw_qpolynomial *pwqp1,
1897 __isl_take isl_pw_qpolynomial *pwqp2);
1899 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add(
1900 __isl_take isl_union_pw_qpolynomial *upwqp1,
1901 __isl_take isl_union_pw_qpolynomial *upwqp2);
1902 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_sub(
1903 __isl_take isl_union_pw_qpolynomial *upwqp1,
1904 __isl_take isl_union_pw_qpolynomial *upwqp2);
1905 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul(
1906 __isl_take isl_union_pw_qpolynomial *upwqp1,
1907 __isl_take isl_union_pw_qpolynomial *upwqp2);
1909 __isl_give isl_qpolynomial *isl_pw_qpolynomial_eval(
1910 __isl_take isl_pw_qpolynomial *pwqp,
1911 __isl_take isl_point *pnt);
1913 __isl_give isl_qpolynomial *isl_union_pw_qpolynomial_eval(
1914 __isl_take isl_union_pw_qpolynomial *upwqp,
1915 __isl_take isl_point *pnt);
1917 __isl_give isl_set *isl_pw_qpolynomial_domain(
1918 __isl_take isl_pw_qpolynomial *pwqp);
1919 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_intersect_domain(
1920 __isl_take isl_pw_qpolynomial *pwpq,
1921 __isl_take isl_set *set);
1923 __isl_give isl_union_set *isl_union_pw_qpolynomial_domain(
1924 __isl_take isl_union_pw_qpolynomial *upwqp);
1925 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_intersect_domain(
1926 __isl_take isl_union_pw_qpolynomial *upwpq,
1927 __isl_take isl_union_set *uset);
1929 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_coalesce(
1930 __isl_take isl_union_pw_qpolynomial *upwqp);
1932 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist(
1933 __isl_take isl_pw_qpolynomial *pwqp,
1934 __isl_take isl_set *context);
1936 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_gist(
1937 __isl_take isl_union_pw_qpolynomial *upwqp,
1938 __isl_take isl_union_set *context);
1940 The gist operation applies the gist operation to each of
1941 the cells in the domain of the input piecewise quasipolynomial.
1942 In future, the operation will also exploit the context
1943 to simplify the quasipolynomials associated to each cell.
1945 =head2 Bounds on Piecewise Quasipolynomials and Piecewise Quasipolynomial Reductions
1947 A piecewise quasipolynomial reduction is a piecewise
1948 reduction (or fold) of quasipolynomials.
1949 In particular, the reduction can be maximum or a minimum.
1950 The objects are mainly used to represent the result of
1951 an upper or lower bound on a quasipolynomial over its domain,
1952 i.e., as the result of the following function.
1954 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_bound(
1955 __isl_take isl_pw_qpolynomial *pwqp,
1956 enum isl_fold type, int *tight);
1958 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_bound(
1959 __isl_take isl_union_pw_qpolynomial *upwqp,
1960 enum isl_fold type, int *tight);
1962 The C<type> argument may be either C<isl_fold_min> or C<isl_fold_max>.
1963 If C<tight> is not C<NULL>, then C<*tight> is set to C<1>
1964 is the returned bound is known be tight, i.e., for each value
1965 of the parameters there is at least
1966 one element in the domain that reaches the bound.
1967 If the domain of C<pwqp> is not wrapping, then the bound is computed
1968 over all elements in that domain and the result has a purely parametric
1969 domain. If the domain of C<pwqp> is wrapping, then the bound is
1970 computed over the range of the wrapped relation. The domain of the
1971 wrapped relation becomes the domain of the result.
1973 A (piecewise) quasipolynomial reduction can be copied or freed using the
1974 following functions.
1976 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_copy(
1977 __isl_keep isl_qpolynomial_fold *fold);
1978 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_copy(
1979 __isl_keep isl_pw_qpolynomial_fold *pwf);
1980 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_copy(
1981 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
1982 void isl_qpolynomial_fold_free(
1983 __isl_take isl_qpolynomial_fold *fold);
1984 void isl_pw_qpolynomial_fold_free(
1985 __isl_take isl_pw_qpolynomial_fold *pwf);
1986 void isl_union_pw_qpolynomial_fold_free(
1987 __isl_take isl_union_pw_qpolynomial_fold *upwf);
1989 =head3 Printing Piecewise Quasipolynomial Reductions
1991 Piecewise quasipolynomial reductions can be printed
1992 using the following function.
1994 __isl_give isl_printer *isl_printer_print_pw_qpolynomial_fold(
1995 __isl_take isl_printer *p,
1996 __isl_keep isl_pw_qpolynomial_fold *pwf);
1997 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial_fold(
1998 __isl_take isl_printer *p,
1999 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
2001 For C<isl_printer_print_pw_qpolynomial_fold>,
2002 output format of the printer
2003 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
2004 For C<isl_printer_print_union_pw_qpolynomial_fold>,
2005 output format of the printer
2006 needs to be set to either C<ISL_FORMAT_ISL>.
2008 =head3 Inspecting (Piecewise) Quasipolynomial Reductions
2010 To iterate over all piecewise quasipolynomial reductions in a union
2011 piecewise quasipolynomial reduction, use the following function
2013 int isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold(
2014 __isl_keep isl_union_pw_qpolynomial_fold *upwf,
2015 int (*fn)(__isl_take isl_pw_qpolynomial_fold *pwf,
2016 void *user), void *user);
2018 To iterate over the cells in a piecewise quasipolynomial reduction,
2019 use either of the following two functions
2021 int isl_pw_qpolynomial_fold_foreach_piece(
2022 __isl_keep isl_pw_qpolynomial_fold *pwf,
2023 int (*fn)(__isl_take isl_set *set,
2024 __isl_take isl_qpolynomial_fold *fold,
2025 void *user), void *user);
2026 int isl_pw_qpolynomial_fold_foreach_lifted_piece(
2027 __isl_keep isl_pw_qpolynomial_fold *pwf,
2028 int (*fn)(__isl_take isl_set *set,
2029 __isl_take isl_qpolynomial_fold *fold,
2030 void *user), void *user);
2032 See L<Inspecting (Piecewise) Quasipolynomials> for an explanation
2033 of the difference between these two functions.
2035 To iterate over all quasipolynomials in a reduction, use
2037 int isl_qpolynomial_fold_foreach_qpolynomial(
2038 __isl_keep isl_qpolynomial_fold *fold,
2039 int (*fn)(__isl_take isl_qpolynomial *qp,
2040 void *user), void *user);
2042 =head3 Operations on Piecewise Quasipolynomial Reductions
2044 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_fold(
2045 __isl_take isl_pw_qpolynomial_fold *pwf1,
2046 __isl_take isl_pw_qpolynomial_fold *pwf2);
2048 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_fold(
2049 __isl_take isl_union_pw_qpolynomial_fold *upwf1,
2050 __isl_take isl_union_pw_qpolynomial_fold *upwf2);
2052 __isl_give isl_qpolynomial *isl_pw_qpolynomial_fold_eval(
2053 __isl_take isl_pw_qpolynomial_fold *pwf,
2054 __isl_take isl_point *pnt);
2056 __isl_give isl_qpolynomial *isl_union_pw_qpolynomial_fold_eval(
2057 __isl_take isl_union_pw_qpolynomial_fold *upwf,
2058 __isl_take isl_point *pnt);
2060 __isl_give isl_union_set *isl_union_pw_qpolynomial_fold_domain(
2061 __isl_take isl_union_pw_qpolynomial_fold *upwf);
2062 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_intersect_domain(
2063 __isl_take isl_union_pw_qpolynomial_fold *upwf,
2064 __isl_take isl_union_set *uset);
2066 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_coalesce(
2067 __isl_take isl_pw_qpolynomial_fold *pwf);
2069 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_coalesce(
2070 __isl_take isl_union_pw_qpolynomial_fold *upwf);
2072 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_gist(
2073 __isl_take isl_pw_qpolynomial_fold *pwf,
2074 __isl_take isl_set *context);
2076 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_gist(
2077 __isl_take isl_union_pw_qpolynomial_fold *upwf,
2078 __isl_take isl_union_set *context);
2080 The gist operation applies the gist operation to each of
2081 the cells in the domain of the input piecewise quasipolynomial reduction.
2082 In future, the operation will also exploit the context
2083 to simplify the quasipolynomial reductions associated to each cell.
2085 __isl_give isl_pw_qpolynomial_fold *
2086 isl_map_apply_pw_qpolynomial_fold(
2087 __isl_take isl_map *map,
2088 __isl_take isl_pw_qpolynomial_fold *pwf,
2090 __isl_give isl_union_pw_qpolynomial_fold *
2091 isl_union_map_apply_union_pw_qpolynomial_fold(
2092 __isl_take isl_union_map *umap,
2093 __isl_take isl_union_pw_qpolynomial_fold *upwf,
2097 compose the given map with the given piecewise quasipolynomial reduction.
2098 That is, compute a bound (of the same type as C<pwf> or C<upwf> itself)
2099 over all elements in the intersection of the range of the map
2100 and the domain of the piecewise quasipolynomial reduction
2101 as a function of an element in the domain of the map.
2103 =head2 Dependence Analysis
2105 C<isl> contains specialized functionality for performing
2106 array dataflow analysis. That is, given a I<sink> access relation
2107 and a collection of possible I<source> access relations,
2108 C<isl> can compute relations that describe
2109 for each iteration of the sink access, which iteration
2110 of which of the source access relations was the last
2111 to access the same data element before the given iteration
2113 To compute standard flow dependences, the sink should be
2114 a read, while the sources should be writes.
2115 If any of the source accesses are marked as being I<may>
2116 accesses, then there will be a dependence to the last
2117 I<must> access B<and> to any I<may> access that follows
2118 this last I<must> access.
2119 In particular, if I<all> sources are I<may> accesses,
2120 then memory based dependence analysis is performed.
2121 If, on the other hand, all sources are I<must> accesses,
2122 then value based dependence analysis is performed.
2124 #include <isl_flow.h>
2126 typedef int (*isl_access_level_before)(void *first, void *second);
2128 __isl_give isl_access_info *isl_access_info_alloc(
2129 __isl_take isl_map *sink,
2130 void *sink_user, isl_access_level_before fn,
2132 __isl_give isl_access_info *isl_access_info_add_source(
2133 __isl_take isl_access_info *acc,
2134 __isl_take isl_map *source, int must,
2136 void isl_access_info_free(__isl_take isl_access_info *acc);
2138 __isl_give isl_flow *isl_access_info_compute_flow(
2139 __isl_take isl_access_info *acc);
2141 int isl_flow_foreach(__isl_keep isl_flow *deps,
2142 int (*fn)(__isl_take isl_map *dep, int must,
2143 void *dep_user, void *user),
2145 __isl_give isl_set *isl_flow_get_no_source(
2146 __isl_keep isl_flow *deps, int must);
2147 void isl_flow_free(__isl_take isl_flow *deps);
2149 The function C<isl_access_info_compute_flow> performs the actual
2150 dependence analysis. The other functions are used to construct
2151 the input for this function or to read off the output.
2153 The input is collected in an C<isl_access_info>, which can
2154 be created through a call to C<isl_access_info_alloc>.
2155 The arguments to this functions are the sink access relation
2156 C<sink>, a token C<sink_user> used to identify the sink
2157 access to the user, a callback function for specifying the
2158 relative order of source and sink accesses, and the number
2159 of source access relations that will be added.
2160 The callback function has type C<int (*)(void *first, void *second)>.
2161 The function is called with two user supplied tokens identifying
2162 either a source or the sink and it should return the shared nesting
2163 level and the relative order of the two accesses.
2164 In particular, let I<n> be the number of loops shared by
2165 the two accesses. If C<first> precedes C<second> textually,
2166 then the function should return I<2 * n + 1>; otherwise,
2167 it should return I<2 * n>.
2168 The sources can be added to the C<isl_access_info> by performing
2169 (at most) C<max_source> calls to C<isl_access_info_add_source>.
2170 C<must> indicates whether the source is a I<must> access
2171 or a I<may> access. Note that a multi-valued access relation
2172 should only be marked I<must> if every iteration in the domain
2173 of the relation accesses I<all> elements in its image.
2174 The C<source_user> token is again used to identify
2175 the source access. The range of the source access relation
2176 C<source> should have the same dimension as the range
2177 of the sink access relation.
2178 The C<isl_access_info_free> function should usually not be
2179 called explicitly, because it is called implicitly by
2180 C<isl_access_info_compute_flow>.
2182 The result of the dependence analysis is collected in an
2183 C<isl_flow>. There may be elements in the domain of
2184 the sink access for which no preceding source access could be
2185 found or for which all preceding sources are I<may> accesses.
2186 The sets of these elements can be obtained through
2187 calls to C<isl_flow_get_no_source>, the first with C<must> set
2188 and the second with C<must> unset.
2189 In the case of standard flow dependence analysis,
2190 with the sink a read and the sources I<must> writes,
2191 the first set corresponds to the reads from uninitialized
2192 array elements and the second set is empty.
2193 The actual flow dependences can be extracted using
2194 C<isl_flow_foreach>. This function will call the user-specified
2195 callback function C<fn> for each B<non-empty> dependence between
2196 a source and the sink. The callback function is called
2197 with four arguments, the actual flow dependence relation
2198 mapping source iterations to sink iterations, a boolean that
2199 indicates whether it is a I<must> or I<may> dependence, a token
2200 identifying the source and an additional C<void *> with value
2201 equal to the third argument of the C<isl_flow_foreach> call.
2202 A dependence is marked I<must> if it originates from a I<must>
2203 source and if it is not followed by any I<may> sources.
2205 After finishing with an C<isl_flow>, the user should call
2206 C<isl_flow_free> to free all associated memory.
2208 A higher-level interface to dependence analysis is provided
2209 by the following function.
2211 #include <isl_flow.h>
2213 int isl_union_map_compute_flow(__isl_take isl_union_map *sink,
2214 __isl_take isl_union_map *must_source,
2215 __isl_take isl_union_map *may_source,
2216 __isl_take isl_union_map *schedule,
2217 __isl_give isl_union_map **must_dep,
2218 __isl_give isl_union_map **may_dep,
2219 __isl_give isl_union_set **must_no_source,
2220 __isl_give isl_union_set **may_no_source);
2222 The arrays are identified by the tuple names of the ranges
2223 of the accesses. The iteration domains by the tuple names
2224 of the domains of the accesses and of the schedule.
2225 The relative order of the iteration domains is given by the
2226 schedule. Any of C<must_dep>, C<may_dep>, C<must_no_source>
2227 or C<may_no_source> may be C<NULL>, but a C<NULL> value for
2228 any of the other arguments is treated as an error.
2230 =head2 Parametric Vertex Enumeration
2232 The parametric vertex enumeration described in this section
2233 is mainly intended to be used internally and by the C<barvinok>
2236 #include <isl_vertices.h>
2237 __isl_give isl_vertices *isl_basic_set_compute_vertices(
2238 __isl_keep isl_basic_set *bset);
2240 The function C<isl_basic_set_compute_vertices> performs the
2241 actual computation of the parametric vertices and the chamber
2242 decomposition and store the result in an C<isl_vertices> object.
2243 This information can be queried by either iterating over all
2244 the vertices or iterating over all the chambers or cells
2245 and then iterating over all vertices that are active on the chamber.
2247 int isl_vertices_foreach_vertex(
2248 __isl_keep isl_vertices *vertices,
2249 int (*fn)(__isl_take isl_vertex *vertex, void *user),
2252 int isl_vertices_foreach_cell(
2253 __isl_keep isl_vertices *vertices,
2254 int (*fn)(__isl_take isl_cell *cell, void *user),
2256 int isl_cell_foreach_vertex(__isl_keep isl_cell *cell,
2257 int (*fn)(__isl_take isl_vertex *vertex, void *user),
2260 Other operations that can be performed on an C<isl_vertices> object are
2263 isl_ctx *isl_vertices_get_ctx(
2264 __isl_keep isl_vertices *vertices);
2265 int isl_vertices_get_n_vertices(
2266 __isl_keep isl_vertices *vertices);
2267 void isl_vertices_free(__isl_take isl_vertices *vertices);
2269 Vertices can be inspected and destroyed using the following functions.
2271 isl_ctx *isl_vertex_get_ctx(__isl_keep isl_vertex *vertex);
2272 int isl_vertex_get_id(__isl_keep isl_vertex *vertex);
2273 __isl_give isl_basic_set *isl_vertex_get_domain(
2274 __isl_keep isl_vertex *vertex);
2275 __isl_give isl_basic_set *isl_vertex_get_expr(
2276 __isl_keep isl_vertex *vertex);
2277 void isl_vertex_free(__isl_take isl_vertex *vertex);
2279 C<isl_vertex_get_expr> returns a singleton parametric set describing
2280 the vertex, while C<isl_vertex_get_domain> returns the activity domain
2282 Note that C<isl_vertex_get_domain> and C<isl_vertex_get_expr> return
2283 B<rational> basic sets, so they should mainly be used for inspection
2284 and should not be mixed with integer sets.
2286 Chambers can be inspected and destroyed using the following functions.
2288 isl_ctx *isl_cell_get_ctx(__isl_keep isl_cell *cell);
2289 __isl_give isl_basic_set *isl_cell_get_domain(
2290 __isl_keep isl_cell *cell);
2291 void isl_cell_free(__isl_take isl_cell *cell);
2295 Although C<isl> is mainly meant to be used as a library,
2296 it also contains some basic applications that use some
2297 of the functionality of C<isl>.
2298 The input may be specified in either the L<isl format>
2299 or the L<PolyLib format>.
2301 =head2 C<isl_polyhedron_sample>
2303 C<isl_polyhedron_sample> takes a polyhedron as input and prints
2304 an integer element of the polyhedron, if there is any.
2305 The first column in the output is the denominator and is always
2306 equal to 1. If the polyhedron contains no integer points,
2307 then a vector of length zero is printed.
2311 C<isl_pip> takes the same input as the C<example> program
2312 from the C<piplib> distribution, i.e., a set of constraints
2313 on the parameters, a line containing only -1 and finally a set
2314 of constraints on a parametric polyhedron.
2315 The coefficients of the parameters appear in the last columns
2316 (but before the final constant column).
2317 The output is the lexicographic minimum of the parametric polyhedron.
2318 As C<isl> currently does not have its own output format, the output
2319 is just a dump of the internal state.
2321 =head2 C<isl_polyhedron_minimize>
2323 C<isl_polyhedron_minimize> computes the minimum of some linear
2324 or affine objective function over the integer points in a polyhedron.
2325 If an affine objective function
2326 is given, then the constant should appear in the last column.
2328 =head2 C<isl_polytope_scan>
2330 Given a polytope, C<isl_polytope_scan> prints
2331 all integer points in the polytope.
2333 =head1 C<isl-polylib>
2335 The C<isl-polylib> library provides the following functions for converting
2336 between C<isl> objects and C<PolyLib> objects.
2337 The library is distributed separately for licensing reasons.
2339 #include <isl_set_polylib.h>
2340 __isl_give isl_basic_set *isl_basic_set_new_from_polylib(
2341 Polyhedron *P, __isl_take isl_dim *dim);
2342 Polyhedron *isl_basic_set_to_polylib(
2343 __isl_keep isl_basic_set *bset);
2344 __isl_give isl_set *isl_set_new_from_polylib(Polyhedron *D,
2345 __isl_take isl_dim *dim);
2346 Polyhedron *isl_set_to_polylib(__isl_keep isl_set *set);
2348 #include <isl_map_polylib.h>
2349 __isl_give isl_basic_map *isl_basic_map_new_from_polylib(
2350 Polyhedron *P, __isl_take isl_dim *dim);
2351 __isl_give isl_map *isl_map_new_from_polylib(Polyhedron *D,
2352 __isl_take isl_dim *dim);
2353 Polyhedron *isl_basic_map_to_polylib(
2354 __isl_keep isl_basic_map *bmap);
2355 Polyhedron *isl_map_to_polylib(__isl_keep isl_map *map);