3 C<isl> is a thread-safe C library for manipulating
4 sets and relations of integer points bounded by affine constraints.
5 The descriptions of the sets and relations may involve
6 both parameters and existentially quantified variables.
7 All computations are performed in exact integer arithmetic
9 The C<isl> library offers functionality that is similar
10 to that offered by the C<Omega> and C<Omega+> libraries,
11 but the underlying algorithms are in most cases completely different.
13 The library is by no means complete and some fairly basic
14 functionality is still missing.
15 Still, even in its current form, the library has been successfully
16 used as a backend polyhedral library for the polyhedral
17 scanner C<CLooG> and as part of an equivalence checker of
18 static affine programs.
19 For bug reports, feature requests and questions,
20 visit the the discussion group at
21 L<http://groups.google.com/group/isl-development>.
23 =head2 Backward Incompatible Changes
25 =head3 Changes since isl-0.02
29 =item * The old printing functions have been deprecated
30 and replaced by C<isl_printer> functions, see L<Input and Output>.
32 =item * Most functions related to dependence analysis have acquired
33 an extra C<must> argument. To obtain the old behavior, this argument
34 should be given the value 1. See L<Dependence Analysis>.
38 =head3 Changes since isl-0.03
42 =item * The function C<isl_pw_qpolynomial_fold_add> has been
43 renamed to C<isl_pw_qpolynomial_fold_fold>.
44 Similarly, C<isl_union_pw_qpolynomial_fold_add> has been
45 renamed to C<isl_union_pw_qpolynomial_fold_fold>.
49 =head3 Changes since isl-0.04
53 =item * All header files have been renamed from C<isl_header.h>
58 =head3 Changes since isl-0.05
62 =item * The functions C<isl_printer_print_basic_set> and
63 C<isl_printer_print_basic_map> no longer print a newline.
65 =item * The functions C<isl_flow_get_no_source>
66 and C<isl_union_map_compute_flow> now return
67 the accesses for which no source could be found instead of
68 the iterations where those accesses occur.
70 =item * The functions C<isl_basic_map_identity> and
71 C<isl_map_identity> now take a B<map> space as input. An old call
72 C<isl_map_identity(space)> can be rewritten to
73 C<isl_map_identity(isl_space_map_from_set(space))>.
75 =item * The function C<isl_map_power> no longer takes
76 a parameter position as input. Instead, the exponent
77 is now expressed as the domain of the resulting relation.
81 =head3 Changes since isl-0.06
85 =item * The format of C<isl_printer_print_qpolynomial>'s
86 C<ISL_FORMAT_ISL> output has changed.
87 Use C<ISL_FORMAT_C> to obtain the old output.
89 =item * The C<*_fast_*> functions have been renamed to C<*_plain_*>.
90 Some of the old names have been kept for backward compatibility,
91 but they will be removed in the future.
95 =head3 Changes since isl-0.07
99 =item * The function C<isl_pw_aff_max> has been renamed to
100 C<isl_pw_aff_union_max>.
101 Similarly, the function C<isl_pw_aff_add> has been renamed to
102 C<isl_pw_aff_union_add>.
104 =item * The C<isl_dim> type has been renamed to C<isl_space>
105 along with the associated functions.
106 Some of the old names have been kept for backward compatibility,
107 but they will be removed in the future.
109 =item * Spaces of maps, sets and parameter domains are now
110 treated differently. The distinction between map spaces and set spaces
111 has always been made on a conceptual level, but proper use of such spaces
112 was never checked. Furthermore, up until isl-0.07 there was no way
113 of explicitly creating a parameter space. These can now be created
114 directly using C<isl_space_params_alloc> or from other spaces using
117 =item * The space in which C<isl_aff>, C<isl_pw_aff>, C<isl_qpolynomial>,
118 C<isl_pw_qpolynomial>, C<isl_qpolynomial_fold> and C<isl_pw_qpolynomial_fold>
119 objects live is now a map space
120 instead of a set space. This means, for example, that the dimensions
121 of the domain of an C<isl_aff> are now considered to be of type
122 C<isl_dim_in> instead of C<isl_dim_set>. Extra functions have been
123 added to obtain the domain space. Some of the constructors still
124 take a domain space and have therefore been renamed.
126 =item * The functions C<isl_equality_alloc> and C<isl_inequality_alloc>
127 now take an C<isl_local_space> instead of an C<isl_space>.
128 An C<isl_local_space> can be created from an C<isl_space>
129 using C<isl_local_space_from_space>.
131 =item * The C<isl_div> type has been removed. Functions that used
132 to return an C<isl_div> now return an C<isl_aff>.
133 Note that the space of an C<isl_aff> is that of relation.
134 When replacing a call to C<isl_div_get_coefficient> by a call to
135 C<isl_aff_get_coefficient> any C<isl_dim_set> argument needs
136 to be replaced by C<isl_dim_in>.
137 A call to C<isl_aff_from_div> can be replaced by a call
139 A call to C<isl_qpolynomial_div(div)> call be replaced by
142 isl_qpolynomial_from_aff(isl_aff_floor(div))
144 The function C<isl_constraint_div> has also been renamed
145 to C<isl_constraint_get_div>.
147 =item * The C<nparam> argument has been removed from
148 C<isl_map_read_from_str> and similar functions.
149 When reading input in the original PolyLib format,
150 the result will have no parameters.
151 If parameters are expected, the caller may want to perform
152 dimension manipulation on the result.
156 =head3 Changes since isl-0.09
160 =item * The C<schedule_split_parallel> option has been replaced
161 by the C<schedule_split_scaled> option.
163 =item * The first argument of C<isl_pw_aff_cond> is now
164 an C<isl_pw_aff> instead of an C<isl_set>.
165 A call C<isl_pw_aff_cond(a, b, c)> can be replaced by
167 isl_pw_aff_cond(isl_set_indicator_function(a), b, c)
173 The source of C<isl> can be obtained either as a tarball
174 or from the git repository. Both are available from
175 L<http://freshmeat.net/projects/isl/>.
176 The installation process depends on how you obtained
179 =head2 Installation from the git repository
183 =item 1 Clone or update the repository
185 The first time the source is obtained, you need to clone
188 git clone git://repo.or.cz/isl.git
190 To obtain updates, you need to pull in the latest changes
194 =item 2 Generate C<configure>
200 After performing the above steps, continue
201 with the L<Common installation instructions>.
203 =head2 Common installation instructions
207 =item 1 Obtain C<GMP>
209 Building C<isl> requires C<GMP>, including its headers files.
210 Your distribution may not provide these header files by default
211 and you may need to install a package called C<gmp-devel> or something
212 similar. Alternatively, C<GMP> can be built from
213 source, available from L<http://gmplib.org/>.
217 C<isl> uses the standard C<autoconf> C<configure> script.
222 optionally followed by some configure options.
223 A complete list of options can be obtained by running
227 Below we discuss some of the more common options.
229 C<isl> can optionally use C<piplib>, but no
230 C<piplib> functionality is currently used by default.
231 The C<--with-piplib> option can
232 be used to specify which C<piplib>
233 library to use, either an installed version (C<system>),
234 an externally built version (C<build>)
235 or no version (C<no>). The option C<build> is mostly useful
236 in C<configure> scripts of larger projects that bundle both C<isl>
243 Installation prefix for C<isl>
245 =item C<--with-gmp-prefix>
247 Installation prefix for C<GMP> (architecture-independent files).
249 =item C<--with-gmp-exec-prefix>
251 Installation prefix for C<GMP> (architecture-dependent files).
253 =item C<--with-piplib>
255 Which copy of C<piplib> to use, either C<no> (default), C<system> or C<build>.
257 =item C<--with-piplib-prefix>
259 Installation prefix for C<system> C<piplib> (architecture-independent files).
261 =item C<--with-piplib-exec-prefix>
263 Installation prefix for C<system> C<piplib> (architecture-dependent files).
265 =item C<--with-piplib-builddir>
267 Location where C<build> C<piplib> was built.
275 =item 4 Install (optional)
283 =head2 Initialization
285 All manipulations of integer sets and relations occur within
286 the context of an C<isl_ctx>.
287 A given C<isl_ctx> can only be used within a single thread.
288 All arguments of a function are required to have been allocated
289 within the same context.
290 There are currently no functions available for moving an object
291 from one C<isl_ctx> to another C<isl_ctx>. This means that
292 there is currently no way of safely moving an object from one
293 thread to another, unless the whole C<isl_ctx> is moved.
295 An C<isl_ctx> can be allocated using C<isl_ctx_alloc> and
296 freed using C<isl_ctx_free>.
297 All objects allocated within an C<isl_ctx> should be freed
298 before the C<isl_ctx> itself is freed.
300 isl_ctx *isl_ctx_alloc();
301 void isl_ctx_free(isl_ctx *ctx);
305 All operations on integers, mainly the coefficients
306 of the constraints describing the sets and relations,
307 are performed in exact integer arithmetic using C<GMP>.
308 However, to allow future versions of C<isl> to optionally
309 support fixed integer arithmetic, all calls to C<GMP>
310 are wrapped inside C<isl> specific macros.
311 The basic type is C<isl_int> and the operations below
312 are available on this type.
313 The meanings of these operations are essentially the same
314 as their C<GMP> C<mpz_> counterparts.
315 As always with C<GMP> types, C<isl_int>s need to be
316 initialized with C<isl_int_init> before they can be used
317 and they need to be released with C<isl_int_clear>
319 The user should not assume that an C<isl_int> is represented
320 as a C<mpz_t>, but should instead explicitly convert between
321 C<mpz_t>s and C<isl_int>s using C<isl_int_set_gmp> and
322 C<isl_int_get_gmp> whenever a C<mpz_t> is required.
326 =item isl_int_init(i)
328 =item isl_int_clear(i)
330 =item isl_int_set(r,i)
332 =item isl_int_set_si(r,i)
334 =item isl_int_set_gmp(r,g)
336 =item isl_int_get_gmp(i,g)
338 =item isl_int_abs(r,i)
340 =item isl_int_neg(r,i)
342 =item isl_int_swap(i,j)
344 =item isl_int_swap_or_set(i,j)
346 =item isl_int_add_ui(r,i,j)
348 =item isl_int_sub_ui(r,i,j)
350 =item isl_int_add(r,i,j)
352 =item isl_int_sub(r,i,j)
354 =item isl_int_mul(r,i,j)
356 =item isl_int_mul_ui(r,i,j)
358 =item isl_int_addmul(r,i,j)
360 =item isl_int_submul(r,i,j)
362 =item isl_int_gcd(r,i,j)
364 =item isl_int_lcm(r,i,j)
366 =item isl_int_divexact(r,i,j)
368 =item isl_int_cdiv_q(r,i,j)
370 =item isl_int_fdiv_q(r,i,j)
372 =item isl_int_fdiv_r(r,i,j)
374 =item isl_int_fdiv_q_ui(r,i,j)
376 =item isl_int_read(r,s)
378 =item isl_int_print(out,i,width)
382 =item isl_int_cmp(i,j)
384 =item isl_int_cmp_si(i,si)
386 =item isl_int_eq(i,j)
388 =item isl_int_ne(i,j)
390 =item isl_int_lt(i,j)
392 =item isl_int_le(i,j)
394 =item isl_int_gt(i,j)
396 =item isl_int_ge(i,j)
398 =item isl_int_abs_eq(i,j)
400 =item isl_int_abs_ne(i,j)
402 =item isl_int_abs_lt(i,j)
404 =item isl_int_abs_gt(i,j)
406 =item isl_int_abs_ge(i,j)
408 =item isl_int_is_zero(i)
410 =item isl_int_is_one(i)
412 =item isl_int_is_negone(i)
414 =item isl_int_is_pos(i)
416 =item isl_int_is_neg(i)
418 =item isl_int_is_nonpos(i)
420 =item isl_int_is_nonneg(i)
422 =item isl_int_is_divisible_by(i,j)
426 =head2 Sets and Relations
428 C<isl> uses six types of objects for representing sets and relations,
429 C<isl_basic_set>, C<isl_basic_map>, C<isl_set>, C<isl_map>,
430 C<isl_union_set> and C<isl_union_map>.
431 C<isl_basic_set> and C<isl_basic_map> represent sets and relations that
432 can be described as a conjunction of affine constraints, while
433 C<isl_set> and C<isl_map> represent unions of
434 C<isl_basic_set>s and C<isl_basic_map>s, respectively.
435 However, all C<isl_basic_set>s or C<isl_basic_map>s in the union need
436 to live in the same space. C<isl_union_set>s and C<isl_union_map>s
437 represent unions of C<isl_set>s or C<isl_map>s in I<different> spaces,
438 where spaces are considered different if they have a different number
439 of dimensions and/or different names (see L<"Spaces">).
440 The difference between sets and relations (maps) is that sets have
441 one set of variables, while relations have two sets of variables,
442 input variables and output variables.
444 =head2 Memory Management
446 Since a high-level operation on sets and/or relations usually involves
447 several substeps and since the user is usually not interested in
448 the intermediate results, most functions that return a new object
449 will also release all the objects passed as arguments.
450 If the user still wants to use one or more of these arguments
451 after the function call, she should pass along a copy of the
452 object rather than the object itself.
453 The user is then responsible for making sure that the original
454 object gets used somewhere else or is explicitly freed.
456 The arguments and return values of all documented functions are
457 annotated to make clear which arguments are released and which
458 arguments are preserved. In particular, the following annotations
465 C<__isl_give> means that a new object is returned.
466 The user should make sure that the returned pointer is
467 used exactly once as a value for an C<__isl_take> argument.
468 In between, it can be used as a value for as many
469 C<__isl_keep> arguments as the user likes.
470 There is one exception, and that is the case where the
471 pointer returned is C<NULL>. Is this case, the user
472 is free to use it as an C<__isl_take> argument or not.
476 C<__isl_take> means that the object the argument points to
477 is taken over by the function and may no longer be used
478 by the user as an argument to any other function.
479 The pointer value must be one returned by a function
480 returning an C<__isl_give> pointer.
481 If the user passes in a C<NULL> value, then this will
482 be treated as an error in the sense that the function will
483 not perform its usual operation. However, it will still
484 make sure that all the other C<__isl_take> arguments
489 C<__isl_keep> means that the function will only use the object
490 temporarily. After the function has finished, the user
491 can still use it as an argument to other functions.
492 A C<NULL> value will be treated in the same way as
493 a C<NULL> value for an C<__isl_take> argument.
497 =head2 Error Handling
499 C<isl> supports different ways to react in case a runtime error is triggered.
500 Runtime errors arise, e.g., if a function such as C<isl_map_intersect> is called
501 with two maps that have incompatible spaces. There are three possible ways
502 to react on error: to warn, to continue or to abort.
504 The default behavior is to warn. In this mode, C<isl> prints a warning, stores
505 the last error in the corresponding C<isl_ctx> and the function in which the
506 error was triggered returns C<NULL>. An error does not corrupt internal state,
507 such that isl can continue to be used. C<isl> also provides functions to
508 read the last error and to reset the memory that stores the last error. The
509 last error is only stored for information purposes. Its presence does not
510 change the behavior of C<isl>. Hence, resetting an error is not required to
511 continue to use isl, but only to observe new errors.
514 enum isl_error isl_ctx_last_error(isl_ctx *ctx);
515 void isl_ctx_reset_error(isl_ctx *ctx);
517 Another option is to continue on error. This is similar to warn on error mode,
518 except that C<isl> does not print any warning. This allows a program to
519 implement its own error reporting.
521 The last option is to directly abort the execution of the program from within
522 the isl library. This makes it obviously impossible to recover from an error,
523 but it allows to directly spot the error location. By aborting on error,
524 debuggers break at the location the error occurred and can provide a stack
525 trace. Other tools that automatically provide stack traces on abort or that do
526 not want to continue execution after an error was triggered may also prefer to
529 The on error behavior of isl can be specified by calling
530 C<isl_options_set_on_error> or by setting the command line option
531 C<--isl-on-error>. Valid arguments for the function call are
532 C<ISL_ON_ERROR_WARN>, C<ISL_ON_ERROR_CONTINUE> and C<ISL_ON_ERROR_ABORT>. The
533 choices for the command line option are C<warn>, C<continue> and C<abort>.
534 It is also possible to query the current error mode.
536 #include <isl/options.h>
537 int isl_options_set_on_error(isl_ctx *ctx, int val);
538 int isl_options_get_on_error(isl_ctx *ctx);
542 Identifiers are used to identify both individual dimensions
543 and tuples of dimensions. They consist of a name and an optional
544 pointer. Identifiers with the same name but different pointer values
545 are considered to be distinct.
546 Identifiers can be constructed, copied, freed, inspected and printed
547 using the following functions.
550 __isl_give isl_id *isl_id_alloc(isl_ctx *ctx,
551 __isl_keep const char *name, void *user);
552 __isl_give isl_id *isl_id_copy(isl_id *id);
553 void *isl_id_free(__isl_take isl_id *id);
555 isl_ctx *isl_id_get_ctx(__isl_keep isl_id *id);
556 void *isl_id_get_user(__isl_keep isl_id *id);
557 __isl_keep const char *isl_id_get_name(__isl_keep isl_id *id);
559 __isl_give isl_printer *isl_printer_print_id(
560 __isl_take isl_printer *p, __isl_keep isl_id *id);
562 Note that C<isl_id_get_name> returns a pointer to some internal
563 data structure, so the result can only be used while the
564 corresponding C<isl_id> is alive.
568 Whenever a new set or relation is created from scratch,
569 the space in which it lives needs to be specified using an C<isl_space>.
571 #include <isl/space.h>
572 __isl_give isl_space *isl_space_alloc(isl_ctx *ctx,
573 unsigned nparam, unsigned n_in, unsigned n_out);
574 __isl_give isl_space *isl_space_params_alloc(isl_ctx *ctx,
576 __isl_give isl_space *isl_space_set_alloc(isl_ctx *ctx,
577 unsigned nparam, unsigned dim);
578 __isl_give isl_space *isl_space_copy(__isl_keep isl_space *space);
579 void isl_space_free(__isl_take isl_space *space);
580 unsigned isl_space_dim(__isl_keep isl_space *space,
581 enum isl_dim_type type);
583 The space used for creating a parameter domain
584 needs to be created using C<isl_space_params_alloc>.
585 For other sets, the space
586 needs to be created using C<isl_space_set_alloc>, while
587 for a relation, the space
588 needs to be created using C<isl_space_alloc>.
589 C<isl_space_dim> can be used
590 to find out the number of dimensions of each type in
591 a space, where type may be
592 C<isl_dim_param>, C<isl_dim_in> (only for relations),
593 C<isl_dim_out> (only for relations), C<isl_dim_set>
594 (only for sets) or C<isl_dim_all>.
596 To check whether a given space is that of a set or a map
597 or whether it is a parameter space, use these functions:
599 #include <isl/space.h>
600 int isl_space_is_params(__isl_keep isl_space *space);
601 int isl_space_is_set(__isl_keep isl_space *space);
603 It is often useful to create objects that live in the
604 same space as some other object. This can be accomplished
605 by creating the new objects
606 (see L<Creating New Sets and Relations> or
607 L<Creating New (Piecewise) Quasipolynomials>) based on the space
608 of the original object.
611 __isl_give isl_space *isl_basic_set_get_space(
612 __isl_keep isl_basic_set *bset);
613 __isl_give isl_space *isl_set_get_space(__isl_keep isl_set *set);
615 #include <isl/union_set.h>
616 __isl_give isl_space *isl_union_set_get_space(
617 __isl_keep isl_union_set *uset);
620 __isl_give isl_space *isl_basic_map_get_space(
621 __isl_keep isl_basic_map *bmap);
622 __isl_give isl_space *isl_map_get_space(__isl_keep isl_map *map);
624 #include <isl/union_map.h>
625 __isl_give isl_space *isl_union_map_get_space(
626 __isl_keep isl_union_map *umap);
628 #include <isl/constraint.h>
629 __isl_give isl_space *isl_constraint_get_space(
630 __isl_keep isl_constraint *constraint);
632 #include <isl/polynomial.h>
633 __isl_give isl_space *isl_qpolynomial_get_domain_space(
634 __isl_keep isl_qpolynomial *qp);
635 __isl_give isl_space *isl_qpolynomial_get_space(
636 __isl_keep isl_qpolynomial *qp);
637 __isl_give isl_space *isl_qpolynomial_fold_get_space(
638 __isl_keep isl_qpolynomial_fold *fold);
639 __isl_give isl_space *isl_pw_qpolynomial_get_domain_space(
640 __isl_keep isl_pw_qpolynomial *pwqp);
641 __isl_give isl_space *isl_pw_qpolynomial_get_space(
642 __isl_keep isl_pw_qpolynomial *pwqp);
643 __isl_give isl_space *isl_pw_qpolynomial_fold_get_domain_space(
644 __isl_keep isl_pw_qpolynomial_fold *pwf);
645 __isl_give isl_space *isl_pw_qpolynomial_fold_get_space(
646 __isl_keep isl_pw_qpolynomial_fold *pwf);
647 __isl_give isl_space *isl_union_pw_qpolynomial_get_space(
648 __isl_keep isl_union_pw_qpolynomial *upwqp);
649 __isl_give isl_space *isl_union_pw_qpolynomial_fold_get_space(
650 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
653 __isl_give isl_space *isl_aff_get_domain_space(
654 __isl_keep isl_aff *aff);
655 __isl_give isl_space *isl_aff_get_space(
656 __isl_keep isl_aff *aff);
657 __isl_give isl_space *isl_pw_aff_get_domain_space(
658 __isl_keep isl_pw_aff *pwaff);
659 __isl_give isl_space *isl_pw_aff_get_space(
660 __isl_keep isl_pw_aff *pwaff);
661 __isl_give isl_space *isl_multi_aff_get_space(
662 __isl_keep isl_multi_aff *maff);
663 __isl_give isl_space *isl_pw_multi_aff_get_domain_space(
664 __isl_keep isl_pw_multi_aff *pma);
665 __isl_give isl_space *isl_pw_multi_aff_get_space(
666 __isl_keep isl_pw_multi_aff *pma);
667 __isl_give isl_space *isl_union_pw_multi_aff_get_space(
668 __isl_keep isl_union_pw_multi_aff *upma);
670 #include <isl/point.h>
671 __isl_give isl_space *isl_point_get_space(
672 __isl_keep isl_point *pnt);
674 The identifiers or names of the individual dimensions may be set or read off
675 using the following functions.
677 #include <isl/space.h>
678 __isl_give isl_space *isl_space_set_dim_id(
679 __isl_take isl_space *space,
680 enum isl_dim_type type, unsigned pos,
681 __isl_take isl_id *id);
682 int isl_space_has_dim_id(__isl_keep isl_space *space,
683 enum isl_dim_type type, unsigned pos);
684 __isl_give isl_id *isl_space_get_dim_id(
685 __isl_keep isl_space *space,
686 enum isl_dim_type type, unsigned pos);
687 __isl_give isl_space *isl_space_set_dim_name(
688 __isl_take isl_space *space,
689 enum isl_dim_type type, unsigned pos,
690 __isl_keep const char *name);
691 int isl_space_has_dim_name(__isl_keep isl_space *space,
692 enum isl_dim_type type, unsigned pos);
693 __isl_keep const char *isl_space_get_dim_name(
694 __isl_keep isl_space *space,
695 enum isl_dim_type type, unsigned pos);
697 Note that C<isl_space_get_name> returns a pointer to some internal
698 data structure, so the result can only be used while the
699 corresponding C<isl_space> is alive.
700 Also note that every function that operates on two sets or relations
701 requires that both arguments have the same parameters. This also
702 means that if one of the arguments has named parameters, then the
703 other needs to have named parameters too and the names need to match.
704 Pairs of C<isl_set>, C<isl_map>, C<isl_union_set> and/or C<isl_union_map>
705 arguments may have different parameters (as long as they are named),
706 in which case the result will have as parameters the union of the parameters of
709 Given the identifier or name of a dimension (typically a parameter),
710 its position can be obtained from the following function.
712 #include <isl/space.h>
713 int isl_space_find_dim_by_id(__isl_keep isl_space *space,
714 enum isl_dim_type type, __isl_keep isl_id *id);
715 int isl_space_find_dim_by_name(__isl_keep isl_space *space,
716 enum isl_dim_type type, const char *name);
718 The identifiers or names of entire spaces may be set or read off
719 using the following functions.
721 #include <isl/space.h>
722 __isl_give isl_space *isl_space_set_tuple_id(
723 __isl_take isl_space *space,
724 enum isl_dim_type type, __isl_take isl_id *id);
725 __isl_give isl_space *isl_space_reset_tuple_id(
726 __isl_take isl_space *space, enum isl_dim_type type);
727 int isl_space_has_tuple_id(__isl_keep isl_space *space,
728 enum isl_dim_type type);
729 __isl_give isl_id *isl_space_get_tuple_id(
730 __isl_keep isl_space *space, enum isl_dim_type type);
731 __isl_give isl_space *isl_space_set_tuple_name(
732 __isl_take isl_space *space,
733 enum isl_dim_type type, const char *s);
734 int isl_space_has_tuple_name(__isl_keep isl_space *space,
735 enum isl_dim_type type);
736 const char *isl_space_get_tuple_name(__isl_keep isl_space *space,
737 enum isl_dim_type type);
739 The C<type> argument needs to be one of C<isl_dim_in>, C<isl_dim_out>
740 or C<isl_dim_set>. As with C<isl_space_get_name>,
741 the C<isl_space_get_tuple_name> function returns a pointer to some internal
743 Binary operations require the corresponding spaces of their arguments
744 to have the same name.
746 Spaces can be nested. In particular, the domain of a set or
747 the domain or range of a relation can be a nested relation.
748 The following functions can be used to construct and deconstruct
751 #include <isl/space.h>
752 int isl_space_is_wrapping(__isl_keep isl_space *space);
753 __isl_give isl_space *isl_space_wrap(__isl_take isl_space *space);
754 __isl_give isl_space *isl_space_unwrap(__isl_take isl_space *space);
756 The input to C<isl_space_is_wrapping> and C<isl_space_unwrap> should
757 be the space of a set, while that of
758 C<isl_space_wrap> should be the space of a relation.
759 Conversely, the output of C<isl_space_unwrap> is the space
760 of a relation, while that of C<isl_space_wrap> is the space of a set.
762 Spaces can be created from other spaces
763 using the following functions.
765 __isl_give isl_space *isl_space_domain(__isl_take isl_space *space);
766 __isl_give isl_space *isl_space_from_domain(__isl_take isl_space *space);
767 __isl_give isl_space *isl_space_range(__isl_take isl_space *space);
768 __isl_give isl_space *isl_space_from_range(__isl_take isl_space *space);
769 __isl_give isl_space *isl_space_params(
770 __isl_take isl_space *space);
771 __isl_give isl_space *isl_space_set_from_params(
772 __isl_take isl_space *space);
773 __isl_give isl_space *isl_space_reverse(__isl_take isl_space *space);
774 __isl_give isl_space *isl_space_join(__isl_take isl_space *left,
775 __isl_take isl_space *right);
776 __isl_give isl_space *isl_space_align_params(
777 __isl_take isl_space *space1, __isl_take isl_space *space2)
778 __isl_give isl_space *isl_space_insert_dims(__isl_take isl_space *space,
779 enum isl_dim_type type, unsigned pos, unsigned n);
780 __isl_give isl_space *isl_space_add_dims(__isl_take isl_space *space,
781 enum isl_dim_type type, unsigned n);
782 __isl_give isl_space *isl_space_drop_dims(__isl_take isl_space *space,
783 enum isl_dim_type type, unsigned first, unsigned n);
784 __isl_give isl_space *isl_space_move_dims(__isl_take isl_space *space,
785 enum isl_dim_type dst_type, unsigned dst_pos,
786 enum isl_dim_type src_type, unsigned src_pos,
788 __isl_give isl_space *isl_space_map_from_set(
789 __isl_take isl_space *space);
790 __isl_give isl_space *isl_space_map_from_domain_and_range(
791 __isl_take isl_space *domain,
792 __isl_take isl_space *range);
793 __isl_give isl_space *isl_space_zip(__isl_take isl_space *space);
794 __isl_give isl_space *isl_space_curry(
795 __isl_take isl_space *space);
797 Note that if dimensions are added or removed from a space, then
798 the name and the internal structure are lost.
802 A local space is essentially a space with
803 zero or more existentially quantified variables.
804 The local space of a basic set or relation can be obtained
805 using the following functions.
808 __isl_give isl_local_space *isl_basic_set_get_local_space(
809 __isl_keep isl_basic_set *bset);
812 __isl_give isl_local_space *isl_basic_map_get_local_space(
813 __isl_keep isl_basic_map *bmap);
815 A new local space can be created from a space using
817 #include <isl/local_space.h>
818 __isl_give isl_local_space *isl_local_space_from_space(
819 __isl_take isl_space *space);
821 They can be inspected, modified, copied and freed using the following functions.
823 #include <isl/local_space.h>
824 isl_ctx *isl_local_space_get_ctx(
825 __isl_keep isl_local_space *ls);
826 int isl_local_space_is_set(__isl_keep isl_local_space *ls);
827 int isl_local_space_dim(__isl_keep isl_local_space *ls,
828 enum isl_dim_type type);
829 const char *isl_local_space_get_dim_name(
830 __isl_keep isl_local_space *ls,
831 enum isl_dim_type type, unsigned pos);
832 __isl_give isl_local_space *isl_local_space_set_dim_name(
833 __isl_take isl_local_space *ls,
834 enum isl_dim_type type, unsigned pos, const char *s);
835 __isl_give isl_local_space *isl_local_space_set_dim_id(
836 __isl_take isl_local_space *ls,
837 enum isl_dim_type type, unsigned pos,
838 __isl_take isl_id *id);
839 __isl_give isl_space *isl_local_space_get_space(
840 __isl_keep isl_local_space *ls);
841 __isl_give isl_aff *isl_local_space_get_div(
842 __isl_keep isl_local_space *ls, int pos);
843 __isl_give isl_local_space *isl_local_space_copy(
844 __isl_keep isl_local_space *ls);
845 void *isl_local_space_free(__isl_take isl_local_space *ls);
847 Two local spaces can be compared using
849 int isl_local_space_is_equal(__isl_keep isl_local_space *ls1,
850 __isl_keep isl_local_space *ls2);
852 Local spaces can be created from other local spaces
853 using the following functions.
855 __isl_give isl_local_space *isl_local_space_domain(
856 __isl_take isl_local_space *ls);
857 __isl_give isl_local_space *isl_local_space_range(
858 __isl_take isl_local_space *ls);
859 __isl_give isl_local_space *isl_local_space_from_domain(
860 __isl_take isl_local_space *ls);
861 __isl_give isl_local_space *isl_local_space_intersect(
862 __isl_take isl_local_space *ls1,
863 __isl_take isl_local_space *ls2);
864 __isl_give isl_local_space *isl_local_space_add_dims(
865 __isl_take isl_local_space *ls,
866 enum isl_dim_type type, unsigned n);
867 __isl_give isl_local_space *isl_local_space_insert_dims(
868 __isl_take isl_local_space *ls,
869 enum isl_dim_type type, unsigned first, unsigned n);
870 __isl_give isl_local_space *isl_local_space_drop_dims(
871 __isl_take isl_local_space *ls,
872 enum isl_dim_type type, unsigned first, unsigned n);
874 =head2 Input and Output
876 C<isl> supports its own input/output format, which is similar
877 to the C<Omega> format, but also supports the C<PolyLib> format
882 The C<isl> format is similar to that of C<Omega>, but has a different
883 syntax for describing the parameters and allows for the definition
884 of an existentially quantified variable as the integer division
885 of an affine expression.
886 For example, the set of integers C<i> between C<0> and C<n>
887 such that C<i % 10 <= 6> can be described as
889 [n] -> { [i] : exists (a = [i/10] : 0 <= i and i <= n and
892 A set or relation can have several disjuncts, separated
893 by the keyword C<or>. Each disjunct is either a conjunction
894 of constraints or a projection (C<exists>) of a conjunction
895 of constraints. The constraints are separated by the keyword
898 =head3 C<PolyLib> format
900 If the represented set is a union, then the first line
901 contains a single number representing the number of disjuncts.
902 Otherwise, a line containing the number C<1> is optional.
904 Each disjunct is represented by a matrix of constraints.
905 The first line contains two numbers representing
906 the number of rows and columns,
907 where the number of rows is equal to the number of constraints
908 and the number of columns is equal to two plus the number of variables.
909 The following lines contain the actual rows of the constraint matrix.
910 In each row, the first column indicates whether the constraint
911 is an equality (C<0>) or inequality (C<1>). The final column
912 corresponds to the constant term.
914 If the set is parametric, then the coefficients of the parameters
915 appear in the last columns before the constant column.
916 The coefficients of any existentially quantified variables appear
917 between those of the set variables and those of the parameters.
919 =head3 Extended C<PolyLib> format
921 The extended C<PolyLib> format is nearly identical to the
922 C<PolyLib> format. The only difference is that the line
923 containing the number of rows and columns of a constraint matrix
924 also contains four additional numbers:
925 the number of output dimensions, the number of input dimensions,
926 the number of local dimensions (i.e., the number of existentially
927 quantified variables) and the number of parameters.
928 For sets, the number of ``output'' dimensions is equal
929 to the number of set dimensions, while the number of ``input''
935 __isl_give isl_basic_set *isl_basic_set_read_from_file(
936 isl_ctx *ctx, FILE *input);
937 __isl_give isl_basic_set *isl_basic_set_read_from_str(
938 isl_ctx *ctx, const char *str);
939 __isl_give isl_set *isl_set_read_from_file(isl_ctx *ctx,
941 __isl_give isl_set *isl_set_read_from_str(isl_ctx *ctx,
945 __isl_give isl_basic_map *isl_basic_map_read_from_file(
946 isl_ctx *ctx, FILE *input);
947 __isl_give isl_basic_map *isl_basic_map_read_from_str(
948 isl_ctx *ctx, const char *str);
949 __isl_give isl_map *isl_map_read_from_file(
950 isl_ctx *ctx, FILE *input);
951 __isl_give isl_map *isl_map_read_from_str(isl_ctx *ctx,
954 #include <isl/union_set.h>
955 __isl_give isl_union_set *isl_union_set_read_from_file(
956 isl_ctx *ctx, FILE *input);
957 __isl_give isl_union_set *isl_union_set_read_from_str(
958 isl_ctx *ctx, const char *str);
960 #include <isl/union_map.h>
961 __isl_give isl_union_map *isl_union_map_read_from_file(
962 isl_ctx *ctx, FILE *input);
963 __isl_give isl_union_map *isl_union_map_read_from_str(
964 isl_ctx *ctx, const char *str);
966 The input format is autodetected and may be either the C<PolyLib> format
967 or the C<isl> format.
971 Before anything can be printed, an C<isl_printer> needs to
974 __isl_give isl_printer *isl_printer_to_file(isl_ctx *ctx,
976 __isl_give isl_printer *isl_printer_to_str(isl_ctx *ctx);
977 void isl_printer_free(__isl_take isl_printer *printer);
978 __isl_give char *isl_printer_get_str(
979 __isl_keep isl_printer *printer);
981 The printer can be inspected using the following function.
983 FILE *isl_printer_get_file(
984 __isl_keep isl_printer *printer);
986 The behavior of the printer can be modified in various ways
988 __isl_give isl_printer *isl_printer_set_output_format(
989 __isl_take isl_printer *p, int output_format);
990 __isl_give isl_printer *isl_printer_set_indent(
991 __isl_take isl_printer *p, int indent);
992 __isl_give isl_printer *isl_printer_indent(
993 __isl_take isl_printer *p, int indent);
994 __isl_give isl_printer *isl_printer_set_prefix(
995 __isl_take isl_printer *p, const char *prefix);
996 __isl_give isl_printer *isl_printer_set_suffix(
997 __isl_take isl_printer *p, const char *suffix);
999 The C<output_format> may be either C<ISL_FORMAT_ISL>, C<ISL_FORMAT_OMEGA>,
1000 C<ISL_FORMAT_POLYLIB>, C<ISL_FORMAT_EXT_POLYLIB> or C<ISL_FORMAT_LATEX>
1001 and defaults to C<ISL_FORMAT_ISL>.
1002 Each line in the output is indented by C<indent> (set by
1003 C<isl_printer_set_indent>) spaces
1004 (default: 0), prefixed by C<prefix> and suffixed by C<suffix>.
1005 In the C<PolyLib> format output,
1006 the coefficients of the existentially quantified variables
1007 appear between those of the set variables and those
1009 The function C<isl_printer_indent> increases the indentation
1010 by the specified amount (which may be negative).
1012 To actually print something, use
1014 #include <isl/set.h>
1015 __isl_give isl_printer *isl_printer_print_basic_set(
1016 __isl_take isl_printer *printer,
1017 __isl_keep isl_basic_set *bset);
1018 __isl_give isl_printer *isl_printer_print_set(
1019 __isl_take isl_printer *printer,
1020 __isl_keep isl_set *set);
1022 #include <isl/map.h>
1023 __isl_give isl_printer *isl_printer_print_basic_map(
1024 __isl_take isl_printer *printer,
1025 __isl_keep isl_basic_map *bmap);
1026 __isl_give isl_printer *isl_printer_print_map(
1027 __isl_take isl_printer *printer,
1028 __isl_keep isl_map *map);
1030 #include <isl/union_set.h>
1031 __isl_give isl_printer *isl_printer_print_union_set(
1032 __isl_take isl_printer *p,
1033 __isl_keep isl_union_set *uset);
1035 #include <isl/union_map.h>
1036 __isl_give isl_printer *isl_printer_print_union_map(
1037 __isl_take isl_printer *p,
1038 __isl_keep isl_union_map *umap);
1040 When called on a file printer, the following function flushes
1041 the file. When called on a string printer, the buffer is cleared.
1043 __isl_give isl_printer *isl_printer_flush(
1044 __isl_take isl_printer *p);
1046 =head2 Creating New Sets and Relations
1048 C<isl> has functions for creating some standard sets and relations.
1052 =item * Empty sets and relations
1054 __isl_give isl_basic_set *isl_basic_set_empty(
1055 __isl_take isl_space *space);
1056 __isl_give isl_basic_map *isl_basic_map_empty(
1057 __isl_take isl_space *space);
1058 __isl_give isl_set *isl_set_empty(
1059 __isl_take isl_space *space);
1060 __isl_give isl_map *isl_map_empty(
1061 __isl_take isl_space *space);
1062 __isl_give isl_union_set *isl_union_set_empty(
1063 __isl_take isl_space *space);
1064 __isl_give isl_union_map *isl_union_map_empty(
1065 __isl_take isl_space *space);
1067 For C<isl_union_set>s and C<isl_union_map>s, the space
1068 is only used to specify the parameters.
1070 =item * Universe sets and relations
1072 __isl_give isl_basic_set *isl_basic_set_universe(
1073 __isl_take isl_space *space);
1074 __isl_give isl_basic_map *isl_basic_map_universe(
1075 __isl_take isl_space *space);
1076 __isl_give isl_set *isl_set_universe(
1077 __isl_take isl_space *space);
1078 __isl_give isl_map *isl_map_universe(
1079 __isl_take isl_space *space);
1080 __isl_give isl_union_set *isl_union_set_universe(
1081 __isl_take isl_union_set *uset);
1082 __isl_give isl_union_map *isl_union_map_universe(
1083 __isl_take isl_union_map *umap);
1085 The sets and relations constructed by the functions above
1086 contain all integer values, while those constructed by the
1087 functions below only contain non-negative values.
1089 __isl_give isl_basic_set *isl_basic_set_nat_universe(
1090 __isl_take isl_space *space);
1091 __isl_give isl_basic_map *isl_basic_map_nat_universe(
1092 __isl_take isl_space *space);
1093 __isl_give isl_set *isl_set_nat_universe(
1094 __isl_take isl_space *space);
1095 __isl_give isl_map *isl_map_nat_universe(
1096 __isl_take isl_space *space);
1098 =item * Identity relations
1100 __isl_give isl_basic_map *isl_basic_map_identity(
1101 __isl_take isl_space *space);
1102 __isl_give isl_map *isl_map_identity(
1103 __isl_take isl_space *space);
1105 The number of input and output dimensions in C<space> needs
1108 =item * Lexicographic order
1110 __isl_give isl_map *isl_map_lex_lt(
1111 __isl_take isl_space *set_space);
1112 __isl_give isl_map *isl_map_lex_le(
1113 __isl_take isl_space *set_space);
1114 __isl_give isl_map *isl_map_lex_gt(
1115 __isl_take isl_space *set_space);
1116 __isl_give isl_map *isl_map_lex_ge(
1117 __isl_take isl_space *set_space);
1118 __isl_give isl_map *isl_map_lex_lt_first(
1119 __isl_take isl_space *space, unsigned n);
1120 __isl_give isl_map *isl_map_lex_le_first(
1121 __isl_take isl_space *space, unsigned n);
1122 __isl_give isl_map *isl_map_lex_gt_first(
1123 __isl_take isl_space *space, unsigned n);
1124 __isl_give isl_map *isl_map_lex_ge_first(
1125 __isl_take isl_space *space, unsigned n);
1127 The first four functions take a space for a B<set>
1128 and return relations that express that the elements in the domain
1129 are lexicographically less
1130 (C<isl_map_lex_lt>), less or equal (C<isl_map_lex_le>),
1131 greater (C<isl_map_lex_gt>) or greater or equal (C<isl_map_lex_ge>)
1132 than the elements in the range.
1133 The last four functions take a space for a map
1134 and return relations that express that the first C<n> dimensions
1135 in the domain are lexicographically less
1136 (C<isl_map_lex_lt_first>), less or equal (C<isl_map_lex_le_first>),
1137 greater (C<isl_map_lex_gt_first>) or greater or equal (C<isl_map_lex_ge_first>)
1138 than the first C<n> dimensions in the range.
1142 A basic set or relation can be converted to a set or relation
1143 using the following functions.
1145 __isl_give isl_set *isl_set_from_basic_set(
1146 __isl_take isl_basic_set *bset);
1147 __isl_give isl_map *isl_map_from_basic_map(
1148 __isl_take isl_basic_map *bmap);
1150 Sets and relations can be converted to union sets and relations
1151 using the following functions.
1153 __isl_give isl_union_map *isl_union_map_from_map(
1154 __isl_take isl_map *map);
1155 __isl_give isl_union_set *isl_union_set_from_set(
1156 __isl_take isl_set *set);
1158 The inverse conversions below can only be used if the input
1159 union set or relation is known to contain elements in exactly one
1162 __isl_give isl_set *isl_set_from_union_set(
1163 __isl_take isl_union_set *uset);
1164 __isl_give isl_map *isl_map_from_union_map(
1165 __isl_take isl_union_map *umap);
1167 A zero-dimensional set can be constructed on a given parameter domain
1168 using the following function.
1170 __isl_give isl_set *isl_set_from_params(
1171 __isl_take isl_set *set);
1173 Sets and relations can be copied and freed again using the following
1176 __isl_give isl_basic_set *isl_basic_set_copy(
1177 __isl_keep isl_basic_set *bset);
1178 __isl_give isl_set *isl_set_copy(__isl_keep isl_set *set);
1179 __isl_give isl_union_set *isl_union_set_copy(
1180 __isl_keep isl_union_set *uset);
1181 __isl_give isl_basic_map *isl_basic_map_copy(
1182 __isl_keep isl_basic_map *bmap);
1183 __isl_give isl_map *isl_map_copy(__isl_keep isl_map *map);
1184 __isl_give isl_union_map *isl_union_map_copy(
1185 __isl_keep isl_union_map *umap);
1186 void isl_basic_set_free(__isl_take isl_basic_set *bset);
1187 void isl_set_free(__isl_take isl_set *set);
1188 void *isl_union_set_free(__isl_take isl_union_set *uset);
1189 void isl_basic_map_free(__isl_take isl_basic_map *bmap);
1190 void isl_map_free(__isl_take isl_map *map);
1191 void *isl_union_map_free(__isl_take isl_union_map *umap);
1193 Other sets and relations can be constructed by starting
1194 from a universe set or relation, adding equality and/or
1195 inequality constraints and then projecting out the
1196 existentially quantified variables, if any.
1197 Constraints can be constructed, manipulated and
1198 added to (or removed from) (basic) sets and relations
1199 using the following functions.
1201 #include <isl/constraint.h>
1202 __isl_give isl_constraint *isl_equality_alloc(
1203 __isl_take isl_local_space *ls);
1204 __isl_give isl_constraint *isl_inequality_alloc(
1205 __isl_take isl_local_space *ls);
1206 __isl_give isl_constraint *isl_constraint_set_constant(
1207 __isl_take isl_constraint *constraint, isl_int v);
1208 __isl_give isl_constraint *isl_constraint_set_constant_si(
1209 __isl_take isl_constraint *constraint, int v);
1210 __isl_give isl_constraint *isl_constraint_set_coefficient(
1211 __isl_take isl_constraint *constraint,
1212 enum isl_dim_type type, int pos, isl_int v);
1213 __isl_give isl_constraint *isl_constraint_set_coefficient_si(
1214 __isl_take isl_constraint *constraint,
1215 enum isl_dim_type type, int pos, int v);
1216 __isl_give isl_basic_map *isl_basic_map_add_constraint(
1217 __isl_take isl_basic_map *bmap,
1218 __isl_take isl_constraint *constraint);
1219 __isl_give isl_basic_set *isl_basic_set_add_constraint(
1220 __isl_take isl_basic_set *bset,
1221 __isl_take isl_constraint *constraint);
1222 __isl_give isl_map *isl_map_add_constraint(
1223 __isl_take isl_map *map,
1224 __isl_take isl_constraint *constraint);
1225 __isl_give isl_set *isl_set_add_constraint(
1226 __isl_take isl_set *set,
1227 __isl_take isl_constraint *constraint);
1228 __isl_give isl_basic_set *isl_basic_set_drop_constraint(
1229 __isl_take isl_basic_set *bset,
1230 __isl_take isl_constraint *constraint);
1232 For example, to create a set containing the even integers
1233 between 10 and 42, you would use the following code.
1236 isl_local_space *ls;
1238 isl_basic_set *bset;
1240 space = isl_space_set_alloc(ctx, 0, 2);
1241 bset = isl_basic_set_universe(isl_space_copy(space));
1242 ls = isl_local_space_from_space(space);
1244 c = isl_equality_alloc(isl_local_space_copy(ls));
1245 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1);
1246 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 1, 2);
1247 bset = isl_basic_set_add_constraint(bset, c);
1249 c = isl_inequality_alloc(isl_local_space_copy(ls));
1250 c = isl_constraint_set_constant_si(c, -10);
1251 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, 1);
1252 bset = isl_basic_set_add_constraint(bset, c);
1254 c = isl_inequality_alloc(ls);
1255 c = isl_constraint_set_constant_si(c, 42);
1256 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1);
1257 bset = isl_basic_set_add_constraint(bset, c);
1259 bset = isl_basic_set_project_out(bset, isl_dim_set, 1, 1);
1263 isl_basic_set *bset;
1264 bset = isl_basic_set_read_from_str(ctx,
1265 "{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}");
1267 A basic set or relation can also be constructed from two matrices
1268 describing the equalities and the inequalities.
1270 __isl_give isl_basic_set *isl_basic_set_from_constraint_matrices(
1271 __isl_take isl_space *space,
1272 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
1273 enum isl_dim_type c1,
1274 enum isl_dim_type c2, enum isl_dim_type c3,
1275 enum isl_dim_type c4);
1276 __isl_give isl_basic_map *isl_basic_map_from_constraint_matrices(
1277 __isl_take isl_space *space,
1278 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
1279 enum isl_dim_type c1,
1280 enum isl_dim_type c2, enum isl_dim_type c3,
1281 enum isl_dim_type c4, enum isl_dim_type c5);
1283 The C<isl_dim_type> arguments indicate the order in which
1284 different kinds of variables appear in the input matrices
1285 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
1286 C<isl_dim_set> and C<isl_dim_div> for sets and
1287 of C<isl_dim_cst>, C<isl_dim_param>,
1288 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div> for relations.
1290 A (basic or union) set or relation can also be constructed from a
1291 (union) (piecewise) (multiple) affine expression
1292 or a list of affine expressions
1293 (See L<"Piecewise Quasi Affine Expressions"> and
1294 L<"Piecewise Multiple Quasi Affine Expressions">).
1296 __isl_give isl_basic_map *isl_basic_map_from_aff(
1297 __isl_take isl_aff *aff);
1298 __isl_give isl_map *isl_map_from_aff(
1299 __isl_take isl_aff *aff);
1300 __isl_give isl_set *isl_set_from_pw_aff(
1301 __isl_take isl_pw_aff *pwaff);
1302 __isl_give isl_map *isl_map_from_pw_aff(
1303 __isl_take isl_pw_aff *pwaff);
1304 __isl_give isl_basic_map *isl_basic_map_from_aff_list(
1305 __isl_take isl_space *domain_space,
1306 __isl_take isl_aff_list *list);
1307 __isl_give isl_basic_map *isl_basic_map_from_multi_aff(
1308 __isl_take isl_multi_aff *maff)
1309 __isl_give isl_map *isl_map_from_multi_aff(
1310 __isl_take isl_multi_aff *maff)
1311 __isl_give isl_set *isl_set_from_pw_multi_aff(
1312 __isl_take isl_pw_multi_aff *pma);
1313 __isl_give isl_map *isl_map_from_pw_multi_aff(
1314 __isl_take isl_pw_multi_aff *pma);
1315 __isl_give isl_union_map *
1316 isl_union_map_from_union_pw_multi_aff(
1317 __isl_take isl_union_pw_multi_aff *upma);
1319 The C<domain_dim> argument describes the domain of the resulting
1320 basic relation. It is required because the C<list> may consist
1321 of zero affine expressions.
1323 =head2 Inspecting Sets and Relations
1325 Usually, the user should not have to care about the actual constraints
1326 of the sets and maps, but should instead apply the abstract operations
1327 explained in the following sections.
1328 Occasionally, however, it may be required to inspect the individual
1329 coefficients of the constraints. This section explains how to do so.
1330 In these cases, it may also be useful to have C<isl> compute
1331 an explicit representation of the existentially quantified variables.
1333 __isl_give isl_set *isl_set_compute_divs(
1334 __isl_take isl_set *set);
1335 __isl_give isl_map *isl_map_compute_divs(
1336 __isl_take isl_map *map);
1337 __isl_give isl_union_set *isl_union_set_compute_divs(
1338 __isl_take isl_union_set *uset);
1339 __isl_give isl_union_map *isl_union_map_compute_divs(
1340 __isl_take isl_union_map *umap);
1342 This explicit representation defines the existentially quantified
1343 variables as integer divisions of the other variables, possibly
1344 including earlier existentially quantified variables.
1345 An explicitly represented existentially quantified variable therefore
1346 has a unique value when the values of the other variables are known.
1347 If, furthermore, the same existentials, i.e., existentials
1348 with the same explicit representations, should appear in the
1349 same order in each of the disjuncts of a set or map, then the user should call
1350 either of the following functions.
1352 __isl_give isl_set *isl_set_align_divs(
1353 __isl_take isl_set *set);
1354 __isl_give isl_map *isl_map_align_divs(
1355 __isl_take isl_map *map);
1357 Alternatively, the existentially quantified variables can be removed
1358 using the following functions, which compute an overapproximation.
1360 __isl_give isl_basic_set *isl_basic_set_remove_divs(
1361 __isl_take isl_basic_set *bset);
1362 __isl_give isl_basic_map *isl_basic_map_remove_divs(
1363 __isl_take isl_basic_map *bmap);
1364 __isl_give isl_set *isl_set_remove_divs(
1365 __isl_take isl_set *set);
1366 __isl_give isl_map *isl_map_remove_divs(
1367 __isl_take isl_map *map);
1369 To iterate over all the sets or maps in a union set or map, use
1371 int isl_union_set_foreach_set(__isl_keep isl_union_set *uset,
1372 int (*fn)(__isl_take isl_set *set, void *user),
1374 int isl_union_map_foreach_map(__isl_keep isl_union_map *umap,
1375 int (*fn)(__isl_take isl_map *map, void *user),
1378 The number of sets or maps in a union set or map can be obtained
1381 int isl_union_set_n_set(__isl_keep isl_union_set *uset);
1382 int isl_union_map_n_map(__isl_keep isl_union_map *umap);
1384 To extract the set or map in a given space from a union, use
1386 __isl_give isl_set *isl_union_set_extract_set(
1387 __isl_keep isl_union_set *uset,
1388 __isl_take isl_space *space);
1389 __isl_give isl_map *isl_union_map_extract_map(
1390 __isl_keep isl_union_map *umap,
1391 __isl_take isl_space *space);
1393 To iterate over all the basic sets or maps in a set or map, use
1395 int isl_set_foreach_basic_set(__isl_keep isl_set *set,
1396 int (*fn)(__isl_take isl_basic_set *bset, void *user),
1398 int isl_map_foreach_basic_map(__isl_keep isl_map *map,
1399 int (*fn)(__isl_take isl_basic_map *bmap, void *user),
1402 The callback function C<fn> should return 0 if successful and
1403 -1 if an error occurs. In the latter case, or if any other error
1404 occurs, the above functions will return -1.
1406 It should be noted that C<isl> does not guarantee that
1407 the basic sets or maps passed to C<fn> are disjoint.
1408 If this is required, then the user should call one of
1409 the following functions first.
1411 __isl_give isl_set *isl_set_make_disjoint(
1412 __isl_take isl_set *set);
1413 __isl_give isl_map *isl_map_make_disjoint(
1414 __isl_take isl_map *map);
1416 The number of basic sets in a set can be obtained
1419 int isl_set_n_basic_set(__isl_keep isl_set *set);
1421 To iterate over the constraints of a basic set or map, use
1423 #include <isl/constraint.h>
1425 int isl_basic_set_n_constraint(
1426 __isl_keep isl_basic_set *bset);
1427 int isl_basic_set_foreach_constraint(
1428 __isl_keep isl_basic_set *bset,
1429 int (*fn)(__isl_take isl_constraint *c, void *user),
1431 int isl_basic_map_foreach_constraint(
1432 __isl_keep isl_basic_map *bmap,
1433 int (*fn)(__isl_take isl_constraint *c, void *user),
1435 void *isl_constraint_free(__isl_take isl_constraint *c);
1437 Again, the callback function C<fn> should return 0 if successful and
1438 -1 if an error occurs. In the latter case, or if any other error
1439 occurs, the above functions will return -1.
1440 The constraint C<c> represents either an equality or an inequality.
1441 Use the following function to find out whether a constraint
1442 represents an equality. If not, it represents an inequality.
1444 int isl_constraint_is_equality(
1445 __isl_keep isl_constraint *constraint);
1447 The coefficients of the constraints can be inspected using
1448 the following functions.
1450 int isl_constraint_is_lower_bound(
1451 __isl_keep isl_constraint *constraint,
1452 enum isl_dim_type type, unsigned pos);
1453 int isl_constraint_is_upper_bound(
1454 __isl_keep isl_constraint *constraint,
1455 enum isl_dim_type type, unsigned pos);
1456 void isl_constraint_get_constant(
1457 __isl_keep isl_constraint *constraint, isl_int *v);
1458 void isl_constraint_get_coefficient(
1459 __isl_keep isl_constraint *constraint,
1460 enum isl_dim_type type, int pos, isl_int *v);
1461 int isl_constraint_involves_dims(
1462 __isl_keep isl_constraint *constraint,
1463 enum isl_dim_type type, unsigned first, unsigned n);
1465 The explicit representations of the existentially quantified
1466 variables can be inspected using the following function.
1467 Note that the user is only allowed to use this function
1468 if the inspected set or map is the result of a call
1469 to C<isl_set_compute_divs> or C<isl_map_compute_divs>.
1470 The existentially quantified variable is equal to the floor
1471 of the returned affine expression. The affine expression
1472 itself can be inspected using the functions in
1473 L<"Piecewise Quasi Affine Expressions">.
1475 __isl_give isl_aff *isl_constraint_get_div(
1476 __isl_keep isl_constraint *constraint, int pos);
1478 To obtain the constraints of a basic set or map in matrix
1479 form, use the following functions.
1481 __isl_give isl_mat *isl_basic_set_equalities_matrix(
1482 __isl_keep isl_basic_set *bset,
1483 enum isl_dim_type c1, enum isl_dim_type c2,
1484 enum isl_dim_type c3, enum isl_dim_type c4);
1485 __isl_give isl_mat *isl_basic_set_inequalities_matrix(
1486 __isl_keep isl_basic_set *bset,
1487 enum isl_dim_type c1, enum isl_dim_type c2,
1488 enum isl_dim_type c3, enum isl_dim_type c4);
1489 __isl_give isl_mat *isl_basic_map_equalities_matrix(
1490 __isl_keep isl_basic_map *bmap,
1491 enum isl_dim_type c1,
1492 enum isl_dim_type c2, enum isl_dim_type c3,
1493 enum isl_dim_type c4, enum isl_dim_type c5);
1494 __isl_give isl_mat *isl_basic_map_inequalities_matrix(
1495 __isl_keep isl_basic_map *bmap,
1496 enum isl_dim_type c1,
1497 enum isl_dim_type c2, enum isl_dim_type c3,
1498 enum isl_dim_type c4, enum isl_dim_type c5);
1500 The C<isl_dim_type> arguments dictate the order in which
1501 different kinds of variables appear in the resulting matrix
1502 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
1503 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div>.
1505 The number of parameters, input, output or set dimensions can
1506 be obtained using the following functions.
1508 unsigned isl_basic_set_dim(__isl_keep isl_basic_set *bset,
1509 enum isl_dim_type type);
1510 unsigned isl_basic_map_dim(__isl_keep isl_basic_map *bmap,
1511 enum isl_dim_type type);
1512 unsigned isl_set_dim(__isl_keep isl_set *set,
1513 enum isl_dim_type type);
1514 unsigned isl_map_dim(__isl_keep isl_map *map,
1515 enum isl_dim_type type);
1517 To check whether the description of a set or relation depends
1518 on one or more given dimensions, it is not necessary to iterate over all
1519 constraints. Instead the following functions can be used.
1521 int isl_basic_set_involves_dims(
1522 __isl_keep isl_basic_set *bset,
1523 enum isl_dim_type type, unsigned first, unsigned n);
1524 int isl_set_involves_dims(__isl_keep isl_set *set,
1525 enum isl_dim_type type, unsigned first, unsigned n);
1526 int isl_basic_map_involves_dims(
1527 __isl_keep isl_basic_map *bmap,
1528 enum isl_dim_type type, unsigned first, unsigned n);
1529 int isl_map_involves_dims(__isl_keep isl_map *map,
1530 enum isl_dim_type type, unsigned first, unsigned n);
1532 Similarly, the following functions can be used to check whether
1533 a given dimension is involved in any lower or upper bound.
1535 int isl_set_dim_has_lower_bound(__isl_keep isl_set *set,
1536 enum isl_dim_type type, unsigned pos);
1537 int isl_set_dim_has_upper_bound(__isl_keep isl_set *set,
1538 enum isl_dim_type type, unsigned pos);
1540 The identifiers or names of the domain and range spaces of a set
1541 or relation can be read off or set using the following functions.
1543 __isl_give isl_set *isl_set_set_tuple_id(
1544 __isl_take isl_set *set, __isl_take isl_id *id);
1545 __isl_give isl_set *isl_set_reset_tuple_id(
1546 __isl_take isl_set *set);
1547 int isl_set_has_tuple_id(__isl_keep isl_set *set);
1548 __isl_give isl_id *isl_set_get_tuple_id(
1549 __isl_keep isl_set *set);
1550 __isl_give isl_map *isl_map_set_tuple_id(
1551 __isl_take isl_map *map, enum isl_dim_type type,
1552 __isl_take isl_id *id);
1553 __isl_give isl_map *isl_map_reset_tuple_id(
1554 __isl_take isl_map *map, enum isl_dim_type type);
1555 int isl_map_has_tuple_id(__isl_keep isl_map *map,
1556 enum isl_dim_type type);
1557 __isl_give isl_id *isl_map_get_tuple_id(
1558 __isl_keep isl_map *map, enum isl_dim_type type);
1560 const char *isl_basic_set_get_tuple_name(
1561 __isl_keep isl_basic_set *bset);
1562 __isl_give isl_basic_set *isl_basic_set_set_tuple_name(
1563 __isl_take isl_basic_set *set, const char *s);
1564 int isl_set_has_tuple_name(__isl_keep isl_set *set);
1565 const char *isl_set_get_tuple_name(
1566 __isl_keep isl_set *set);
1567 const char *isl_basic_map_get_tuple_name(
1568 __isl_keep isl_basic_map *bmap,
1569 enum isl_dim_type type);
1570 __isl_give isl_basic_map *isl_basic_map_set_tuple_name(
1571 __isl_take isl_basic_map *bmap,
1572 enum isl_dim_type type, const char *s);
1573 const char *isl_map_get_tuple_name(
1574 __isl_keep isl_map *map,
1575 enum isl_dim_type type);
1577 As with C<isl_space_get_tuple_name>, the value returned points to
1578 an internal data structure.
1579 The identifiers, positions or names of individual dimensions can be
1580 read off using the following functions.
1582 __isl_give isl_set *isl_set_set_dim_id(
1583 __isl_take isl_set *set, enum isl_dim_type type,
1584 unsigned pos, __isl_take isl_id *id);
1585 int isl_set_has_dim_id(__isl_keep isl_set *set,
1586 enum isl_dim_type type, unsigned pos);
1587 __isl_give isl_id *isl_set_get_dim_id(
1588 __isl_keep isl_set *set, enum isl_dim_type type,
1590 int isl_basic_map_has_dim_id(
1591 __isl_keep isl_basic_map *bmap,
1592 enum isl_dim_type type, unsigned pos);
1593 __isl_give isl_map *isl_map_set_dim_id(
1594 __isl_take isl_map *map, enum isl_dim_type type,
1595 unsigned pos, __isl_take isl_id *id);
1596 int isl_map_has_dim_id(__isl_keep isl_map *map,
1597 enum isl_dim_type type, unsigned pos);
1598 __isl_give isl_id *isl_map_get_dim_id(
1599 __isl_keep isl_map *map, enum isl_dim_type type,
1602 int isl_set_find_dim_by_id(__isl_keep isl_set *set,
1603 enum isl_dim_type type, __isl_keep isl_id *id);
1604 int isl_map_find_dim_by_id(__isl_keep isl_map *map,
1605 enum isl_dim_type type, __isl_keep isl_id *id);
1606 int isl_set_find_dim_by_name(__isl_keep isl_set *set,
1607 enum isl_dim_type type, const char *name);
1608 int isl_map_find_dim_by_name(__isl_keep isl_map *map,
1609 enum isl_dim_type type, const char *name);
1611 const char *isl_constraint_get_dim_name(
1612 __isl_keep isl_constraint *constraint,
1613 enum isl_dim_type type, unsigned pos);
1614 const char *isl_basic_set_get_dim_name(
1615 __isl_keep isl_basic_set *bset,
1616 enum isl_dim_type type, unsigned pos);
1617 int isl_set_has_dim_name(__isl_keep isl_set *set,
1618 enum isl_dim_type type, unsigned pos);
1619 const char *isl_set_get_dim_name(
1620 __isl_keep isl_set *set,
1621 enum isl_dim_type type, unsigned pos);
1622 const char *isl_basic_map_get_dim_name(
1623 __isl_keep isl_basic_map *bmap,
1624 enum isl_dim_type type, unsigned pos);
1625 const char *isl_map_get_dim_name(
1626 __isl_keep isl_map *map,
1627 enum isl_dim_type type, unsigned pos);
1629 These functions are mostly useful to obtain the identifiers, positions
1630 or names of the parameters. Identifiers of individual dimensions are
1631 essentially only useful for printing. They are ignored by all other
1632 operations and may not be preserved across those operations.
1636 =head3 Unary Properties
1642 The following functions test whether the given set or relation
1643 contains any integer points. The ``plain'' variants do not perform
1644 any computations, but simply check if the given set or relation
1645 is already known to be empty.
1647 int isl_basic_set_plain_is_empty(__isl_keep isl_basic_set *bset);
1648 int isl_basic_set_is_empty(__isl_keep isl_basic_set *bset);
1649 int isl_set_plain_is_empty(__isl_keep isl_set *set);
1650 int isl_set_is_empty(__isl_keep isl_set *set);
1651 int isl_union_set_is_empty(__isl_keep isl_union_set *uset);
1652 int isl_basic_map_plain_is_empty(__isl_keep isl_basic_map *bmap);
1653 int isl_basic_map_is_empty(__isl_keep isl_basic_map *bmap);
1654 int isl_map_plain_is_empty(__isl_keep isl_map *map);
1655 int isl_map_is_empty(__isl_keep isl_map *map);
1656 int isl_union_map_is_empty(__isl_keep isl_union_map *umap);
1658 =item * Universality
1660 int isl_basic_set_is_universe(__isl_keep isl_basic_set *bset);
1661 int isl_basic_map_is_universe(__isl_keep isl_basic_map *bmap);
1662 int isl_set_plain_is_universe(__isl_keep isl_set *set);
1664 =item * Single-valuedness
1666 int isl_map_plain_is_single_valued(
1667 __isl_keep isl_map *map);
1668 int isl_map_is_single_valued(__isl_keep isl_map *map);
1669 int isl_union_map_is_single_valued(__isl_keep isl_union_map *umap);
1673 int isl_map_plain_is_injective(__isl_keep isl_map *map);
1674 int isl_map_is_injective(__isl_keep isl_map *map);
1675 int isl_union_map_plain_is_injective(
1676 __isl_keep isl_union_map *umap);
1677 int isl_union_map_is_injective(
1678 __isl_keep isl_union_map *umap);
1682 int isl_map_is_bijective(__isl_keep isl_map *map);
1683 int isl_union_map_is_bijective(__isl_keep isl_union_map *umap);
1687 int isl_basic_map_plain_is_fixed(
1688 __isl_keep isl_basic_map *bmap,
1689 enum isl_dim_type type, unsigned pos,
1691 int isl_set_plain_is_fixed(__isl_keep isl_set *set,
1692 enum isl_dim_type type, unsigned pos,
1694 int isl_map_plain_is_fixed(__isl_keep isl_map *map,
1695 enum isl_dim_type type, unsigned pos,
1698 Check if the relation obviously lies on a hyperplane where the given dimension
1699 has a fixed value and if so, return that value in C<*val>.
1703 To check whether a set is a parameter domain, use this function:
1705 int isl_set_is_params(__isl_keep isl_set *set);
1706 int isl_union_set_is_params(
1707 __isl_keep isl_union_set *uset);
1711 The following functions check whether the domain of the given
1712 (basic) set is a wrapped relation.
1714 int isl_basic_set_is_wrapping(
1715 __isl_keep isl_basic_set *bset);
1716 int isl_set_is_wrapping(__isl_keep isl_set *set);
1718 =item * Internal Product
1720 int isl_basic_map_can_zip(
1721 __isl_keep isl_basic_map *bmap);
1722 int isl_map_can_zip(__isl_keep isl_map *map);
1724 Check whether the product of domain and range of the given relation
1726 i.e., whether both domain and range are nested relations.
1730 int isl_basic_map_can_curry(
1731 __isl_keep isl_basic_map *bmap);
1732 int isl_map_can_curry(__isl_keep isl_map *map);
1734 Check whether the domain of the (basic) relation is a wrapped relation.
1738 =head3 Binary Properties
1744 int isl_set_plain_is_equal(__isl_keep isl_set *set1,
1745 __isl_keep isl_set *set2);
1746 int isl_set_is_equal(__isl_keep isl_set *set1,
1747 __isl_keep isl_set *set2);
1748 int isl_union_set_is_equal(
1749 __isl_keep isl_union_set *uset1,
1750 __isl_keep isl_union_set *uset2);
1751 int isl_basic_map_is_equal(
1752 __isl_keep isl_basic_map *bmap1,
1753 __isl_keep isl_basic_map *bmap2);
1754 int isl_map_is_equal(__isl_keep isl_map *map1,
1755 __isl_keep isl_map *map2);
1756 int isl_map_plain_is_equal(__isl_keep isl_map *map1,
1757 __isl_keep isl_map *map2);
1758 int isl_union_map_is_equal(
1759 __isl_keep isl_union_map *umap1,
1760 __isl_keep isl_union_map *umap2);
1762 =item * Disjointness
1764 int isl_set_plain_is_disjoint(__isl_keep isl_set *set1,
1765 __isl_keep isl_set *set2);
1769 int isl_basic_set_is_subset(
1770 __isl_keep isl_basic_set *bset1,
1771 __isl_keep isl_basic_set *bset2);
1772 int isl_set_is_subset(__isl_keep isl_set *set1,
1773 __isl_keep isl_set *set2);
1774 int isl_set_is_strict_subset(
1775 __isl_keep isl_set *set1,
1776 __isl_keep isl_set *set2);
1777 int isl_union_set_is_subset(
1778 __isl_keep isl_union_set *uset1,
1779 __isl_keep isl_union_set *uset2);
1780 int isl_union_set_is_strict_subset(
1781 __isl_keep isl_union_set *uset1,
1782 __isl_keep isl_union_set *uset2);
1783 int isl_basic_map_is_subset(
1784 __isl_keep isl_basic_map *bmap1,
1785 __isl_keep isl_basic_map *bmap2);
1786 int isl_basic_map_is_strict_subset(
1787 __isl_keep isl_basic_map *bmap1,
1788 __isl_keep isl_basic_map *bmap2);
1789 int isl_map_is_subset(
1790 __isl_keep isl_map *map1,
1791 __isl_keep isl_map *map2);
1792 int isl_map_is_strict_subset(
1793 __isl_keep isl_map *map1,
1794 __isl_keep isl_map *map2);
1795 int isl_union_map_is_subset(
1796 __isl_keep isl_union_map *umap1,
1797 __isl_keep isl_union_map *umap2);
1798 int isl_union_map_is_strict_subset(
1799 __isl_keep isl_union_map *umap1,
1800 __isl_keep isl_union_map *umap2);
1804 =head2 Unary Operations
1810 __isl_give isl_set *isl_set_complement(
1811 __isl_take isl_set *set);
1812 __isl_give isl_map *isl_map_complement(
1813 __isl_take isl_map *map);
1817 __isl_give isl_basic_map *isl_basic_map_reverse(
1818 __isl_take isl_basic_map *bmap);
1819 __isl_give isl_map *isl_map_reverse(
1820 __isl_take isl_map *map);
1821 __isl_give isl_union_map *isl_union_map_reverse(
1822 __isl_take isl_union_map *umap);
1826 __isl_give isl_basic_set *isl_basic_set_project_out(
1827 __isl_take isl_basic_set *bset,
1828 enum isl_dim_type type, unsigned first, unsigned n);
1829 __isl_give isl_basic_map *isl_basic_map_project_out(
1830 __isl_take isl_basic_map *bmap,
1831 enum isl_dim_type type, unsigned first, unsigned n);
1832 __isl_give isl_set *isl_set_project_out(__isl_take isl_set *set,
1833 enum isl_dim_type type, unsigned first, unsigned n);
1834 __isl_give isl_map *isl_map_project_out(__isl_take isl_map *map,
1835 enum isl_dim_type type, unsigned first, unsigned n);
1836 __isl_give isl_basic_set *isl_basic_set_params(
1837 __isl_take isl_basic_set *bset);
1838 __isl_give isl_basic_set *isl_basic_map_domain(
1839 __isl_take isl_basic_map *bmap);
1840 __isl_give isl_basic_set *isl_basic_map_range(
1841 __isl_take isl_basic_map *bmap);
1842 __isl_give isl_set *isl_set_params(__isl_take isl_set *set);
1843 __isl_give isl_set *isl_map_params(__isl_take isl_map *map);
1844 __isl_give isl_set *isl_map_domain(
1845 __isl_take isl_map *bmap);
1846 __isl_give isl_set *isl_map_range(
1847 __isl_take isl_map *map);
1848 __isl_give isl_set *isl_union_set_params(
1849 __isl_take isl_union_set *uset);
1850 __isl_give isl_set *isl_union_map_params(
1851 __isl_take isl_union_map *umap);
1852 __isl_give isl_union_set *isl_union_map_domain(
1853 __isl_take isl_union_map *umap);
1854 __isl_give isl_union_set *isl_union_map_range(
1855 __isl_take isl_union_map *umap);
1857 __isl_give isl_basic_map *isl_basic_map_domain_map(
1858 __isl_take isl_basic_map *bmap);
1859 __isl_give isl_basic_map *isl_basic_map_range_map(
1860 __isl_take isl_basic_map *bmap);
1861 __isl_give isl_map *isl_map_domain_map(__isl_take isl_map *map);
1862 __isl_give isl_map *isl_map_range_map(__isl_take isl_map *map);
1863 __isl_give isl_union_map *isl_union_map_domain_map(
1864 __isl_take isl_union_map *umap);
1865 __isl_give isl_union_map *isl_union_map_range_map(
1866 __isl_take isl_union_map *umap);
1868 The functions above construct a (basic, regular or union) relation
1869 that maps (a wrapped version of) the input relation to its domain or range.
1873 __isl_give isl_set *isl_set_eliminate(
1874 __isl_take isl_set *set, enum isl_dim_type type,
1875 unsigned first, unsigned n);
1876 __isl_give isl_basic_map *isl_basic_map_eliminate(
1877 __isl_take isl_basic_map *bmap,
1878 enum isl_dim_type type,
1879 unsigned first, unsigned n);
1880 __isl_give isl_map *isl_map_eliminate(
1881 __isl_take isl_map *map, enum isl_dim_type type,
1882 unsigned first, unsigned n);
1884 Eliminate the coefficients for the given dimensions from the constraints,
1885 without removing the dimensions.
1889 __isl_give isl_basic_set *isl_basic_set_fix(
1890 __isl_take isl_basic_set *bset,
1891 enum isl_dim_type type, unsigned pos,
1893 __isl_give isl_basic_set *isl_basic_set_fix_si(
1894 __isl_take isl_basic_set *bset,
1895 enum isl_dim_type type, unsigned pos, int value);
1896 __isl_give isl_set *isl_set_fix(__isl_take isl_set *set,
1897 enum isl_dim_type type, unsigned pos,
1899 __isl_give isl_set *isl_set_fix_si(__isl_take isl_set *set,
1900 enum isl_dim_type type, unsigned pos, int value);
1901 __isl_give isl_basic_map *isl_basic_map_fix_si(
1902 __isl_take isl_basic_map *bmap,
1903 enum isl_dim_type type, unsigned pos, int value);
1904 __isl_give isl_map *isl_map_fix_si(__isl_take isl_map *map,
1905 enum isl_dim_type type, unsigned pos, int value);
1907 Intersect the set or relation with the hyperplane where the given
1908 dimension has the fixed given value.
1910 __isl_give isl_basic_map *isl_basic_map_lower_bound_si(
1911 __isl_take isl_basic_map *bmap,
1912 enum isl_dim_type type, unsigned pos, int value);
1913 __isl_give isl_set *isl_set_lower_bound(
1914 __isl_take isl_set *set,
1915 enum isl_dim_type type, unsigned pos,
1917 __isl_give isl_set *isl_set_lower_bound_si(
1918 __isl_take isl_set *set,
1919 enum isl_dim_type type, unsigned pos, int value);
1920 __isl_give isl_map *isl_map_lower_bound_si(
1921 __isl_take isl_map *map,
1922 enum isl_dim_type type, unsigned pos, int value);
1923 __isl_give isl_set *isl_set_upper_bound(
1924 __isl_take isl_set *set,
1925 enum isl_dim_type type, unsigned pos,
1927 __isl_give isl_set *isl_set_upper_bound_si(
1928 __isl_take isl_set *set,
1929 enum isl_dim_type type, unsigned pos, int value);
1930 __isl_give isl_map *isl_map_upper_bound_si(
1931 __isl_take isl_map *map,
1932 enum isl_dim_type type, unsigned pos, int value);
1934 Intersect the set or relation with the half-space where the given
1935 dimension has a value bounded by the fixed given value.
1937 __isl_give isl_set *isl_set_equate(__isl_take isl_set *set,
1938 enum isl_dim_type type1, int pos1,
1939 enum isl_dim_type type2, int pos2);
1940 __isl_give isl_map *isl_map_equate(__isl_take isl_map *map,
1941 enum isl_dim_type type1, int pos1,
1942 enum isl_dim_type type2, int pos2);
1944 Intersect the set or relation with the hyperplane where the given
1945 dimensions are equal to each other.
1947 __isl_give isl_map *isl_map_oppose(__isl_take isl_map *map,
1948 enum isl_dim_type type1, int pos1,
1949 enum isl_dim_type type2, int pos2);
1951 Intersect the relation with the hyperplane where the given
1952 dimensions have opposite values.
1954 __isl_give isl_map *isl_map_order_gt(__isl_take isl_map *map,
1955 enum isl_dim_type type1, int pos1,
1956 enum isl_dim_type type2, int pos2);
1958 Intersect the relation with the half-space where the given
1959 dimensions satisfy the given ordering.
1963 __isl_give isl_map *isl_set_identity(
1964 __isl_take isl_set *set);
1965 __isl_give isl_union_map *isl_union_set_identity(
1966 __isl_take isl_union_set *uset);
1968 Construct an identity relation on the given (union) set.
1972 __isl_give isl_basic_set *isl_basic_map_deltas(
1973 __isl_take isl_basic_map *bmap);
1974 __isl_give isl_set *isl_map_deltas(__isl_take isl_map *map);
1975 __isl_give isl_union_set *isl_union_map_deltas(
1976 __isl_take isl_union_map *umap);
1978 These functions return a (basic) set containing the differences
1979 between image elements and corresponding domain elements in the input.
1981 __isl_give isl_basic_map *isl_basic_map_deltas_map(
1982 __isl_take isl_basic_map *bmap);
1983 __isl_give isl_map *isl_map_deltas_map(
1984 __isl_take isl_map *map);
1985 __isl_give isl_union_map *isl_union_map_deltas_map(
1986 __isl_take isl_union_map *umap);
1988 The functions above construct a (basic, regular or union) relation
1989 that maps (a wrapped version of) the input relation to its delta set.
1993 Simplify the representation of a set or relation by trying
1994 to combine pairs of basic sets or relations into a single
1995 basic set or relation.
1997 __isl_give isl_set *isl_set_coalesce(__isl_take isl_set *set);
1998 __isl_give isl_map *isl_map_coalesce(__isl_take isl_map *map);
1999 __isl_give isl_union_set *isl_union_set_coalesce(
2000 __isl_take isl_union_set *uset);
2001 __isl_give isl_union_map *isl_union_map_coalesce(
2002 __isl_take isl_union_map *umap);
2004 One of the methods for combining pairs of basic sets or relations
2005 can result in coefficients that are much larger than those that appear
2006 in the constraints of the input. By default, the coefficients are
2007 not allowed to grow larger, but this can be changed by unsetting
2008 the following option.
2010 int isl_options_set_coalesce_bounded_wrapping(
2011 isl_ctx *ctx, int val);
2012 int isl_options_get_coalesce_bounded_wrapping(
2015 =item * Detecting equalities
2017 __isl_give isl_basic_set *isl_basic_set_detect_equalities(
2018 __isl_take isl_basic_set *bset);
2019 __isl_give isl_basic_map *isl_basic_map_detect_equalities(
2020 __isl_take isl_basic_map *bmap);
2021 __isl_give isl_set *isl_set_detect_equalities(
2022 __isl_take isl_set *set);
2023 __isl_give isl_map *isl_map_detect_equalities(
2024 __isl_take isl_map *map);
2025 __isl_give isl_union_set *isl_union_set_detect_equalities(
2026 __isl_take isl_union_set *uset);
2027 __isl_give isl_union_map *isl_union_map_detect_equalities(
2028 __isl_take isl_union_map *umap);
2030 Simplify the representation of a set or relation by detecting implicit
2033 =item * Removing redundant constraints
2035 __isl_give isl_basic_set *isl_basic_set_remove_redundancies(
2036 __isl_take isl_basic_set *bset);
2037 __isl_give isl_set *isl_set_remove_redundancies(
2038 __isl_take isl_set *set);
2039 __isl_give isl_basic_map *isl_basic_map_remove_redundancies(
2040 __isl_take isl_basic_map *bmap);
2041 __isl_give isl_map *isl_map_remove_redundancies(
2042 __isl_take isl_map *map);
2046 __isl_give isl_basic_set *isl_set_convex_hull(
2047 __isl_take isl_set *set);
2048 __isl_give isl_basic_map *isl_map_convex_hull(
2049 __isl_take isl_map *map);
2051 If the input set or relation has any existentially quantified
2052 variables, then the result of these operations is currently undefined.
2056 __isl_give isl_basic_set *isl_set_simple_hull(
2057 __isl_take isl_set *set);
2058 __isl_give isl_basic_map *isl_map_simple_hull(
2059 __isl_take isl_map *map);
2060 __isl_give isl_union_map *isl_union_map_simple_hull(
2061 __isl_take isl_union_map *umap);
2063 These functions compute a single basic set or relation
2064 that contains the whole input set or relation.
2065 In particular, the output is described by translates
2066 of the constraints describing the basic sets or relations in the input.
2070 (See \autoref{s:simple hull}.)
2076 __isl_give isl_basic_set *isl_basic_set_affine_hull(
2077 __isl_take isl_basic_set *bset);
2078 __isl_give isl_basic_set *isl_set_affine_hull(
2079 __isl_take isl_set *set);
2080 __isl_give isl_union_set *isl_union_set_affine_hull(
2081 __isl_take isl_union_set *uset);
2082 __isl_give isl_basic_map *isl_basic_map_affine_hull(
2083 __isl_take isl_basic_map *bmap);
2084 __isl_give isl_basic_map *isl_map_affine_hull(
2085 __isl_take isl_map *map);
2086 __isl_give isl_union_map *isl_union_map_affine_hull(
2087 __isl_take isl_union_map *umap);
2089 In case of union sets and relations, the affine hull is computed
2092 =item * Polyhedral hull
2094 __isl_give isl_basic_set *isl_set_polyhedral_hull(
2095 __isl_take isl_set *set);
2096 __isl_give isl_basic_map *isl_map_polyhedral_hull(
2097 __isl_take isl_map *map);
2098 __isl_give isl_union_set *isl_union_set_polyhedral_hull(
2099 __isl_take isl_union_set *uset);
2100 __isl_give isl_union_map *isl_union_map_polyhedral_hull(
2101 __isl_take isl_union_map *umap);
2103 These functions compute a single basic set or relation
2104 not involving any existentially quantified variables
2105 that contains the whole input set or relation.
2106 In case of union sets and relations, the polyhedral hull is computed
2111 __isl_give isl_basic_set *isl_basic_set_sample(
2112 __isl_take isl_basic_set *bset);
2113 __isl_give isl_basic_set *isl_set_sample(
2114 __isl_take isl_set *set);
2115 __isl_give isl_basic_map *isl_basic_map_sample(
2116 __isl_take isl_basic_map *bmap);
2117 __isl_give isl_basic_map *isl_map_sample(
2118 __isl_take isl_map *map);
2120 If the input (basic) set or relation is non-empty, then return
2121 a singleton subset of the input. Otherwise, return an empty set.
2123 =item * Optimization
2125 #include <isl/ilp.h>
2126 enum isl_lp_result isl_basic_set_max(
2127 __isl_keep isl_basic_set *bset,
2128 __isl_keep isl_aff *obj, isl_int *opt)
2129 enum isl_lp_result isl_set_min(__isl_keep isl_set *set,
2130 __isl_keep isl_aff *obj, isl_int *opt);
2131 enum isl_lp_result isl_set_max(__isl_keep isl_set *set,
2132 __isl_keep isl_aff *obj, isl_int *opt);
2134 Compute the minimum or maximum of the integer affine expression C<obj>
2135 over the points in C<set>, returning the result in C<opt>.
2136 The return value may be one of C<isl_lp_error>,
2137 C<isl_lp_ok>, C<isl_lp_unbounded> or C<isl_lp_empty>.
2139 =item * Parametric optimization
2141 __isl_give isl_pw_aff *isl_set_dim_min(
2142 __isl_take isl_set *set, int pos);
2143 __isl_give isl_pw_aff *isl_set_dim_max(
2144 __isl_take isl_set *set, int pos);
2145 __isl_give isl_pw_aff *isl_map_dim_max(
2146 __isl_take isl_map *map, int pos);
2148 Compute the minimum or maximum of the given set or output dimension
2149 as a function of the parameters (and input dimensions), but independently
2150 of the other set or output dimensions.
2151 For lexicographic optimization, see L<"Lexicographic Optimization">.
2155 The following functions compute either the set of (rational) coefficient
2156 values of valid constraints for the given set or the set of (rational)
2157 values satisfying the constraints with coefficients from the given set.
2158 Internally, these two sets of functions perform essentially the
2159 same operations, except that the set of coefficients is assumed to
2160 be a cone, while the set of values may be any polyhedron.
2161 The current implementation is based on the Farkas lemma and
2162 Fourier-Motzkin elimination, but this may change or be made optional
2163 in future. In particular, future implementations may use different
2164 dualization algorithms or skip the elimination step.
2166 __isl_give isl_basic_set *isl_basic_set_coefficients(
2167 __isl_take isl_basic_set *bset);
2168 __isl_give isl_basic_set *isl_set_coefficients(
2169 __isl_take isl_set *set);
2170 __isl_give isl_union_set *isl_union_set_coefficients(
2171 __isl_take isl_union_set *bset);
2172 __isl_give isl_basic_set *isl_basic_set_solutions(
2173 __isl_take isl_basic_set *bset);
2174 __isl_give isl_basic_set *isl_set_solutions(
2175 __isl_take isl_set *set);
2176 __isl_give isl_union_set *isl_union_set_solutions(
2177 __isl_take isl_union_set *bset);
2181 __isl_give isl_map *isl_map_fixed_power(
2182 __isl_take isl_map *map, isl_int exp);
2183 __isl_give isl_union_map *isl_union_map_fixed_power(
2184 __isl_take isl_union_map *umap, isl_int exp);
2186 Compute the given power of C<map>, where C<exp> is assumed to be non-zero.
2187 If the exponent C<exp> is negative, then the -C<exp> th power of the inverse
2188 of C<map> is computed.
2190 __isl_give isl_map *isl_map_power(__isl_take isl_map *map,
2192 __isl_give isl_union_map *isl_union_map_power(
2193 __isl_take isl_union_map *umap, int *exact);
2195 Compute a parametric representation for all positive powers I<k> of C<map>.
2196 The result maps I<k> to a nested relation corresponding to the
2197 I<k>th power of C<map>.
2198 The result may be an overapproximation. If the result is known to be exact,
2199 then C<*exact> is set to C<1>.
2201 =item * Transitive closure
2203 __isl_give isl_map *isl_map_transitive_closure(
2204 __isl_take isl_map *map, int *exact);
2205 __isl_give isl_union_map *isl_union_map_transitive_closure(
2206 __isl_take isl_union_map *umap, int *exact);
2208 Compute the transitive closure of C<map>.
2209 The result may be an overapproximation. If the result is known to be exact,
2210 then C<*exact> is set to C<1>.
2212 =item * Reaching path lengths
2214 __isl_give isl_map *isl_map_reaching_path_lengths(
2215 __isl_take isl_map *map, int *exact);
2217 Compute a relation that maps each element in the range of C<map>
2218 to the lengths of all paths composed of edges in C<map> that
2219 end up in the given element.
2220 The result may be an overapproximation. If the result is known to be exact,
2221 then C<*exact> is set to C<1>.
2222 To compute the I<maximal> path length, the resulting relation
2223 should be postprocessed by C<isl_map_lexmax>.
2224 In particular, if the input relation is a dependence relation
2225 (mapping sources to sinks), then the maximal path length corresponds
2226 to the free schedule.
2227 Note, however, that C<isl_map_lexmax> expects the maximum to be
2228 finite, so if the path lengths are unbounded (possibly due to
2229 the overapproximation), then you will get an error message.
2233 __isl_give isl_basic_set *isl_basic_map_wrap(
2234 __isl_take isl_basic_map *bmap);
2235 __isl_give isl_set *isl_map_wrap(
2236 __isl_take isl_map *map);
2237 __isl_give isl_union_set *isl_union_map_wrap(
2238 __isl_take isl_union_map *umap);
2239 __isl_give isl_basic_map *isl_basic_set_unwrap(
2240 __isl_take isl_basic_set *bset);
2241 __isl_give isl_map *isl_set_unwrap(
2242 __isl_take isl_set *set);
2243 __isl_give isl_union_map *isl_union_set_unwrap(
2244 __isl_take isl_union_set *uset);
2248 Remove any internal structure of domain (and range) of the given
2249 set or relation. If there is any such internal structure in the input,
2250 then the name of the space is also removed.
2252 __isl_give isl_basic_set *isl_basic_set_flatten(
2253 __isl_take isl_basic_set *bset);
2254 __isl_give isl_set *isl_set_flatten(
2255 __isl_take isl_set *set);
2256 __isl_give isl_basic_map *isl_basic_map_flatten_domain(
2257 __isl_take isl_basic_map *bmap);
2258 __isl_give isl_basic_map *isl_basic_map_flatten_range(
2259 __isl_take isl_basic_map *bmap);
2260 __isl_give isl_map *isl_map_flatten_range(
2261 __isl_take isl_map *map);
2262 __isl_give isl_map *isl_map_flatten_domain(
2263 __isl_take isl_map *map);
2264 __isl_give isl_basic_map *isl_basic_map_flatten(
2265 __isl_take isl_basic_map *bmap);
2266 __isl_give isl_map *isl_map_flatten(
2267 __isl_take isl_map *map);
2269 __isl_give isl_map *isl_set_flatten_map(
2270 __isl_take isl_set *set);
2272 The function above constructs a relation
2273 that maps the input set to a flattened version of the set.
2277 Lift the input set to a space with extra dimensions corresponding
2278 to the existentially quantified variables in the input.
2279 In particular, the result lives in a wrapped map where the domain
2280 is the original space and the range corresponds to the original
2281 existentially quantified variables.
2283 __isl_give isl_basic_set *isl_basic_set_lift(
2284 __isl_take isl_basic_set *bset);
2285 __isl_give isl_set *isl_set_lift(
2286 __isl_take isl_set *set);
2287 __isl_give isl_union_set *isl_union_set_lift(
2288 __isl_take isl_union_set *uset);
2290 Given a local space that contains the existentially quantified
2291 variables of a set, a basic relation that, when applied to
2292 a basic set, has essentially the same effect as C<isl_basic_set_lift>,
2293 can be constructed using the following function.
2295 #include <isl/local_space.h>
2296 __isl_give isl_basic_map *isl_local_space_lifting(
2297 __isl_take isl_local_space *ls);
2299 =item * Internal Product
2301 __isl_give isl_basic_map *isl_basic_map_zip(
2302 __isl_take isl_basic_map *bmap);
2303 __isl_give isl_map *isl_map_zip(
2304 __isl_take isl_map *map);
2305 __isl_give isl_union_map *isl_union_map_zip(
2306 __isl_take isl_union_map *umap);
2308 Given a relation with nested relations for domain and range,
2309 interchange the range of the domain with the domain of the range.
2313 __isl_give isl_basic_map *isl_basic_map_curry(
2314 __isl_take isl_basic_map *bmap);
2315 __isl_give isl_map *isl_map_curry(
2316 __isl_take isl_map *map);
2317 __isl_give isl_union_map *isl_union_map_curry(
2318 __isl_take isl_union_map *umap);
2320 Given a relation with a nested relation for domain,
2321 move the range of the nested relation out of the domain
2322 and use it as the domain of a nested relation in the range,
2323 with the original range as range of this nested relation.
2325 =item * Aligning parameters
2327 __isl_give isl_set *isl_set_align_params(
2328 __isl_take isl_set *set,
2329 __isl_take isl_space *model);
2330 __isl_give isl_map *isl_map_align_params(
2331 __isl_take isl_map *map,
2332 __isl_take isl_space *model);
2334 Change the order of the parameters of the given set or relation
2335 such that the first parameters match those of C<model>.
2336 This may involve the introduction of extra parameters.
2337 All parameters need to be named.
2339 =item * Dimension manipulation
2341 __isl_give isl_set *isl_set_add_dims(
2342 __isl_take isl_set *set,
2343 enum isl_dim_type type, unsigned n);
2344 __isl_give isl_map *isl_map_add_dims(
2345 __isl_take isl_map *map,
2346 enum isl_dim_type type, unsigned n);
2347 __isl_give isl_set *isl_set_insert_dims(
2348 __isl_take isl_set *set,
2349 enum isl_dim_type type, unsigned pos, unsigned n);
2350 __isl_give isl_map *isl_map_insert_dims(
2351 __isl_take isl_map *map,
2352 enum isl_dim_type type, unsigned pos, unsigned n);
2353 __isl_give isl_basic_set *isl_basic_set_move_dims(
2354 __isl_take isl_basic_set *bset,
2355 enum isl_dim_type dst_type, unsigned dst_pos,
2356 enum isl_dim_type src_type, unsigned src_pos,
2358 __isl_give isl_basic_map *isl_basic_map_move_dims(
2359 __isl_take isl_basic_map *bmap,
2360 enum isl_dim_type dst_type, unsigned dst_pos,
2361 enum isl_dim_type src_type, unsigned src_pos,
2363 __isl_give isl_set *isl_set_move_dims(
2364 __isl_take isl_set *set,
2365 enum isl_dim_type dst_type, unsigned dst_pos,
2366 enum isl_dim_type src_type, unsigned src_pos,
2368 __isl_give isl_map *isl_map_move_dims(
2369 __isl_take isl_map *map,
2370 enum isl_dim_type dst_type, unsigned dst_pos,
2371 enum isl_dim_type src_type, unsigned src_pos,
2374 It is usually not advisable to directly change the (input or output)
2375 space of a set or a relation as this removes the name and the internal
2376 structure of the space. However, the above functions can be useful
2377 to add new parameters, assuming
2378 C<isl_set_align_params> and C<isl_map_align_params>
2383 =head2 Binary Operations
2385 The two arguments of a binary operation not only need to live
2386 in the same C<isl_ctx>, they currently also need to have
2387 the same (number of) parameters.
2389 =head3 Basic Operations
2393 =item * Intersection
2395 __isl_give isl_basic_set *isl_basic_set_intersect_params(
2396 __isl_take isl_basic_set *bset1,
2397 __isl_take isl_basic_set *bset2);
2398 __isl_give isl_basic_set *isl_basic_set_intersect(
2399 __isl_take isl_basic_set *bset1,
2400 __isl_take isl_basic_set *bset2);
2401 __isl_give isl_set *isl_set_intersect_params(
2402 __isl_take isl_set *set,
2403 __isl_take isl_set *params);
2404 __isl_give isl_set *isl_set_intersect(
2405 __isl_take isl_set *set1,
2406 __isl_take isl_set *set2);
2407 __isl_give isl_union_set *isl_union_set_intersect_params(
2408 __isl_take isl_union_set *uset,
2409 __isl_take isl_set *set);
2410 __isl_give isl_union_map *isl_union_map_intersect_params(
2411 __isl_take isl_union_map *umap,
2412 __isl_take isl_set *set);
2413 __isl_give isl_union_set *isl_union_set_intersect(
2414 __isl_take isl_union_set *uset1,
2415 __isl_take isl_union_set *uset2);
2416 __isl_give isl_basic_map *isl_basic_map_intersect_domain(
2417 __isl_take isl_basic_map *bmap,
2418 __isl_take isl_basic_set *bset);
2419 __isl_give isl_basic_map *isl_basic_map_intersect_range(
2420 __isl_take isl_basic_map *bmap,
2421 __isl_take isl_basic_set *bset);
2422 __isl_give isl_basic_map *isl_basic_map_intersect(
2423 __isl_take isl_basic_map *bmap1,
2424 __isl_take isl_basic_map *bmap2);
2425 __isl_give isl_map *isl_map_intersect_params(
2426 __isl_take isl_map *map,
2427 __isl_take isl_set *params);
2428 __isl_give isl_map *isl_map_intersect_domain(
2429 __isl_take isl_map *map,
2430 __isl_take isl_set *set);
2431 __isl_give isl_map *isl_map_intersect_range(
2432 __isl_take isl_map *map,
2433 __isl_take isl_set *set);
2434 __isl_give isl_map *isl_map_intersect(
2435 __isl_take isl_map *map1,
2436 __isl_take isl_map *map2);
2437 __isl_give isl_union_map *isl_union_map_intersect_domain(
2438 __isl_take isl_union_map *umap,
2439 __isl_take isl_union_set *uset);
2440 __isl_give isl_union_map *isl_union_map_intersect_range(
2441 __isl_take isl_union_map *umap,
2442 __isl_take isl_union_set *uset);
2443 __isl_give isl_union_map *isl_union_map_intersect(
2444 __isl_take isl_union_map *umap1,
2445 __isl_take isl_union_map *umap2);
2449 __isl_give isl_set *isl_basic_set_union(
2450 __isl_take isl_basic_set *bset1,
2451 __isl_take isl_basic_set *bset2);
2452 __isl_give isl_map *isl_basic_map_union(
2453 __isl_take isl_basic_map *bmap1,
2454 __isl_take isl_basic_map *bmap2);
2455 __isl_give isl_set *isl_set_union(
2456 __isl_take isl_set *set1,
2457 __isl_take isl_set *set2);
2458 __isl_give isl_map *isl_map_union(
2459 __isl_take isl_map *map1,
2460 __isl_take isl_map *map2);
2461 __isl_give isl_union_set *isl_union_set_union(
2462 __isl_take isl_union_set *uset1,
2463 __isl_take isl_union_set *uset2);
2464 __isl_give isl_union_map *isl_union_map_union(
2465 __isl_take isl_union_map *umap1,
2466 __isl_take isl_union_map *umap2);
2468 =item * Set difference
2470 __isl_give isl_set *isl_set_subtract(
2471 __isl_take isl_set *set1,
2472 __isl_take isl_set *set2);
2473 __isl_give isl_map *isl_map_subtract(
2474 __isl_take isl_map *map1,
2475 __isl_take isl_map *map2);
2476 __isl_give isl_map *isl_map_subtract_domain(
2477 __isl_take isl_map *map,
2478 __isl_take isl_set *dom);
2479 __isl_give isl_map *isl_map_subtract_range(
2480 __isl_take isl_map *map,
2481 __isl_take isl_set *dom);
2482 __isl_give isl_union_set *isl_union_set_subtract(
2483 __isl_take isl_union_set *uset1,
2484 __isl_take isl_union_set *uset2);
2485 __isl_give isl_union_map *isl_union_map_subtract(
2486 __isl_take isl_union_map *umap1,
2487 __isl_take isl_union_map *umap2);
2491 __isl_give isl_basic_set *isl_basic_set_apply(
2492 __isl_take isl_basic_set *bset,
2493 __isl_take isl_basic_map *bmap);
2494 __isl_give isl_set *isl_set_apply(
2495 __isl_take isl_set *set,
2496 __isl_take isl_map *map);
2497 __isl_give isl_union_set *isl_union_set_apply(
2498 __isl_take isl_union_set *uset,
2499 __isl_take isl_union_map *umap);
2500 __isl_give isl_basic_map *isl_basic_map_apply_domain(
2501 __isl_take isl_basic_map *bmap1,
2502 __isl_take isl_basic_map *bmap2);
2503 __isl_give isl_basic_map *isl_basic_map_apply_range(
2504 __isl_take isl_basic_map *bmap1,
2505 __isl_take isl_basic_map *bmap2);
2506 __isl_give isl_map *isl_map_apply_domain(
2507 __isl_take isl_map *map1,
2508 __isl_take isl_map *map2);
2509 __isl_give isl_union_map *isl_union_map_apply_domain(
2510 __isl_take isl_union_map *umap1,
2511 __isl_take isl_union_map *umap2);
2512 __isl_give isl_map *isl_map_apply_range(
2513 __isl_take isl_map *map1,
2514 __isl_take isl_map *map2);
2515 __isl_give isl_union_map *isl_union_map_apply_range(
2516 __isl_take isl_union_map *umap1,
2517 __isl_take isl_union_map *umap2);
2519 =item * Cartesian Product
2521 __isl_give isl_set *isl_set_product(
2522 __isl_take isl_set *set1,
2523 __isl_take isl_set *set2);
2524 __isl_give isl_union_set *isl_union_set_product(
2525 __isl_take isl_union_set *uset1,
2526 __isl_take isl_union_set *uset2);
2527 __isl_give isl_basic_map *isl_basic_map_domain_product(
2528 __isl_take isl_basic_map *bmap1,
2529 __isl_take isl_basic_map *bmap2);
2530 __isl_give isl_basic_map *isl_basic_map_range_product(
2531 __isl_take isl_basic_map *bmap1,
2532 __isl_take isl_basic_map *bmap2);
2533 __isl_give isl_map *isl_map_domain_product(
2534 __isl_take isl_map *map1,
2535 __isl_take isl_map *map2);
2536 __isl_give isl_map *isl_map_range_product(
2537 __isl_take isl_map *map1,
2538 __isl_take isl_map *map2);
2539 __isl_give isl_union_map *isl_union_map_range_product(
2540 __isl_take isl_union_map *umap1,
2541 __isl_take isl_union_map *umap2);
2542 __isl_give isl_map *isl_map_product(
2543 __isl_take isl_map *map1,
2544 __isl_take isl_map *map2);
2545 __isl_give isl_union_map *isl_union_map_product(
2546 __isl_take isl_union_map *umap1,
2547 __isl_take isl_union_map *umap2);
2549 The above functions compute the cross product of the given
2550 sets or relations. The domains and ranges of the results
2551 are wrapped maps between domains and ranges of the inputs.
2552 To obtain a ``flat'' product, use the following functions
2555 __isl_give isl_basic_set *isl_basic_set_flat_product(
2556 __isl_take isl_basic_set *bset1,
2557 __isl_take isl_basic_set *bset2);
2558 __isl_give isl_set *isl_set_flat_product(
2559 __isl_take isl_set *set1,
2560 __isl_take isl_set *set2);
2561 __isl_give isl_basic_map *isl_basic_map_flat_range_product(
2562 __isl_take isl_basic_map *bmap1,
2563 __isl_take isl_basic_map *bmap2);
2564 __isl_give isl_map *isl_map_flat_domain_product(
2565 __isl_take isl_map *map1,
2566 __isl_take isl_map *map2);
2567 __isl_give isl_map *isl_map_flat_range_product(
2568 __isl_take isl_map *map1,
2569 __isl_take isl_map *map2);
2570 __isl_give isl_union_map *isl_union_map_flat_range_product(
2571 __isl_take isl_union_map *umap1,
2572 __isl_take isl_union_map *umap2);
2573 __isl_give isl_basic_map *isl_basic_map_flat_product(
2574 __isl_take isl_basic_map *bmap1,
2575 __isl_take isl_basic_map *bmap2);
2576 __isl_give isl_map *isl_map_flat_product(
2577 __isl_take isl_map *map1,
2578 __isl_take isl_map *map2);
2580 =item * Simplification
2582 __isl_give isl_basic_set *isl_basic_set_gist(
2583 __isl_take isl_basic_set *bset,
2584 __isl_take isl_basic_set *context);
2585 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
2586 __isl_take isl_set *context);
2587 __isl_give isl_set *isl_set_gist_params(
2588 __isl_take isl_set *set,
2589 __isl_take isl_set *context);
2590 __isl_give isl_union_set *isl_union_set_gist(
2591 __isl_take isl_union_set *uset,
2592 __isl_take isl_union_set *context);
2593 __isl_give isl_union_set *isl_union_set_gist_params(
2594 __isl_take isl_union_set *uset,
2595 __isl_take isl_set *set);
2596 __isl_give isl_basic_map *isl_basic_map_gist(
2597 __isl_take isl_basic_map *bmap,
2598 __isl_take isl_basic_map *context);
2599 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
2600 __isl_take isl_map *context);
2601 __isl_give isl_map *isl_map_gist_params(
2602 __isl_take isl_map *map,
2603 __isl_take isl_set *context);
2604 __isl_give isl_map *isl_map_gist_domain(
2605 __isl_take isl_map *map,
2606 __isl_take isl_set *context);
2607 __isl_give isl_map *isl_map_gist_range(
2608 __isl_take isl_map *map,
2609 __isl_take isl_set *context);
2610 __isl_give isl_union_map *isl_union_map_gist(
2611 __isl_take isl_union_map *umap,
2612 __isl_take isl_union_map *context);
2613 __isl_give isl_union_map *isl_union_map_gist_params(
2614 __isl_take isl_union_map *umap,
2615 __isl_take isl_set *set);
2616 __isl_give isl_union_map *isl_union_map_gist_domain(
2617 __isl_take isl_union_map *umap,
2618 __isl_take isl_union_set *uset);
2619 __isl_give isl_union_map *isl_union_map_gist_range(
2620 __isl_take isl_union_map *umap,
2621 __isl_take isl_union_set *uset);
2623 The gist operation returns a set or relation that has the
2624 same intersection with the context as the input set or relation.
2625 Any implicit equality in the intersection is made explicit in the result,
2626 while all inequalities that are redundant with respect to the intersection
2628 In case of union sets and relations, the gist operation is performed
2633 =head3 Lexicographic Optimization
2635 Given a (basic) set C<set> (or C<bset>) and a zero-dimensional domain C<dom>,
2636 the following functions
2637 compute a set that contains the lexicographic minimum or maximum
2638 of the elements in C<set> (or C<bset>) for those values of the parameters
2639 that satisfy C<dom>.
2640 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
2641 that contains the parameter values in C<dom> for which C<set> (or C<bset>)
2643 In other words, the union of the parameter values
2644 for which the result is non-empty and of C<*empty>
2647 __isl_give isl_set *isl_basic_set_partial_lexmin(
2648 __isl_take isl_basic_set *bset,
2649 __isl_take isl_basic_set *dom,
2650 __isl_give isl_set **empty);
2651 __isl_give isl_set *isl_basic_set_partial_lexmax(
2652 __isl_take isl_basic_set *bset,
2653 __isl_take isl_basic_set *dom,
2654 __isl_give isl_set **empty);
2655 __isl_give isl_set *isl_set_partial_lexmin(
2656 __isl_take isl_set *set, __isl_take isl_set *dom,
2657 __isl_give isl_set **empty);
2658 __isl_give isl_set *isl_set_partial_lexmax(
2659 __isl_take isl_set *set, __isl_take isl_set *dom,
2660 __isl_give isl_set **empty);
2662 Given a (basic) set C<set> (or C<bset>), the following functions simply
2663 return a set containing the lexicographic minimum or maximum
2664 of the elements in C<set> (or C<bset>).
2665 In case of union sets, the optimum is computed per space.
2667 __isl_give isl_set *isl_basic_set_lexmin(
2668 __isl_take isl_basic_set *bset);
2669 __isl_give isl_set *isl_basic_set_lexmax(
2670 __isl_take isl_basic_set *bset);
2671 __isl_give isl_set *isl_set_lexmin(
2672 __isl_take isl_set *set);
2673 __isl_give isl_set *isl_set_lexmax(
2674 __isl_take isl_set *set);
2675 __isl_give isl_union_set *isl_union_set_lexmin(
2676 __isl_take isl_union_set *uset);
2677 __isl_give isl_union_set *isl_union_set_lexmax(
2678 __isl_take isl_union_set *uset);
2680 Given a (basic) relation C<map> (or C<bmap>) and a domain C<dom>,
2681 the following functions
2682 compute a relation that maps each element of C<dom>
2683 to the single lexicographic minimum or maximum
2684 of the elements that are associated to that same
2685 element in C<map> (or C<bmap>).
2686 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
2687 that contains the elements in C<dom> that do not map
2688 to any elements in C<map> (or C<bmap>).
2689 In other words, the union of the domain of the result and of C<*empty>
2692 __isl_give isl_map *isl_basic_map_partial_lexmax(
2693 __isl_take isl_basic_map *bmap,
2694 __isl_take isl_basic_set *dom,
2695 __isl_give isl_set **empty);
2696 __isl_give isl_map *isl_basic_map_partial_lexmin(
2697 __isl_take isl_basic_map *bmap,
2698 __isl_take isl_basic_set *dom,
2699 __isl_give isl_set **empty);
2700 __isl_give isl_map *isl_map_partial_lexmax(
2701 __isl_take isl_map *map, __isl_take isl_set *dom,
2702 __isl_give isl_set **empty);
2703 __isl_give isl_map *isl_map_partial_lexmin(
2704 __isl_take isl_map *map, __isl_take isl_set *dom,
2705 __isl_give isl_set **empty);
2707 Given a (basic) map C<map> (or C<bmap>), the following functions simply
2708 return a map mapping each element in the domain of
2709 C<map> (or C<bmap>) to the lexicographic minimum or maximum
2710 of all elements associated to that element.
2711 In case of union relations, the optimum is computed per space.
2713 __isl_give isl_map *isl_basic_map_lexmin(
2714 __isl_take isl_basic_map *bmap);
2715 __isl_give isl_map *isl_basic_map_lexmax(
2716 __isl_take isl_basic_map *bmap);
2717 __isl_give isl_map *isl_map_lexmin(
2718 __isl_take isl_map *map);
2719 __isl_give isl_map *isl_map_lexmax(
2720 __isl_take isl_map *map);
2721 __isl_give isl_union_map *isl_union_map_lexmin(
2722 __isl_take isl_union_map *umap);
2723 __isl_give isl_union_map *isl_union_map_lexmax(
2724 __isl_take isl_union_map *umap);
2726 The following functions return their result in the form of
2727 a piecewise multi-affine expression
2728 (See L<"Piecewise Multiple Quasi Affine Expressions">),
2729 but are otherwise equivalent to the corresponding functions
2730 returning a basic set or relation.
2732 __isl_give isl_pw_multi_aff *
2733 isl_basic_map_lexmin_pw_multi_aff(
2734 __isl_take isl_basic_map *bmap);
2735 __isl_give isl_pw_multi_aff *
2736 isl_basic_set_partial_lexmin_pw_multi_aff(
2737 __isl_take isl_basic_set *bset,
2738 __isl_take isl_basic_set *dom,
2739 __isl_give isl_set **empty);
2740 __isl_give isl_pw_multi_aff *
2741 isl_basic_set_partial_lexmax_pw_multi_aff(
2742 __isl_take isl_basic_set *bset,
2743 __isl_take isl_basic_set *dom,
2744 __isl_give isl_set **empty);
2745 __isl_give isl_pw_multi_aff *
2746 isl_basic_map_partial_lexmin_pw_multi_aff(
2747 __isl_take isl_basic_map *bmap,
2748 __isl_take isl_basic_set *dom,
2749 __isl_give isl_set **empty);
2750 __isl_give isl_pw_multi_aff *
2751 isl_basic_map_partial_lexmax_pw_multi_aff(
2752 __isl_take isl_basic_map *bmap,
2753 __isl_take isl_basic_set *dom,
2754 __isl_give isl_set **empty);
2758 Lists are defined over several element types, including
2759 C<isl_aff>, C<isl_pw_aff>, C<isl_basic_set> and C<isl_set>.
2760 Here we take lists of C<isl_set>s as an example.
2761 Lists can be created, copied and freed using the following functions.
2763 #include <isl/list.h>
2764 __isl_give isl_set_list *isl_set_list_from_set(
2765 __isl_take isl_set *el);
2766 __isl_give isl_set_list *isl_set_list_alloc(
2767 isl_ctx *ctx, int n);
2768 __isl_give isl_set_list *isl_set_list_copy(
2769 __isl_keep isl_set_list *list);
2770 __isl_give isl_set_list *isl_set_list_add(
2771 __isl_take isl_set_list *list,
2772 __isl_take isl_set *el);
2773 __isl_give isl_set_list *isl_set_list_concat(
2774 __isl_take isl_set_list *list1,
2775 __isl_take isl_set_list *list2);
2776 void *isl_set_list_free(__isl_take isl_set_list *list);
2778 C<isl_set_list_alloc> creates an empty list with a capacity for
2779 C<n> elements. C<isl_set_list_from_set> creates a list with a single
2782 Lists can be inspected using the following functions.
2784 #include <isl/list.h>
2785 isl_ctx *isl_set_list_get_ctx(__isl_keep isl_set_list *list);
2786 int isl_set_list_n_set(__isl_keep isl_set_list *list);
2787 __isl_give isl_set *isl_set_list_get_set(
2788 __isl_keep isl_set_list *list, int index);
2789 int isl_set_list_foreach(__isl_keep isl_set_list *list,
2790 int (*fn)(__isl_take isl_set *el, void *user),
2793 Lists can be printed using
2795 #include <isl/list.h>
2796 __isl_give isl_printer *isl_printer_print_set_list(
2797 __isl_take isl_printer *p,
2798 __isl_keep isl_set_list *list);
2802 Vectors can be created, copied and freed using the following functions.
2804 #include <isl/vec.h>
2805 __isl_give isl_vec *isl_vec_alloc(isl_ctx *ctx,
2807 __isl_give isl_vec *isl_vec_copy(__isl_keep isl_vec *vec);
2808 void isl_vec_free(__isl_take isl_vec *vec);
2810 Note that the elements of a newly created vector may have arbitrary values.
2811 The elements can be changed and inspected using the following functions.
2813 isl_ctx *isl_vec_get_ctx(__isl_keep isl_vec *vec);
2814 int isl_vec_size(__isl_keep isl_vec *vec);
2815 int isl_vec_get_element(__isl_keep isl_vec *vec,
2816 int pos, isl_int *v);
2817 __isl_give isl_vec *isl_vec_set_element(
2818 __isl_take isl_vec *vec, int pos, isl_int v);
2819 __isl_give isl_vec *isl_vec_set_element_si(
2820 __isl_take isl_vec *vec, int pos, int v);
2821 __isl_give isl_vec *isl_vec_set(__isl_take isl_vec *vec,
2823 __isl_give isl_vec *isl_vec_set_si(__isl_take isl_vec *vec,
2826 C<isl_vec_get_element> will return a negative value if anything went wrong.
2827 In that case, the value of C<*v> is undefined.
2831 Matrices can be created, copied and freed using the following functions.
2833 #include <isl/mat.h>
2834 __isl_give isl_mat *isl_mat_alloc(isl_ctx *ctx,
2835 unsigned n_row, unsigned n_col);
2836 __isl_give isl_mat *isl_mat_copy(__isl_keep isl_mat *mat);
2837 void isl_mat_free(__isl_take isl_mat *mat);
2839 Note that the elements of a newly created matrix may have arbitrary values.
2840 The elements can be changed and inspected using the following functions.
2842 isl_ctx *isl_mat_get_ctx(__isl_keep isl_mat *mat);
2843 int isl_mat_rows(__isl_keep isl_mat *mat);
2844 int isl_mat_cols(__isl_keep isl_mat *mat);
2845 int isl_mat_get_element(__isl_keep isl_mat *mat,
2846 int row, int col, isl_int *v);
2847 __isl_give isl_mat *isl_mat_set_element(__isl_take isl_mat *mat,
2848 int row, int col, isl_int v);
2849 __isl_give isl_mat *isl_mat_set_element_si(__isl_take isl_mat *mat,
2850 int row, int col, int v);
2852 C<isl_mat_get_element> will return a negative value if anything went wrong.
2853 In that case, the value of C<*v> is undefined.
2855 The following function can be used to compute the (right) inverse
2856 of a matrix, i.e., a matrix such that the product of the original
2857 and the inverse (in that order) is a multiple of the identity matrix.
2858 The input matrix is assumed to be of full row-rank.
2860 __isl_give isl_mat *isl_mat_right_inverse(__isl_take isl_mat *mat);
2862 The following function can be used to compute the (right) kernel
2863 (or null space) of a matrix, i.e., a matrix such that the product of
2864 the original and the kernel (in that order) is the zero matrix.
2866 __isl_give isl_mat *isl_mat_right_kernel(__isl_take isl_mat *mat);
2868 =head2 Piecewise Quasi Affine Expressions
2870 The zero quasi affine expression on a given domain can be created using
2872 __isl_give isl_aff *isl_aff_zero_on_domain(
2873 __isl_take isl_local_space *ls);
2875 Note that the space in which the resulting object lives is a map space
2876 with the given space as domain and a one-dimensional range.
2878 An empty piecewise quasi affine expression (one with no cells)
2879 or a piecewise quasi affine expression with a single cell can
2880 be created using the following functions.
2882 #include <isl/aff.h>
2883 __isl_give isl_pw_aff *isl_pw_aff_empty(
2884 __isl_take isl_space *space);
2885 __isl_give isl_pw_aff *isl_pw_aff_alloc(
2886 __isl_take isl_set *set, __isl_take isl_aff *aff);
2887 __isl_give isl_pw_aff *isl_pw_aff_from_aff(
2888 __isl_take isl_aff *aff);
2890 A piecewise quasi affine expression that is equal to 1 on a set
2891 and 0 outside the set can be created using the following function.
2893 #include <isl/aff.h>
2894 __isl_give isl_pw_aff *isl_set_indicator_function(
2895 __isl_take isl_set *set);
2897 Quasi affine expressions can be copied and freed using
2899 #include <isl/aff.h>
2900 __isl_give isl_aff *isl_aff_copy(__isl_keep isl_aff *aff);
2901 void *isl_aff_free(__isl_take isl_aff *aff);
2903 __isl_give isl_pw_aff *isl_pw_aff_copy(
2904 __isl_keep isl_pw_aff *pwaff);
2905 void *isl_pw_aff_free(__isl_take isl_pw_aff *pwaff);
2907 A (rational) bound on a dimension can be extracted from an C<isl_constraint>
2908 using the following function. The constraint is required to have
2909 a non-zero coefficient for the specified dimension.
2911 #include <isl/constraint.h>
2912 __isl_give isl_aff *isl_constraint_get_bound(
2913 __isl_keep isl_constraint *constraint,
2914 enum isl_dim_type type, int pos);
2916 The entire affine expression of the constraint can also be extracted
2917 using the following function.
2919 #include <isl/constraint.h>
2920 __isl_give isl_aff *isl_constraint_get_aff(
2921 __isl_keep isl_constraint *constraint);
2923 Conversely, an equality constraint equating
2924 the affine expression to zero or an inequality constraint enforcing
2925 the affine expression to be non-negative, can be constructed using
2927 __isl_give isl_constraint *isl_equality_from_aff(
2928 __isl_take isl_aff *aff);
2929 __isl_give isl_constraint *isl_inequality_from_aff(
2930 __isl_take isl_aff *aff);
2932 The expression can be inspected using
2934 #include <isl/aff.h>
2935 isl_ctx *isl_aff_get_ctx(__isl_keep isl_aff *aff);
2936 int isl_aff_dim(__isl_keep isl_aff *aff,
2937 enum isl_dim_type type);
2938 __isl_give isl_local_space *isl_aff_get_domain_local_space(
2939 __isl_keep isl_aff *aff);
2940 __isl_give isl_local_space *isl_aff_get_local_space(
2941 __isl_keep isl_aff *aff);
2942 const char *isl_aff_get_dim_name(__isl_keep isl_aff *aff,
2943 enum isl_dim_type type, unsigned pos);
2944 const char *isl_pw_aff_get_dim_name(
2945 __isl_keep isl_pw_aff *pa,
2946 enum isl_dim_type type, unsigned pos);
2947 int isl_pw_aff_has_dim_id(__isl_keep isl_pw_aff *pa,
2948 enum isl_dim_type type, unsigned pos);
2949 __isl_give isl_id *isl_pw_aff_get_dim_id(
2950 __isl_keep isl_pw_aff *pa,
2951 enum isl_dim_type type, unsigned pos);
2952 int isl_aff_get_constant(__isl_keep isl_aff *aff,
2954 int isl_aff_get_coefficient(__isl_keep isl_aff *aff,
2955 enum isl_dim_type type, int pos, isl_int *v);
2956 int isl_aff_get_denominator(__isl_keep isl_aff *aff,
2958 __isl_give isl_aff *isl_aff_get_div(
2959 __isl_keep isl_aff *aff, int pos);
2961 int isl_pw_aff_n_piece(__isl_keep isl_pw_aff *pwaff);
2962 int isl_pw_aff_foreach_piece(__isl_keep isl_pw_aff *pwaff,
2963 int (*fn)(__isl_take isl_set *set,
2964 __isl_take isl_aff *aff,
2965 void *user), void *user);
2967 int isl_aff_is_cst(__isl_keep isl_aff *aff);
2968 int isl_pw_aff_is_cst(__isl_keep isl_pw_aff *pwaff);
2970 int isl_aff_involves_dims(__isl_keep isl_aff *aff,
2971 enum isl_dim_type type, unsigned first, unsigned n);
2972 int isl_pw_aff_involves_dims(__isl_keep isl_pw_aff *pwaff,
2973 enum isl_dim_type type, unsigned first, unsigned n);
2975 isl_ctx *isl_pw_aff_get_ctx(__isl_keep isl_pw_aff *pwaff);
2976 unsigned isl_pw_aff_dim(__isl_keep isl_pw_aff *pwaff,
2977 enum isl_dim_type type);
2978 int isl_pw_aff_is_empty(__isl_keep isl_pw_aff *pwaff);
2980 It can be modified using
2982 #include <isl/aff.h>
2983 __isl_give isl_pw_aff *isl_pw_aff_set_tuple_id(
2984 __isl_take isl_pw_aff *pwaff,
2985 enum isl_dim_type type, __isl_take isl_id *id);
2986 __isl_give isl_aff *isl_aff_set_dim_name(
2987 __isl_take isl_aff *aff, enum isl_dim_type type,
2988 unsigned pos, const char *s);
2989 __isl_give isl_aff *isl_aff_set_dim_id(
2990 __isl_take isl_aff *aff, enum isl_dim_type type,
2991 unsigned pos, __isl_take isl_id *id);
2992 __isl_give isl_pw_aff *isl_pw_aff_set_dim_id(
2993 __isl_take isl_pw_aff *pma,
2994 enum isl_dim_type type, unsigned pos,
2995 __isl_take isl_id *id);
2996 __isl_give isl_aff *isl_aff_set_constant(
2997 __isl_take isl_aff *aff, isl_int v);
2998 __isl_give isl_aff *isl_aff_set_constant_si(
2999 __isl_take isl_aff *aff, int v);
3000 __isl_give isl_aff *isl_aff_set_coefficient(
3001 __isl_take isl_aff *aff,
3002 enum isl_dim_type type, int pos, isl_int v);
3003 __isl_give isl_aff *isl_aff_set_coefficient_si(
3004 __isl_take isl_aff *aff,
3005 enum isl_dim_type type, int pos, int v);
3006 __isl_give isl_aff *isl_aff_set_denominator(
3007 __isl_take isl_aff *aff, isl_int v);
3009 __isl_give isl_aff *isl_aff_add_constant(
3010 __isl_take isl_aff *aff, isl_int v);
3011 __isl_give isl_aff *isl_aff_add_constant_si(
3012 __isl_take isl_aff *aff, int v);
3013 __isl_give isl_aff *isl_aff_add_coefficient(
3014 __isl_take isl_aff *aff,
3015 enum isl_dim_type type, int pos, isl_int v);
3016 __isl_give isl_aff *isl_aff_add_coefficient_si(
3017 __isl_take isl_aff *aff,
3018 enum isl_dim_type type, int pos, int v);
3020 __isl_give isl_aff *isl_aff_insert_dims(
3021 __isl_take isl_aff *aff,
3022 enum isl_dim_type type, unsigned first, unsigned n);
3023 __isl_give isl_pw_aff *isl_pw_aff_insert_dims(
3024 __isl_take isl_pw_aff *pwaff,
3025 enum isl_dim_type type, unsigned first, unsigned n);
3026 __isl_give isl_aff *isl_aff_add_dims(
3027 __isl_take isl_aff *aff,
3028 enum isl_dim_type type, unsigned n);
3029 __isl_give isl_pw_aff *isl_pw_aff_add_dims(
3030 __isl_take isl_pw_aff *pwaff,
3031 enum isl_dim_type type, unsigned n);
3032 __isl_give isl_aff *isl_aff_drop_dims(
3033 __isl_take isl_aff *aff,
3034 enum isl_dim_type type, unsigned first, unsigned n);
3035 __isl_give isl_pw_aff *isl_pw_aff_drop_dims(
3036 __isl_take isl_pw_aff *pwaff,
3037 enum isl_dim_type type, unsigned first, unsigned n);
3039 Note that the C<set_constant> and C<set_coefficient> functions
3040 set the I<numerator> of the constant or coefficient, while
3041 C<add_constant> and C<add_coefficient> add an integer value to
3042 the possibly rational constant or coefficient.
3044 To check whether an affine expressions is obviously zero
3045 or obviously equal to some other affine expression, use
3047 #include <isl/aff.h>
3048 int isl_aff_plain_is_zero(__isl_keep isl_aff *aff);
3049 int isl_aff_plain_is_equal(__isl_keep isl_aff *aff1,
3050 __isl_keep isl_aff *aff2);
3051 int isl_pw_aff_plain_is_equal(
3052 __isl_keep isl_pw_aff *pwaff1,
3053 __isl_keep isl_pw_aff *pwaff2);
3057 #include <isl/aff.h>
3058 __isl_give isl_aff *isl_aff_add(__isl_take isl_aff *aff1,
3059 __isl_take isl_aff *aff2);
3060 __isl_give isl_pw_aff *isl_pw_aff_add(
3061 __isl_take isl_pw_aff *pwaff1,
3062 __isl_take isl_pw_aff *pwaff2);
3063 __isl_give isl_pw_aff *isl_pw_aff_min(
3064 __isl_take isl_pw_aff *pwaff1,
3065 __isl_take isl_pw_aff *pwaff2);
3066 __isl_give isl_pw_aff *isl_pw_aff_max(
3067 __isl_take isl_pw_aff *pwaff1,
3068 __isl_take isl_pw_aff *pwaff2);
3069 __isl_give isl_aff *isl_aff_sub(__isl_take isl_aff *aff1,
3070 __isl_take isl_aff *aff2);
3071 __isl_give isl_pw_aff *isl_pw_aff_sub(
3072 __isl_take isl_pw_aff *pwaff1,
3073 __isl_take isl_pw_aff *pwaff2);
3074 __isl_give isl_aff *isl_aff_neg(__isl_take isl_aff *aff);
3075 __isl_give isl_pw_aff *isl_pw_aff_neg(
3076 __isl_take isl_pw_aff *pwaff);
3077 __isl_give isl_aff *isl_aff_ceil(__isl_take isl_aff *aff);
3078 __isl_give isl_pw_aff *isl_pw_aff_ceil(
3079 __isl_take isl_pw_aff *pwaff);
3080 __isl_give isl_aff *isl_aff_floor(__isl_take isl_aff *aff);
3081 __isl_give isl_pw_aff *isl_pw_aff_floor(
3082 __isl_take isl_pw_aff *pwaff);
3083 __isl_give isl_aff *isl_aff_mod(__isl_take isl_aff *aff,
3085 __isl_give isl_pw_aff *isl_pw_aff_mod(
3086 __isl_take isl_pw_aff *pwaff, isl_int mod);
3087 __isl_give isl_aff *isl_aff_scale(__isl_take isl_aff *aff,
3089 __isl_give isl_pw_aff *isl_pw_aff_scale(
3090 __isl_take isl_pw_aff *pwaff, isl_int f);
3091 __isl_give isl_aff *isl_aff_scale_down(__isl_take isl_aff *aff,
3093 __isl_give isl_aff *isl_aff_scale_down_ui(
3094 __isl_take isl_aff *aff, unsigned f);
3095 __isl_give isl_pw_aff *isl_pw_aff_scale_down(
3096 __isl_take isl_pw_aff *pwaff, isl_int f);
3098 __isl_give isl_pw_aff *isl_pw_aff_list_min(
3099 __isl_take isl_pw_aff_list *list);
3100 __isl_give isl_pw_aff *isl_pw_aff_list_max(
3101 __isl_take isl_pw_aff_list *list);
3103 __isl_give isl_pw_aff *isl_pw_aff_coalesce(
3104 __isl_take isl_pw_aff *pwqp);
3106 __isl_give isl_aff *isl_aff_align_params(
3107 __isl_take isl_aff *aff,
3108 __isl_take isl_space *model);
3109 __isl_give isl_pw_aff *isl_pw_aff_align_params(
3110 __isl_take isl_pw_aff *pwaff,
3111 __isl_take isl_space *model);
3113 __isl_give isl_aff *isl_aff_project_domain_on_params(
3114 __isl_take isl_aff *aff);
3116 __isl_give isl_aff *isl_aff_gist_params(
3117 __isl_take isl_aff *aff,
3118 __isl_take isl_set *context);
3119 __isl_give isl_aff *isl_aff_gist(__isl_take isl_aff *aff,
3120 __isl_take isl_set *context);
3121 __isl_give isl_pw_aff *isl_pw_aff_gist_params(
3122 __isl_take isl_pw_aff *pwaff,
3123 __isl_take isl_set *context);
3124 __isl_give isl_pw_aff *isl_pw_aff_gist(
3125 __isl_take isl_pw_aff *pwaff,
3126 __isl_take isl_set *context);
3128 __isl_give isl_set *isl_pw_aff_domain(
3129 __isl_take isl_pw_aff *pwaff);
3130 __isl_give isl_pw_aff *isl_pw_aff_intersect_domain(
3131 __isl_take isl_pw_aff *pa,
3132 __isl_take isl_set *set);
3133 __isl_give isl_pw_aff *isl_pw_aff_intersect_params(
3134 __isl_take isl_pw_aff *pa,
3135 __isl_take isl_set *set);
3137 __isl_give isl_aff *isl_aff_mul(__isl_take isl_aff *aff1,
3138 __isl_take isl_aff *aff2);
3139 __isl_give isl_pw_aff *isl_pw_aff_mul(
3140 __isl_take isl_pw_aff *pwaff1,
3141 __isl_take isl_pw_aff *pwaff2);
3143 When multiplying two affine expressions, at least one of the two needs
3146 #include <isl/aff.h>
3147 __isl_give isl_basic_set *isl_aff_le_basic_set(
3148 __isl_take isl_aff *aff1, __isl_take isl_aff *aff2);
3149 __isl_give isl_basic_set *isl_aff_ge_basic_set(
3150 __isl_take isl_aff *aff1, __isl_take isl_aff *aff2);
3151 __isl_give isl_set *isl_pw_aff_eq_set(
3152 __isl_take isl_pw_aff *pwaff1,
3153 __isl_take isl_pw_aff *pwaff2);
3154 __isl_give isl_set *isl_pw_aff_ne_set(
3155 __isl_take isl_pw_aff *pwaff1,
3156 __isl_take isl_pw_aff *pwaff2);
3157 __isl_give isl_set *isl_pw_aff_le_set(
3158 __isl_take isl_pw_aff *pwaff1,
3159 __isl_take isl_pw_aff *pwaff2);
3160 __isl_give isl_set *isl_pw_aff_lt_set(
3161 __isl_take isl_pw_aff *pwaff1,
3162 __isl_take isl_pw_aff *pwaff2);
3163 __isl_give isl_set *isl_pw_aff_ge_set(
3164 __isl_take isl_pw_aff *pwaff1,
3165 __isl_take isl_pw_aff *pwaff2);
3166 __isl_give isl_set *isl_pw_aff_gt_set(
3167 __isl_take isl_pw_aff *pwaff1,
3168 __isl_take isl_pw_aff *pwaff2);
3170 __isl_give isl_set *isl_pw_aff_list_eq_set(
3171 __isl_take isl_pw_aff_list *list1,
3172 __isl_take isl_pw_aff_list *list2);
3173 __isl_give isl_set *isl_pw_aff_list_ne_set(
3174 __isl_take isl_pw_aff_list *list1,
3175 __isl_take isl_pw_aff_list *list2);
3176 __isl_give isl_set *isl_pw_aff_list_le_set(
3177 __isl_take isl_pw_aff_list *list1,
3178 __isl_take isl_pw_aff_list *list2);
3179 __isl_give isl_set *isl_pw_aff_list_lt_set(
3180 __isl_take isl_pw_aff_list *list1,
3181 __isl_take isl_pw_aff_list *list2);
3182 __isl_give isl_set *isl_pw_aff_list_ge_set(
3183 __isl_take isl_pw_aff_list *list1,
3184 __isl_take isl_pw_aff_list *list2);
3185 __isl_give isl_set *isl_pw_aff_list_gt_set(
3186 __isl_take isl_pw_aff_list *list1,
3187 __isl_take isl_pw_aff_list *list2);
3189 The function C<isl_aff_ge_basic_set> returns a basic set
3190 containing those elements in the shared space
3191 of C<aff1> and C<aff2> where C<aff1> is greater than or equal to C<aff2>.
3192 The function C<isl_aff_ge_set> returns a set
3193 containing those elements in the shared domain
3194 of C<pwaff1> and C<pwaff2> where C<pwaff1> is greater than or equal to C<pwaff2>.
3195 The functions operating on C<isl_pw_aff_list> apply the corresponding
3196 C<isl_pw_aff> function to each pair of elements in the two lists.
3198 #include <isl/aff.h>
3199 __isl_give isl_set *isl_pw_aff_nonneg_set(
3200 __isl_take isl_pw_aff *pwaff);
3201 __isl_give isl_set *isl_pw_aff_zero_set(
3202 __isl_take isl_pw_aff *pwaff);
3203 __isl_give isl_set *isl_pw_aff_non_zero_set(
3204 __isl_take isl_pw_aff *pwaff);
3206 The function C<isl_pw_aff_nonneg_set> returns a set
3207 containing those elements in the domain
3208 of C<pwaff> where C<pwaff> is non-negative.
3210 #include <isl/aff.h>
3211 __isl_give isl_pw_aff *isl_pw_aff_cond(
3212 __isl_take isl_pw_aff *cond,
3213 __isl_take isl_pw_aff *pwaff_true,
3214 __isl_take isl_pw_aff *pwaff_false);
3216 The function C<isl_pw_aff_cond> performs a conditional operator
3217 and returns an expression that is equal to C<pwaff_true>
3218 for elements where C<cond> is non-zero and equal to C<pwaff_false> for elements
3219 where C<cond> is zero.
3221 #include <isl/aff.h>
3222 __isl_give isl_pw_aff *isl_pw_aff_union_min(
3223 __isl_take isl_pw_aff *pwaff1,
3224 __isl_take isl_pw_aff *pwaff2);
3225 __isl_give isl_pw_aff *isl_pw_aff_union_max(
3226 __isl_take isl_pw_aff *pwaff1,
3227 __isl_take isl_pw_aff *pwaff2);
3228 __isl_give isl_pw_aff *isl_pw_aff_union_add(
3229 __isl_take isl_pw_aff *pwaff1,
3230 __isl_take isl_pw_aff *pwaff2);
3232 The function C<isl_pw_aff_union_max> computes a piecewise quasi-affine
3233 expression with a domain that is the union of those of C<pwaff1> and
3234 C<pwaff2> and such that on each cell, the quasi-affine expression is
3235 the maximum of those of C<pwaff1> and C<pwaff2>. If only one of
3236 C<pwaff1> or C<pwaff2> is defined on a given cell, then the
3237 associated expression is the defined one.
3239 An expression can be read from input using
3241 #include <isl/aff.h>
3242 __isl_give isl_aff *isl_aff_read_from_str(
3243 isl_ctx *ctx, const char *str);
3244 __isl_give isl_pw_aff *isl_pw_aff_read_from_str(
3245 isl_ctx *ctx, const char *str);
3247 An expression can be printed using
3249 #include <isl/aff.h>
3250 __isl_give isl_printer *isl_printer_print_aff(
3251 __isl_take isl_printer *p, __isl_keep isl_aff *aff);
3253 __isl_give isl_printer *isl_printer_print_pw_aff(
3254 __isl_take isl_printer *p,
3255 __isl_keep isl_pw_aff *pwaff);
3257 =head2 Piecewise Multiple Quasi Affine Expressions
3259 An C<isl_multi_aff> object represents a sequence of
3260 zero or more affine expressions, all defined on the same domain space.
3262 An C<isl_multi_aff> can be constructed from a C<isl_aff_list> using the
3265 #include <isl/aff.h>
3266 __isl_give isl_multi_aff *isl_multi_aff_from_aff_list(
3267 __isl_take isl_space *space,
3268 __isl_take isl_aff_list *list);
3270 An empty piecewise multiple quasi affine expression (one with no cells),
3271 the zero piecewise multiple quasi affine expression (with value zero
3272 for each output dimension),
3273 a piecewise multiple quasi affine expression with a single cell (with
3274 either a universe or a specified domain) or
3275 a zero-dimensional piecewise multiple quasi affine expression
3277 can be created using the following functions.
3279 #include <isl/aff.h>
3280 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_empty(
3281 __isl_take isl_space *space);
3282 __isl_give isl_multi_aff *isl_multi_aff_zero(
3283 __isl_take isl_space *space);
3284 __isl_give isl_pw_multi_aff *
3285 isl_pw_multi_aff_from_multi_aff(
3286 __isl_take isl_multi_aff *ma);
3287 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_alloc(
3288 __isl_take isl_set *set,
3289 __isl_take isl_multi_aff *maff);
3290 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_domain(
3291 __isl_take isl_set *set);
3293 __isl_give isl_union_pw_multi_aff *
3294 isl_union_pw_multi_aff_empty(
3295 __isl_take isl_space *space);
3296 __isl_give isl_union_pw_multi_aff *
3297 isl_union_pw_multi_aff_add_pw_multi_aff(
3298 __isl_take isl_union_pw_multi_aff *upma,
3299 __isl_take isl_pw_multi_aff *pma);
3300 __isl_give isl_union_pw_multi_aff *
3301 isl_union_pw_multi_aff_from_domain(
3302 __isl_take isl_union_set *uset);
3304 A piecewise multiple quasi affine expression can also be initialized
3305 from an C<isl_set> or C<isl_map>, provided the C<isl_set> is a singleton
3306 and the C<isl_map> is single-valued.
3308 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_set(
3309 __isl_take isl_set *set);
3310 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_map(
3311 __isl_take isl_map *map);
3313 Multiple quasi affine expressions can be copied and freed using
3315 #include <isl/aff.h>
3316 __isl_give isl_multi_aff *isl_multi_aff_copy(
3317 __isl_keep isl_multi_aff *maff);
3318 void *isl_multi_aff_free(__isl_take isl_multi_aff *maff);
3320 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_copy(
3321 __isl_keep isl_pw_multi_aff *pma);
3322 void *isl_pw_multi_aff_free(
3323 __isl_take isl_pw_multi_aff *pma);
3325 __isl_give isl_union_pw_multi_aff *
3326 isl_union_pw_multi_aff_copy(
3327 __isl_keep isl_union_pw_multi_aff *upma);
3328 void *isl_union_pw_multi_aff_free(
3329 __isl_take isl_union_pw_multi_aff *upma);
3331 The expression can be inspected using
3333 #include <isl/aff.h>
3334 isl_ctx *isl_multi_aff_get_ctx(
3335 __isl_keep isl_multi_aff *maff);
3336 isl_ctx *isl_pw_multi_aff_get_ctx(
3337 __isl_keep isl_pw_multi_aff *pma);
3338 isl_ctx *isl_union_pw_multi_aff_get_ctx(
3339 __isl_keep isl_union_pw_multi_aff *upma);
3340 unsigned isl_multi_aff_dim(__isl_keep isl_multi_aff *maff,
3341 enum isl_dim_type type);
3342 unsigned isl_pw_multi_aff_dim(
3343 __isl_keep isl_pw_multi_aff *pma,
3344 enum isl_dim_type type);
3345 __isl_give isl_aff *isl_multi_aff_get_aff(
3346 __isl_keep isl_multi_aff *multi, int pos);
3347 __isl_give isl_pw_aff *isl_pw_multi_aff_get_pw_aff(
3348 __isl_keep isl_pw_multi_aff *pma, int pos);
3349 const char *isl_pw_multi_aff_get_dim_name(
3350 __isl_keep isl_pw_multi_aff *pma,
3351 enum isl_dim_type type, unsigned pos);
3352 __isl_give isl_id *isl_pw_multi_aff_get_dim_id(
3353 __isl_keep isl_pw_multi_aff *pma,
3354 enum isl_dim_type type, unsigned pos);
3355 const char *isl_multi_aff_get_tuple_name(
3356 __isl_keep isl_multi_aff *multi,
3357 enum isl_dim_type type);
3358 const char *isl_pw_multi_aff_get_tuple_name(
3359 __isl_keep isl_pw_multi_aff *pma,
3360 enum isl_dim_type type);
3361 int isl_pw_multi_aff_has_tuple_id(
3362 __isl_keep isl_pw_multi_aff *pma,
3363 enum isl_dim_type type);
3364 __isl_give isl_id *isl_pw_multi_aff_get_tuple_id(
3365 __isl_keep isl_pw_multi_aff *pma,
3366 enum isl_dim_type type);
3368 int isl_pw_multi_aff_foreach_piece(
3369 __isl_keep isl_pw_multi_aff *pma,
3370 int (*fn)(__isl_take isl_set *set,
3371 __isl_take isl_multi_aff *maff,
3372 void *user), void *user);
3374 int isl_union_pw_multi_aff_foreach_pw_multi_aff(
3375 __isl_keep isl_union_pw_multi_aff *upma,
3376 int (*fn)(__isl_take isl_pw_multi_aff *pma,
3377 void *user), void *user);
3379 It can be modified using
3381 #include <isl/aff.h>
3382 __isl_give isl_multi_aff *isl_multi_aff_set_aff(
3383 __isl_take isl_multi_aff *multi, int pos,
3384 __isl_take isl_aff *aff);
3385 __isl_give isl_multi_aff *isl_multi_aff_set_dim_name(
3386 __isl_take isl_multi_aff *maff,
3387 enum isl_dim_type type, unsigned pos, const char *s);
3388 __isl_give isl_multi_aff *isl_multi_aff_set_tuple_id(
3389 __isl_take isl_multi_aff *maff,
3390 enum isl_dim_type type, __isl_take isl_id *id);
3391 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_set_tuple_id(
3392 __isl_take isl_pw_multi_aff *pma,
3393 enum isl_dim_type type, __isl_take isl_id *id);
3395 __isl_give isl_multi_aff *isl_multi_aff_drop_dims(
3396 __isl_take isl_multi_aff *maff,
3397 enum isl_dim_type type, unsigned first, unsigned n);
3399 To check whether two multiple affine expressions are
3400 obviously equal to each other, use
3402 int isl_multi_aff_plain_is_equal(__isl_keep isl_multi_aff *maff1,
3403 __isl_keep isl_multi_aff *maff2);
3404 int isl_pw_multi_aff_plain_is_equal(
3405 __isl_keep isl_pw_multi_aff *pma1,
3406 __isl_keep isl_pw_multi_aff *pma2);
3410 #include <isl/aff.h>
3411 __isl_give isl_multi_aff *isl_multi_aff_add(
3412 __isl_take isl_multi_aff *maff1,
3413 __isl_take isl_multi_aff *maff2);
3414 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_add(
3415 __isl_take isl_pw_multi_aff *pma1,
3416 __isl_take isl_pw_multi_aff *pma2);
3417 __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_add(
3418 __isl_take isl_union_pw_multi_aff *upma1,
3419 __isl_take isl_union_pw_multi_aff *upma2);
3420 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_add(
3421 __isl_take isl_pw_multi_aff *pma1,
3422 __isl_take isl_pw_multi_aff *pma2);
3423 __isl_give isl_multi_aff *isl_multi_aff_scale(
3424 __isl_take isl_multi_aff *maff,
3426 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_params(
3427 __isl_take isl_pw_multi_aff *pma,
3428 __isl_take isl_set *set);
3429 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_domain(
3430 __isl_take isl_pw_multi_aff *pma,
3431 __isl_take isl_set *set);
3432 __isl_give isl_multi_aff *isl_multi_aff_lift(
3433 __isl_take isl_multi_aff *maff,
3434 __isl_give isl_local_space **ls);
3435 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_coalesce(
3436 __isl_take isl_pw_multi_aff *pma);
3437 __isl_give isl_multi_aff *isl_multi_aff_gist_params(
3438 __isl_take isl_multi_aff *maff,
3439 __isl_take isl_set *context);
3440 __isl_give isl_multi_aff *isl_multi_aff_gist(
3441 __isl_take isl_multi_aff *maff,
3442 __isl_take isl_set *context);
3443 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_gist_params(
3444 __isl_take isl_pw_multi_aff *pma,
3445 __isl_take isl_set *set);
3446 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_gist(
3447 __isl_take isl_pw_multi_aff *pma,
3448 __isl_take isl_set *set);
3449 __isl_give isl_set *isl_pw_multi_aff_domain(
3450 __isl_take isl_pw_multi_aff *pma);
3451 __isl_give isl_union_set *isl_union_pw_multi_aff_domain(
3452 __isl_take isl_union_pw_multi_aff *upma);
3453 __isl_give isl_multi_aff *isl_multi_aff_flat_range_product(
3454 __isl_take isl_multi_aff *ma1,
3455 __isl_take isl_multi_aff *ma2);
3456 __isl_give isl_pw_multi_aff *
3457 isl_pw_multi_aff_flat_range_product(
3458 __isl_take isl_pw_multi_aff *pma1,
3459 __isl_take isl_pw_multi_aff *pma2);
3460 __isl_give isl_union_pw_multi_aff *
3461 isl_union_pw_multi_aff_flat_range_product(
3462 __isl_take isl_union_pw_multi_aff *upma1,
3463 __isl_take isl_union_pw_multi_aff *upma2);
3465 If the C<ls> argument of C<isl_multi_aff_lift> is not C<NULL>,
3466 then it is assigned the local space that lies at the basis of
3467 the lifting applied.
3469 An expression can be read from input using
3471 #include <isl/aff.h>
3472 __isl_give isl_multi_aff *isl_multi_aff_read_from_str(
3473 isl_ctx *ctx, const char *str);
3474 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_read_from_str(
3475 isl_ctx *ctx, const char *str);
3477 An expression can be printed using
3479 #include <isl/aff.h>
3480 __isl_give isl_printer *isl_printer_print_multi_aff(
3481 __isl_take isl_printer *p,
3482 __isl_keep isl_multi_aff *maff);
3483 __isl_give isl_printer *isl_printer_print_pw_multi_aff(
3484 __isl_take isl_printer *p,
3485 __isl_keep isl_pw_multi_aff *pma);
3486 __isl_give isl_printer *isl_printer_print_union_pw_multi_aff(
3487 __isl_take isl_printer *p,
3488 __isl_keep isl_union_pw_multi_aff *upma);
3492 Points are elements of a set. They can be used to construct
3493 simple sets (boxes) or they can be used to represent the
3494 individual elements of a set.
3495 The zero point (the origin) can be created using
3497 __isl_give isl_point *isl_point_zero(__isl_take isl_space *space);
3499 The coordinates of a point can be inspected, set and changed
3502 int isl_point_get_coordinate(__isl_keep isl_point *pnt,
3503 enum isl_dim_type type, int pos, isl_int *v);
3504 __isl_give isl_point *isl_point_set_coordinate(
3505 __isl_take isl_point *pnt,
3506 enum isl_dim_type type, int pos, isl_int v);
3508 __isl_give isl_point *isl_point_add_ui(
3509 __isl_take isl_point *pnt,
3510 enum isl_dim_type type, int pos, unsigned val);
3511 __isl_give isl_point *isl_point_sub_ui(
3512 __isl_take isl_point *pnt,
3513 enum isl_dim_type type, int pos, unsigned val);
3515 Other properties can be obtained using
3517 isl_ctx *isl_point_get_ctx(__isl_keep isl_point *pnt);
3519 Points can be copied or freed using
3521 __isl_give isl_point *isl_point_copy(
3522 __isl_keep isl_point *pnt);
3523 void isl_point_free(__isl_take isl_point *pnt);
3525 A singleton set can be created from a point using
3527 __isl_give isl_basic_set *isl_basic_set_from_point(
3528 __isl_take isl_point *pnt);
3529 __isl_give isl_set *isl_set_from_point(
3530 __isl_take isl_point *pnt);
3532 and a box can be created from two opposite extremal points using
3534 __isl_give isl_basic_set *isl_basic_set_box_from_points(
3535 __isl_take isl_point *pnt1,
3536 __isl_take isl_point *pnt2);
3537 __isl_give isl_set *isl_set_box_from_points(
3538 __isl_take isl_point *pnt1,
3539 __isl_take isl_point *pnt2);
3541 All elements of a B<bounded> (union) set can be enumerated using
3542 the following functions.
3544 int isl_set_foreach_point(__isl_keep isl_set *set,
3545 int (*fn)(__isl_take isl_point *pnt, void *user),
3547 int isl_union_set_foreach_point(__isl_keep isl_union_set *uset,
3548 int (*fn)(__isl_take isl_point *pnt, void *user),
3551 The function C<fn> is called for each integer point in
3552 C<set> with as second argument the last argument of
3553 the C<isl_set_foreach_point> call. The function C<fn>
3554 should return C<0> on success and C<-1> on failure.
3555 In the latter case, C<isl_set_foreach_point> will stop
3556 enumerating and return C<-1> as well.
3557 If the enumeration is performed successfully and to completion,
3558 then C<isl_set_foreach_point> returns C<0>.
3560 To obtain a single point of a (basic) set, use
3562 __isl_give isl_point *isl_basic_set_sample_point(
3563 __isl_take isl_basic_set *bset);
3564 __isl_give isl_point *isl_set_sample_point(
3565 __isl_take isl_set *set);
3567 If C<set> does not contain any (integer) points, then the
3568 resulting point will be ``void'', a property that can be
3571 int isl_point_is_void(__isl_keep isl_point *pnt);
3573 =head2 Piecewise Quasipolynomials
3575 A piecewise quasipolynomial is a particular kind of function that maps
3576 a parametric point to a rational value.
3577 More specifically, a quasipolynomial is a polynomial expression in greatest
3578 integer parts of affine expressions of parameters and variables.
3579 A piecewise quasipolynomial is a subdivision of a given parametric
3580 domain into disjoint cells with a quasipolynomial associated to
3581 each cell. The value of the piecewise quasipolynomial at a given
3582 point is the value of the quasipolynomial associated to the cell
3583 that contains the point. Outside of the union of cells,
3584 the value is assumed to be zero.
3585 For example, the piecewise quasipolynomial
3587 [n] -> { [x] -> ((1 + n) - x) : x <= n and x >= 0 }
3589 maps C<x> to C<1 + n - x> for values of C<x> between C<0> and C<n>.
3590 A given piecewise quasipolynomial has a fixed domain dimension.
3591 Union piecewise quasipolynomials are used to contain piecewise quasipolynomials
3592 defined over different domains.
3593 Piecewise quasipolynomials are mainly used by the C<barvinok>
3594 library for representing the number of elements in a parametric set or map.
3595 For example, the piecewise quasipolynomial above represents
3596 the number of points in the map
3598 [n] -> { [x] -> [y] : x,y >= 0 and 0 <= x + y <= n }
3600 =head3 Input and Output
3602 Piecewise quasipolynomials can be read from input using
3604 __isl_give isl_union_pw_qpolynomial *
3605 isl_union_pw_qpolynomial_read_from_str(
3606 isl_ctx *ctx, const char *str);
3608 Quasipolynomials and piecewise quasipolynomials can be printed
3609 using the following functions.
3611 __isl_give isl_printer *isl_printer_print_qpolynomial(
3612 __isl_take isl_printer *p,
3613 __isl_keep isl_qpolynomial *qp);
3615 __isl_give isl_printer *isl_printer_print_pw_qpolynomial(
3616 __isl_take isl_printer *p,
3617 __isl_keep isl_pw_qpolynomial *pwqp);
3619 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial(
3620 __isl_take isl_printer *p,
3621 __isl_keep isl_union_pw_qpolynomial *upwqp);
3623 The output format of the printer
3624 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
3625 For C<isl_printer_print_union_pw_qpolynomial>, only C<ISL_FORMAT_ISL>
3627 In case of printing in C<ISL_FORMAT_C>, the user may want
3628 to set the names of all dimensions
3630 __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name(
3631 __isl_take isl_qpolynomial *qp,
3632 enum isl_dim_type type, unsigned pos,
3634 __isl_give isl_pw_qpolynomial *
3635 isl_pw_qpolynomial_set_dim_name(
3636 __isl_take isl_pw_qpolynomial *pwqp,
3637 enum isl_dim_type type, unsigned pos,
3640 =head3 Creating New (Piecewise) Quasipolynomials
3642 Some simple quasipolynomials can be created using the following functions.
3643 More complicated quasipolynomials can be created by applying
3644 operations such as addition and multiplication
3645 on the resulting quasipolynomials
3647 __isl_give isl_qpolynomial *isl_qpolynomial_zero_on_domain(
3648 __isl_take isl_space *domain);
3649 __isl_give isl_qpolynomial *isl_qpolynomial_one_on_domain(
3650 __isl_take isl_space *domain);
3651 __isl_give isl_qpolynomial *isl_qpolynomial_infty_on_domain(
3652 __isl_take isl_space *domain);
3653 __isl_give isl_qpolynomial *isl_qpolynomial_neginfty_on_domain(
3654 __isl_take isl_space *domain);
3655 __isl_give isl_qpolynomial *isl_qpolynomial_nan_on_domain(
3656 __isl_take isl_space *domain);
3657 __isl_give isl_qpolynomial *isl_qpolynomial_rat_cst_on_domain(
3658 __isl_take isl_space *domain,
3659 const isl_int n, const isl_int d);
3660 __isl_give isl_qpolynomial *isl_qpolynomial_var_on_domain(
3661 __isl_take isl_space *domain,
3662 enum isl_dim_type type, unsigned pos);
3663 __isl_give isl_qpolynomial *isl_qpolynomial_from_aff(
3664 __isl_take isl_aff *aff);
3666 Note that the space in which a quasipolynomial lives is a map space
3667 with a one-dimensional range. The C<domain> argument in some of
3668 the functions above corresponds to the domain of this map space.
3670 The zero piecewise quasipolynomial or a piecewise quasipolynomial
3671 with a single cell can be created using the following functions.
3672 Multiple of these single cell piecewise quasipolynomials can
3673 be combined to create more complicated piecewise quasipolynomials.
3675 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_zero(
3676 __isl_take isl_space *space);
3677 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_alloc(
3678 __isl_take isl_set *set,
3679 __isl_take isl_qpolynomial *qp);
3680 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_qpolynomial(
3681 __isl_take isl_qpolynomial *qp);
3682 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_pw_aff(
3683 __isl_take isl_pw_aff *pwaff);
3685 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_zero(
3686 __isl_take isl_space *space);
3687 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_from_pw_qpolynomial(
3688 __isl_take isl_pw_qpolynomial *pwqp);
3689 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add_pw_qpolynomial(
3690 __isl_take isl_union_pw_qpolynomial *upwqp,
3691 __isl_take isl_pw_qpolynomial *pwqp);
3693 Quasipolynomials can be copied and freed again using the following
3696 __isl_give isl_qpolynomial *isl_qpolynomial_copy(
3697 __isl_keep isl_qpolynomial *qp);
3698 void *isl_qpolynomial_free(__isl_take isl_qpolynomial *qp);
3700 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_copy(
3701 __isl_keep isl_pw_qpolynomial *pwqp);
3702 void *isl_pw_qpolynomial_free(
3703 __isl_take isl_pw_qpolynomial *pwqp);
3705 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_copy(
3706 __isl_keep isl_union_pw_qpolynomial *upwqp);
3707 void *isl_union_pw_qpolynomial_free(
3708 __isl_take isl_union_pw_qpolynomial *upwqp);
3710 =head3 Inspecting (Piecewise) Quasipolynomials
3712 To iterate over all piecewise quasipolynomials in a union
3713 piecewise quasipolynomial, use the following function
3715 int isl_union_pw_qpolynomial_foreach_pw_qpolynomial(
3716 __isl_keep isl_union_pw_qpolynomial *upwqp,
3717 int (*fn)(__isl_take isl_pw_qpolynomial *pwqp, void *user),
3720 To extract the piecewise quasipolynomial in a given space from a union, use
3722 __isl_give isl_pw_qpolynomial *
3723 isl_union_pw_qpolynomial_extract_pw_qpolynomial(
3724 __isl_keep isl_union_pw_qpolynomial *upwqp,
3725 __isl_take isl_space *space);
3727 To iterate over the cells in a piecewise quasipolynomial,
3728 use either of the following two functions
3730 int isl_pw_qpolynomial_foreach_piece(
3731 __isl_keep isl_pw_qpolynomial *pwqp,
3732 int (*fn)(__isl_take isl_set *set,
3733 __isl_take isl_qpolynomial *qp,
3734 void *user), void *user);
3735 int isl_pw_qpolynomial_foreach_lifted_piece(
3736 __isl_keep isl_pw_qpolynomial *pwqp,
3737 int (*fn)(__isl_take isl_set *set,
3738 __isl_take isl_qpolynomial *qp,
3739 void *user), void *user);
3741 As usual, the function C<fn> should return C<0> on success
3742 and C<-1> on failure. The difference between
3743 C<isl_pw_qpolynomial_foreach_piece> and
3744 C<isl_pw_qpolynomial_foreach_lifted_piece> is that
3745 C<isl_pw_qpolynomial_foreach_lifted_piece> will first
3746 compute unique representations for all existentially quantified
3747 variables and then turn these existentially quantified variables
3748 into extra set variables, adapting the associated quasipolynomial
3749 accordingly. This means that the C<set> passed to C<fn>
3750 will not have any existentially quantified variables, but that
3751 the dimensions of the sets may be different for different
3752 invocations of C<fn>.
3754 To iterate over all terms in a quasipolynomial,
3757 int isl_qpolynomial_foreach_term(
3758 __isl_keep isl_qpolynomial *qp,
3759 int (*fn)(__isl_take isl_term *term,
3760 void *user), void *user);
3762 The terms themselves can be inspected and freed using
3765 unsigned isl_term_dim(__isl_keep isl_term *term,
3766 enum isl_dim_type type);
3767 void isl_term_get_num(__isl_keep isl_term *term,
3769 void isl_term_get_den(__isl_keep isl_term *term,
3771 int isl_term_get_exp(__isl_keep isl_term *term,
3772 enum isl_dim_type type, unsigned pos);
3773 __isl_give isl_aff *isl_term_get_div(
3774 __isl_keep isl_term *term, unsigned pos);
3775 void isl_term_free(__isl_take isl_term *term);
3777 Each term is a product of parameters, set variables and
3778 integer divisions. The function C<isl_term_get_exp>
3779 returns the exponent of a given dimensions in the given term.
3780 The C<isl_int>s in the arguments of C<isl_term_get_num>
3781 and C<isl_term_get_den> need to have been initialized
3782 using C<isl_int_init> before calling these functions.
3784 =head3 Properties of (Piecewise) Quasipolynomials
3786 To check whether a quasipolynomial is actually a constant,
3787 use the following function.
3789 int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp,
3790 isl_int *n, isl_int *d);
3792 If C<qp> is a constant and if C<n> and C<d> are not C<NULL>
3793 then the numerator and denominator of the constant
3794 are returned in C<*n> and C<*d>, respectively.
3796 To check whether two union piecewise quasipolynomials are
3797 obviously equal, use
3799 int isl_union_pw_qpolynomial_plain_is_equal(
3800 __isl_keep isl_union_pw_qpolynomial *upwqp1,
3801 __isl_keep isl_union_pw_qpolynomial *upwqp2);
3803 =head3 Operations on (Piecewise) Quasipolynomials
3805 __isl_give isl_qpolynomial *isl_qpolynomial_scale(
3806 __isl_take isl_qpolynomial *qp, isl_int v);
3807 __isl_give isl_qpolynomial *isl_qpolynomial_neg(
3808 __isl_take isl_qpolynomial *qp);
3809 __isl_give isl_qpolynomial *isl_qpolynomial_add(
3810 __isl_take isl_qpolynomial *qp1,
3811 __isl_take isl_qpolynomial *qp2);
3812 __isl_give isl_qpolynomial *isl_qpolynomial_sub(
3813 __isl_take isl_qpolynomial *qp1,
3814 __isl_take isl_qpolynomial *qp2);
3815 __isl_give isl_qpolynomial *isl_qpolynomial_mul(
3816 __isl_take isl_qpolynomial *qp1,
3817 __isl_take isl_qpolynomial *qp2);
3818 __isl_give isl_qpolynomial *isl_qpolynomial_pow(
3819 __isl_take isl_qpolynomial *qp, unsigned exponent);
3821 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add(
3822 __isl_take isl_pw_qpolynomial *pwqp1,
3823 __isl_take isl_pw_qpolynomial *pwqp2);
3824 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_sub(
3825 __isl_take isl_pw_qpolynomial *pwqp1,
3826 __isl_take isl_pw_qpolynomial *pwqp2);
3827 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_disjoint(
3828 __isl_take isl_pw_qpolynomial *pwqp1,
3829 __isl_take isl_pw_qpolynomial *pwqp2);
3830 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_neg(
3831 __isl_take isl_pw_qpolynomial *pwqp);
3832 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
3833 __isl_take isl_pw_qpolynomial *pwqp1,
3834 __isl_take isl_pw_qpolynomial *pwqp2);
3835 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_pow(
3836 __isl_take isl_pw_qpolynomial *pwqp, unsigned exponent);
3838 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add(
3839 __isl_take isl_union_pw_qpolynomial *upwqp1,
3840 __isl_take isl_union_pw_qpolynomial *upwqp2);
3841 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_sub(
3842 __isl_take isl_union_pw_qpolynomial *upwqp1,
3843 __isl_take isl_union_pw_qpolynomial *upwqp2);
3844 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul(
3845 __isl_take isl_union_pw_qpolynomial *upwqp1,
3846 __isl_take isl_union_pw_qpolynomial *upwqp2);
3848 __isl_give isl_qpolynomial *isl_pw_qpolynomial_eval(
3849 __isl_take isl_pw_qpolynomial *pwqp,
3850 __isl_take isl_point *pnt);
3852 __isl_give isl_qpolynomial *isl_union_pw_qpolynomial_eval(
3853 __isl_take isl_union_pw_qpolynomial *upwqp,
3854 __isl_take isl_point *pnt);
3856 __isl_give isl_set *isl_pw_qpolynomial_domain(
3857 __isl_take isl_pw_qpolynomial *pwqp);
3858 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_intersect_domain(
3859 __isl_take isl_pw_qpolynomial *pwpq,
3860 __isl_take isl_set *set);
3861 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_intersect_params(
3862 __isl_take isl_pw_qpolynomial *pwpq,
3863 __isl_take isl_set *set);
3865 __isl_give isl_union_set *isl_union_pw_qpolynomial_domain(
3866 __isl_take isl_union_pw_qpolynomial *upwqp);
3867 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_intersect_domain(
3868 __isl_take isl_union_pw_qpolynomial *upwpq,
3869 __isl_take isl_union_set *uset);
3870 __isl_give isl_union_pw_qpolynomial *
3871 isl_union_pw_qpolynomial_intersect_params(
3872 __isl_take isl_union_pw_qpolynomial *upwpq,
3873 __isl_take isl_set *set);
3875 __isl_give isl_qpolynomial *isl_qpolynomial_align_params(
3876 __isl_take isl_qpolynomial *qp,
3877 __isl_take isl_space *model);
3879 __isl_give isl_qpolynomial *isl_qpolynomial_project_domain_on_params(
3880 __isl_take isl_qpolynomial *qp);
3881 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_project_domain_on_params(
3882 __isl_take isl_pw_qpolynomial *pwqp);
3884 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_coalesce(
3885 __isl_take isl_union_pw_qpolynomial *upwqp);
3887 __isl_give isl_qpolynomial *isl_qpolynomial_gist_params(
3888 __isl_take isl_qpolynomial *qp,
3889 __isl_take isl_set *context);
3890 __isl_give isl_qpolynomial *isl_qpolynomial_gist(
3891 __isl_take isl_qpolynomial *qp,
3892 __isl_take isl_set *context);
3894 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist_params(
3895 __isl_take isl_pw_qpolynomial *pwqp,
3896 __isl_take isl_set *context);
3897 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist(
3898 __isl_take isl_pw_qpolynomial *pwqp,
3899 __isl_take isl_set *context);
3901 __isl_give isl_union_pw_qpolynomial *
3902 isl_union_pw_qpolynomial_gist_params(
3903 __isl_take isl_union_pw_qpolynomial *upwqp,
3904 __isl_take isl_set *context);
3905 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_gist(
3906 __isl_take isl_union_pw_qpolynomial *upwqp,
3907 __isl_take isl_union_set *context);
3909 The gist operation applies the gist operation to each of
3910 the cells in the domain of the input piecewise quasipolynomial.
3911 The context is also exploited
3912 to simplify the quasipolynomials associated to each cell.
3914 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial(
3915 __isl_take isl_pw_qpolynomial *pwqp, int sign);
3916 __isl_give isl_union_pw_qpolynomial *
3917 isl_union_pw_qpolynomial_to_polynomial(
3918 __isl_take isl_union_pw_qpolynomial *upwqp, int sign);
3920 Approximate each quasipolynomial by a polynomial. If C<sign> is positive,
3921 the polynomial will be an overapproximation. If C<sign> is negative,
3922 it will be an underapproximation. If C<sign> is zero, the approximation
3923 will lie somewhere in between.
3925 =head2 Bounds on Piecewise Quasipolynomials and Piecewise Quasipolynomial Reductions
3927 A piecewise quasipolynomial reduction is a piecewise
3928 reduction (or fold) of quasipolynomials.
3929 In particular, the reduction can be maximum or a minimum.
3930 The objects are mainly used to represent the result of
3931 an upper or lower bound on a quasipolynomial over its domain,
3932 i.e., as the result of the following function.
3934 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_bound(
3935 __isl_take isl_pw_qpolynomial *pwqp,
3936 enum isl_fold type, int *tight);
3938 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_bound(
3939 __isl_take isl_union_pw_qpolynomial *upwqp,
3940 enum isl_fold type, int *tight);
3942 The C<type> argument may be either C<isl_fold_min> or C<isl_fold_max>.
3943 If C<tight> is not C<NULL>, then C<*tight> is set to C<1>
3944 is the returned bound is known be tight, i.e., for each value
3945 of the parameters there is at least
3946 one element in the domain that reaches the bound.
3947 If the domain of C<pwqp> is not wrapping, then the bound is computed
3948 over all elements in that domain and the result has a purely parametric
3949 domain. If the domain of C<pwqp> is wrapping, then the bound is
3950 computed over the range of the wrapped relation. The domain of the
3951 wrapped relation becomes the domain of the result.
3953 A (piecewise) quasipolynomial reduction can be copied or freed using the
3954 following functions.
3956 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_copy(
3957 __isl_keep isl_qpolynomial_fold *fold);
3958 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_copy(
3959 __isl_keep isl_pw_qpolynomial_fold *pwf);
3960 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_copy(
3961 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
3962 void isl_qpolynomial_fold_free(
3963 __isl_take isl_qpolynomial_fold *fold);
3964 void *isl_pw_qpolynomial_fold_free(
3965 __isl_take isl_pw_qpolynomial_fold *pwf);
3966 void *isl_union_pw_qpolynomial_fold_free(
3967 __isl_take isl_union_pw_qpolynomial_fold *upwf);
3969 =head3 Printing Piecewise Quasipolynomial Reductions
3971 Piecewise quasipolynomial reductions can be printed
3972 using the following function.
3974 __isl_give isl_printer *isl_printer_print_pw_qpolynomial_fold(
3975 __isl_take isl_printer *p,
3976 __isl_keep isl_pw_qpolynomial_fold *pwf);
3977 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial_fold(
3978 __isl_take isl_printer *p,
3979 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
3981 For C<isl_printer_print_pw_qpolynomial_fold>,
3982 output format of the printer
3983 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
3984 For C<isl_printer_print_union_pw_qpolynomial_fold>,
3985 output format of the printer
3986 needs to be set to C<ISL_FORMAT_ISL>.
3987 In case of printing in C<ISL_FORMAT_C>, the user may want
3988 to set the names of all dimensions
3990 __isl_give isl_pw_qpolynomial_fold *
3991 isl_pw_qpolynomial_fold_set_dim_name(
3992 __isl_take isl_pw_qpolynomial_fold *pwf,
3993 enum isl_dim_type type, unsigned pos,
3996 =head3 Inspecting (Piecewise) Quasipolynomial Reductions
3998 To iterate over all piecewise quasipolynomial reductions in a union
3999 piecewise quasipolynomial reduction, use the following function
4001 int isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold(
4002 __isl_keep isl_union_pw_qpolynomial_fold *upwf,
4003 int (*fn)(__isl_take isl_pw_qpolynomial_fold *pwf,
4004 void *user), void *user);
4006 To iterate over the cells in a piecewise quasipolynomial reduction,
4007 use either of the following two functions
4009 int isl_pw_qpolynomial_fold_foreach_piece(
4010 __isl_keep isl_pw_qpolynomial_fold *pwf,
4011 int (*fn)(__isl_take isl_set *set,
4012 __isl_take isl_qpolynomial_fold *fold,
4013 void *user), void *user);
4014 int isl_pw_qpolynomial_fold_foreach_lifted_piece(
4015 __isl_keep isl_pw_qpolynomial_fold *pwf,
4016 int (*fn)(__isl_take isl_set *set,
4017 __isl_take isl_qpolynomial_fold *fold,
4018 void *user), void *user);
4020 See L<Inspecting (Piecewise) Quasipolynomials> for an explanation
4021 of the difference between these two functions.
4023 To iterate over all quasipolynomials in a reduction, use
4025 int isl_qpolynomial_fold_foreach_qpolynomial(
4026 __isl_keep isl_qpolynomial_fold *fold,
4027 int (*fn)(__isl_take isl_qpolynomial *qp,
4028 void *user), void *user);
4030 =head3 Properties of Piecewise Quasipolynomial Reductions
4032 To check whether two union piecewise quasipolynomial reductions are
4033 obviously equal, use
4035 int isl_union_pw_qpolynomial_fold_plain_is_equal(
4036 __isl_keep isl_union_pw_qpolynomial_fold *upwf1,
4037 __isl_keep isl_union_pw_qpolynomial_fold *upwf2);
4039 =head3 Operations on Piecewise Quasipolynomial Reductions
4041 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_scale(
4042 __isl_take isl_qpolynomial_fold *fold, isl_int v);
4044 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_add(
4045 __isl_take isl_pw_qpolynomial_fold *pwf1,
4046 __isl_take isl_pw_qpolynomial_fold *pwf2);
4048 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_fold(
4049 __isl_take isl_pw_qpolynomial_fold *pwf1,
4050 __isl_take isl_pw_qpolynomial_fold *pwf2);
4052 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_fold(
4053 __isl_take isl_union_pw_qpolynomial_fold *upwf1,
4054 __isl_take isl_union_pw_qpolynomial_fold *upwf2);
4056 __isl_give isl_qpolynomial *isl_pw_qpolynomial_fold_eval(
4057 __isl_take isl_pw_qpolynomial_fold *pwf,
4058 __isl_take isl_point *pnt);
4060 __isl_give isl_qpolynomial *isl_union_pw_qpolynomial_fold_eval(
4061 __isl_take isl_union_pw_qpolynomial_fold *upwf,
4062 __isl_take isl_point *pnt);
4064 __isl_give isl_pw_qpolynomial_fold *
4065 sl_pw_qpolynomial_fold_intersect_params(
4066 __isl_take isl_pw_qpolynomial_fold *pwf,
4067 __isl_take isl_set *set);
4069 __isl_give isl_union_set *isl_union_pw_qpolynomial_fold_domain(
4070 __isl_take isl_union_pw_qpolynomial_fold *upwf);
4071 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_intersect_domain(
4072 __isl_take isl_union_pw_qpolynomial_fold *upwf,
4073 __isl_take isl_union_set *uset);
4074 __isl_give isl_union_pw_qpolynomial_fold *
4075 isl_union_pw_qpolynomial_fold_intersect_params(
4076 __isl_take isl_union_pw_qpolynomial_fold *upwf,
4077 __isl_take isl_set *set);
4079 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_project_domain_on_params(
4080 __isl_take isl_pw_qpolynomial_fold *pwf);
4082 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_coalesce(
4083 __isl_take isl_pw_qpolynomial_fold *pwf);
4085 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_coalesce(
4086 __isl_take isl_union_pw_qpolynomial_fold *upwf);
4088 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist_params(
4089 __isl_take isl_qpolynomial_fold *fold,
4090 __isl_take isl_set *context);
4091 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist(
4092 __isl_take isl_qpolynomial_fold *fold,
4093 __isl_take isl_set *context);
4095 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_gist(
4096 __isl_take isl_pw_qpolynomial_fold *pwf,
4097 __isl_take isl_set *context);
4098 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_gist_params(
4099 __isl_take isl_pw_qpolynomial_fold *pwf,
4100 __isl_take isl_set *context);
4102 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_gist(
4103 __isl_take isl_union_pw_qpolynomial_fold *upwf,
4104 __isl_take isl_union_set *context);
4105 __isl_give isl_union_pw_qpolynomial_fold *
4106 isl_union_pw_qpolynomial_fold_gist_params(
4107 __isl_take isl_union_pw_qpolynomial_fold *upwf,
4108 __isl_take isl_set *context);
4110 The gist operation applies the gist operation to each of
4111 the cells in the domain of the input piecewise quasipolynomial reduction.
4112 In future, the operation will also exploit the context
4113 to simplify the quasipolynomial reductions associated to each cell.
4115 __isl_give isl_pw_qpolynomial_fold *
4116 isl_set_apply_pw_qpolynomial_fold(
4117 __isl_take isl_set *set,
4118 __isl_take isl_pw_qpolynomial_fold *pwf,
4120 __isl_give isl_pw_qpolynomial_fold *
4121 isl_map_apply_pw_qpolynomial_fold(
4122 __isl_take isl_map *map,
4123 __isl_take isl_pw_qpolynomial_fold *pwf,
4125 __isl_give isl_union_pw_qpolynomial_fold *
4126 isl_union_set_apply_union_pw_qpolynomial_fold(
4127 __isl_take isl_union_set *uset,
4128 __isl_take isl_union_pw_qpolynomial_fold *upwf,
4130 __isl_give isl_union_pw_qpolynomial_fold *
4131 isl_union_map_apply_union_pw_qpolynomial_fold(
4132 __isl_take isl_union_map *umap,
4133 __isl_take isl_union_pw_qpolynomial_fold *upwf,
4136 The functions taking a map
4137 compose the given map with the given piecewise quasipolynomial reduction.
4138 That is, compute a bound (of the same type as C<pwf> or C<upwf> itself)
4139 over all elements in the intersection of the range of the map
4140 and the domain of the piecewise quasipolynomial reduction
4141 as a function of an element in the domain of the map.
4142 The functions taking a set compute a bound over all elements in the
4143 intersection of the set and the domain of the
4144 piecewise quasipolynomial reduction.
4146 =head2 Dependence Analysis
4148 C<isl> contains specialized functionality for performing
4149 array dataflow analysis. That is, given a I<sink> access relation
4150 and a collection of possible I<source> access relations,
4151 C<isl> can compute relations that describe
4152 for each iteration of the sink access, which iteration
4153 of which of the source access relations was the last
4154 to access the same data element before the given iteration
4156 The resulting dependence relations map source iterations
4157 to the corresponding sink iterations.
4158 To compute standard flow dependences, the sink should be
4159 a read, while the sources should be writes.
4160 If any of the source accesses are marked as being I<may>
4161 accesses, then there will be a dependence from the last
4162 I<must> access B<and> from any I<may> access that follows
4163 this last I<must> access.
4164 In particular, if I<all> sources are I<may> accesses,
4165 then memory based dependence analysis is performed.
4166 If, on the other hand, all sources are I<must> accesses,
4167 then value based dependence analysis is performed.
4169 #include <isl/flow.h>
4171 typedef int (*isl_access_level_before)(void *first, void *second);
4173 __isl_give isl_access_info *isl_access_info_alloc(
4174 __isl_take isl_map *sink,
4175 void *sink_user, isl_access_level_before fn,
4177 __isl_give isl_access_info *isl_access_info_add_source(
4178 __isl_take isl_access_info *acc,
4179 __isl_take isl_map *source, int must,
4181 void isl_access_info_free(__isl_take isl_access_info *acc);
4183 __isl_give isl_flow *isl_access_info_compute_flow(
4184 __isl_take isl_access_info *acc);
4186 int isl_flow_foreach(__isl_keep isl_flow *deps,
4187 int (*fn)(__isl_take isl_map *dep, int must,
4188 void *dep_user, void *user),
4190 __isl_give isl_map *isl_flow_get_no_source(
4191 __isl_keep isl_flow *deps, int must);
4192 void isl_flow_free(__isl_take isl_flow *deps);
4194 The function C<isl_access_info_compute_flow> performs the actual
4195 dependence analysis. The other functions are used to construct
4196 the input for this function or to read off the output.
4198 The input is collected in an C<isl_access_info>, which can
4199 be created through a call to C<isl_access_info_alloc>.
4200 The arguments to this functions are the sink access relation
4201 C<sink>, a token C<sink_user> used to identify the sink
4202 access to the user, a callback function for specifying the
4203 relative order of source and sink accesses, and the number
4204 of source access relations that will be added.
4205 The callback function has type C<int (*)(void *first, void *second)>.
4206 The function is called with two user supplied tokens identifying
4207 either a source or the sink and it should return the shared nesting
4208 level and the relative order of the two accesses.
4209 In particular, let I<n> be the number of loops shared by
4210 the two accesses. If C<first> precedes C<second> textually,
4211 then the function should return I<2 * n + 1>; otherwise,
4212 it should return I<2 * n>.
4213 The sources can be added to the C<isl_access_info> by performing
4214 (at most) C<max_source> calls to C<isl_access_info_add_source>.
4215 C<must> indicates whether the source is a I<must> access
4216 or a I<may> access. Note that a multi-valued access relation
4217 should only be marked I<must> if every iteration in the domain
4218 of the relation accesses I<all> elements in its image.
4219 The C<source_user> token is again used to identify
4220 the source access. The range of the source access relation
4221 C<source> should have the same dimension as the range
4222 of the sink access relation.
4223 The C<isl_access_info_free> function should usually not be
4224 called explicitly, because it is called implicitly by
4225 C<isl_access_info_compute_flow>.
4227 The result of the dependence analysis is collected in an
4228 C<isl_flow>. There may be elements of
4229 the sink access for which no preceding source access could be
4230 found or for which all preceding sources are I<may> accesses.
4231 The relations containing these elements can be obtained through
4232 calls to C<isl_flow_get_no_source>, the first with C<must> set
4233 and the second with C<must> unset.
4234 In the case of standard flow dependence analysis,
4235 with the sink a read and the sources I<must> writes,
4236 the first relation corresponds to the reads from uninitialized
4237 array elements and the second relation is empty.
4238 The actual flow dependences can be extracted using
4239 C<isl_flow_foreach>. This function will call the user-specified
4240 callback function C<fn> for each B<non-empty> dependence between
4241 a source and the sink. The callback function is called
4242 with four arguments, the actual flow dependence relation
4243 mapping source iterations to sink iterations, a boolean that
4244 indicates whether it is a I<must> or I<may> dependence, a token
4245 identifying the source and an additional C<void *> with value
4246 equal to the third argument of the C<isl_flow_foreach> call.
4247 A dependence is marked I<must> if it originates from a I<must>
4248 source and if it is not followed by any I<may> sources.
4250 After finishing with an C<isl_flow>, the user should call
4251 C<isl_flow_free> to free all associated memory.
4253 A higher-level interface to dependence analysis is provided
4254 by the following function.
4256 #include <isl/flow.h>
4258 int isl_union_map_compute_flow(__isl_take isl_union_map *sink,
4259 __isl_take isl_union_map *must_source,
4260 __isl_take isl_union_map *may_source,
4261 __isl_take isl_union_map *schedule,
4262 __isl_give isl_union_map **must_dep,
4263 __isl_give isl_union_map **may_dep,
4264 __isl_give isl_union_map **must_no_source,
4265 __isl_give isl_union_map **may_no_source);
4267 The arrays are identified by the tuple names of the ranges
4268 of the accesses. The iteration domains by the tuple names
4269 of the domains of the accesses and of the schedule.
4270 The relative order of the iteration domains is given by the
4271 schedule. The relations returned through C<must_no_source>
4272 and C<may_no_source> are subsets of C<sink>.
4273 Any of C<must_dep>, C<may_dep>, C<must_no_source>
4274 or C<may_no_source> may be C<NULL>, but a C<NULL> value for
4275 any of the other arguments is treated as an error.
4277 =head3 Interaction with Dependence Analysis
4279 During the dependence analysis, we frequently need to perform
4280 the following operation. Given a relation between sink iterations
4281 and potential soure iterations from a particular source domain,
4282 what is the last potential source iteration corresponding to each
4283 sink iteration. It can sometimes be convenient to adjust
4284 the set of potential source iterations before or after each such operation.
4285 The prototypical example is fuzzy array dataflow analysis,
4286 where we need to analyze if, based on data-dependent constraints,
4287 the sink iteration can ever be executed without one or more of
4288 the corresponding potential source iterations being executed.
4289 If so, we can introduce extra parameters and select an unknown
4290 but fixed source iteration from the potential source iterations.
4291 To be able to perform such manipulations, C<isl> provides the following
4294 #include <isl/flow.h>
4296 typedef __isl_give isl_restriction *(*isl_access_restrict)(
4297 __isl_keep isl_map *source_map,
4298 __isl_keep isl_set *sink, void *source_user,
4300 __isl_give isl_access_info *isl_access_info_set_restrict(
4301 __isl_take isl_access_info *acc,
4302 isl_access_restrict fn, void *user);
4304 The function C<isl_access_info_set_restrict> should be called
4305 before calling C<isl_access_info_compute_flow> and registers a callback function
4306 that will be called any time C<isl> is about to compute the last
4307 potential source. The first argument is the (reverse) proto-dependence,
4308 mapping sink iterations to potential source iterations.
4309 The second argument represents the sink iterations for which
4310 we want to compute the last source iteration.
4311 The third argument is the token corresponding to the source
4312 and the final argument is the token passed to C<isl_access_info_set_restrict>.
4313 The callback is expected to return a restriction on either the input or
4314 the output of the operation computing the last potential source.
4315 If the input needs to be restricted then restrictions are needed
4316 for both the source and the sink iterations. The sink iterations
4317 and the potential source iterations will be intersected with these sets.
4318 If the output needs to be restricted then only a restriction on the source
4319 iterations is required.
4320 If any error occurs, the callback should return C<NULL>.
4321 An C<isl_restriction> object can be created and freed using the following
4324 #include <isl/flow.h>
4326 __isl_give isl_restriction *isl_restriction_input(
4327 __isl_take isl_set *source_restr,
4328 __isl_take isl_set *sink_restr);
4329 __isl_give isl_restriction *isl_restriction_output(
4330 __isl_take isl_set *source_restr);
4331 __isl_give isl_restriction *isl_restriction_none(
4332 __isl_keep isl_map *source_map);
4333 __isl_give isl_restriction *isl_restriction_empty(
4334 __isl_keep isl_map *source_map);
4335 void *isl_restriction_free(
4336 __isl_take isl_restriction *restr);
4338 C<isl_restriction_none> and C<isl_restriction_empty> are special
4339 cases of C<isl_restriction_input>. C<isl_restriction_none>
4340 is essentially equivalent to
4342 isl_restriction_input(isl_set_universe(
4343 isl_space_range(isl_map_get_space(source_map))),
4345 isl_space_domain(isl_map_get_space(source_map))));
4347 whereas C<isl_restriction_empty> is essentially equivalent to
4349 isl_restriction_input(isl_set_empty(
4350 isl_space_range(isl_map_get_space(source_map))),
4352 isl_space_domain(isl_map_get_space(source_map))));
4356 B<The functionality described in this section is fairly new
4357 and may be subject to change.>
4359 The following function can be used to compute a schedule
4360 for a union of domains.
4361 By default, the algorithm used to construct the schedule is similar
4362 to that of C<Pluto>.
4363 Alternatively, Feautrier's multi-dimensional scheduling algorithm can
4365 The generated schedule respects all C<validity> dependences.
4366 That is, all dependence distances over these dependences in the
4367 scheduled space are lexicographically positive.
4368 The default algorithm tries to minimize the dependence distances over
4369 C<proximity> dependences.
4370 Moreover, it tries to obtain sequences (bands) of schedule dimensions
4371 for groups of domains where the dependence distances have only
4372 non-negative values.
4373 When using Feautrier's algorithm, the C<proximity> dependence
4374 distances are only minimized during the extension to a
4375 full-dimensional schedule.
4377 #include <isl/schedule.h>
4378 __isl_give isl_schedule *isl_union_set_compute_schedule(
4379 __isl_take isl_union_set *domain,
4380 __isl_take isl_union_map *validity,
4381 __isl_take isl_union_map *proximity);
4382 void *isl_schedule_free(__isl_take isl_schedule *sched);
4384 A mapping from the domains to the scheduled space can be obtained
4385 from an C<isl_schedule> using the following function.
4387 __isl_give isl_union_map *isl_schedule_get_map(
4388 __isl_keep isl_schedule *sched);
4390 A representation of the schedule can be printed using
4392 __isl_give isl_printer *isl_printer_print_schedule(
4393 __isl_take isl_printer *p,
4394 __isl_keep isl_schedule *schedule);
4396 A representation of the schedule as a forest of bands can be obtained
4397 using the following function.
4399 __isl_give isl_band_list *isl_schedule_get_band_forest(
4400 __isl_keep isl_schedule *schedule);
4402 The list can be manipulated as explained in L<"Lists">.
4403 The bands inside the list can be copied and freed using the following
4406 #include <isl/band.h>
4407 __isl_give isl_band *isl_band_copy(
4408 __isl_keep isl_band *band);
4409 void *isl_band_free(__isl_take isl_band *band);
4411 Each band contains zero or more scheduling dimensions.
4412 These are referred to as the members of the band.
4413 The section of the schedule that corresponds to the band is
4414 referred to as the partial schedule of the band.
4415 For those nodes that participate in a band, the outer scheduling
4416 dimensions form the prefix schedule, while the inner scheduling
4417 dimensions form the suffix schedule.
4418 That is, if we take a cut of the band forest, then the union of
4419 the concatenations of the prefix, partial and suffix schedules of
4420 each band in the cut is equal to the entire schedule (modulo
4421 some possible padding at the end with zero scheduling dimensions).
4422 The properties of a band can be inspected using the following functions.
4424 #include <isl/band.h>
4425 isl_ctx *isl_band_get_ctx(__isl_keep isl_band *band);
4427 int isl_band_has_children(__isl_keep isl_band *band);
4428 __isl_give isl_band_list *isl_band_get_children(
4429 __isl_keep isl_band *band);
4431 __isl_give isl_union_map *isl_band_get_prefix_schedule(
4432 __isl_keep isl_band *band);
4433 __isl_give isl_union_map *isl_band_get_partial_schedule(
4434 __isl_keep isl_band *band);
4435 __isl_give isl_union_map *isl_band_get_suffix_schedule(
4436 __isl_keep isl_band *band);
4438 int isl_band_n_member(__isl_keep isl_band *band);
4439 int isl_band_member_is_zero_distance(
4440 __isl_keep isl_band *band, int pos);
4442 Note that a scheduling dimension is considered to be ``zero
4443 distance'' if it does not carry any proximity dependences
4445 That is, if the dependence distances of the proximity
4446 dependences are all zero in that direction (for fixed
4447 iterations of outer bands).
4449 A representation of the band can be printed using
4451 #include <isl/band.h>
4452 __isl_give isl_printer *isl_printer_print_band(
4453 __isl_take isl_printer *p,
4454 __isl_keep isl_band *band);
4458 #include <isl/schedule.h>
4459 int isl_options_set_schedule_max_coefficient(
4460 isl_ctx *ctx, int val);
4461 int isl_options_get_schedule_max_coefficient(
4463 int isl_options_set_schedule_max_constant_term(
4464 isl_ctx *ctx, int val);
4465 int isl_options_get_schedule_max_constant_term(
4467 int isl_options_set_schedule_maximize_band_depth(
4468 isl_ctx *ctx, int val);
4469 int isl_options_get_schedule_maximize_band_depth(
4471 int isl_options_set_schedule_outer_zero_distance(
4472 isl_ctx *ctx, int val);
4473 int isl_options_get_schedule_outer_zero_distance(
4475 int isl_options_set_schedule_split_scaled(
4476 isl_ctx *ctx, int val);
4477 int isl_options_get_schedule_split_scaled(
4479 int isl_options_set_schedule_algorithm(
4480 isl_ctx *ctx, int val);
4481 int isl_options_get_schedule_algorithm(
4487 =item * schedule_max_coefficient
4489 This option enforces that the coefficients for variable and parameter
4490 dimensions in the calculated schedule are not larger than the specified value.
4491 This option can significantly increase the speed of the scheduling calculation
4492 and may also prevent fusing of unrelated dimensions. A value of -1 means that
4493 this option does not introduce bounds on the variable or parameter
4496 =item * schedule_max_constant_term
4498 This option enforces that the constant coefficients in the calculated schedule
4499 are not larger than the maximal constant term. This option can significantly
4500 increase the speed of the scheduling calculation and may also prevent fusing of
4501 unrelated dimensions. A value of -1 means that this option does not introduce
4502 bounds on the constant coefficients.
4504 =item * schedule_maximize_band_depth
4506 If this option is set, we do not split bands at the point
4507 where we detect splitting is necessary. Instead, we
4508 backtrack and split bands as early as possible. This
4509 reduces the number of splits and maximizes the width of
4510 the bands. Wider bands give more possibilities for tiling.
4512 =item * schedule_outer_zero_distance
4514 If this option is set, then we try to construct schedules
4515 where the outermost scheduling dimension in each band
4516 results in a zero dependence distance over the proximity
4519 =item * schedule_split_scaled
4521 If this option is set, then we try to construct schedules in which the
4522 constant term is split off from the linear part if the linear parts of
4523 the scheduling rows for all nodes in the graphs have a common non-trivial
4525 The constant term is then placed in a separate band and the linear
4528 =item * schedule_algorithm
4530 Selects the scheduling algorithm to be used.
4531 Available scheduling algorithms are C<ISL_SCHEDULE_ALGORITHM_ISL>
4532 and C<ISL_SCHEDULE_ALGORITHM_FEAUTRIER>.
4536 =head2 Parametric Vertex Enumeration
4538 The parametric vertex enumeration described in this section
4539 is mainly intended to be used internally and by the C<barvinok>
4542 #include <isl/vertices.h>
4543 __isl_give isl_vertices *isl_basic_set_compute_vertices(
4544 __isl_keep isl_basic_set *bset);
4546 The function C<isl_basic_set_compute_vertices> performs the
4547 actual computation of the parametric vertices and the chamber
4548 decomposition and store the result in an C<isl_vertices> object.
4549 This information can be queried by either iterating over all
4550 the vertices or iterating over all the chambers or cells
4551 and then iterating over all vertices that are active on the chamber.
4553 int isl_vertices_foreach_vertex(
4554 __isl_keep isl_vertices *vertices,
4555 int (*fn)(__isl_take isl_vertex *vertex, void *user),
4558 int isl_vertices_foreach_cell(
4559 __isl_keep isl_vertices *vertices,
4560 int (*fn)(__isl_take isl_cell *cell, void *user),
4562 int isl_cell_foreach_vertex(__isl_keep isl_cell *cell,
4563 int (*fn)(__isl_take isl_vertex *vertex, void *user),
4566 Other operations that can be performed on an C<isl_vertices> object are
4569 isl_ctx *isl_vertices_get_ctx(
4570 __isl_keep isl_vertices *vertices);
4571 int isl_vertices_get_n_vertices(
4572 __isl_keep isl_vertices *vertices);
4573 void isl_vertices_free(__isl_take isl_vertices *vertices);
4575 Vertices can be inspected and destroyed using the following functions.
4577 isl_ctx *isl_vertex_get_ctx(__isl_keep isl_vertex *vertex);
4578 int isl_vertex_get_id(__isl_keep isl_vertex *vertex);
4579 __isl_give isl_basic_set *isl_vertex_get_domain(
4580 __isl_keep isl_vertex *vertex);
4581 __isl_give isl_basic_set *isl_vertex_get_expr(
4582 __isl_keep isl_vertex *vertex);
4583 void isl_vertex_free(__isl_take isl_vertex *vertex);
4585 C<isl_vertex_get_expr> returns a singleton parametric set describing
4586 the vertex, while C<isl_vertex_get_domain> returns the activity domain
4588 Note that C<isl_vertex_get_domain> and C<isl_vertex_get_expr> return
4589 B<rational> basic sets, so they should mainly be used for inspection
4590 and should not be mixed with integer sets.
4592 Chambers can be inspected and destroyed using the following functions.
4594 isl_ctx *isl_cell_get_ctx(__isl_keep isl_cell *cell);
4595 __isl_give isl_basic_set *isl_cell_get_domain(
4596 __isl_keep isl_cell *cell);
4597 void isl_cell_free(__isl_take isl_cell *cell);
4601 Although C<isl> is mainly meant to be used as a library,
4602 it also contains some basic applications that use some
4603 of the functionality of C<isl>.
4604 The input may be specified in either the L<isl format>
4605 or the L<PolyLib format>.
4607 =head2 C<isl_polyhedron_sample>
4609 C<isl_polyhedron_sample> takes a polyhedron as input and prints
4610 an integer element of the polyhedron, if there is any.
4611 The first column in the output is the denominator and is always
4612 equal to 1. If the polyhedron contains no integer points,
4613 then a vector of length zero is printed.
4617 C<isl_pip> takes the same input as the C<example> program
4618 from the C<piplib> distribution, i.e., a set of constraints
4619 on the parameters, a line containing only -1 and finally a set
4620 of constraints on a parametric polyhedron.
4621 The coefficients of the parameters appear in the last columns
4622 (but before the final constant column).
4623 The output is the lexicographic minimum of the parametric polyhedron.
4624 As C<isl> currently does not have its own output format, the output
4625 is just a dump of the internal state.
4627 =head2 C<isl_polyhedron_minimize>
4629 C<isl_polyhedron_minimize> computes the minimum of some linear
4630 or affine objective function over the integer points in a polyhedron.
4631 If an affine objective function
4632 is given, then the constant should appear in the last column.
4634 =head2 C<isl_polytope_scan>
4636 Given a polytope, C<isl_polytope_scan> prints
4637 all integer points in the polytope.