3 C<isl> is a thread-safe C library for manipulating
4 sets and relations of integer points bounded by affine constraints.
5 The descriptions of the sets and relations may involve
6 both parameters and existentially quantified variables.
7 All computations are performed in exact integer arithmetic
9 The C<isl> library offers functionality that is similar
10 to that offered by the C<Omega> and C<Omega+> libraries,
11 but the underlying algorithms are in most cases completely different.
13 The library is by no means complete and some fairly basic
14 functionality is still missing.
15 Still, even in its current form, the library has been successfully
16 used as a backend polyhedral library for the polyhedral
17 scanner C<CLooG> and as part of an equivalence checker of
18 static affine programs.
19 For bug reports, feature requests and questions,
20 visit the the discussion group at
21 L<http://groups.google.com/group/isl-development>.
23 =head2 Backward Incompatible Changes
25 =head3 Changes since isl-0.02
29 =item * The old printing functions have been deprecated
30 and replaced by C<isl_printer> functions, see L<Input and Output>.
32 =item * Most functions related to dependence analysis have acquired
33 an extra C<must> argument. To obtain the old behavior, this argument
34 should be given the value 1. See L<Dependence Analysis>.
38 =head3 Changes since isl-0.03
42 =item * The function C<isl_pw_qpolynomial_fold_add> has been
43 renamed to C<isl_pw_qpolynomial_fold_fold>.
44 Similarly, C<isl_union_pw_qpolynomial_fold_add> has been
45 renamed to C<isl_union_pw_qpolynomial_fold_fold>.
49 =head3 Changes since isl-0.04
53 =item * All header files have been renamed from C<isl_header.h>
58 =head3 Changes since isl-0.05
62 =item * The functions C<isl_printer_print_basic_set> and
63 C<isl_printer_print_basic_map> no longer print a newline.
65 =item * The functions C<isl_flow_get_no_source>
66 and C<isl_union_map_compute_flow> now return
67 the accesses for which no source could be found instead of
68 the iterations where those accesses occur.
70 =item * The functions C<isl_basic_map_identity> and
71 C<isl_map_identity> now take a B<map> space as input. An old call
72 C<isl_map_identity(space)> can be rewritten to
73 C<isl_map_identity(isl_space_map_from_set(space))>.
75 =item * The function C<isl_map_power> no longer takes
76 a parameter position as input. Instead, the exponent
77 is now expressed as the domain of the resulting relation.
81 =head3 Changes since isl-0.06
85 =item * The format of C<isl_printer_print_qpolynomial>'s
86 C<ISL_FORMAT_ISL> output has changed.
87 Use C<ISL_FORMAT_C> to obtain the old output.
89 =item * The C<*_fast_*> functions have been renamed to C<*_plain_*>.
90 Some of the old names have been kept for backward compatibility,
91 but they will be removed in the future.
95 =head3 Changes since isl-0.07
99 =item * The function C<isl_pw_aff_max> has been renamed to
100 C<isl_pw_aff_union_max>.
101 Similarly, the function C<isl_pw_aff_add> has been renamed to
102 C<isl_pw_aff_union_add>.
104 =item * The C<isl_dim> type has been renamed to C<isl_space>
105 along with the associated functions.
106 Some of the old names have been kept for backward compatibility,
107 but they will be removed in the future.
109 =item * Spaces of maps, sets and parameter domains are now
110 treated differently. The distinction between map spaces and set spaces
111 has always been made on a conceptual level, but proper use of such spaces
112 was never checked. Furthermore, up until isl-0.07 there was no way
113 of explicitly creating a parameter space. These can now be created
114 directly using C<isl_space_params_alloc> or from other spaces using
117 =item * The space in which C<isl_aff>, C<isl_pw_aff>, C<isl_qpolynomial>,
118 C<isl_pw_qpolynomial>, C<isl_qpolynomial_fold> and C<isl_pw_qpolynomial_fold>
119 objects live is now a map space
120 instead of a set space. This means, for example, that the dimensions
121 of the domain of an C<isl_aff> are now considered to be of type
122 C<isl_dim_in> instead of C<isl_dim_set>. Extra functions have been
123 added to obtain the domain space. Some of the constructors still
124 take a domain space and have therefore been renamed.
126 =item * The functions C<isl_equality_alloc> and C<isl_inequality_alloc>
127 now take an C<isl_local_space> instead of an C<isl_space>.
128 An C<isl_local_space> can be created from an C<isl_space>
129 using C<isl_local_space_from_space>.
131 =item * The C<isl_div> type has been removed. Functions that used
132 to return an C<isl_div> now return an C<isl_aff>.
133 Note that the space of an C<isl_aff> is that of relation.
134 When replacing a call to C<isl_div_get_coefficient> by a call to
135 C<isl_aff_get_coefficient> any C<isl_dim_set> argument needs
136 to be replaced by C<isl_dim_in>.
137 A call to C<isl_aff_from_div> can be replaced by a call
139 A call to C<isl_qpolynomial_div(div)> call be replaced by
142 isl_qpolynomial_from_aff(isl_aff_floor(div))
144 The function C<isl_constraint_div> has also been renamed
145 to C<isl_constraint_get_div>.
147 =item * The C<nparam> argument has been removed from
148 C<isl_map_read_from_str> and similar functions.
149 When reading input in the original PolyLib format,
150 the result will have no parameters.
151 If parameters are expected, the caller may want to perform
152 dimension manipulation on the result.
156 =head3 Changes since isl-0.09
160 =item * The C<schedule_split_parallel> option has been replaced
161 by the C<schedule_split_scaled> option.
163 =item * The first argument of C<isl_pw_aff_cond> is now
164 an C<isl_pw_aff> instead of an C<isl_set>.
165 A call C<isl_pw_aff_cond(a, b, c)> can be replaced by
167 isl_pw_aff_cond(isl_set_indicator_function(a), b, c)
171 =head3 Changes since isl-0.10
175 =item * The functions C<isl_set_dim_has_lower_bound> and
176 C<isl_set_dim_has_upper_bound> have been renamed to
177 C<isl_set_dim_has_any_lower_bound> and
178 C<isl_set_dim_has_any_upper_bound>.
184 C<isl> is released under the MIT license.
188 Permission is hereby granted, free of charge, to any person obtaining a copy of
189 this software and associated documentation files (the "Software"), to deal in
190 the Software without restriction, including without limitation the rights to
191 use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
192 of the Software, and to permit persons to whom the Software is furnished to do
193 so, subject to the following conditions:
195 The above copyright notice and this permission notice shall be included in all
196 copies or substantial portions of the Software.
198 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
199 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
200 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
201 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
202 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
203 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
208 Note that C<isl> currently requires C<GMP>, which is released
209 under the GNU Lesser General Public License (LGPL). This means
210 that code linked against C<isl> is also linked against LGPL code.
214 The source of C<isl> can be obtained either as a tarball
215 or from the git repository. Both are available from
216 L<http://freshmeat.net/projects/isl/>.
217 The installation process depends on how you obtained
220 =head2 Installation from the git repository
224 =item 1 Clone or update the repository
226 The first time the source is obtained, you need to clone
229 git clone git://repo.or.cz/isl.git
231 To obtain updates, you need to pull in the latest changes
235 =item 2 Generate C<configure>
241 After performing the above steps, continue
242 with the L<Common installation instructions>.
244 =head2 Common installation instructions
248 =item 1 Obtain C<GMP>
250 Building C<isl> requires C<GMP>, including its headers files.
251 Your distribution may not provide these header files by default
252 and you may need to install a package called C<gmp-devel> or something
253 similar. Alternatively, C<GMP> can be built from
254 source, available from L<http://gmplib.org/>.
258 C<isl> uses the standard C<autoconf> C<configure> script.
263 optionally followed by some configure options.
264 A complete list of options can be obtained by running
268 Below we discuss some of the more common options.
270 C<isl> can optionally use C<piplib>, but no
271 C<piplib> functionality is currently used by default.
272 The C<--with-piplib> option can
273 be used to specify which C<piplib>
274 library to use, either an installed version (C<system>),
275 an externally built version (C<build>)
276 or no version (C<no>). The option C<build> is mostly useful
277 in C<configure> scripts of larger projects that bundle both C<isl>
284 Installation prefix for C<isl>
286 =item C<--with-gmp-prefix>
288 Installation prefix for C<GMP> (architecture-independent files).
290 =item C<--with-gmp-exec-prefix>
292 Installation prefix for C<GMP> (architecture-dependent files).
294 =item C<--with-piplib>
296 Which copy of C<piplib> to use, either C<no> (default), C<system> or C<build>.
298 =item C<--with-piplib-prefix>
300 Installation prefix for C<system> C<piplib> (architecture-independent files).
302 =item C<--with-piplib-exec-prefix>
304 Installation prefix for C<system> C<piplib> (architecture-dependent files).
306 =item C<--with-piplib-builddir>
308 Location where C<build> C<piplib> was built.
316 =item 4 Install (optional)
324 =head2 Initialization
326 All manipulations of integer sets and relations occur within
327 the context of an C<isl_ctx>.
328 A given C<isl_ctx> can only be used within a single thread.
329 All arguments of a function are required to have been allocated
330 within the same context.
331 There are currently no functions available for moving an object
332 from one C<isl_ctx> to another C<isl_ctx>. This means that
333 there is currently no way of safely moving an object from one
334 thread to another, unless the whole C<isl_ctx> is moved.
336 An C<isl_ctx> can be allocated using C<isl_ctx_alloc> and
337 freed using C<isl_ctx_free>.
338 All objects allocated within an C<isl_ctx> should be freed
339 before the C<isl_ctx> itself is freed.
341 isl_ctx *isl_ctx_alloc();
342 void isl_ctx_free(isl_ctx *ctx);
346 All operations on integers, mainly the coefficients
347 of the constraints describing the sets and relations,
348 are performed in exact integer arithmetic using C<GMP>.
349 However, to allow future versions of C<isl> to optionally
350 support fixed integer arithmetic, all calls to C<GMP>
351 are wrapped inside C<isl> specific macros.
352 The basic type is C<isl_int> and the operations below
353 are available on this type.
354 The meanings of these operations are essentially the same
355 as their C<GMP> C<mpz_> counterparts.
356 As always with C<GMP> types, C<isl_int>s need to be
357 initialized with C<isl_int_init> before they can be used
358 and they need to be released with C<isl_int_clear>
360 The user should not assume that an C<isl_int> is represented
361 as a C<mpz_t>, but should instead explicitly convert between
362 C<mpz_t>s and C<isl_int>s using C<isl_int_set_gmp> and
363 C<isl_int_get_gmp> whenever a C<mpz_t> is required.
367 =item isl_int_init(i)
369 =item isl_int_clear(i)
371 =item isl_int_set(r,i)
373 =item isl_int_set_si(r,i)
375 =item isl_int_set_gmp(r,g)
377 =item isl_int_get_gmp(i,g)
379 =item isl_int_abs(r,i)
381 =item isl_int_neg(r,i)
383 =item isl_int_swap(i,j)
385 =item isl_int_swap_or_set(i,j)
387 =item isl_int_add_ui(r,i,j)
389 =item isl_int_sub_ui(r,i,j)
391 =item isl_int_add(r,i,j)
393 =item isl_int_sub(r,i,j)
395 =item isl_int_mul(r,i,j)
397 =item isl_int_mul_ui(r,i,j)
399 =item isl_int_addmul(r,i,j)
401 =item isl_int_submul(r,i,j)
403 =item isl_int_gcd(r,i,j)
405 =item isl_int_lcm(r,i,j)
407 =item isl_int_divexact(r,i,j)
409 =item isl_int_cdiv_q(r,i,j)
411 =item isl_int_fdiv_q(r,i,j)
413 =item isl_int_fdiv_r(r,i,j)
415 =item isl_int_fdiv_q_ui(r,i,j)
417 =item isl_int_read(r,s)
419 =item isl_int_print(out,i,width)
423 =item isl_int_cmp(i,j)
425 =item isl_int_cmp_si(i,si)
427 =item isl_int_eq(i,j)
429 =item isl_int_ne(i,j)
431 =item isl_int_lt(i,j)
433 =item isl_int_le(i,j)
435 =item isl_int_gt(i,j)
437 =item isl_int_ge(i,j)
439 =item isl_int_abs_eq(i,j)
441 =item isl_int_abs_ne(i,j)
443 =item isl_int_abs_lt(i,j)
445 =item isl_int_abs_gt(i,j)
447 =item isl_int_abs_ge(i,j)
449 =item isl_int_is_zero(i)
451 =item isl_int_is_one(i)
453 =item isl_int_is_negone(i)
455 =item isl_int_is_pos(i)
457 =item isl_int_is_neg(i)
459 =item isl_int_is_nonpos(i)
461 =item isl_int_is_nonneg(i)
463 =item isl_int_is_divisible_by(i,j)
467 =head2 Sets and Relations
469 C<isl> uses six types of objects for representing sets and relations,
470 C<isl_basic_set>, C<isl_basic_map>, C<isl_set>, C<isl_map>,
471 C<isl_union_set> and C<isl_union_map>.
472 C<isl_basic_set> and C<isl_basic_map> represent sets and relations that
473 can be described as a conjunction of affine constraints, while
474 C<isl_set> and C<isl_map> represent unions of
475 C<isl_basic_set>s and C<isl_basic_map>s, respectively.
476 However, all C<isl_basic_set>s or C<isl_basic_map>s in the union need
477 to live in the same space. C<isl_union_set>s and C<isl_union_map>s
478 represent unions of C<isl_set>s or C<isl_map>s in I<different> spaces,
479 where spaces are considered different if they have a different number
480 of dimensions and/or different names (see L<"Spaces">).
481 The difference between sets and relations (maps) is that sets have
482 one set of variables, while relations have two sets of variables,
483 input variables and output variables.
485 =head2 Memory Management
487 Since a high-level operation on sets and/or relations usually involves
488 several substeps and since the user is usually not interested in
489 the intermediate results, most functions that return a new object
490 will also release all the objects passed as arguments.
491 If the user still wants to use one or more of these arguments
492 after the function call, she should pass along a copy of the
493 object rather than the object itself.
494 The user is then responsible for making sure that the original
495 object gets used somewhere else or is explicitly freed.
497 The arguments and return values of all documented functions are
498 annotated to make clear which arguments are released and which
499 arguments are preserved. In particular, the following annotations
506 C<__isl_give> means that a new object is returned.
507 The user should make sure that the returned pointer is
508 used exactly once as a value for an C<__isl_take> argument.
509 In between, it can be used as a value for as many
510 C<__isl_keep> arguments as the user likes.
511 There is one exception, and that is the case where the
512 pointer returned is C<NULL>. Is this case, the user
513 is free to use it as an C<__isl_take> argument or not.
517 C<__isl_take> means that the object the argument points to
518 is taken over by the function and may no longer be used
519 by the user as an argument to any other function.
520 The pointer value must be one returned by a function
521 returning an C<__isl_give> pointer.
522 If the user passes in a C<NULL> value, then this will
523 be treated as an error in the sense that the function will
524 not perform its usual operation. However, it will still
525 make sure that all the other C<__isl_take> arguments
530 C<__isl_keep> means that the function will only use the object
531 temporarily. After the function has finished, the user
532 can still use it as an argument to other functions.
533 A C<NULL> value will be treated in the same way as
534 a C<NULL> value for an C<__isl_take> argument.
538 =head2 Error Handling
540 C<isl> supports different ways to react in case a runtime error is triggered.
541 Runtime errors arise, e.g., if a function such as C<isl_map_intersect> is called
542 with two maps that have incompatible spaces. There are three possible ways
543 to react on error: to warn, to continue or to abort.
545 The default behavior is to warn. In this mode, C<isl> prints a warning, stores
546 the last error in the corresponding C<isl_ctx> and the function in which the
547 error was triggered returns C<NULL>. An error does not corrupt internal state,
548 such that isl can continue to be used. C<isl> also provides functions to
549 read the last error and to reset the memory that stores the last error. The
550 last error is only stored for information purposes. Its presence does not
551 change the behavior of C<isl>. Hence, resetting an error is not required to
552 continue to use isl, but only to observe new errors.
555 enum isl_error isl_ctx_last_error(isl_ctx *ctx);
556 void isl_ctx_reset_error(isl_ctx *ctx);
558 Another option is to continue on error. This is similar to warn on error mode,
559 except that C<isl> does not print any warning. This allows a program to
560 implement its own error reporting.
562 The last option is to directly abort the execution of the program from within
563 the isl library. This makes it obviously impossible to recover from an error,
564 but it allows to directly spot the error location. By aborting on error,
565 debuggers break at the location the error occurred and can provide a stack
566 trace. Other tools that automatically provide stack traces on abort or that do
567 not want to continue execution after an error was triggered may also prefer to
570 The on error behavior of isl can be specified by calling
571 C<isl_options_set_on_error> or by setting the command line option
572 C<--isl-on-error>. Valid arguments for the function call are
573 C<ISL_ON_ERROR_WARN>, C<ISL_ON_ERROR_CONTINUE> and C<ISL_ON_ERROR_ABORT>. The
574 choices for the command line option are C<warn>, C<continue> and C<abort>.
575 It is also possible to query the current error mode.
577 #include <isl/options.h>
578 int isl_options_set_on_error(isl_ctx *ctx, int val);
579 int isl_options_get_on_error(isl_ctx *ctx);
583 Identifiers are used to identify both individual dimensions
584 and tuples of dimensions. They consist of a name and an optional
585 pointer. Identifiers with the same name but different pointer values
586 are considered to be distinct.
587 Identifiers can be constructed, copied, freed, inspected and printed
588 using the following functions.
591 __isl_give isl_id *isl_id_alloc(isl_ctx *ctx,
592 __isl_keep const char *name, void *user);
593 __isl_give isl_id *isl_id_copy(isl_id *id);
594 void *isl_id_free(__isl_take isl_id *id);
596 isl_ctx *isl_id_get_ctx(__isl_keep isl_id *id);
597 void *isl_id_get_user(__isl_keep isl_id *id);
598 __isl_keep const char *isl_id_get_name(__isl_keep isl_id *id);
600 __isl_give isl_printer *isl_printer_print_id(
601 __isl_take isl_printer *p, __isl_keep isl_id *id);
603 Note that C<isl_id_get_name> returns a pointer to some internal
604 data structure, so the result can only be used while the
605 corresponding C<isl_id> is alive.
609 Whenever a new set, relation or similiar object is created from scratch,
610 the space in which it lives needs to be specified using an C<isl_space>.
611 Each space involves zero or more parameters and zero, one or two
612 tuples of set or input/output dimensions. The parameters and dimensions
613 are identified by an C<isl_dim_type> and a position.
614 The type C<isl_dim_param> refers to parameters,
615 the type C<isl_dim_set> refers to set dimensions (for spaces
616 with a single tuple of dimensions) and the types C<isl_dim_in>
617 and C<isl_dim_out> refer to input and output dimensions
618 (for spaces with two tuples of dimensions).
619 Local spaces (see L</"Local Spaces">) also contain dimensions
620 of type C<isl_dim_div>.
621 Note that parameters are only identified by their position within
622 a given object. Across different objects, parameters are (usually)
623 identified by their names or identifiers. Only unnamed parameters
624 are identified by their positions across objects. The use of unnamed
625 parameters is discouraged.
627 #include <isl/space.h>
628 __isl_give isl_space *isl_space_alloc(isl_ctx *ctx,
629 unsigned nparam, unsigned n_in, unsigned n_out);
630 __isl_give isl_space *isl_space_params_alloc(isl_ctx *ctx,
632 __isl_give isl_space *isl_space_set_alloc(isl_ctx *ctx,
633 unsigned nparam, unsigned dim);
634 __isl_give isl_space *isl_space_copy(__isl_keep isl_space *space);
635 void *isl_space_free(__isl_take isl_space *space);
636 unsigned isl_space_dim(__isl_keep isl_space *space,
637 enum isl_dim_type type);
639 The space used for creating a parameter domain
640 needs to be created using C<isl_space_params_alloc>.
641 For other sets, the space
642 needs to be created using C<isl_space_set_alloc>, while
643 for a relation, the space
644 needs to be created using C<isl_space_alloc>.
645 C<isl_space_dim> can be used
646 to find out the number of dimensions of each type in
647 a space, where type may be
648 C<isl_dim_param>, C<isl_dim_in> (only for relations),
649 C<isl_dim_out> (only for relations), C<isl_dim_set>
650 (only for sets) or C<isl_dim_all>.
652 To check whether a given space is that of a set or a map
653 or whether it is a parameter space, use these functions:
655 #include <isl/space.h>
656 int isl_space_is_params(__isl_keep isl_space *space);
657 int isl_space_is_set(__isl_keep isl_space *space);
658 int isl_space_is_map(__isl_keep isl_space *space);
660 Spaces can be compared using the following functions:
662 #include <isl/space.h>
663 int isl_space_is_equal(__isl_keep isl_space *space1,
664 __isl_keep isl_space *space2);
665 int isl_space_is_domain(__isl_keep isl_space *space1,
666 __isl_keep isl_space *space2);
667 int isl_space_is_range(__isl_keep isl_space *space1,
668 __isl_keep isl_space *space2);
670 C<isl_space_is_domain> checks whether the first argument is equal
671 to the domain of the second argument. This requires in particular that
672 the first argument is a set space and that the second argument
675 It is often useful to create objects that live in the
676 same space as some other object. This can be accomplished
677 by creating the new objects
678 (see L<Creating New Sets and Relations> or
679 L<Creating New (Piecewise) Quasipolynomials>) based on the space
680 of the original object.
683 __isl_give isl_space *isl_basic_set_get_space(
684 __isl_keep isl_basic_set *bset);
685 __isl_give isl_space *isl_set_get_space(__isl_keep isl_set *set);
687 #include <isl/union_set.h>
688 __isl_give isl_space *isl_union_set_get_space(
689 __isl_keep isl_union_set *uset);
692 __isl_give isl_space *isl_basic_map_get_space(
693 __isl_keep isl_basic_map *bmap);
694 __isl_give isl_space *isl_map_get_space(__isl_keep isl_map *map);
696 #include <isl/union_map.h>
697 __isl_give isl_space *isl_union_map_get_space(
698 __isl_keep isl_union_map *umap);
700 #include <isl/constraint.h>
701 __isl_give isl_space *isl_constraint_get_space(
702 __isl_keep isl_constraint *constraint);
704 #include <isl/polynomial.h>
705 __isl_give isl_space *isl_qpolynomial_get_domain_space(
706 __isl_keep isl_qpolynomial *qp);
707 __isl_give isl_space *isl_qpolynomial_get_space(
708 __isl_keep isl_qpolynomial *qp);
709 __isl_give isl_space *isl_qpolynomial_fold_get_space(
710 __isl_keep isl_qpolynomial_fold *fold);
711 __isl_give isl_space *isl_pw_qpolynomial_get_domain_space(
712 __isl_keep isl_pw_qpolynomial *pwqp);
713 __isl_give isl_space *isl_pw_qpolynomial_get_space(
714 __isl_keep isl_pw_qpolynomial *pwqp);
715 __isl_give isl_space *isl_pw_qpolynomial_fold_get_domain_space(
716 __isl_keep isl_pw_qpolynomial_fold *pwf);
717 __isl_give isl_space *isl_pw_qpolynomial_fold_get_space(
718 __isl_keep isl_pw_qpolynomial_fold *pwf);
719 __isl_give isl_space *isl_union_pw_qpolynomial_get_space(
720 __isl_keep isl_union_pw_qpolynomial *upwqp);
721 __isl_give isl_space *isl_union_pw_qpolynomial_fold_get_space(
722 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
725 __isl_give isl_space *isl_aff_get_domain_space(
726 __isl_keep isl_aff *aff);
727 __isl_give isl_space *isl_aff_get_space(
728 __isl_keep isl_aff *aff);
729 __isl_give isl_space *isl_pw_aff_get_domain_space(
730 __isl_keep isl_pw_aff *pwaff);
731 __isl_give isl_space *isl_pw_aff_get_space(
732 __isl_keep isl_pw_aff *pwaff);
733 __isl_give isl_space *isl_multi_aff_get_domain_space(
734 __isl_keep isl_multi_aff *maff);
735 __isl_give isl_space *isl_multi_aff_get_space(
736 __isl_keep isl_multi_aff *maff);
737 __isl_give isl_space *isl_pw_multi_aff_get_domain_space(
738 __isl_keep isl_pw_multi_aff *pma);
739 __isl_give isl_space *isl_pw_multi_aff_get_space(
740 __isl_keep isl_pw_multi_aff *pma);
741 __isl_give isl_space *isl_union_pw_multi_aff_get_space(
742 __isl_keep isl_union_pw_multi_aff *upma);
744 #include <isl/point.h>
745 __isl_give isl_space *isl_point_get_space(
746 __isl_keep isl_point *pnt);
748 The identifiers or names of the individual dimensions may be set or read off
749 using the following functions.
751 #include <isl/space.h>
752 __isl_give isl_space *isl_space_set_dim_id(
753 __isl_take isl_space *space,
754 enum isl_dim_type type, unsigned pos,
755 __isl_take isl_id *id);
756 int isl_space_has_dim_id(__isl_keep isl_space *space,
757 enum isl_dim_type type, unsigned pos);
758 __isl_give isl_id *isl_space_get_dim_id(
759 __isl_keep isl_space *space,
760 enum isl_dim_type type, unsigned pos);
761 __isl_give isl_space *isl_space_set_dim_name(
762 __isl_take isl_space *space,
763 enum isl_dim_type type, unsigned pos,
764 __isl_keep const char *name);
765 int isl_space_has_dim_name(__isl_keep isl_space *space,
766 enum isl_dim_type type, unsigned pos);
767 __isl_keep const char *isl_space_get_dim_name(
768 __isl_keep isl_space *space,
769 enum isl_dim_type type, unsigned pos);
771 Note that C<isl_space_get_name> returns a pointer to some internal
772 data structure, so the result can only be used while the
773 corresponding C<isl_space> is alive.
774 Also note that every function that operates on two sets or relations
775 requires that both arguments have the same parameters. This also
776 means that if one of the arguments has named parameters, then the
777 other needs to have named parameters too and the names need to match.
778 Pairs of C<isl_set>, C<isl_map>, C<isl_union_set> and/or C<isl_union_map>
779 arguments may have different parameters (as long as they are named),
780 in which case the result will have as parameters the union of the parameters of
783 Given the identifier or name of a dimension (typically a parameter),
784 its position can be obtained from the following function.
786 #include <isl/space.h>
787 int isl_space_find_dim_by_id(__isl_keep isl_space *space,
788 enum isl_dim_type type, __isl_keep isl_id *id);
789 int isl_space_find_dim_by_name(__isl_keep isl_space *space,
790 enum isl_dim_type type, const char *name);
792 The identifiers or names of entire spaces may be set or read off
793 using the following functions.
795 #include <isl/space.h>
796 __isl_give isl_space *isl_space_set_tuple_id(
797 __isl_take isl_space *space,
798 enum isl_dim_type type, __isl_take isl_id *id);
799 __isl_give isl_space *isl_space_reset_tuple_id(
800 __isl_take isl_space *space, enum isl_dim_type type);
801 int isl_space_has_tuple_id(__isl_keep isl_space *space,
802 enum isl_dim_type type);
803 __isl_give isl_id *isl_space_get_tuple_id(
804 __isl_keep isl_space *space, enum isl_dim_type type);
805 __isl_give isl_space *isl_space_set_tuple_name(
806 __isl_take isl_space *space,
807 enum isl_dim_type type, const char *s);
808 int isl_space_has_tuple_name(__isl_keep isl_space *space,
809 enum isl_dim_type type);
810 const char *isl_space_get_tuple_name(__isl_keep isl_space *space,
811 enum isl_dim_type type);
813 The C<type> argument needs to be one of C<isl_dim_in>, C<isl_dim_out>
814 or C<isl_dim_set>. As with C<isl_space_get_name>,
815 the C<isl_space_get_tuple_name> function returns a pointer to some internal
817 Binary operations require the corresponding spaces of their arguments
818 to have the same name.
820 Spaces can be nested. In particular, the domain of a set or
821 the domain or range of a relation can be a nested relation.
822 The following functions can be used to construct and deconstruct
825 #include <isl/space.h>
826 int isl_space_is_wrapping(__isl_keep isl_space *space);
827 __isl_give isl_space *isl_space_wrap(__isl_take isl_space *space);
828 __isl_give isl_space *isl_space_unwrap(__isl_take isl_space *space);
830 The input to C<isl_space_is_wrapping> and C<isl_space_unwrap> should
831 be the space of a set, while that of
832 C<isl_space_wrap> should be the space of a relation.
833 Conversely, the output of C<isl_space_unwrap> is the space
834 of a relation, while that of C<isl_space_wrap> is the space of a set.
836 Spaces can be created from other spaces
837 using the following functions.
839 __isl_give isl_space *isl_space_domain(__isl_take isl_space *space);
840 __isl_give isl_space *isl_space_from_domain(__isl_take isl_space *space);
841 __isl_give isl_space *isl_space_range(__isl_take isl_space *space);
842 __isl_give isl_space *isl_space_from_range(__isl_take isl_space *space);
843 __isl_give isl_space *isl_space_params(
844 __isl_take isl_space *space);
845 __isl_give isl_space *isl_space_set_from_params(
846 __isl_take isl_space *space);
847 __isl_give isl_space *isl_space_reverse(__isl_take isl_space *space);
848 __isl_give isl_space *isl_space_join(__isl_take isl_space *left,
849 __isl_take isl_space *right);
850 __isl_give isl_space *isl_space_align_params(
851 __isl_take isl_space *space1, __isl_take isl_space *space2)
852 __isl_give isl_space *isl_space_insert_dims(__isl_take isl_space *space,
853 enum isl_dim_type type, unsigned pos, unsigned n);
854 __isl_give isl_space *isl_space_add_dims(__isl_take isl_space *space,
855 enum isl_dim_type type, unsigned n);
856 __isl_give isl_space *isl_space_drop_dims(__isl_take isl_space *space,
857 enum isl_dim_type type, unsigned first, unsigned n);
858 __isl_give isl_space *isl_space_move_dims(__isl_take isl_space *space,
859 enum isl_dim_type dst_type, unsigned dst_pos,
860 enum isl_dim_type src_type, unsigned src_pos,
862 __isl_give isl_space *isl_space_map_from_set(
863 __isl_take isl_space *space);
864 __isl_give isl_space *isl_space_map_from_domain_and_range(
865 __isl_take isl_space *domain,
866 __isl_take isl_space *range);
867 __isl_give isl_space *isl_space_zip(__isl_take isl_space *space);
868 __isl_give isl_space *isl_space_curry(
869 __isl_take isl_space *space);
871 Note that if dimensions are added or removed from a space, then
872 the name and the internal structure are lost.
876 A local space is essentially a space with
877 zero or more existentially quantified variables.
878 The local space of a (constraint of a) basic set or relation can be obtained
879 using the following functions.
881 #include <isl/constraint.h>
882 __isl_give isl_local_space *isl_constraint_get_local_space(
883 __isl_keep isl_constraint *constraint);
886 __isl_give isl_local_space *isl_basic_set_get_local_space(
887 __isl_keep isl_basic_set *bset);
890 __isl_give isl_local_space *isl_basic_map_get_local_space(
891 __isl_keep isl_basic_map *bmap);
893 A new local space can be created from a space using
895 #include <isl/local_space.h>
896 __isl_give isl_local_space *isl_local_space_from_space(
897 __isl_take isl_space *space);
899 They can be inspected, modified, copied and freed using the following functions.
901 #include <isl/local_space.h>
902 isl_ctx *isl_local_space_get_ctx(
903 __isl_keep isl_local_space *ls);
904 int isl_local_space_is_set(__isl_keep isl_local_space *ls);
905 int isl_local_space_dim(__isl_keep isl_local_space *ls,
906 enum isl_dim_type type);
907 int isl_local_space_has_dim_id(
908 __isl_keep isl_local_space *ls,
909 enum isl_dim_type type, unsigned pos);
910 __isl_give isl_id *isl_local_space_get_dim_id(
911 __isl_keep isl_local_space *ls,
912 enum isl_dim_type type, unsigned pos);
913 int isl_local_space_has_dim_name(
914 __isl_keep isl_local_space *ls,
915 enum isl_dim_type type, unsigned pos)
916 const char *isl_local_space_get_dim_name(
917 __isl_keep isl_local_space *ls,
918 enum isl_dim_type type, unsigned pos);
919 __isl_give isl_local_space *isl_local_space_set_dim_name(
920 __isl_take isl_local_space *ls,
921 enum isl_dim_type type, unsigned pos, const char *s);
922 __isl_give isl_local_space *isl_local_space_set_dim_id(
923 __isl_take isl_local_space *ls,
924 enum isl_dim_type type, unsigned pos,
925 __isl_take isl_id *id);
926 __isl_give isl_space *isl_local_space_get_space(
927 __isl_keep isl_local_space *ls);
928 __isl_give isl_aff *isl_local_space_get_div(
929 __isl_keep isl_local_space *ls, int pos);
930 __isl_give isl_local_space *isl_local_space_copy(
931 __isl_keep isl_local_space *ls);
932 void *isl_local_space_free(__isl_take isl_local_space *ls);
934 Two local spaces can be compared using
936 int isl_local_space_is_equal(__isl_keep isl_local_space *ls1,
937 __isl_keep isl_local_space *ls2);
939 Local spaces can be created from other local spaces
940 using the following functions.
942 __isl_give isl_local_space *isl_local_space_domain(
943 __isl_take isl_local_space *ls);
944 __isl_give isl_local_space *isl_local_space_range(
945 __isl_take isl_local_space *ls);
946 __isl_give isl_local_space *isl_local_space_from_domain(
947 __isl_take isl_local_space *ls);
948 __isl_give isl_local_space *isl_local_space_intersect(
949 __isl_take isl_local_space *ls1,
950 __isl_take isl_local_space *ls2);
951 __isl_give isl_local_space *isl_local_space_add_dims(
952 __isl_take isl_local_space *ls,
953 enum isl_dim_type type, unsigned n);
954 __isl_give isl_local_space *isl_local_space_insert_dims(
955 __isl_take isl_local_space *ls,
956 enum isl_dim_type type, unsigned first, unsigned n);
957 __isl_give isl_local_space *isl_local_space_drop_dims(
958 __isl_take isl_local_space *ls,
959 enum isl_dim_type type, unsigned first, unsigned n);
961 =head2 Input and Output
963 C<isl> supports its own input/output format, which is similar
964 to the C<Omega> format, but also supports the C<PolyLib> format
969 The C<isl> format is similar to that of C<Omega>, but has a different
970 syntax for describing the parameters and allows for the definition
971 of an existentially quantified variable as the integer division
972 of an affine expression.
973 For example, the set of integers C<i> between C<0> and C<n>
974 such that C<i % 10 <= 6> can be described as
976 [n] -> { [i] : exists (a = [i/10] : 0 <= i and i <= n and
979 A set or relation can have several disjuncts, separated
980 by the keyword C<or>. Each disjunct is either a conjunction
981 of constraints or a projection (C<exists>) of a conjunction
982 of constraints. The constraints are separated by the keyword
985 =head3 C<PolyLib> format
987 If the represented set is a union, then the first line
988 contains a single number representing the number of disjuncts.
989 Otherwise, a line containing the number C<1> is optional.
991 Each disjunct is represented by a matrix of constraints.
992 The first line contains two numbers representing
993 the number of rows and columns,
994 where the number of rows is equal to the number of constraints
995 and the number of columns is equal to two plus the number of variables.
996 The following lines contain the actual rows of the constraint matrix.
997 In each row, the first column indicates whether the constraint
998 is an equality (C<0>) or inequality (C<1>). The final column
999 corresponds to the constant term.
1001 If the set is parametric, then the coefficients of the parameters
1002 appear in the last columns before the constant column.
1003 The coefficients of any existentially quantified variables appear
1004 between those of the set variables and those of the parameters.
1006 =head3 Extended C<PolyLib> format
1008 The extended C<PolyLib> format is nearly identical to the
1009 C<PolyLib> format. The only difference is that the line
1010 containing the number of rows and columns of a constraint matrix
1011 also contains four additional numbers:
1012 the number of output dimensions, the number of input dimensions,
1013 the number of local dimensions (i.e., the number of existentially
1014 quantified variables) and the number of parameters.
1015 For sets, the number of ``output'' dimensions is equal
1016 to the number of set dimensions, while the number of ``input''
1021 #include <isl/set.h>
1022 __isl_give isl_basic_set *isl_basic_set_read_from_file(
1023 isl_ctx *ctx, FILE *input);
1024 __isl_give isl_basic_set *isl_basic_set_read_from_str(
1025 isl_ctx *ctx, const char *str);
1026 __isl_give isl_set *isl_set_read_from_file(isl_ctx *ctx,
1028 __isl_give isl_set *isl_set_read_from_str(isl_ctx *ctx,
1031 #include <isl/map.h>
1032 __isl_give isl_basic_map *isl_basic_map_read_from_file(
1033 isl_ctx *ctx, FILE *input);
1034 __isl_give isl_basic_map *isl_basic_map_read_from_str(
1035 isl_ctx *ctx, const char *str);
1036 __isl_give isl_map *isl_map_read_from_file(
1037 isl_ctx *ctx, FILE *input);
1038 __isl_give isl_map *isl_map_read_from_str(isl_ctx *ctx,
1041 #include <isl/union_set.h>
1042 __isl_give isl_union_set *isl_union_set_read_from_file(
1043 isl_ctx *ctx, FILE *input);
1044 __isl_give isl_union_set *isl_union_set_read_from_str(
1045 isl_ctx *ctx, const char *str);
1047 #include <isl/union_map.h>
1048 __isl_give isl_union_map *isl_union_map_read_from_file(
1049 isl_ctx *ctx, FILE *input);
1050 __isl_give isl_union_map *isl_union_map_read_from_str(
1051 isl_ctx *ctx, const char *str);
1053 The input format is autodetected and may be either the C<PolyLib> format
1054 or the C<isl> format.
1058 Before anything can be printed, an C<isl_printer> needs to
1061 __isl_give isl_printer *isl_printer_to_file(isl_ctx *ctx,
1063 __isl_give isl_printer *isl_printer_to_str(isl_ctx *ctx);
1064 void *isl_printer_free(__isl_take isl_printer *printer);
1065 __isl_give char *isl_printer_get_str(
1066 __isl_keep isl_printer *printer);
1068 The printer can be inspected using the following functions.
1070 FILE *isl_printer_get_file(
1071 __isl_keep isl_printer *printer);
1072 int isl_printer_get_output_format(
1073 __isl_keep isl_printer *p);
1075 The behavior of the printer can be modified in various ways
1077 __isl_give isl_printer *isl_printer_set_output_format(
1078 __isl_take isl_printer *p, int output_format);
1079 __isl_give isl_printer *isl_printer_set_indent(
1080 __isl_take isl_printer *p, int indent);
1081 __isl_give isl_printer *isl_printer_indent(
1082 __isl_take isl_printer *p, int indent);
1083 __isl_give isl_printer *isl_printer_set_prefix(
1084 __isl_take isl_printer *p, const char *prefix);
1085 __isl_give isl_printer *isl_printer_set_suffix(
1086 __isl_take isl_printer *p, const char *suffix);
1088 The C<output_format> may be either C<ISL_FORMAT_ISL>, C<ISL_FORMAT_OMEGA>,
1089 C<ISL_FORMAT_POLYLIB>, C<ISL_FORMAT_EXT_POLYLIB> or C<ISL_FORMAT_LATEX>
1090 and defaults to C<ISL_FORMAT_ISL>.
1091 Each line in the output is indented by C<indent> (set by
1092 C<isl_printer_set_indent>) spaces
1093 (default: 0), prefixed by C<prefix> and suffixed by C<suffix>.
1094 In the C<PolyLib> format output,
1095 the coefficients of the existentially quantified variables
1096 appear between those of the set variables and those
1098 The function C<isl_printer_indent> increases the indentation
1099 by the specified amount (which may be negative).
1101 To actually print something, use
1103 #include <isl/printer.h>
1104 __isl_give isl_printer *isl_printer_print_double(
1105 __isl_take isl_printer *p, double d);
1107 #include <isl/set.h>
1108 __isl_give isl_printer *isl_printer_print_basic_set(
1109 __isl_take isl_printer *printer,
1110 __isl_keep isl_basic_set *bset);
1111 __isl_give isl_printer *isl_printer_print_set(
1112 __isl_take isl_printer *printer,
1113 __isl_keep isl_set *set);
1115 #include <isl/map.h>
1116 __isl_give isl_printer *isl_printer_print_basic_map(
1117 __isl_take isl_printer *printer,
1118 __isl_keep isl_basic_map *bmap);
1119 __isl_give isl_printer *isl_printer_print_map(
1120 __isl_take isl_printer *printer,
1121 __isl_keep isl_map *map);
1123 #include <isl/union_set.h>
1124 __isl_give isl_printer *isl_printer_print_union_set(
1125 __isl_take isl_printer *p,
1126 __isl_keep isl_union_set *uset);
1128 #include <isl/union_map.h>
1129 __isl_give isl_printer *isl_printer_print_union_map(
1130 __isl_take isl_printer *p,
1131 __isl_keep isl_union_map *umap);
1133 When called on a file printer, the following function flushes
1134 the file. When called on a string printer, the buffer is cleared.
1136 __isl_give isl_printer *isl_printer_flush(
1137 __isl_take isl_printer *p);
1139 =head2 Creating New Sets and Relations
1141 C<isl> has functions for creating some standard sets and relations.
1145 =item * Empty sets and relations
1147 __isl_give isl_basic_set *isl_basic_set_empty(
1148 __isl_take isl_space *space);
1149 __isl_give isl_basic_map *isl_basic_map_empty(
1150 __isl_take isl_space *space);
1151 __isl_give isl_set *isl_set_empty(
1152 __isl_take isl_space *space);
1153 __isl_give isl_map *isl_map_empty(
1154 __isl_take isl_space *space);
1155 __isl_give isl_union_set *isl_union_set_empty(
1156 __isl_take isl_space *space);
1157 __isl_give isl_union_map *isl_union_map_empty(
1158 __isl_take isl_space *space);
1160 For C<isl_union_set>s and C<isl_union_map>s, the space
1161 is only used to specify the parameters.
1163 =item * Universe sets and relations
1165 __isl_give isl_basic_set *isl_basic_set_universe(
1166 __isl_take isl_space *space);
1167 __isl_give isl_basic_map *isl_basic_map_universe(
1168 __isl_take isl_space *space);
1169 __isl_give isl_set *isl_set_universe(
1170 __isl_take isl_space *space);
1171 __isl_give isl_map *isl_map_universe(
1172 __isl_take isl_space *space);
1173 __isl_give isl_union_set *isl_union_set_universe(
1174 __isl_take isl_union_set *uset);
1175 __isl_give isl_union_map *isl_union_map_universe(
1176 __isl_take isl_union_map *umap);
1178 The sets and relations constructed by the functions above
1179 contain all integer values, while those constructed by the
1180 functions below only contain non-negative values.
1182 __isl_give isl_basic_set *isl_basic_set_nat_universe(
1183 __isl_take isl_space *space);
1184 __isl_give isl_basic_map *isl_basic_map_nat_universe(
1185 __isl_take isl_space *space);
1186 __isl_give isl_set *isl_set_nat_universe(
1187 __isl_take isl_space *space);
1188 __isl_give isl_map *isl_map_nat_universe(
1189 __isl_take isl_space *space);
1191 =item * Identity relations
1193 __isl_give isl_basic_map *isl_basic_map_identity(
1194 __isl_take isl_space *space);
1195 __isl_give isl_map *isl_map_identity(
1196 __isl_take isl_space *space);
1198 The number of input and output dimensions in C<space> needs
1201 =item * Lexicographic order
1203 __isl_give isl_map *isl_map_lex_lt(
1204 __isl_take isl_space *set_space);
1205 __isl_give isl_map *isl_map_lex_le(
1206 __isl_take isl_space *set_space);
1207 __isl_give isl_map *isl_map_lex_gt(
1208 __isl_take isl_space *set_space);
1209 __isl_give isl_map *isl_map_lex_ge(
1210 __isl_take isl_space *set_space);
1211 __isl_give isl_map *isl_map_lex_lt_first(
1212 __isl_take isl_space *space, unsigned n);
1213 __isl_give isl_map *isl_map_lex_le_first(
1214 __isl_take isl_space *space, unsigned n);
1215 __isl_give isl_map *isl_map_lex_gt_first(
1216 __isl_take isl_space *space, unsigned n);
1217 __isl_give isl_map *isl_map_lex_ge_first(
1218 __isl_take isl_space *space, unsigned n);
1220 The first four functions take a space for a B<set>
1221 and return relations that express that the elements in the domain
1222 are lexicographically less
1223 (C<isl_map_lex_lt>), less or equal (C<isl_map_lex_le>),
1224 greater (C<isl_map_lex_gt>) or greater or equal (C<isl_map_lex_ge>)
1225 than the elements in the range.
1226 The last four functions take a space for a map
1227 and return relations that express that the first C<n> dimensions
1228 in the domain are lexicographically less
1229 (C<isl_map_lex_lt_first>), less or equal (C<isl_map_lex_le_first>),
1230 greater (C<isl_map_lex_gt_first>) or greater or equal (C<isl_map_lex_ge_first>)
1231 than the first C<n> dimensions in the range.
1235 A basic set or relation can be converted to a set or relation
1236 using the following functions.
1238 __isl_give isl_set *isl_set_from_basic_set(
1239 __isl_take isl_basic_set *bset);
1240 __isl_give isl_map *isl_map_from_basic_map(
1241 __isl_take isl_basic_map *bmap);
1243 Sets and relations can be converted to union sets and relations
1244 using the following functions.
1246 __isl_give isl_union_set *isl_union_set_from_basic_set(
1247 __isl_take isl_basic_set *bset);
1248 __isl_give isl_union_map *isl_union_map_from_basic_map(
1249 __isl_take isl_basic_map *bmap);
1250 __isl_give isl_union_set *isl_union_set_from_set(
1251 __isl_take isl_set *set);
1252 __isl_give isl_union_map *isl_union_map_from_map(
1253 __isl_take isl_map *map);
1255 The inverse conversions below can only be used if the input
1256 union set or relation is known to contain elements in exactly one
1259 __isl_give isl_set *isl_set_from_union_set(
1260 __isl_take isl_union_set *uset);
1261 __isl_give isl_map *isl_map_from_union_map(
1262 __isl_take isl_union_map *umap);
1264 A zero-dimensional set can be constructed on a given parameter domain
1265 using the following function.
1267 __isl_give isl_set *isl_set_from_params(
1268 __isl_take isl_set *set);
1270 Sets and relations can be copied and freed again using the following
1273 __isl_give isl_basic_set *isl_basic_set_copy(
1274 __isl_keep isl_basic_set *bset);
1275 __isl_give isl_set *isl_set_copy(__isl_keep isl_set *set);
1276 __isl_give isl_union_set *isl_union_set_copy(
1277 __isl_keep isl_union_set *uset);
1278 __isl_give isl_basic_map *isl_basic_map_copy(
1279 __isl_keep isl_basic_map *bmap);
1280 __isl_give isl_map *isl_map_copy(__isl_keep isl_map *map);
1281 __isl_give isl_union_map *isl_union_map_copy(
1282 __isl_keep isl_union_map *umap);
1283 void isl_basic_set_free(__isl_take isl_basic_set *bset);
1284 void *isl_set_free(__isl_take isl_set *set);
1285 void *isl_union_set_free(__isl_take isl_union_set *uset);
1286 void *isl_basic_map_free(__isl_take isl_basic_map *bmap);
1287 void isl_map_free(__isl_take isl_map *map);
1288 void *isl_union_map_free(__isl_take isl_union_map *umap);
1290 Other sets and relations can be constructed by starting
1291 from a universe set or relation, adding equality and/or
1292 inequality constraints and then projecting out the
1293 existentially quantified variables, if any.
1294 Constraints can be constructed, manipulated and
1295 added to (or removed from) (basic) sets and relations
1296 using the following functions.
1298 #include <isl/constraint.h>
1299 __isl_give isl_constraint *isl_equality_alloc(
1300 __isl_take isl_local_space *ls);
1301 __isl_give isl_constraint *isl_inequality_alloc(
1302 __isl_take isl_local_space *ls);
1303 __isl_give isl_constraint *isl_constraint_set_constant(
1304 __isl_take isl_constraint *constraint, isl_int v);
1305 __isl_give isl_constraint *isl_constraint_set_constant_si(
1306 __isl_take isl_constraint *constraint, int v);
1307 __isl_give isl_constraint *isl_constraint_set_coefficient(
1308 __isl_take isl_constraint *constraint,
1309 enum isl_dim_type type, int pos, isl_int v);
1310 __isl_give isl_constraint *isl_constraint_set_coefficient_si(
1311 __isl_take isl_constraint *constraint,
1312 enum isl_dim_type type, int pos, int v);
1313 __isl_give isl_basic_map *isl_basic_map_add_constraint(
1314 __isl_take isl_basic_map *bmap,
1315 __isl_take isl_constraint *constraint);
1316 __isl_give isl_basic_set *isl_basic_set_add_constraint(
1317 __isl_take isl_basic_set *bset,
1318 __isl_take isl_constraint *constraint);
1319 __isl_give isl_map *isl_map_add_constraint(
1320 __isl_take isl_map *map,
1321 __isl_take isl_constraint *constraint);
1322 __isl_give isl_set *isl_set_add_constraint(
1323 __isl_take isl_set *set,
1324 __isl_take isl_constraint *constraint);
1325 __isl_give isl_basic_set *isl_basic_set_drop_constraint(
1326 __isl_take isl_basic_set *bset,
1327 __isl_take isl_constraint *constraint);
1329 For example, to create a set containing the even integers
1330 between 10 and 42, you would use the following code.
1333 isl_local_space *ls;
1335 isl_basic_set *bset;
1337 space = isl_space_set_alloc(ctx, 0, 2);
1338 bset = isl_basic_set_universe(isl_space_copy(space));
1339 ls = isl_local_space_from_space(space);
1341 c = isl_equality_alloc(isl_local_space_copy(ls));
1342 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1);
1343 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 1, 2);
1344 bset = isl_basic_set_add_constraint(bset, c);
1346 c = isl_inequality_alloc(isl_local_space_copy(ls));
1347 c = isl_constraint_set_constant_si(c, -10);
1348 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, 1);
1349 bset = isl_basic_set_add_constraint(bset, c);
1351 c = isl_inequality_alloc(ls);
1352 c = isl_constraint_set_constant_si(c, 42);
1353 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1);
1354 bset = isl_basic_set_add_constraint(bset, c);
1356 bset = isl_basic_set_project_out(bset, isl_dim_set, 1, 1);
1360 isl_basic_set *bset;
1361 bset = isl_basic_set_read_from_str(ctx,
1362 "{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}");
1364 A basic set or relation can also be constructed from two matrices
1365 describing the equalities and the inequalities.
1367 __isl_give isl_basic_set *isl_basic_set_from_constraint_matrices(
1368 __isl_take isl_space *space,
1369 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
1370 enum isl_dim_type c1,
1371 enum isl_dim_type c2, enum isl_dim_type c3,
1372 enum isl_dim_type c4);
1373 __isl_give isl_basic_map *isl_basic_map_from_constraint_matrices(
1374 __isl_take isl_space *space,
1375 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
1376 enum isl_dim_type c1,
1377 enum isl_dim_type c2, enum isl_dim_type c3,
1378 enum isl_dim_type c4, enum isl_dim_type c5);
1380 The C<isl_dim_type> arguments indicate the order in which
1381 different kinds of variables appear in the input matrices
1382 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
1383 C<isl_dim_set> and C<isl_dim_div> for sets and
1384 of C<isl_dim_cst>, C<isl_dim_param>,
1385 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div> for relations.
1387 A (basic or union) set or relation can also be constructed from a
1388 (union) (piecewise) (multiple) affine expression
1389 or a list of affine expressions
1390 (See L<"Piecewise Quasi Affine Expressions"> and
1391 L<"Piecewise Multiple Quasi Affine Expressions">).
1393 __isl_give isl_basic_map *isl_basic_map_from_aff(
1394 __isl_take isl_aff *aff);
1395 __isl_give isl_map *isl_map_from_aff(
1396 __isl_take isl_aff *aff);
1397 __isl_give isl_set *isl_set_from_pw_aff(
1398 __isl_take isl_pw_aff *pwaff);
1399 __isl_give isl_map *isl_map_from_pw_aff(
1400 __isl_take isl_pw_aff *pwaff);
1401 __isl_give isl_basic_map *isl_basic_map_from_aff_list(
1402 __isl_take isl_space *domain_space,
1403 __isl_take isl_aff_list *list);
1404 __isl_give isl_basic_map *isl_basic_map_from_multi_aff(
1405 __isl_take isl_multi_aff *maff)
1406 __isl_give isl_map *isl_map_from_multi_aff(
1407 __isl_take isl_multi_aff *maff)
1408 __isl_give isl_set *isl_set_from_pw_multi_aff(
1409 __isl_take isl_pw_multi_aff *pma);
1410 __isl_give isl_map *isl_map_from_pw_multi_aff(
1411 __isl_take isl_pw_multi_aff *pma);
1412 __isl_give isl_union_map *
1413 isl_union_map_from_union_pw_multi_aff(
1414 __isl_take isl_union_pw_multi_aff *upma);
1416 The C<domain_dim> argument describes the domain of the resulting
1417 basic relation. It is required because the C<list> may consist
1418 of zero affine expressions.
1420 =head2 Inspecting Sets and Relations
1422 Usually, the user should not have to care about the actual constraints
1423 of the sets and maps, but should instead apply the abstract operations
1424 explained in the following sections.
1425 Occasionally, however, it may be required to inspect the individual
1426 coefficients of the constraints. This section explains how to do so.
1427 In these cases, it may also be useful to have C<isl> compute
1428 an explicit representation of the existentially quantified variables.
1430 __isl_give isl_set *isl_set_compute_divs(
1431 __isl_take isl_set *set);
1432 __isl_give isl_map *isl_map_compute_divs(
1433 __isl_take isl_map *map);
1434 __isl_give isl_union_set *isl_union_set_compute_divs(
1435 __isl_take isl_union_set *uset);
1436 __isl_give isl_union_map *isl_union_map_compute_divs(
1437 __isl_take isl_union_map *umap);
1439 This explicit representation defines the existentially quantified
1440 variables as integer divisions of the other variables, possibly
1441 including earlier existentially quantified variables.
1442 An explicitly represented existentially quantified variable therefore
1443 has a unique value when the values of the other variables are known.
1444 If, furthermore, the same existentials, i.e., existentials
1445 with the same explicit representations, should appear in the
1446 same order in each of the disjuncts of a set or map, then the user should call
1447 either of the following functions.
1449 __isl_give isl_set *isl_set_align_divs(
1450 __isl_take isl_set *set);
1451 __isl_give isl_map *isl_map_align_divs(
1452 __isl_take isl_map *map);
1454 Alternatively, the existentially quantified variables can be removed
1455 using the following functions, which compute an overapproximation.
1457 __isl_give isl_basic_set *isl_basic_set_remove_divs(
1458 __isl_take isl_basic_set *bset);
1459 __isl_give isl_basic_map *isl_basic_map_remove_divs(
1460 __isl_take isl_basic_map *bmap);
1461 __isl_give isl_set *isl_set_remove_divs(
1462 __isl_take isl_set *set);
1463 __isl_give isl_map *isl_map_remove_divs(
1464 __isl_take isl_map *map);
1466 It is also possible to only remove those divs that are defined
1467 in terms of a given range of dimensions or only those for which
1468 no explicit representation is known.
1470 __isl_give isl_basic_set *
1471 isl_basic_set_remove_divs_involving_dims(
1472 __isl_take isl_basic_set *bset,
1473 enum isl_dim_type type,
1474 unsigned first, unsigned n);
1475 __isl_give isl_set *isl_set_remove_divs_involving_dims(
1476 __isl_take isl_set *set, enum isl_dim_type type,
1477 unsigned first, unsigned n);
1478 __isl_give isl_map *isl_map_remove_divs_involving_dims(
1479 __isl_take isl_map *map, enum isl_dim_type type,
1480 unsigned first, unsigned n);
1482 __isl_give isl_set *isl_set_remove_unknown_divs(
1483 __isl_take isl_set *set);
1484 __isl_give isl_map *isl_map_remove_unknown_divs(
1485 __isl_take isl_map *map);
1487 To iterate over all the sets or maps in a union set or map, use
1489 int isl_union_set_foreach_set(__isl_keep isl_union_set *uset,
1490 int (*fn)(__isl_take isl_set *set, void *user),
1492 int isl_union_map_foreach_map(__isl_keep isl_union_map *umap,
1493 int (*fn)(__isl_take isl_map *map, void *user),
1496 The number of sets or maps in a union set or map can be obtained
1499 int isl_union_set_n_set(__isl_keep isl_union_set *uset);
1500 int isl_union_map_n_map(__isl_keep isl_union_map *umap);
1502 To extract the set or map in a given space from a union, use
1504 __isl_give isl_set *isl_union_set_extract_set(
1505 __isl_keep isl_union_set *uset,
1506 __isl_take isl_space *space);
1507 __isl_give isl_map *isl_union_map_extract_map(
1508 __isl_keep isl_union_map *umap,
1509 __isl_take isl_space *space);
1511 To iterate over all the basic sets or maps in a set or map, use
1513 int isl_set_foreach_basic_set(__isl_keep isl_set *set,
1514 int (*fn)(__isl_take isl_basic_set *bset, void *user),
1516 int isl_map_foreach_basic_map(__isl_keep isl_map *map,
1517 int (*fn)(__isl_take isl_basic_map *bmap, void *user),
1520 The callback function C<fn> should return 0 if successful and
1521 -1 if an error occurs. In the latter case, or if any other error
1522 occurs, the above functions will return -1.
1524 It should be noted that C<isl> does not guarantee that
1525 the basic sets or maps passed to C<fn> are disjoint.
1526 If this is required, then the user should call one of
1527 the following functions first.
1529 __isl_give isl_set *isl_set_make_disjoint(
1530 __isl_take isl_set *set);
1531 __isl_give isl_map *isl_map_make_disjoint(
1532 __isl_take isl_map *map);
1534 The number of basic sets in a set can be obtained
1537 int isl_set_n_basic_set(__isl_keep isl_set *set);
1539 To iterate over the constraints of a basic set or map, use
1541 #include <isl/constraint.h>
1543 int isl_basic_set_n_constraint(
1544 __isl_keep isl_basic_set *bset);
1545 int isl_basic_set_foreach_constraint(
1546 __isl_keep isl_basic_set *bset,
1547 int (*fn)(__isl_take isl_constraint *c, void *user),
1549 int isl_basic_map_foreach_constraint(
1550 __isl_keep isl_basic_map *bmap,
1551 int (*fn)(__isl_take isl_constraint *c, void *user),
1553 void *isl_constraint_free(__isl_take isl_constraint *c);
1555 Again, the callback function C<fn> should return 0 if successful and
1556 -1 if an error occurs. In the latter case, or if any other error
1557 occurs, the above functions will return -1.
1558 The constraint C<c> represents either an equality or an inequality.
1559 Use the following function to find out whether a constraint
1560 represents an equality. If not, it represents an inequality.
1562 int isl_constraint_is_equality(
1563 __isl_keep isl_constraint *constraint);
1565 The coefficients of the constraints can be inspected using
1566 the following functions.
1568 int isl_constraint_is_lower_bound(
1569 __isl_keep isl_constraint *constraint,
1570 enum isl_dim_type type, unsigned pos);
1571 int isl_constraint_is_upper_bound(
1572 __isl_keep isl_constraint *constraint,
1573 enum isl_dim_type type, unsigned pos);
1574 void isl_constraint_get_constant(
1575 __isl_keep isl_constraint *constraint, isl_int *v);
1576 void isl_constraint_get_coefficient(
1577 __isl_keep isl_constraint *constraint,
1578 enum isl_dim_type type, int pos, isl_int *v);
1579 int isl_constraint_involves_dims(
1580 __isl_keep isl_constraint *constraint,
1581 enum isl_dim_type type, unsigned first, unsigned n);
1583 The explicit representations of the existentially quantified
1584 variables can be inspected using the following function.
1585 Note that the user is only allowed to use this function
1586 if the inspected set or map is the result of a call
1587 to C<isl_set_compute_divs> or C<isl_map_compute_divs>.
1588 The existentially quantified variable is equal to the floor
1589 of the returned affine expression. The affine expression
1590 itself can be inspected using the functions in
1591 L<"Piecewise Quasi Affine Expressions">.
1593 __isl_give isl_aff *isl_constraint_get_div(
1594 __isl_keep isl_constraint *constraint, int pos);
1596 To obtain the constraints of a basic set or map in matrix
1597 form, use the following functions.
1599 __isl_give isl_mat *isl_basic_set_equalities_matrix(
1600 __isl_keep isl_basic_set *bset,
1601 enum isl_dim_type c1, enum isl_dim_type c2,
1602 enum isl_dim_type c3, enum isl_dim_type c4);
1603 __isl_give isl_mat *isl_basic_set_inequalities_matrix(
1604 __isl_keep isl_basic_set *bset,
1605 enum isl_dim_type c1, enum isl_dim_type c2,
1606 enum isl_dim_type c3, enum isl_dim_type c4);
1607 __isl_give isl_mat *isl_basic_map_equalities_matrix(
1608 __isl_keep isl_basic_map *bmap,
1609 enum isl_dim_type c1,
1610 enum isl_dim_type c2, enum isl_dim_type c3,
1611 enum isl_dim_type c4, enum isl_dim_type c5);
1612 __isl_give isl_mat *isl_basic_map_inequalities_matrix(
1613 __isl_keep isl_basic_map *bmap,
1614 enum isl_dim_type c1,
1615 enum isl_dim_type c2, enum isl_dim_type c3,
1616 enum isl_dim_type c4, enum isl_dim_type c5);
1618 The C<isl_dim_type> arguments dictate the order in which
1619 different kinds of variables appear in the resulting matrix
1620 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
1621 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div>.
1623 The number of parameters, input, output or set dimensions can
1624 be obtained using the following functions.
1626 unsigned isl_basic_set_dim(__isl_keep isl_basic_set *bset,
1627 enum isl_dim_type type);
1628 unsigned isl_basic_map_dim(__isl_keep isl_basic_map *bmap,
1629 enum isl_dim_type type);
1630 unsigned isl_set_dim(__isl_keep isl_set *set,
1631 enum isl_dim_type type);
1632 unsigned isl_map_dim(__isl_keep isl_map *map,
1633 enum isl_dim_type type);
1635 To check whether the description of a set or relation depends
1636 on one or more given dimensions, it is not necessary to iterate over all
1637 constraints. Instead the following functions can be used.
1639 int isl_basic_set_involves_dims(
1640 __isl_keep isl_basic_set *bset,
1641 enum isl_dim_type type, unsigned first, unsigned n);
1642 int isl_set_involves_dims(__isl_keep isl_set *set,
1643 enum isl_dim_type type, unsigned first, unsigned n);
1644 int isl_basic_map_involves_dims(
1645 __isl_keep isl_basic_map *bmap,
1646 enum isl_dim_type type, unsigned first, unsigned n);
1647 int isl_map_involves_dims(__isl_keep isl_map *map,
1648 enum isl_dim_type type, unsigned first, unsigned n);
1650 Similarly, the following functions can be used to check whether
1651 a given dimension is involved in any lower or upper bound.
1653 int isl_set_dim_has_any_lower_bound(__isl_keep isl_set *set,
1654 enum isl_dim_type type, unsigned pos);
1655 int isl_set_dim_has_any_upper_bound(__isl_keep isl_set *set,
1656 enum isl_dim_type type, unsigned pos);
1658 The identifiers or names of the domain and range spaces of a set
1659 or relation can be read off or set using the following functions.
1661 __isl_give isl_set *isl_set_set_tuple_id(
1662 __isl_take isl_set *set, __isl_take isl_id *id);
1663 __isl_give isl_set *isl_set_reset_tuple_id(
1664 __isl_take isl_set *set);
1665 int isl_set_has_tuple_id(__isl_keep isl_set *set);
1666 __isl_give isl_id *isl_set_get_tuple_id(
1667 __isl_keep isl_set *set);
1668 __isl_give isl_map *isl_map_set_tuple_id(
1669 __isl_take isl_map *map, enum isl_dim_type type,
1670 __isl_take isl_id *id);
1671 __isl_give isl_map *isl_map_reset_tuple_id(
1672 __isl_take isl_map *map, enum isl_dim_type type);
1673 int isl_map_has_tuple_id(__isl_keep isl_map *map,
1674 enum isl_dim_type type);
1675 __isl_give isl_id *isl_map_get_tuple_id(
1676 __isl_keep isl_map *map, enum isl_dim_type type);
1678 const char *isl_basic_set_get_tuple_name(
1679 __isl_keep isl_basic_set *bset);
1680 __isl_give isl_basic_set *isl_basic_set_set_tuple_name(
1681 __isl_take isl_basic_set *set, const char *s);
1682 int isl_set_has_tuple_name(__isl_keep isl_set *set);
1683 const char *isl_set_get_tuple_name(
1684 __isl_keep isl_set *set);
1685 const char *isl_basic_map_get_tuple_name(
1686 __isl_keep isl_basic_map *bmap,
1687 enum isl_dim_type type);
1688 __isl_give isl_basic_map *isl_basic_map_set_tuple_name(
1689 __isl_take isl_basic_map *bmap,
1690 enum isl_dim_type type, const char *s);
1691 int isl_map_has_tuple_name(__isl_keep isl_map *map,
1692 enum isl_dim_type type);
1693 const char *isl_map_get_tuple_name(
1694 __isl_keep isl_map *map,
1695 enum isl_dim_type type);
1697 As with C<isl_space_get_tuple_name>, the value returned points to
1698 an internal data structure.
1699 The identifiers, positions or names of individual dimensions can be
1700 read off using the following functions.
1702 __isl_give isl_id *isl_basic_set_get_dim_id(
1703 __isl_keep isl_basic_set *bset,
1704 enum isl_dim_type type, unsigned pos);
1705 __isl_give isl_set *isl_set_set_dim_id(
1706 __isl_take isl_set *set, enum isl_dim_type type,
1707 unsigned pos, __isl_take isl_id *id);
1708 int isl_set_has_dim_id(__isl_keep isl_set *set,
1709 enum isl_dim_type type, unsigned pos);
1710 __isl_give isl_id *isl_set_get_dim_id(
1711 __isl_keep isl_set *set, enum isl_dim_type type,
1713 int isl_basic_map_has_dim_id(
1714 __isl_keep isl_basic_map *bmap,
1715 enum isl_dim_type type, unsigned pos);
1716 __isl_give isl_map *isl_map_set_dim_id(
1717 __isl_take isl_map *map, enum isl_dim_type type,
1718 unsigned pos, __isl_take isl_id *id);
1719 int isl_map_has_dim_id(__isl_keep isl_map *map,
1720 enum isl_dim_type type, unsigned pos);
1721 __isl_give isl_id *isl_map_get_dim_id(
1722 __isl_keep isl_map *map, enum isl_dim_type type,
1725 int isl_set_find_dim_by_id(__isl_keep isl_set *set,
1726 enum isl_dim_type type, __isl_keep isl_id *id);
1727 int isl_map_find_dim_by_id(__isl_keep isl_map *map,
1728 enum isl_dim_type type, __isl_keep isl_id *id);
1729 int isl_set_find_dim_by_name(__isl_keep isl_set *set,
1730 enum isl_dim_type type, const char *name);
1731 int isl_map_find_dim_by_name(__isl_keep isl_map *map,
1732 enum isl_dim_type type, const char *name);
1734 const char *isl_constraint_get_dim_name(
1735 __isl_keep isl_constraint *constraint,
1736 enum isl_dim_type type, unsigned pos);
1737 const char *isl_basic_set_get_dim_name(
1738 __isl_keep isl_basic_set *bset,
1739 enum isl_dim_type type, unsigned pos);
1740 int isl_set_has_dim_name(__isl_keep isl_set *set,
1741 enum isl_dim_type type, unsigned pos);
1742 const char *isl_set_get_dim_name(
1743 __isl_keep isl_set *set,
1744 enum isl_dim_type type, unsigned pos);
1745 const char *isl_basic_map_get_dim_name(
1746 __isl_keep isl_basic_map *bmap,
1747 enum isl_dim_type type, unsigned pos);
1748 int isl_map_has_dim_name(__isl_keep isl_map *map,
1749 enum isl_dim_type type, unsigned pos);
1750 const char *isl_map_get_dim_name(
1751 __isl_keep isl_map *map,
1752 enum isl_dim_type type, unsigned pos);
1754 These functions are mostly useful to obtain the identifiers, positions
1755 or names of the parameters. Identifiers of individual dimensions are
1756 essentially only useful for printing. They are ignored by all other
1757 operations and may not be preserved across those operations.
1761 =head3 Unary Properties
1767 The following functions test whether the given set or relation
1768 contains any integer points. The ``plain'' variants do not perform
1769 any computations, but simply check if the given set or relation
1770 is already known to be empty.
1772 int isl_basic_set_plain_is_empty(__isl_keep isl_basic_set *bset);
1773 int isl_basic_set_is_empty(__isl_keep isl_basic_set *bset);
1774 int isl_set_plain_is_empty(__isl_keep isl_set *set);
1775 int isl_set_is_empty(__isl_keep isl_set *set);
1776 int isl_union_set_is_empty(__isl_keep isl_union_set *uset);
1777 int isl_basic_map_plain_is_empty(__isl_keep isl_basic_map *bmap);
1778 int isl_basic_map_is_empty(__isl_keep isl_basic_map *bmap);
1779 int isl_map_plain_is_empty(__isl_keep isl_map *map);
1780 int isl_map_is_empty(__isl_keep isl_map *map);
1781 int isl_union_map_is_empty(__isl_keep isl_union_map *umap);
1783 =item * Universality
1785 int isl_basic_set_is_universe(__isl_keep isl_basic_set *bset);
1786 int isl_basic_map_is_universe(__isl_keep isl_basic_map *bmap);
1787 int isl_set_plain_is_universe(__isl_keep isl_set *set);
1789 =item * Single-valuedness
1791 int isl_basic_map_is_single_valued(
1792 __isl_keep isl_basic_map *bmap);
1793 int isl_map_plain_is_single_valued(
1794 __isl_keep isl_map *map);
1795 int isl_map_is_single_valued(__isl_keep isl_map *map);
1796 int isl_union_map_is_single_valued(__isl_keep isl_union_map *umap);
1800 int isl_map_plain_is_injective(__isl_keep isl_map *map);
1801 int isl_map_is_injective(__isl_keep isl_map *map);
1802 int isl_union_map_plain_is_injective(
1803 __isl_keep isl_union_map *umap);
1804 int isl_union_map_is_injective(
1805 __isl_keep isl_union_map *umap);
1809 int isl_map_is_bijective(__isl_keep isl_map *map);
1810 int isl_union_map_is_bijective(__isl_keep isl_union_map *umap);
1814 int isl_basic_map_plain_is_fixed(
1815 __isl_keep isl_basic_map *bmap,
1816 enum isl_dim_type type, unsigned pos,
1818 int isl_set_plain_is_fixed(__isl_keep isl_set *set,
1819 enum isl_dim_type type, unsigned pos,
1821 int isl_map_plain_is_fixed(__isl_keep isl_map *map,
1822 enum isl_dim_type type, unsigned pos,
1825 Check if the relation obviously lies on a hyperplane where the given dimension
1826 has a fixed value and if so, return that value in C<*val>.
1830 To check whether a set is a parameter domain, use this function:
1832 int isl_set_is_params(__isl_keep isl_set *set);
1833 int isl_union_set_is_params(
1834 __isl_keep isl_union_set *uset);
1838 The following functions check whether the domain of the given
1839 (basic) set is a wrapped relation.
1841 int isl_basic_set_is_wrapping(
1842 __isl_keep isl_basic_set *bset);
1843 int isl_set_is_wrapping(__isl_keep isl_set *set);
1845 =item * Internal Product
1847 int isl_basic_map_can_zip(
1848 __isl_keep isl_basic_map *bmap);
1849 int isl_map_can_zip(__isl_keep isl_map *map);
1851 Check whether the product of domain and range of the given relation
1853 i.e., whether both domain and range are nested relations.
1857 int isl_basic_map_can_curry(
1858 __isl_keep isl_basic_map *bmap);
1859 int isl_map_can_curry(__isl_keep isl_map *map);
1861 Check whether the domain of the (basic) relation is a wrapped relation.
1865 =head3 Binary Properties
1871 int isl_set_plain_is_equal(__isl_keep isl_set *set1,
1872 __isl_keep isl_set *set2);
1873 int isl_set_is_equal(__isl_keep isl_set *set1,
1874 __isl_keep isl_set *set2);
1875 int isl_union_set_is_equal(
1876 __isl_keep isl_union_set *uset1,
1877 __isl_keep isl_union_set *uset2);
1878 int isl_basic_map_is_equal(
1879 __isl_keep isl_basic_map *bmap1,
1880 __isl_keep isl_basic_map *bmap2);
1881 int isl_map_is_equal(__isl_keep isl_map *map1,
1882 __isl_keep isl_map *map2);
1883 int isl_map_plain_is_equal(__isl_keep isl_map *map1,
1884 __isl_keep isl_map *map2);
1885 int isl_union_map_is_equal(
1886 __isl_keep isl_union_map *umap1,
1887 __isl_keep isl_union_map *umap2);
1889 =item * Disjointness
1891 int isl_set_plain_is_disjoint(__isl_keep isl_set *set1,
1892 __isl_keep isl_set *set2);
1896 int isl_basic_set_is_subset(
1897 __isl_keep isl_basic_set *bset1,
1898 __isl_keep isl_basic_set *bset2);
1899 int isl_set_is_subset(__isl_keep isl_set *set1,
1900 __isl_keep isl_set *set2);
1901 int isl_set_is_strict_subset(
1902 __isl_keep isl_set *set1,
1903 __isl_keep isl_set *set2);
1904 int isl_union_set_is_subset(
1905 __isl_keep isl_union_set *uset1,
1906 __isl_keep isl_union_set *uset2);
1907 int isl_union_set_is_strict_subset(
1908 __isl_keep isl_union_set *uset1,
1909 __isl_keep isl_union_set *uset2);
1910 int isl_basic_map_is_subset(
1911 __isl_keep isl_basic_map *bmap1,
1912 __isl_keep isl_basic_map *bmap2);
1913 int isl_basic_map_is_strict_subset(
1914 __isl_keep isl_basic_map *bmap1,
1915 __isl_keep isl_basic_map *bmap2);
1916 int isl_map_is_subset(
1917 __isl_keep isl_map *map1,
1918 __isl_keep isl_map *map2);
1919 int isl_map_is_strict_subset(
1920 __isl_keep isl_map *map1,
1921 __isl_keep isl_map *map2);
1922 int isl_union_map_is_subset(
1923 __isl_keep isl_union_map *umap1,
1924 __isl_keep isl_union_map *umap2);
1925 int isl_union_map_is_strict_subset(
1926 __isl_keep isl_union_map *umap1,
1927 __isl_keep isl_union_map *umap2);
1929 Check whether the first argument is a (strict) subset of the
1934 =head2 Unary Operations
1940 __isl_give isl_set *isl_set_complement(
1941 __isl_take isl_set *set);
1942 __isl_give isl_map *isl_map_complement(
1943 __isl_take isl_map *map);
1947 __isl_give isl_basic_map *isl_basic_map_reverse(
1948 __isl_take isl_basic_map *bmap);
1949 __isl_give isl_map *isl_map_reverse(
1950 __isl_take isl_map *map);
1951 __isl_give isl_union_map *isl_union_map_reverse(
1952 __isl_take isl_union_map *umap);
1956 __isl_give isl_basic_set *isl_basic_set_project_out(
1957 __isl_take isl_basic_set *bset,
1958 enum isl_dim_type type, unsigned first, unsigned n);
1959 __isl_give isl_basic_map *isl_basic_map_project_out(
1960 __isl_take isl_basic_map *bmap,
1961 enum isl_dim_type type, unsigned first, unsigned n);
1962 __isl_give isl_set *isl_set_project_out(__isl_take isl_set *set,
1963 enum isl_dim_type type, unsigned first, unsigned n);
1964 __isl_give isl_map *isl_map_project_out(__isl_take isl_map *map,
1965 enum isl_dim_type type, unsigned first, unsigned n);
1966 __isl_give isl_basic_set *isl_basic_set_params(
1967 __isl_take isl_basic_set *bset);
1968 __isl_give isl_basic_set *isl_basic_map_domain(
1969 __isl_take isl_basic_map *bmap);
1970 __isl_give isl_basic_set *isl_basic_map_range(
1971 __isl_take isl_basic_map *bmap);
1972 __isl_give isl_set *isl_set_params(__isl_take isl_set *set);
1973 __isl_give isl_set *isl_map_params(__isl_take isl_map *map);
1974 __isl_give isl_set *isl_map_domain(
1975 __isl_take isl_map *bmap);
1976 __isl_give isl_set *isl_map_range(
1977 __isl_take isl_map *map);
1978 __isl_give isl_set *isl_union_set_params(
1979 __isl_take isl_union_set *uset);
1980 __isl_give isl_set *isl_union_map_params(
1981 __isl_take isl_union_map *umap);
1982 __isl_give isl_union_set *isl_union_map_domain(
1983 __isl_take isl_union_map *umap);
1984 __isl_give isl_union_set *isl_union_map_range(
1985 __isl_take isl_union_map *umap);
1987 __isl_give isl_basic_map *isl_basic_map_domain_map(
1988 __isl_take isl_basic_map *bmap);
1989 __isl_give isl_basic_map *isl_basic_map_range_map(
1990 __isl_take isl_basic_map *bmap);
1991 __isl_give isl_map *isl_map_domain_map(__isl_take isl_map *map);
1992 __isl_give isl_map *isl_map_range_map(__isl_take isl_map *map);
1993 __isl_give isl_union_map *isl_union_map_domain_map(
1994 __isl_take isl_union_map *umap);
1995 __isl_give isl_union_map *isl_union_map_range_map(
1996 __isl_take isl_union_map *umap);
1998 The functions above construct a (basic, regular or union) relation
1999 that maps (a wrapped version of) the input relation to its domain or range.
2003 __isl_give isl_basic_set *isl_basic_set_eliminate(
2004 __isl_take isl_basic_set *bset,
2005 enum isl_dim_type type,
2006 unsigned first, unsigned n);
2007 __isl_give isl_set *isl_set_eliminate(
2008 __isl_take isl_set *set, enum isl_dim_type type,
2009 unsigned first, unsigned n);
2010 __isl_give isl_basic_map *isl_basic_map_eliminate(
2011 __isl_take isl_basic_map *bmap,
2012 enum isl_dim_type type,
2013 unsigned first, unsigned n);
2014 __isl_give isl_map *isl_map_eliminate(
2015 __isl_take isl_map *map, enum isl_dim_type type,
2016 unsigned first, unsigned n);
2018 Eliminate the coefficients for the given dimensions from the constraints,
2019 without removing the dimensions.
2023 __isl_give isl_basic_set *isl_basic_set_fix(
2024 __isl_take isl_basic_set *bset,
2025 enum isl_dim_type type, unsigned pos,
2027 __isl_give isl_basic_set *isl_basic_set_fix_si(
2028 __isl_take isl_basic_set *bset,
2029 enum isl_dim_type type, unsigned pos, int value);
2030 __isl_give isl_set *isl_set_fix(__isl_take isl_set *set,
2031 enum isl_dim_type type, unsigned pos,
2033 __isl_give isl_set *isl_set_fix_si(__isl_take isl_set *set,
2034 enum isl_dim_type type, unsigned pos, int value);
2035 __isl_give isl_basic_map *isl_basic_map_fix_si(
2036 __isl_take isl_basic_map *bmap,
2037 enum isl_dim_type type, unsigned pos, int value);
2038 __isl_give isl_map *isl_map_fix_si(__isl_take isl_map *map,
2039 enum isl_dim_type type, unsigned pos, int value);
2041 Intersect the set or relation with the hyperplane where the given
2042 dimension has the fixed given value.
2044 __isl_give isl_basic_map *isl_basic_map_lower_bound_si(
2045 __isl_take isl_basic_map *bmap,
2046 enum isl_dim_type type, unsigned pos, int value);
2047 __isl_give isl_set *isl_set_lower_bound(
2048 __isl_take isl_set *set,
2049 enum isl_dim_type type, unsigned pos,
2051 __isl_give isl_set *isl_set_lower_bound_si(
2052 __isl_take isl_set *set,
2053 enum isl_dim_type type, unsigned pos, int value);
2054 __isl_give isl_map *isl_map_lower_bound_si(
2055 __isl_take isl_map *map,
2056 enum isl_dim_type type, unsigned pos, int value);
2057 __isl_give isl_set *isl_set_upper_bound(
2058 __isl_take isl_set *set,
2059 enum isl_dim_type type, unsigned pos,
2061 __isl_give isl_set *isl_set_upper_bound_si(
2062 __isl_take isl_set *set,
2063 enum isl_dim_type type, unsigned pos, int value);
2064 __isl_give isl_map *isl_map_upper_bound_si(
2065 __isl_take isl_map *map,
2066 enum isl_dim_type type, unsigned pos, int value);
2068 Intersect the set or relation with the half-space where the given
2069 dimension has a value bounded by the fixed given value.
2071 __isl_give isl_set *isl_set_equate(__isl_take isl_set *set,
2072 enum isl_dim_type type1, int pos1,
2073 enum isl_dim_type type2, int pos2);
2074 __isl_give isl_basic_map *isl_basic_map_equate(
2075 __isl_take isl_basic_map *bmap,
2076 enum isl_dim_type type1, int pos1,
2077 enum isl_dim_type type2, int pos2);
2078 __isl_give isl_map *isl_map_equate(__isl_take isl_map *map,
2079 enum isl_dim_type type1, int pos1,
2080 enum isl_dim_type type2, int pos2);
2082 Intersect the set or relation with the hyperplane where the given
2083 dimensions are equal to each other.
2085 __isl_give isl_map *isl_map_oppose(__isl_take isl_map *map,
2086 enum isl_dim_type type1, int pos1,
2087 enum isl_dim_type type2, int pos2);
2089 Intersect the relation with the hyperplane where the given
2090 dimensions have opposite values.
2092 __isl_give isl_map *isl_map_order_lt(__isl_take isl_map *map,
2093 enum isl_dim_type type1, int pos1,
2094 enum isl_dim_type type2, int pos2);
2095 __isl_give isl_map *isl_map_order_gt(__isl_take isl_map *map,
2096 enum isl_dim_type type1, int pos1,
2097 enum isl_dim_type type2, int pos2);
2099 Intersect the relation with the half-space where the given
2100 dimensions satisfy the given ordering.
2104 __isl_give isl_map *isl_set_identity(
2105 __isl_take isl_set *set);
2106 __isl_give isl_union_map *isl_union_set_identity(
2107 __isl_take isl_union_set *uset);
2109 Construct an identity relation on the given (union) set.
2113 __isl_give isl_basic_set *isl_basic_map_deltas(
2114 __isl_take isl_basic_map *bmap);
2115 __isl_give isl_set *isl_map_deltas(__isl_take isl_map *map);
2116 __isl_give isl_union_set *isl_union_map_deltas(
2117 __isl_take isl_union_map *umap);
2119 These functions return a (basic) set containing the differences
2120 between image elements and corresponding domain elements in the input.
2122 __isl_give isl_basic_map *isl_basic_map_deltas_map(
2123 __isl_take isl_basic_map *bmap);
2124 __isl_give isl_map *isl_map_deltas_map(
2125 __isl_take isl_map *map);
2126 __isl_give isl_union_map *isl_union_map_deltas_map(
2127 __isl_take isl_union_map *umap);
2129 The functions above construct a (basic, regular or union) relation
2130 that maps (a wrapped version of) the input relation to its delta set.
2134 Simplify the representation of a set or relation by trying
2135 to combine pairs of basic sets or relations into a single
2136 basic set or relation.
2138 __isl_give isl_set *isl_set_coalesce(__isl_take isl_set *set);
2139 __isl_give isl_map *isl_map_coalesce(__isl_take isl_map *map);
2140 __isl_give isl_union_set *isl_union_set_coalesce(
2141 __isl_take isl_union_set *uset);
2142 __isl_give isl_union_map *isl_union_map_coalesce(
2143 __isl_take isl_union_map *umap);
2145 One of the methods for combining pairs of basic sets or relations
2146 can result in coefficients that are much larger than those that appear
2147 in the constraints of the input. By default, the coefficients are
2148 not allowed to grow larger, but this can be changed by unsetting
2149 the following option.
2151 int isl_options_set_coalesce_bounded_wrapping(
2152 isl_ctx *ctx, int val);
2153 int isl_options_get_coalesce_bounded_wrapping(
2156 =item * Detecting equalities
2158 __isl_give isl_basic_set *isl_basic_set_detect_equalities(
2159 __isl_take isl_basic_set *bset);
2160 __isl_give isl_basic_map *isl_basic_map_detect_equalities(
2161 __isl_take isl_basic_map *bmap);
2162 __isl_give isl_set *isl_set_detect_equalities(
2163 __isl_take isl_set *set);
2164 __isl_give isl_map *isl_map_detect_equalities(
2165 __isl_take isl_map *map);
2166 __isl_give isl_union_set *isl_union_set_detect_equalities(
2167 __isl_take isl_union_set *uset);
2168 __isl_give isl_union_map *isl_union_map_detect_equalities(
2169 __isl_take isl_union_map *umap);
2171 Simplify the representation of a set or relation by detecting implicit
2174 =item * Removing redundant constraints
2176 __isl_give isl_basic_set *isl_basic_set_remove_redundancies(
2177 __isl_take isl_basic_set *bset);
2178 __isl_give isl_set *isl_set_remove_redundancies(
2179 __isl_take isl_set *set);
2180 __isl_give isl_basic_map *isl_basic_map_remove_redundancies(
2181 __isl_take isl_basic_map *bmap);
2182 __isl_give isl_map *isl_map_remove_redundancies(
2183 __isl_take isl_map *map);
2187 __isl_give isl_basic_set *isl_set_convex_hull(
2188 __isl_take isl_set *set);
2189 __isl_give isl_basic_map *isl_map_convex_hull(
2190 __isl_take isl_map *map);
2192 If the input set or relation has any existentially quantified
2193 variables, then the result of these operations is currently undefined.
2197 __isl_give isl_basic_set *isl_set_simple_hull(
2198 __isl_take isl_set *set);
2199 __isl_give isl_basic_map *isl_map_simple_hull(
2200 __isl_take isl_map *map);
2201 __isl_give isl_union_map *isl_union_map_simple_hull(
2202 __isl_take isl_union_map *umap);
2204 These functions compute a single basic set or relation
2205 that contains the whole input set or relation.
2206 In particular, the output is described by translates
2207 of the constraints describing the basic sets or relations in the input.
2211 (See \autoref{s:simple hull}.)
2217 __isl_give isl_basic_set *isl_basic_set_affine_hull(
2218 __isl_take isl_basic_set *bset);
2219 __isl_give isl_basic_set *isl_set_affine_hull(
2220 __isl_take isl_set *set);
2221 __isl_give isl_union_set *isl_union_set_affine_hull(
2222 __isl_take isl_union_set *uset);
2223 __isl_give isl_basic_map *isl_basic_map_affine_hull(
2224 __isl_take isl_basic_map *bmap);
2225 __isl_give isl_basic_map *isl_map_affine_hull(
2226 __isl_take isl_map *map);
2227 __isl_give isl_union_map *isl_union_map_affine_hull(
2228 __isl_take isl_union_map *umap);
2230 In case of union sets and relations, the affine hull is computed
2233 =item * Polyhedral hull
2235 __isl_give isl_basic_set *isl_set_polyhedral_hull(
2236 __isl_take isl_set *set);
2237 __isl_give isl_basic_map *isl_map_polyhedral_hull(
2238 __isl_take isl_map *map);
2239 __isl_give isl_union_set *isl_union_set_polyhedral_hull(
2240 __isl_take isl_union_set *uset);
2241 __isl_give isl_union_map *isl_union_map_polyhedral_hull(
2242 __isl_take isl_union_map *umap);
2244 These functions compute a single basic set or relation
2245 not involving any existentially quantified variables
2246 that contains the whole input set or relation.
2247 In case of union sets and relations, the polyhedral hull is computed
2252 __isl_give isl_basic_set *isl_basic_set_sample(
2253 __isl_take isl_basic_set *bset);
2254 __isl_give isl_basic_set *isl_set_sample(
2255 __isl_take isl_set *set);
2256 __isl_give isl_basic_map *isl_basic_map_sample(
2257 __isl_take isl_basic_map *bmap);
2258 __isl_give isl_basic_map *isl_map_sample(
2259 __isl_take isl_map *map);
2261 If the input (basic) set or relation is non-empty, then return
2262 a singleton subset of the input. Otherwise, return an empty set.
2264 =item * Optimization
2266 #include <isl/ilp.h>
2267 enum isl_lp_result isl_basic_set_max(
2268 __isl_keep isl_basic_set *bset,
2269 __isl_keep isl_aff *obj, isl_int *opt)
2270 enum isl_lp_result isl_set_min(__isl_keep isl_set *set,
2271 __isl_keep isl_aff *obj, isl_int *opt);
2272 enum isl_lp_result isl_set_max(__isl_keep isl_set *set,
2273 __isl_keep isl_aff *obj, isl_int *opt);
2275 Compute the minimum or maximum of the integer affine expression C<obj>
2276 over the points in C<set>, returning the result in C<opt>.
2277 The return value may be one of C<isl_lp_error>,
2278 C<isl_lp_ok>, C<isl_lp_unbounded> or C<isl_lp_empty>.
2280 =item * Parametric optimization
2282 __isl_give isl_pw_aff *isl_set_dim_min(
2283 __isl_take isl_set *set, int pos);
2284 __isl_give isl_pw_aff *isl_set_dim_max(
2285 __isl_take isl_set *set, int pos);
2286 __isl_give isl_pw_aff *isl_map_dim_max(
2287 __isl_take isl_map *map, int pos);
2289 Compute the minimum or maximum of the given set or output dimension
2290 as a function of the parameters (and input dimensions), but independently
2291 of the other set or output dimensions.
2292 For lexicographic optimization, see L<"Lexicographic Optimization">.
2296 The following functions compute either the set of (rational) coefficient
2297 values of valid constraints for the given set or the set of (rational)
2298 values satisfying the constraints with coefficients from the given set.
2299 Internally, these two sets of functions perform essentially the
2300 same operations, except that the set of coefficients is assumed to
2301 be a cone, while the set of values may be any polyhedron.
2302 The current implementation is based on the Farkas lemma and
2303 Fourier-Motzkin elimination, but this may change or be made optional
2304 in future. In particular, future implementations may use different
2305 dualization algorithms or skip the elimination step.
2307 __isl_give isl_basic_set *isl_basic_set_coefficients(
2308 __isl_take isl_basic_set *bset);
2309 __isl_give isl_basic_set *isl_set_coefficients(
2310 __isl_take isl_set *set);
2311 __isl_give isl_union_set *isl_union_set_coefficients(
2312 __isl_take isl_union_set *bset);
2313 __isl_give isl_basic_set *isl_basic_set_solutions(
2314 __isl_take isl_basic_set *bset);
2315 __isl_give isl_basic_set *isl_set_solutions(
2316 __isl_take isl_set *set);
2317 __isl_give isl_union_set *isl_union_set_solutions(
2318 __isl_take isl_union_set *bset);
2322 __isl_give isl_map *isl_map_fixed_power(
2323 __isl_take isl_map *map, isl_int exp);
2324 __isl_give isl_union_map *isl_union_map_fixed_power(
2325 __isl_take isl_union_map *umap, isl_int exp);
2327 Compute the given power of C<map>, where C<exp> is assumed to be non-zero.
2328 If the exponent C<exp> is negative, then the -C<exp> th power of the inverse
2329 of C<map> is computed.
2331 __isl_give isl_map *isl_map_power(__isl_take isl_map *map,
2333 __isl_give isl_union_map *isl_union_map_power(
2334 __isl_take isl_union_map *umap, int *exact);
2336 Compute a parametric representation for all positive powers I<k> of C<map>.
2337 The result maps I<k> to a nested relation corresponding to the
2338 I<k>th power of C<map>.
2339 The result may be an overapproximation. If the result is known to be exact,
2340 then C<*exact> is set to C<1>.
2342 =item * Transitive closure
2344 __isl_give isl_map *isl_map_transitive_closure(
2345 __isl_take isl_map *map, int *exact);
2346 __isl_give isl_union_map *isl_union_map_transitive_closure(
2347 __isl_take isl_union_map *umap, int *exact);
2349 Compute the transitive closure of C<map>.
2350 The result may be an overapproximation. If the result is known to be exact,
2351 then C<*exact> is set to C<1>.
2353 =item * Reaching path lengths
2355 __isl_give isl_map *isl_map_reaching_path_lengths(
2356 __isl_take isl_map *map, int *exact);
2358 Compute a relation that maps each element in the range of C<map>
2359 to the lengths of all paths composed of edges in C<map> that
2360 end up in the given element.
2361 The result may be an overapproximation. If the result is known to be exact,
2362 then C<*exact> is set to C<1>.
2363 To compute the I<maximal> path length, the resulting relation
2364 should be postprocessed by C<isl_map_lexmax>.
2365 In particular, if the input relation is a dependence relation
2366 (mapping sources to sinks), then the maximal path length corresponds
2367 to the free schedule.
2368 Note, however, that C<isl_map_lexmax> expects the maximum to be
2369 finite, so if the path lengths are unbounded (possibly due to
2370 the overapproximation), then you will get an error message.
2374 __isl_give isl_basic_set *isl_basic_map_wrap(
2375 __isl_take isl_basic_map *bmap);
2376 __isl_give isl_set *isl_map_wrap(
2377 __isl_take isl_map *map);
2378 __isl_give isl_union_set *isl_union_map_wrap(
2379 __isl_take isl_union_map *umap);
2380 __isl_give isl_basic_map *isl_basic_set_unwrap(
2381 __isl_take isl_basic_set *bset);
2382 __isl_give isl_map *isl_set_unwrap(
2383 __isl_take isl_set *set);
2384 __isl_give isl_union_map *isl_union_set_unwrap(
2385 __isl_take isl_union_set *uset);
2389 Remove any internal structure of domain (and range) of the given
2390 set or relation. If there is any such internal structure in the input,
2391 then the name of the space is also removed.
2393 __isl_give isl_basic_set *isl_basic_set_flatten(
2394 __isl_take isl_basic_set *bset);
2395 __isl_give isl_set *isl_set_flatten(
2396 __isl_take isl_set *set);
2397 __isl_give isl_basic_map *isl_basic_map_flatten_domain(
2398 __isl_take isl_basic_map *bmap);
2399 __isl_give isl_basic_map *isl_basic_map_flatten_range(
2400 __isl_take isl_basic_map *bmap);
2401 __isl_give isl_map *isl_map_flatten_range(
2402 __isl_take isl_map *map);
2403 __isl_give isl_map *isl_map_flatten_domain(
2404 __isl_take isl_map *map);
2405 __isl_give isl_basic_map *isl_basic_map_flatten(
2406 __isl_take isl_basic_map *bmap);
2407 __isl_give isl_map *isl_map_flatten(
2408 __isl_take isl_map *map);
2410 __isl_give isl_map *isl_set_flatten_map(
2411 __isl_take isl_set *set);
2413 The function above constructs a relation
2414 that maps the input set to a flattened version of the set.
2418 Lift the input set to a space with extra dimensions corresponding
2419 to the existentially quantified variables in the input.
2420 In particular, the result lives in a wrapped map where the domain
2421 is the original space and the range corresponds to the original
2422 existentially quantified variables.
2424 __isl_give isl_basic_set *isl_basic_set_lift(
2425 __isl_take isl_basic_set *bset);
2426 __isl_give isl_set *isl_set_lift(
2427 __isl_take isl_set *set);
2428 __isl_give isl_union_set *isl_union_set_lift(
2429 __isl_take isl_union_set *uset);
2431 Given a local space that contains the existentially quantified
2432 variables of a set, a basic relation that, when applied to
2433 a basic set, has essentially the same effect as C<isl_basic_set_lift>,
2434 can be constructed using the following function.
2436 #include <isl/local_space.h>
2437 __isl_give isl_basic_map *isl_local_space_lifting(
2438 __isl_take isl_local_space *ls);
2440 =item * Internal Product
2442 __isl_give isl_basic_map *isl_basic_map_zip(
2443 __isl_take isl_basic_map *bmap);
2444 __isl_give isl_map *isl_map_zip(
2445 __isl_take isl_map *map);
2446 __isl_give isl_union_map *isl_union_map_zip(
2447 __isl_take isl_union_map *umap);
2449 Given a relation with nested relations for domain and range,
2450 interchange the range of the domain with the domain of the range.
2454 __isl_give isl_basic_map *isl_basic_map_curry(
2455 __isl_take isl_basic_map *bmap);
2456 __isl_give isl_map *isl_map_curry(
2457 __isl_take isl_map *map);
2458 __isl_give isl_union_map *isl_union_map_curry(
2459 __isl_take isl_union_map *umap);
2461 Given a relation with a nested relation for domain,
2462 move the range of the nested relation out of the domain
2463 and use it as the domain of a nested relation in the range,
2464 with the original range as range of this nested relation.
2466 =item * Aligning parameters
2468 __isl_give isl_basic_set *isl_basic_set_align_params(
2469 __isl_take isl_basic_set *bset,
2470 __isl_take isl_space *model);
2471 __isl_give isl_set *isl_set_align_params(
2472 __isl_take isl_set *set,
2473 __isl_take isl_space *model);
2474 __isl_give isl_basic_map *isl_basic_map_align_params(
2475 __isl_take isl_basic_map *bmap,
2476 __isl_take isl_space *model);
2477 __isl_give isl_map *isl_map_align_params(
2478 __isl_take isl_map *map,
2479 __isl_take isl_space *model);
2481 Change the order of the parameters of the given set or relation
2482 such that the first parameters match those of C<model>.
2483 This may involve the introduction of extra parameters.
2484 All parameters need to be named.
2486 =item * Dimension manipulation
2488 __isl_give isl_set *isl_set_add_dims(
2489 __isl_take isl_set *set,
2490 enum isl_dim_type type, unsigned n);
2491 __isl_give isl_map *isl_map_add_dims(
2492 __isl_take isl_map *map,
2493 enum isl_dim_type type, unsigned n);
2494 __isl_give isl_basic_set *isl_basic_set_insert_dims(
2495 __isl_take isl_basic_set *bset,
2496 enum isl_dim_type type, unsigned pos,
2498 __isl_give isl_basic_map *isl_basic_map_insert_dims(
2499 __isl_take isl_basic_map *bmap,
2500 enum isl_dim_type type, unsigned pos,
2502 __isl_give isl_set *isl_set_insert_dims(
2503 __isl_take isl_set *set,
2504 enum isl_dim_type type, unsigned pos, unsigned n);
2505 __isl_give isl_map *isl_map_insert_dims(
2506 __isl_take isl_map *map,
2507 enum isl_dim_type type, unsigned pos, unsigned n);
2508 __isl_give isl_basic_set *isl_basic_set_move_dims(
2509 __isl_take isl_basic_set *bset,
2510 enum isl_dim_type dst_type, unsigned dst_pos,
2511 enum isl_dim_type src_type, unsigned src_pos,
2513 __isl_give isl_basic_map *isl_basic_map_move_dims(
2514 __isl_take isl_basic_map *bmap,
2515 enum isl_dim_type dst_type, unsigned dst_pos,
2516 enum isl_dim_type src_type, unsigned src_pos,
2518 __isl_give isl_set *isl_set_move_dims(
2519 __isl_take isl_set *set,
2520 enum isl_dim_type dst_type, unsigned dst_pos,
2521 enum isl_dim_type src_type, unsigned src_pos,
2523 __isl_give isl_map *isl_map_move_dims(
2524 __isl_take isl_map *map,
2525 enum isl_dim_type dst_type, unsigned dst_pos,
2526 enum isl_dim_type src_type, unsigned src_pos,
2529 It is usually not advisable to directly change the (input or output)
2530 space of a set or a relation as this removes the name and the internal
2531 structure of the space. However, the above functions can be useful
2532 to add new parameters, assuming
2533 C<isl_set_align_params> and C<isl_map_align_params>
2538 =head2 Binary Operations
2540 The two arguments of a binary operation not only need to live
2541 in the same C<isl_ctx>, they currently also need to have
2542 the same (number of) parameters.
2544 =head3 Basic Operations
2548 =item * Intersection
2550 __isl_give isl_basic_set *isl_basic_set_intersect_params(
2551 __isl_take isl_basic_set *bset1,
2552 __isl_take isl_basic_set *bset2);
2553 __isl_give isl_basic_set *isl_basic_set_intersect(
2554 __isl_take isl_basic_set *bset1,
2555 __isl_take isl_basic_set *bset2);
2556 __isl_give isl_set *isl_set_intersect_params(
2557 __isl_take isl_set *set,
2558 __isl_take isl_set *params);
2559 __isl_give isl_set *isl_set_intersect(
2560 __isl_take isl_set *set1,
2561 __isl_take isl_set *set2);
2562 __isl_give isl_union_set *isl_union_set_intersect_params(
2563 __isl_take isl_union_set *uset,
2564 __isl_take isl_set *set);
2565 __isl_give isl_union_map *isl_union_map_intersect_params(
2566 __isl_take isl_union_map *umap,
2567 __isl_take isl_set *set);
2568 __isl_give isl_union_set *isl_union_set_intersect(
2569 __isl_take isl_union_set *uset1,
2570 __isl_take isl_union_set *uset2);
2571 __isl_give isl_basic_map *isl_basic_map_intersect_domain(
2572 __isl_take isl_basic_map *bmap,
2573 __isl_take isl_basic_set *bset);
2574 __isl_give isl_basic_map *isl_basic_map_intersect_range(
2575 __isl_take isl_basic_map *bmap,
2576 __isl_take isl_basic_set *bset);
2577 __isl_give isl_basic_map *isl_basic_map_intersect(
2578 __isl_take isl_basic_map *bmap1,
2579 __isl_take isl_basic_map *bmap2);
2580 __isl_give isl_map *isl_map_intersect_params(
2581 __isl_take isl_map *map,
2582 __isl_take isl_set *params);
2583 __isl_give isl_map *isl_map_intersect_domain(
2584 __isl_take isl_map *map,
2585 __isl_take isl_set *set);
2586 __isl_give isl_map *isl_map_intersect_range(
2587 __isl_take isl_map *map,
2588 __isl_take isl_set *set);
2589 __isl_give isl_map *isl_map_intersect(
2590 __isl_take isl_map *map1,
2591 __isl_take isl_map *map2);
2592 __isl_give isl_union_map *isl_union_map_intersect_domain(
2593 __isl_take isl_union_map *umap,
2594 __isl_take isl_union_set *uset);
2595 __isl_give isl_union_map *isl_union_map_intersect_range(
2596 __isl_take isl_union_map *umap,
2597 __isl_take isl_union_set *uset);
2598 __isl_give isl_union_map *isl_union_map_intersect(
2599 __isl_take isl_union_map *umap1,
2600 __isl_take isl_union_map *umap2);
2602 The second argument to the C<_params> functions needs to be
2603 a parametric (basic) set. For the other functions, a parametric set
2604 for either argument is only allowed if the other argument is
2605 a parametric set as well.
2609 __isl_give isl_set *isl_basic_set_union(
2610 __isl_take isl_basic_set *bset1,
2611 __isl_take isl_basic_set *bset2);
2612 __isl_give isl_map *isl_basic_map_union(
2613 __isl_take isl_basic_map *bmap1,
2614 __isl_take isl_basic_map *bmap2);
2615 __isl_give isl_set *isl_set_union(
2616 __isl_take isl_set *set1,
2617 __isl_take isl_set *set2);
2618 __isl_give isl_map *isl_map_union(
2619 __isl_take isl_map *map1,
2620 __isl_take isl_map *map2);
2621 __isl_give isl_union_set *isl_union_set_union(
2622 __isl_take isl_union_set *uset1,
2623 __isl_take isl_union_set *uset2);
2624 __isl_give isl_union_map *isl_union_map_union(
2625 __isl_take isl_union_map *umap1,
2626 __isl_take isl_union_map *umap2);
2628 =item * Set difference
2630 __isl_give isl_set *isl_set_subtract(
2631 __isl_take isl_set *set1,
2632 __isl_take isl_set *set2);
2633 __isl_give isl_map *isl_map_subtract(
2634 __isl_take isl_map *map1,
2635 __isl_take isl_map *map2);
2636 __isl_give isl_map *isl_map_subtract_domain(
2637 __isl_take isl_map *map,
2638 __isl_take isl_set *dom);
2639 __isl_give isl_map *isl_map_subtract_range(
2640 __isl_take isl_map *map,
2641 __isl_take isl_set *dom);
2642 __isl_give isl_union_set *isl_union_set_subtract(
2643 __isl_take isl_union_set *uset1,
2644 __isl_take isl_union_set *uset2);
2645 __isl_give isl_union_map *isl_union_map_subtract(
2646 __isl_take isl_union_map *umap1,
2647 __isl_take isl_union_map *umap2);
2651 __isl_give isl_basic_set *isl_basic_set_apply(
2652 __isl_take isl_basic_set *bset,
2653 __isl_take isl_basic_map *bmap);
2654 __isl_give isl_set *isl_set_apply(
2655 __isl_take isl_set *set,
2656 __isl_take isl_map *map);
2657 __isl_give isl_union_set *isl_union_set_apply(
2658 __isl_take isl_union_set *uset,
2659 __isl_take isl_union_map *umap);
2660 __isl_give isl_basic_map *isl_basic_map_apply_domain(
2661 __isl_take isl_basic_map *bmap1,
2662 __isl_take isl_basic_map *bmap2);
2663 __isl_give isl_basic_map *isl_basic_map_apply_range(
2664 __isl_take isl_basic_map *bmap1,
2665 __isl_take isl_basic_map *bmap2);
2666 __isl_give isl_map *isl_map_apply_domain(
2667 __isl_take isl_map *map1,
2668 __isl_take isl_map *map2);
2669 __isl_give isl_union_map *isl_union_map_apply_domain(
2670 __isl_take isl_union_map *umap1,
2671 __isl_take isl_union_map *umap2);
2672 __isl_give isl_map *isl_map_apply_range(
2673 __isl_take isl_map *map1,
2674 __isl_take isl_map *map2);
2675 __isl_give isl_union_map *isl_union_map_apply_range(
2676 __isl_take isl_union_map *umap1,
2677 __isl_take isl_union_map *umap2);
2679 =item * Cartesian Product
2681 __isl_give isl_set *isl_set_product(
2682 __isl_take isl_set *set1,
2683 __isl_take isl_set *set2);
2684 __isl_give isl_union_set *isl_union_set_product(
2685 __isl_take isl_union_set *uset1,
2686 __isl_take isl_union_set *uset2);
2687 __isl_give isl_basic_map *isl_basic_map_domain_product(
2688 __isl_take isl_basic_map *bmap1,
2689 __isl_take isl_basic_map *bmap2);
2690 __isl_give isl_basic_map *isl_basic_map_range_product(
2691 __isl_take isl_basic_map *bmap1,
2692 __isl_take isl_basic_map *bmap2);
2693 __isl_give isl_basic_map *isl_basic_map_product(
2694 __isl_take isl_basic_map *bmap1,
2695 __isl_take isl_basic_map *bmap2);
2696 __isl_give isl_map *isl_map_domain_product(
2697 __isl_take isl_map *map1,
2698 __isl_take isl_map *map2);
2699 __isl_give isl_map *isl_map_range_product(
2700 __isl_take isl_map *map1,
2701 __isl_take isl_map *map2);
2702 __isl_give isl_union_map *isl_union_map_domain_product(
2703 __isl_take isl_union_map *umap1,
2704 __isl_take isl_union_map *umap2);
2705 __isl_give isl_union_map *isl_union_map_range_product(
2706 __isl_take isl_union_map *umap1,
2707 __isl_take isl_union_map *umap2);
2708 __isl_give isl_map *isl_map_product(
2709 __isl_take isl_map *map1,
2710 __isl_take isl_map *map2);
2711 __isl_give isl_union_map *isl_union_map_product(
2712 __isl_take isl_union_map *umap1,
2713 __isl_take isl_union_map *umap2);
2715 The above functions compute the cross product of the given
2716 sets or relations. The domains and ranges of the results
2717 are wrapped maps between domains and ranges of the inputs.
2718 To obtain a ``flat'' product, use the following functions
2721 __isl_give isl_basic_set *isl_basic_set_flat_product(
2722 __isl_take isl_basic_set *bset1,
2723 __isl_take isl_basic_set *bset2);
2724 __isl_give isl_set *isl_set_flat_product(
2725 __isl_take isl_set *set1,
2726 __isl_take isl_set *set2);
2727 __isl_give isl_basic_map *isl_basic_map_flat_range_product(
2728 __isl_take isl_basic_map *bmap1,
2729 __isl_take isl_basic_map *bmap2);
2730 __isl_give isl_map *isl_map_flat_domain_product(
2731 __isl_take isl_map *map1,
2732 __isl_take isl_map *map2);
2733 __isl_give isl_map *isl_map_flat_range_product(
2734 __isl_take isl_map *map1,
2735 __isl_take isl_map *map2);
2736 __isl_give isl_union_map *isl_union_map_flat_range_product(
2737 __isl_take isl_union_map *umap1,
2738 __isl_take isl_union_map *umap2);
2739 __isl_give isl_basic_map *isl_basic_map_flat_product(
2740 __isl_take isl_basic_map *bmap1,
2741 __isl_take isl_basic_map *bmap2);
2742 __isl_give isl_map *isl_map_flat_product(
2743 __isl_take isl_map *map1,
2744 __isl_take isl_map *map2);
2746 =item * Simplification
2748 __isl_give isl_basic_set *isl_basic_set_gist(
2749 __isl_take isl_basic_set *bset,
2750 __isl_take isl_basic_set *context);
2751 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
2752 __isl_take isl_set *context);
2753 __isl_give isl_set *isl_set_gist_params(
2754 __isl_take isl_set *set,
2755 __isl_take isl_set *context);
2756 __isl_give isl_union_set *isl_union_set_gist(
2757 __isl_take isl_union_set *uset,
2758 __isl_take isl_union_set *context);
2759 __isl_give isl_union_set *isl_union_set_gist_params(
2760 __isl_take isl_union_set *uset,
2761 __isl_take isl_set *set);
2762 __isl_give isl_basic_map *isl_basic_map_gist(
2763 __isl_take isl_basic_map *bmap,
2764 __isl_take isl_basic_map *context);
2765 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
2766 __isl_take isl_map *context);
2767 __isl_give isl_map *isl_map_gist_params(
2768 __isl_take isl_map *map,
2769 __isl_take isl_set *context);
2770 __isl_give isl_map *isl_map_gist_domain(
2771 __isl_take isl_map *map,
2772 __isl_take isl_set *context);
2773 __isl_give isl_map *isl_map_gist_range(
2774 __isl_take isl_map *map,
2775 __isl_take isl_set *context);
2776 __isl_give isl_union_map *isl_union_map_gist(
2777 __isl_take isl_union_map *umap,
2778 __isl_take isl_union_map *context);
2779 __isl_give isl_union_map *isl_union_map_gist_params(
2780 __isl_take isl_union_map *umap,
2781 __isl_take isl_set *set);
2782 __isl_give isl_union_map *isl_union_map_gist_domain(
2783 __isl_take isl_union_map *umap,
2784 __isl_take isl_union_set *uset);
2785 __isl_give isl_union_map *isl_union_map_gist_range(
2786 __isl_take isl_union_map *umap,
2787 __isl_take isl_union_set *uset);
2789 The gist operation returns a set or relation that has the
2790 same intersection with the context as the input set or relation.
2791 Any implicit equality in the intersection is made explicit in the result,
2792 while all inequalities that are redundant with respect to the intersection
2794 In case of union sets and relations, the gist operation is performed
2799 =head3 Lexicographic Optimization
2801 Given a (basic) set C<set> (or C<bset>) and a zero-dimensional domain C<dom>,
2802 the following functions
2803 compute a set that contains the lexicographic minimum or maximum
2804 of the elements in C<set> (or C<bset>) for those values of the parameters
2805 that satisfy C<dom>.
2806 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
2807 that contains the parameter values in C<dom> for which C<set> (or C<bset>)
2809 In other words, the union of the parameter values
2810 for which the result is non-empty and of C<*empty>
2813 __isl_give isl_set *isl_basic_set_partial_lexmin(
2814 __isl_take isl_basic_set *bset,
2815 __isl_take isl_basic_set *dom,
2816 __isl_give isl_set **empty);
2817 __isl_give isl_set *isl_basic_set_partial_lexmax(
2818 __isl_take isl_basic_set *bset,
2819 __isl_take isl_basic_set *dom,
2820 __isl_give isl_set **empty);
2821 __isl_give isl_set *isl_set_partial_lexmin(
2822 __isl_take isl_set *set, __isl_take isl_set *dom,
2823 __isl_give isl_set **empty);
2824 __isl_give isl_set *isl_set_partial_lexmax(
2825 __isl_take isl_set *set, __isl_take isl_set *dom,
2826 __isl_give isl_set **empty);
2828 Given a (basic) set C<set> (or C<bset>), the following functions simply
2829 return a set containing the lexicographic minimum or maximum
2830 of the elements in C<set> (or C<bset>).
2831 In case of union sets, the optimum is computed per space.
2833 __isl_give isl_set *isl_basic_set_lexmin(
2834 __isl_take isl_basic_set *bset);
2835 __isl_give isl_set *isl_basic_set_lexmax(
2836 __isl_take isl_basic_set *bset);
2837 __isl_give isl_set *isl_set_lexmin(
2838 __isl_take isl_set *set);
2839 __isl_give isl_set *isl_set_lexmax(
2840 __isl_take isl_set *set);
2841 __isl_give isl_union_set *isl_union_set_lexmin(
2842 __isl_take isl_union_set *uset);
2843 __isl_give isl_union_set *isl_union_set_lexmax(
2844 __isl_take isl_union_set *uset);
2846 Given a (basic) relation C<map> (or C<bmap>) and a domain C<dom>,
2847 the following functions
2848 compute a relation that maps each element of C<dom>
2849 to the single lexicographic minimum or maximum
2850 of the elements that are associated to that same
2851 element in C<map> (or C<bmap>).
2852 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
2853 that contains the elements in C<dom> that do not map
2854 to any elements in C<map> (or C<bmap>).
2855 In other words, the union of the domain of the result and of C<*empty>
2858 __isl_give isl_map *isl_basic_map_partial_lexmax(
2859 __isl_take isl_basic_map *bmap,
2860 __isl_take isl_basic_set *dom,
2861 __isl_give isl_set **empty);
2862 __isl_give isl_map *isl_basic_map_partial_lexmin(
2863 __isl_take isl_basic_map *bmap,
2864 __isl_take isl_basic_set *dom,
2865 __isl_give isl_set **empty);
2866 __isl_give isl_map *isl_map_partial_lexmax(
2867 __isl_take isl_map *map, __isl_take isl_set *dom,
2868 __isl_give isl_set **empty);
2869 __isl_give isl_map *isl_map_partial_lexmin(
2870 __isl_take isl_map *map, __isl_take isl_set *dom,
2871 __isl_give isl_set **empty);
2873 Given a (basic) map C<map> (or C<bmap>), the following functions simply
2874 return a map mapping each element in the domain of
2875 C<map> (or C<bmap>) to the lexicographic minimum or maximum
2876 of all elements associated to that element.
2877 In case of union relations, the optimum is computed per space.
2879 __isl_give isl_map *isl_basic_map_lexmin(
2880 __isl_take isl_basic_map *bmap);
2881 __isl_give isl_map *isl_basic_map_lexmax(
2882 __isl_take isl_basic_map *bmap);
2883 __isl_give isl_map *isl_map_lexmin(
2884 __isl_take isl_map *map);
2885 __isl_give isl_map *isl_map_lexmax(
2886 __isl_take isl_map *map);
2887 __isl_give isl_union_map *isl_union_map_lexmin(
2888 __isl_take isl_union_map *umap);
2889 __isl_give isl_union_map *isl_union_map_lexmax(
2890 __isl_take isl_union_map *umap);
2892 The following functions return their result in the form of
2893 a piecewise multi-affine expression
2894 (See L<"Piecewise Multiple Quasi Affine Expressions">),
2895 but are otherwise equivalent to the corresponding functions
2896 returning a basic set or relation.
2898 __isl_give isl_pw_multi_aff *
2899 isl_basic_map_lexmin_pw_multi_aff(
2900 __isl_take isl_basic_map *bmap);
2901 __isl_give isl_pw_multi_aff *
2902 isl_basic_set_partial_lexmin_pw_multi_aff(
2903 __isl_take isl_basic_set *bset,
2904 __isl_take isl_basic_set *dom,
2905 __isl_give isl_set **empty);
2906 __isl_give isl_pw_multi_aff *
2907 isl_basic_set_partial_lexmax_pw_multi_aff(
2908 __isl_take isl_basic_set *bset,
2909 __isl_take isl_basic_set *dom,
2910 __isl_give isl_set **empty);
2911 __isl_give isl_pw_multi_aff *
2912 isl_basic_map_partial_lexmin_pw_multi_aff(
2913 __isl_take isl_basic_map *bmap,
2914 __isl_take isl_basic_set *dom,
2915 __isl_give isl_set **empty);
2916 __isl_give isl_pw_multi_aff *
2917 isl_basic_map_partial_lexmax_pw_multi_aff(
2918 __isl_take isl_basic_map *bmap,
2919 __isl_take isl_basic_set *dom,
2920 __isl_give isl_set **empty);
2921 __isl_give isl_pw_multi_aff *isl_map_lexmin_pw_multi_aff(
2922 __isl_take isl_map *map);
2923 __isl_give isl_pw_multi_aff *isl_map_lexmax_pw_multi_aff(
2924 __isl_take isl_map *map);
2928 Lists are defined over several element types, including
2929 C<isl_id>, C<isl_aff>, C<isl_pw_aff>, C<isl_basic_set> and C<isl_set>.
2930 Here we take lists of C<isl_set>s as an example.
2931 Lists can be created, copied, modified and freed using the following functions.
2933 #include <isl/list.h>
2934 __isl_give isl_set_list *isl_set_list_from_set(
2935 __isl_take isl_set *el);
2936 __isl_give isl_set_list *isl_set_list_alloc(
2937 isl_ctx *ctx, int n);
2938 __isl_give isl_set_list *isl_set_list_copy(
2939 __isl_keep isl_set_list *list);
2940 __isl_give isl_set_list *isl_set_list_add(
2941 __isl_take isl_set_list *list,
2942 __isl_take isl_set *el);
2943 __isl_give isl_set_list *isl_set_list_drop(
2944 __isl_take isl_set_list *list,
2945 unsigned first, unsigned n);
2946 __isl_give isl_set_list *isl_set_list_set_set(
2947 __isl_take isl_set_list *list, int index,
2948 __isl_take isl_set *set);
2949 __isl_give isl_set_list *isl_set_list_concat(
2950 __isl_take isl_set_list *list1,
2951 __isl_take isl_set_list *list2);
2952 void *isl_set_list_free(__isl_take isl_set_list *list);
2954 C<isl_set_list_alloc> creates an empty list with a capacity for
2955 C<n> elements. C<isl_set_list_from_set> creates a list with a single
2958 Lists can be inspected using the following functions.
2960 #include <isl/list.h>
2961 isl_ctx *isl_set_list_get_ctx(__isl_keep isl_set_list *list);
2962 int isl_set_list_n_set(__isl_keep isl_set_list *list);
2963 __isl_give isl_set *isl_set_list_get_set(
2964 __isl_keep isl_set_list *list, int index);
2965 int isl_set_list_foreach(__isl_keep isl_set_list *list,
2966 int (*fn)(__isl_take isl_set *el, void *user),
2969 Lists can be printed using
2971 #include <isl/list.h>
2972 __isl_give isl_printer *isl_printer_print_set_list(
2973 __isl_take isl_printer *p,
2974 __isl_keep isl_set_list *list);
2978 Vectors can be created, copied and freed using the following functions.
2980 #include <isl/vec.h>
2981 __isl_give isl_vec *isl_vec_alloc(isl_ctx *ctx,
2983 __isl_give isl_vec *isl_vec_copy(__isl_keep isl_vec *vec);
2984 void isl_vec_free(__isl_take isl_vec *vec);
2986 Note that the elements of a newly created vector may have arbitrary values.
2987 The elements can be changed and inspected using the following functions.
2989 isl_ctx *isl_vec_get_ctx(__isl_keep isl_vec *vec);
2990 int isl_vec_size(__isl_keep isl_vec *vec);
2991 int isl_vec_get_element(__isl_keep isl_vec *vec,
2992 int pos, isl_int *v);
2993 __isl_give isl_vec *isl_vec_set_element(
2994 __isl_take isl_vec *vec, int pos, isl_int v);
2995 __isl_give isl_vec *isl_vec_set_element_si(
2996 __isl_take isl_vec *vec, int pos, int v);
2997 __isl_give isl_vec *isl_vec_set(__isl_take isl_vec *vec,
2999 __isl_give isl_vec *isl_vec_set_si(__isl_take isl_vec *vec,
3002 C<isl_vec_get_element> will return a negative value if anything went wrong.
3003 In that case, the value of C<*v> is undefined.
3007 Matrices can be created, copied and freed using the following functions.
3009 #include <isl/mat.h>
3010 __isl_give isl_mat *isl_mat_alloc(isl_ctx *ctx,
3011 unsigned n_row, unsigned n_col);
3012 __isl_give isl_mat *isl_mat_copy(__isl_keep isl_mat *mat);
3013 void isl_mat_free(__isl_take isl_mat *mat);
3015 Note that the elements of a newly created matrix may have arbitrary values.
3016 The elements can be changed and inspected using the following functions.
3018 isl_ctx *isl_mat_get_ctx(__isl_keep isl_mat *mat);
3019 int isl_mat_rows(__isl_keep isl_mat *mat);
3020 int isl_mat_cols(__isl_keep isl_mat *mat);
3021 int isl_mat_get_element(__isl_keep isl_mat *mat,
3022 int row, int col, isl_int *v);
3023 __isl_give isl_mat *isl_mat_set_element(__isl_take isl_mat *mat,
3024 int row, int col, isl_int v);
3025 __isl_give isl_mat *isl_mat_set_element_si(__isl_take isl_mat *mat,
3026 int row, int col, int v);
3028 C<isl_mat_get_element> will return a negative value if anything went wrong.
3029 In that case, the value of C<*v> is undefined.
3031 The following function can be used to compute the (right) inverse
3032 of a matrix, i.e., a matrix such that the product of the original
3033 and the inverse (in that order) is a multiple of the identity matrix.
3034 The input matrix is assumed to be of full row-rank.
3036 __isl_give isl_mat *isl_mat_right_inverse(__isl_take isl_mat *mat);
3038 The following function can be used to compute the (right) kernel
3039 (or null space) of a matrix, i.e., a matrix such that the product of
3040 the original and the kernel (in that order) is the zero matrix.
3042 __isl_give isl_mat *isl_mat_right_kernel(__isl_take isl_mat *mat);
3044 =head2 Piecewise Quasi Affine Expressions
3046 The zero quasi affine expression on a given domain can be created using
3048 __isl_give isl_aff *isl_aff_zero_on_domain(
3049 __isl_take isl_local_space *ls);
3051 Note that the space in which the resulting object lives is a map space
3052 with the given space as domain and a one-dimensional range.
3054 An empty piecewise quasi affine expression (one with no cells)
3055 or a piecewise quasi affine expression with a single cell can
3056 be created using the following functions.
3058 #include <isl/aff.h>
3059 __isl_give isl_pw_aff *isl_pw_aff_empty(
3060 __isl_take isl_space *space);
3061 __isl_give isl_pw_aff *isl_pw_aff_alloc(
3062 __isl_take isl_set *set, __isl_take isl_aff *aff);
3063 __isl_give isl_pw_aff *isl_pw_aff_from_aff(
3064 __isl_take isl_aff *aff);
3066 A piecewise quasi affine expression that is equal to 1 on a set
3067 and 0 outside the set can be created using the following function.
3069 #include <isl/aff.h>
3070 __isl_give isl_pw_aff *isl_set_indicator_function(
3071 __isl_take isl_set *set);
3073 Quasi affine expressions can be copied and freed using
3075 #include <isl/aff.h>
3076 __isl_give isl_aff *isl_aff_copy(__isl_keep isl_aff *aff);
3077 void *isl_aff_free(__isl_take isl_aff *aff);
3079 __isl_give isl_pw_aff *isl_pw_aff_copy(
3080 __isl_keep isl_pw_aff *pwaff);
3081 void *isl_pw_aff_free(__isl_take isl_pw_aff *pwaff);
3083 A (rational) bound on a dimension can be extracted from an C<isl_constraint>
3084 using the following function. The constraint is required to have
3085 a non-zero coefficient for the specified dimension.
3087 #include <isl/constraint.h>
3088 __isl_give isl_aff *isl_constraint_get_bound(
3089 __isl_keep isl_constraint *constraint,
3090 enum isl_dim_type type, int pos);
3092 The entire affine expression of the constraint can also be extracted
3093 using the following function.
3095 #include <isl/constraint.h>
3096 __isl_give isl_aff *isl_constraint_get_aff(
3097 __isl_keep isl_constraint *constraint);
3099 Conversely, an equality constraint equating
3100 the affine expression to zero or an inequality constraint enforcing
3101 the affine expression to be non-negative, can be constructed using
3103 __isl_give isl_constraint *isl_equality_from_aff(
3104 __isl_take isl_aff *aff);
3105 __isl_give isl_constraint *isl_inequality_from_aff(
3106 __isl_take isl_aff *aff);
3108 The expression can be inspected using
3110 #include <isl/aff.h>
3111 isl_ctx *isl_aff_get_ctx(__isl_keep isl_aff *aff);
3112 int isl_aff_dim(__isl_keep isl_aff *aff,
3113 enum isl_dim_type type);
3114 __isl_give isl_local_space *isl_aff_get_domain_local_space(
3115 __isl_keep isl_aff *aff);
3116 __isl_give isl_local_space *isl_aff_get_local_space(
3117 __isl_keep isl_aff *aff);
3118 const char *isl_aff_get_dim_name(__isl_keep isl_aff *aff,
3119 enum isl_dim_type type, unsigned pos);
3120 const char *isl_pw_aff_get_dim_name(
3121 __isl_keep isl_pw_aff *pa,
3122 enum isl_dim_type type, unsigned pos);
3123 int isl_pw_aff_has_dim_id(__isl_keep isl_pw_aff *pa,
3124 enum isl_dim_type type, unsigned pos);
3125 __isl_give isl_id *isl_pw_aff_get_dim_id(
3126 __isl_keep isl_pw_aff *pa,
3127 enum isl_dim_type type, unsigned pos);
3128 __isl_give isl_id *isl_pw_aff_get_tuple_id(
3129 __isl_keep isl_pw_aff *pa,
3130 enum isl_dim_type type);
3131 int isl_aff_get_constant(__isl_keep isl_aff *aff,
3133 int isl_aff_get_coefficient(__isl_keep isl_aff *aff,
3134 enum isl_dim_type type, int pos, isl_int *v);
3135 int isl_aff_get_denominator(__isl_keep isl_aff *aff,
3137 __isl_give isl_aff *isl_aff_get_div(
3138 __isl_keep isl_aff *aff, int pos);
3140 int isl_pw_aff_n_piece(__isl_keep isl_pw_aff *pwaff);
3141 int isl_pw_aff_foreach_piece(__isl_keep isl_pw_aff *pwaff,
3142 int (*fn)(__isl_take isl_set *set,
3143 __isl_take isl_aff *aff,
3144 void *user), void *user);
3146 int isl_aff_is_cst(__isl_keep isl_aff *aff);
3147 int isl_pw_aff_is_cst(__isl_keep isl_pw_aff *pwaff);
3149 int isl_aff_involves_dims(__isl_keep isl_aff *aff,
3150 enum isl_dim_type type, unsigned first, unsigned n);
3151 int isl_pw_aff_involves_dims(__isl_keep isl_pw_aff *pwaff,
3152 enum isl_dim_type type, unsigned first, unsigned n);
3154 isl_ctx *isl_pw_aff_get_ctx(__isl_keep isl_pw_aff *pwaff);
3155 unsigned isl_pw_aff_dim(__isl_keep isl_pw_aff *pwaff,
3156 enum isl_dim_type type);
3157 int isl_pw_aff_is_empty(__isl_keep isl_pw_aff *pwaff);
3159 It can be modified using
3161 #include <isl/aff.h>
3162 __isl_give isl_pw_aff *isl_pw_aff_set_tuple_id(
3163 __isl_take isl_pw_aff *pwaff,
3164 enum isl_dim_type type, __isl_take isl_id *id);
3165 __isl_give isl_aff *isl_aff_set_dim_name(
3166 __isl_take isl_aff *aff, enum isl_dim_type type,
3167 unsigned pos, const char *s);
3168 __isl_give isl_aff *isl_aff_set_dim_id(
3169 __isl_take isl_aff *aff, enum isl_dim_type type,
3170 unsigned pos, __isl_take isl_id *id);
3171 __isl_give isl_pw_aff *isl_pw_aff_set_dim_id(
3172 __isl_take isl_pw_aff *pma,
3173 enum isl_dim_type type, unsigned pos,
3174 __isl_take isl_id *id);
3175 __isl_give isl_aff *isl_aff_set_constant(
3176 __isl_take isl_aff *aff, isl_int v);
3177 __isl_give isl_aff *isl_aff_set_constant_si(
3178 __isl_take isl_aff *aff, int v);
3179 __isl_give isl_aff *isl_aff_set_coefficient(
3180 __isl_take isl_aff *aff,
3181 enum isl_dim_type type, int pos, isl_int v);
3182 __isl_give isl_aff *isl_aff_set_coefficient_si(
3183 __isl_take isl_aff *aff,
3184 enum isl_dim_type type, int pos, int v);
3185 __isl_give isl_aff *isl_aff_set_denominator(
3186 __isl_take isl_aff *aff, isl_int v);
3188 __isl_give isl_aff *isl_aff_add_constant(
3189 __isl_take isl_aff *aff, isl_int v);
3190 __isl_give isl_aff *isl_aff_add_constant_si(
3191 __isl_take isl_aff *aff, int v);
3192 __isl_give isl_aff *isl_aff_add_constant_num(
3193 __isl_take isl_aff *aff, isl_int v);
3194 __isl_give isl_aff *isl_aff_add_constant_num_si(
3195 __isl_take isl_aff *aff, int v);
3196 __isl_give isl_aff *isl_aff_add_coefficient(
3197 __isl_take isl_aff *aff,
3198 enum isl_dim_type type, int pos, isl_int v);
3199 __isl_give isl_aff *isl_aff_add_coefficient_si(
3200 __isl_take isl_aff *aff,
3201 enum isl_dim_type type, int pos, int v);
3203 __isl_give isl_aff *isl_aff_insert_dims(
3204 __isl_take isl_aff *aff,
3205 enum isl_dim_type type, unsigned first, unsigned n);
3206 __isl_give isl_pw_aff *isl_pw_aff_insert_dims(
3207 __isl_take isl_pw_aff *pwaff,
3208 enum isl_dim_type type, unsigned first, unsigned n);
3209 __isl_give isl_aff *isl_aff_add_dims(
3210 __isl_take isl_aff *aff,
3211 enum isl_dim_type type, unsigned n);
3212 __isl_give isl_pw_aff *isl_pw_aff_add_dims(
3213 __isl_take isl_pw_aff *pwaff,
3214 enum isl_dim_type type, unsigned n);
3215 __isl_give isl_aff *isl_aff_drop_dims(
3216 __isl_take isl_aff *aff,
3217 enum isl_dim_type type, unsigned first, unsigned n);
3218 __isl_give isl_pw_aff *isl_pw_aff_drop_dims(
3219 __isl_take isl_pw_aff *pwaff,
3220 enum isl_dim_type type, unsigned first, unsigned n);
3222 Note that the C<set_constant> and C<set_coefficient> functions
3223 set the I<numerator> of the constant or coefficient, while
3224 C<add_constant> and C<add_coefficient> add an integer value to
3225 the possibly rational constant or coefficient.
3226 The C<add_constant_num> functions add an integer value to
3229 To check whether an affine expressions is obviously zero
3230 or obviously equal to some other affine expression, use
3232 #include <isl/aff.h>
3233 int isl_aff_plain_is_zero(__isl_keep isl_aff *aff);
3234 int isl_aff_plain_is_equal(__isl_keep isl_aff *aff1,
3235 __isl_keep isl_aff *aff2);
3236 int isl_pw_aff_plain_is_equal(
3237 __isl_keep isl_pw_aff *pwaff1,
3238 __isl_keep isl_pw_aff *pwaff2);
3242 #include <isl/aff.h>
3243 __isl_give isl_aff *isl_aff_add(__isl_take isl_aff *aff1,
3244 __isl_take isl_aff *aff2);
3245 __isl_give isl_pw_aff *isl_pw_aff_add(
3246 __isl_take isl_pw_aff *pwaff1,
3247 __isl_take isl_pw_aff *pwaff2);
3248 __isl_give isl_pw_aff *isl_pw_aff_min(
3249 __isl_take isl_pw_aff *pwaff1,
3250 __isl_take isl_pw_aff *pwaff2);
3251 __isl_give isl_pw_aff *isl_pw_aff_max(
3252 __isl_take isl_pw_aff *pwaff1,
3253 __isl_take isl_pw_aff *pwaff2);
3254 __isl_give isl_aff *isl_aff_sub(__isl_take isl_aff *aff1,
3255 __isl_take isl_aff *aff2);
3256 __isl_give isl_pw_aff *isl_pw_aff_sub(
3257 __isl_take isl_pw_aff *pwaff1,
3258 __isl_take isl_pw_aff *pwaff2);
3259 __isl_give isl_aff *isl_aff_neg(__isl_take isl_aff *aff);
3260 __isl_give isl_pw_aff *isl_pw_aff_neg(
3261 __isl_take isl_pw_aff *pwaff);
3262 __isl_give isl_aff *isl_aff_ceil(__isl_take isl_aff *aff);
3263 __isl_give isl_pw_aff *isl_pw_aff_ceil(
3264 __isl_take isl_pw_aff *pwaff);
3265 __isl_give isl_aff *isl_aff_floor(__isl_take isl_aff *aff);
3266 __isl_give isl_pw_aff *isl_pw_aff_floor(
3267 __isl_take isl_pw_aff *pwaff);
3268 __isl_give isl_aff *isl_aff_mod(__isl_take isl_aff *aff,
3270 __isl_give isl_pw_aff *isl_pw_aff_mod(
3271 __isl_take isl_pw_aff *pwaff, isl_int mod);
3272 __isl_give isl_aff *isl_aff_scale(__isl_take isl_aff *aff,
3274 __isl_give isl_pw_aff *isl_pw_aff_scale(
3275 __isl_take isl_pw_aff *pwaff, isl_int f);
3276 __isl_give isl_aff *isl_aff_scale_down(__isl_take isl_aff *aff,
3278 __isl_give isl_aff *isl_aff_scale_down_ui(
3279 __isl_take isl_aff *aff, unsigned f);
3280 __isl_give isl_pw_aff *isl_pw_aff_scale_down(
3281 __isl_take isl_pw_aff *pwaff, isl_int f);
3283 __isl_give isl_pw_aff *isl_pw_aff_list_min(
3284 __isl_take isl_pw_aff_list *list);
3285 __isl_give isl_pw_aff *isl_pw_aff_list_max(
3286 __isl_take isl_pw_aff_list *list);
3288 __isl_give isl_pw_aff *isl_pw_aff_coalesce(
3289 __isl_take isl_pw_aff *pwqp);
3291 __isl_give isl_aff *isl_aff_align_params(
3292 __isl_take isl_aff *aff,
3293 __isl_take isl_space *model);
3294 __isl_give isl_pw_aff *isl_pw_aff_align_params(
3295 __isl_take isl_pw_aff *pwaff,
3296 __isl_take isl_space *model);
3298 __isl_give isl_aff *isl_aff_project_domain_on_params(
3299 __isl_take isl_aff *aff);
3301 __isl_give isl_aff *isl_aff_gist_params(
3302 __isl_take isl_aff *aff,
3303 __isl_take isl_set *context);
3304 __isl_give isl_aff *isl_aff_gist(__isl_take isl_aff *aff,
3305 __isl_take isl_set *context);
3306 __isl_give isl_pw_aff *isl_pw_aff_gist_params(
3307 __isl_take isl_pw_aff *pwaff,
3308 __isl_take isl_set *context);
3309 __isl_give isl_pw_aff *isl_pw_aff_gist(
3310 __isl_take isl_pw_aff *pwaff,
3311 __isl_take isl_set *context);
3313 __isl_give isl_set *isl_pw_aff_domain(
3314 __isl_take isl_pw_aff *pwaff);
3315 __isl_give isl_pw_aff *isl_pw_aff_intersect_domain(
3316 __isl_take isl_pw_aff *pa,
3317 __isl_take isl_set *set);
3318 __isl_give isl_pw_aff *isl_pw_aff_intersect_params(
3319 __isl_take isl_pw_aff *pa,
3320 __isl_take isl_set *set);
3322 __isl_give isl_aff *isl_aff_mul(__isl_take isl_aff *aff1,
3323 __isl_take isl_aff *aff2);
3324 __isl_give isl_pw_aff *isl_pw_aff_mul(
3325 __isl_take isl_pw_aff *pwaff1,
3326 __isl_take isl_pw_aff *pwaff2);
3328 When multiplying two affine expressions, at least one of the two needs
3331 #include <isl/aff.h>
3332 __isl_give isl_basic_set *isl_aff_neg_basic_set(
3333 __isl_take isl_aff *aff);
3334 __isl_give isl_basic_set *isl_aff_le_basic_set(
3335 __isl_take isl_aff *aff1, __isl_take isl_aff *aff2);
3336 __isl_give isl_basic_set *isl_aff_ge_basic_set(
3337 __isl_take isl_aff *aff1, __isl_take isl_aff *aff2);
3338 __isl_give isl_set *isl_pw_aff_eq_set(
3339 __isl_take isl_pw_aff *pwaff1,
3340 __isl_take isl_pw_aff *pwaff2);
3341 __isl_give isl_set *isl_pw_aff_ne_set(
3342 __isl_take isl_pw_aff *pwaff1,
3343 __isl_take isl_pw_aff *pwaff2);
3344 __isl_give isl_set *isl_pw_aff_le_set(
3345 __isl_take isl_pw_aff *pwaff1,
3346 __isl_take isl_pw_aff *pwaff2);
3347 __isl_give isl_set *isl_pw_aff_lt_set(
3348 __isl_take isl_pw_aff *pwaff1,
3349 __isl_take isl_pw_aff *pwaff2);
3350 __isl_give isl_set *isl_pw_aff_ge_set(
3351 __isl_take isl_pw_aff *pwaff1,
3352 __isl_take isl_pw_aff *pwaff2);
3353 __isl_give isl_set *isl_pw_aff_gt_set(
3354 __isl_take isl_pw_aff *pwaff1,
3355 __isl_take isl_pw_aff *pwaff2);
3357 __isl_give isl_set *isl_pw_aff_list_eq_set(
3358 __isl_take isl_pw_aff_list *list1,
3359 __isl_take isl_pw_aff_list *list2);
3360 __isl_give isl_set *isl_pw_aff_list_ne_set(
3361 __isl_take isl_pw_aff_list *list1,
3362 __isl_take isl_pw_aff_list *list2);
3363 __isl_give isl_set *isl_pw_aff_list_le_set(
3364 __isl_take isl_pw_aff_list *list1,
3365 __isl_take isl_pw_aff_list *list2);
3366 __isl_give isl_set *isl_pw_aff_list_lt_set(
3367 __isl_take isl_pw_aff_list *list1,
3368 __isl_take isl_pw_aff_list *list2);
3369 __isl_give isl_set *isl_pw_aff_list_ge_set(
3370 __isl_take isl_pw_aff_list *list1,
3371 __isl_take isl_pw_aff_list *list2);
3372 __isl_give isl_set *isl_pw_aff_list_gt_set(
3373 __isl_take isl_pw_aff_list *list1,
3374 __isl_take isl_pw_aff_list *list2);
3376 The function C<isl_aff_neg_basic_set> returns a basic set
3377 containing those elements in the domain space
3378 of C<aff> where C<aff> is negative.
3379 The function C<isl_aff_ge_basic_set> returns a basic set
3380 containing those elements in the shared space
3381 of C<aff1> and C<aff2> where C<aff1> is greater than or equal to C<aff2>.
3382 The function C<isl_pw_aff_ge_set> returns a set
3383 containing those elements in the shared domain
3384 of C<pwaff1> and C<pwaff2> where C<pwaff1> is greater than or equal to C<pwaff2>.
3385 The functions operating on C<isl_pw_aff_list> apply the corresponding
3386 C<isl_pw_aff> function to each pair of elements in the two lists.
3388 #include <isl/aff.h>
3389 __isl_give isl_set *isl_pw_aff_nonneg_set(
3390 __isl_take isl_pw_aff *pwaff);
3391 __isl_give isl_set *isl_pw_aff_zero_set(
3392 __isl_take isl_pw_aff *pwaff);
3393 __isl_give isl_set *isl_pw_aff_non_zero_set(
3394 __isl_take isl_pw_aff *pwaff);
3396 The function C<isl_pw_aff_nonneg_set> returns a set
3397 containing those elements in the domain
3398 of C<pwaff> where C<pwaff> is non-negative.
3400 #include <isl/aff.h>
3401 __isl_give isl_pw_aff *isl_pw_aff_cond(
3402 __isl_take isl_pw_aff *cond,
3403 __isl_take isl_pw_aff *pwaff_true,
3404 __isl_take isl_pw_aff *pwaff_false);
3406 The function C<isl_pw_aff_cond> performs a conditional operator
3407 and returns an expression that is equal to C<pwaff_true>
3408 for elements where C<cond> is non-zero and equal to C<pwaff_false> for elements
3409 where C<cond> is zero.
3411 #include <isl/aff.h>
3412 __isl_give isl_pw_aff *isl_pw_aff_union_min(
3413 __isl_take isl_pw_aff *pwaff1,
3414 __isl_take isl_pw_aff *pwaff2);
3415 __isl_give isl_pw_aff *isl_pw_aff_union_max(
3416 __isl_take isl_pw_aff *pwaff1,
3417 __isl_take isl_pw_aff *pwaff2);
3418 __isl_give isl_pw_aff *isl_pw_aff_union_add(
3419 __isl_take isl_pw_aff *pwaff1,
3420 __isl_take isl_pw_aff *pwaff2);
3422 The function C<isl_pw_aff_union_max> computes a piecewise quasi-affine
3423 expression with a domain that is the union of those of C<pwaff1> and
3424 C<pwaff2> and such that on each cell, the quasi-affine expression is
3425 the maximum of those of C<pwaff1> and C<pwaff2>. If only one of
3426 C<pwaff1> or C<pwaff2> is defined on a given cell, then the
3427 associated expression is the defined one.
3429 An expression can be read from input using
3431 #include <isl/aff.h>
3432 __isl_give isl_aff *isl_aff_read_from_str(
3433 isl_ctx *ctx, const char *str);
3434 __isl_give isl_pw_aff *isl_pw_aff_read_from_str(
3435 isl_ctx *ctx, const char *str);
3437 An expression can be printed using
3439 #include <isl/aff.h>
3440 __isl_give isl_printer *isl_printer_print_aff(
3441 __isl_take isl_printer *p, __isl_keep isl_aff *aff);
3443 __isl_give isl_printer *isl_printer_print_pw_aff(
3444 __isl_take isl_printer *p,
3445 __isl_keep isl_pw_aff *pwaff);
3447 =head2 Piecewise Multiple Quasi Affine Expressions
3449 An C<isl_multi_aff> object represents a sequence of
3450 zero or more affine expressions, all defined on the same domain space.
3452 An C<isl_multi_aff> can be constructed from a C<isl_aff_list> using the
3455 #include <isl/aff.h>
3456 __isl_give isl_multi_aff *isl_multi_aff_from_aff_list(
3457 __isl_take isl_space *space,
3458 __isl_take isl_aff_list *list);
3460 An empty piecewise multiple quasi affine expression (one with no cells),
3461 the zero piecewise multiple quasi affine expression (with value zero
3462 for each output dimension),
3463 a piecewise multiple quasi affine expression with a single cell (with
3464 either a universe or a specified domain) or
3465 a zero-dimensional piecewise multiple quasi affine expression
3467 can be created using the following functions.
3469 #include <isl/aff.h>
3470 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_empty(
3471 __isl_take isl_space *space);
3472 __isl_give isl_multi_aff *isl_multi_aff_zero(
3473 __isl_take isl_space *space);
3474 __isl_give isl_multi_aff *isl_multi_aff_identity(
3475 __isl_take isl_space *space);
3476 __isl_give isl_pw_multi_aff *
3477 isl_pw_multi_aff_from_multi_aff(
3478 __isl_take isl_multi_aff *ma);
3479 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_alloc(
3480 __isl_take isl_set *set,
3481 __isl_take isl_multi_aff *maff);
3482 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_domain(
3483 __isl_take isl_set *set);
3485 __isl_give isl_union_pw_multi_aff *
3486 isl_union_pw_multi_aff_empty(
3487 __isl_take isl_space *space);
3488 __isl_give isl_union_pw_multi_aff *
3489 isl_union_pw_multi_aff_add_pw_multi_aff(
3490 __isl_take isl_union_pw_multi_aff *upma,
3491 __isl_take isl_pw_multi_aff *pma);
3492 __isl_give isl_union_pw_multi_aff *
3493 isl_union_pw_multi_aff_from_domain(
3494 __isl_take isl_union_set *uset);
3496 A piecewise multiple quasi affine expression can also be initialized
3497 from an C<isl_set> or C<isl_map>, provided the C<isl_set> is a singleton
3498 and the C<isl_map> is single-valued.
3500 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_set(
3501 __isl_take isl_set *set);
3502 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_map(
3503 __isl_take isl_map *map);
3505 Multiple quasi affine expressions can be copied and freed using
3507 #include <isl/aff.h>
3508 __isl_give isl_multi_aff *isl_multi_aff_copy(
3509 __isl_keep isl_multi_aff *maff);
3510 void *isl_multi_aff_free(__isl_take isl_multi_aff *maff);
3512 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_copy(
3513 __isl_keep isl_pw_multi_aff *pma);
3514 void *isl_pw_multi_aff_free(
3515 __isl_take isl_pw_multi_aff *pma);
3517 __isl_give isl_union_pw_multi_aff *
3518 isl_union_pw_multi_aff_copy(
3519 __isl_keep isl_union_pw_multi_aff *upma);
3520 void *isl_union_pw_multi_aff_free(
3521 __isl_take isl_union_pw_multi_aff *upma);
3523 The expression can be inspected using
3525 #include <isl/aff.h>
3526 isl_ctx *isl_multi_aff_get_ctx(
3527 __isl_keep isl_multi_aff *maff);
3528 isl_ctx *isl_pw_multi_aff_get_ctx(
3529 __isl_keep isl_pw_multi_aff *pma);
3530 isl_ctx *isl_union_pw_multi_aff_get_ctx(
3531 __isl_keep isl_union_pw_multi_aff *upma);
3532 unsigned isl_multi_aff_dim(__isl_keep isl_multi_aff *maff,
3533 enum isl_dim_type type);
3534 unsigned isl_pw_multi_aff_dim(
3535 __isl_keep isl_pw_multi_aff *pma,
3536 enum isl_dim_type type);
3537 __isl_give isl_aff *isl_multi_aff_get_aff(
3538 __isl_keep isl_multi_aff *multi, int pos);
3539 __isl_give isl_pw_aff *isl_pw_multi_aff_get_pw_aff(
3540 __isl_keep isl_pw_multi_aff *pma, int pos);
3541 const char *isl_pw_multi_aff_get_dim_name(
3542 __isl_keep isl_pw_multi_aff *pma,
3543 enum isl_dim_type type, unsigned pos);
3544 __isl_give isl_id *isl_pw_multi_aff_get_dim_id(
3545 __isl_keep isl_pw_multi_aff *pma,
3546 enum isl_dim_type type, unsigned pos);
3547 const char *isl_multi_aff_get_tuple_name(
3548 __isl_keep isl_multi_aff *multi,
3549 enum isl_dim_type type);
3550 int isl_pw_multi_aff_has_tuple_name(
3551 __isl_keep isl_pw_multi_aff *pma,
3552 enum isl_dim_type type);
3553 const char *isl_pw_multi_aff_get_tuple_name(
3554 __isl_keep isl_pw_multi_aff *pma,
3555 enum isl_dim_type type);
3556 int isl_pw_multi_aff_has_tuple_id(
3557 __isl_keep isl_pw_multi_aff *pma,
3558 enum isl_dim_type type);
3559 __isl_give isl_id *isl_pw_multi_aff_get_tuple_id(
3560 __isl_keep isl_pw_multi_aff *pma,
3561 enum isl_dim_type type);
3563 int isl_pw_multi_aff_foreach_piece(
3564 __isl_keep isl_pw_multi_aff *pma,
3565 int (*fn)(__isl_take isl_set *set,
3566 __isl_take isl_multi_aff *maff,
3567 void *user), void *user);
3569 int isl_union_pw_multi_aff_foreach_pw_multi_aff(
3570 __isl_keep isl_union_pw_multi_aff *upma,
3571 int (*fn)(__isl_take isl_pw_multi_aff *pma,
3572 void *user), void *user);
3574 It can be modified using
3576 #include <isl/aff.h>
3577 __isl_give isl_multi_aff *isl_multi_aff_set_aff(
3578 __isl_take isl_multi_aff *multi, int pos,
3579 __isl_take isl_aff *aff);
3580 __isl_give isl_multi_aff *isl_multi_aff_set_dim_name(
3581 __isl_take isl_multi_aff *maff,
3582 enum isl_dim_type type, unsigned pos, const char *s);
3583 __isl_give isl_multi_aff *isl_multi_aff_set_tuple_id(
3584 __isl_take isl_multi_aff *maff,
3585 enum isl_dim_type type, __isl_take isl_id *id);
3586 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_set_tuple_id(
3587 __isl_take isl_pw_multi_aff *pma,
3588 enum isl_dim_type type, __isl_take isl_id *id);
3590 __isl_give isl_multi_aff *isl_multi_aff_drop_dims(
3591 __isl_take isl_multi_aff *maff,
3592 enum isl_dim_type type, unsigned first, unsigned n);
3593 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_drop_dims(
3594 __isl_take isl_pw_multi_aff *pma,
3595 enum isl_dim_type type, unsigned first, unsigned n);
3597 To check whether two multiple affine expressions are
3598 obviously equal to each other, use
3600 int isl_multi_aff_plain_is_equal(__isl_keep isl_multi_aff *maff1,
3601 __isl_keep isl_multi_aff *maff2);
3602 int isl_pw_multi_aff_plain_is_equal(
3603 __isl_keep isl_pw_multi_aff *pma1,
3604 __isl_keep isl_pw_multi_aff *pma2);
3608 #include <isl/aff.h>
3609 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_lexmin(
3610 __isl_take isl_pw_multi_aff *pma1,
3611 __isl_take isl_pw_multi_aff *pma2);
3612 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_lexmax(
3613 __isl_take isl_pw_multi_aff *pma1,
3614 __isl_take isl_pw_multi_aff *pma2);
3615 __isl_give isl_multi_aff *isl_multi_aff_add(
3616 __isl_take isl_multi_aff *maff1,
3617 __isl_take isl_multi_aff *maff2);
3618 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_add(
3619 __isl_take isl_pw_multi_aff *pma1,
3620 __isl_take isl_pw_multi_aff *pma2);
3621 __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_add(
3622 __isl_take isl_union_pw_multi_aff *upma1,
3623 __isl_take isl_union_pw_multi_aff *upma2);
3624 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_add(
3625 __isl_take isl_pw_multi_aff *pma1,
3626 __isl_take isl_pw_multi_aff *pma2);
3627 __isl_give isl_multi_aff *isl_multi_aff_scale(
3628 __isl_take isl_multi_aff *maff,
3630 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_params(
3631 __isl_take isl_pw_multi_aff *pma,
3632 __isl_take isl_set *set);
3633 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_domain(
3634 __isl_take isl_pw_multi_aff *pma,
3635 __isl_take isl_set *set);
3636 __isl_give isl_multi_aff *isl_multi_aff_lift(
3637 __isl_take isl_multi_aff *maff,
3638 __isl_give isl_local_space **ls);
3639 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_coalesce(
3640 __isl_take isl_pw_multi_aff *pma);
3641 __isl_give isl_multi_aff *isl_multi_aff_align_params(
3642 __isl_take isl_multi_aff *multi,
3643 __isl_take isl_space *model);
3644 __isl_give isl_pw_multi_aff *
3645 isl_pw_multi_aff_project_domain_on_params(
3646 __isl_take isl_pw_multi_aff *pma);
3647 __isl_give isl_multi_aff *isl_multi_aff_gist_params(
3648 __isl_take isl_multi_aff *maff,
3649 __isl_take isl_set *context);
3650 __isl_give isl_multi_aff *isl_multi_aff_gist(
3651 __isl_take isl_multi_aff *maff,
3652 __isl_take isl_set *context);
3653 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_gist_params(
3654 __isl_take isl_pw_multi_aff *pma,
3655 __isl_take isl_set *set);
3656 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_gist(
3657 __isl_take isl_pw_multi_aff *pma,
3658 __isl_take isl_set *set);
3659 __isl_give isl_set *isl_pw_multi_aff_domain(
3660 __isl_take isl_pw_multi_aff *pma);
3661 __isl_give isl_union_set *isl_union_pw_multi_aff_domain(
3662 __isl_take isl_union_pw_multi_aff *upma);
3663 __isl_give isl_multi_aff *isl_multi_aff_flat_range_product(
3664 __isl_take isl_multi_aff *ma1,
3665 __isl_take isl_multi_aff *ma2);
3666 __isl_give isl_multi_aff *isl_multi_aff_product(
3667 __isl_take isl_multi_aff *ma1,
3668 __isl_take isl_multi_aff *ma2);
3669 __isl_give isl_pw_multi_aff *
3670 isl_pw_multi_aff_flat_range_product(
3671 __isl_take isl_pw_multi_aff *pma1,
3672 __isl_take isl_pw_multi_aff *pma2);
3673 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_product(
3674 __isl_take isl_pw_multi_aff *pma1,
3675 __isl_take isl_pw_multi_aff *pma2);
3676 __isl_give isl_union_pw_multi_aff *
3677 isl_union_pw_multi_aff_flat_range_product(
3678 __isl_take isl_union_pw_multi_aff *upma1,
3679 __isl_take isl_union_pw_multi_aff *upma2);
3681 If the C<ls> argument of C<isl_multi_aff_lift> is not C<NULL>,
3682 then it is assigned the local space that lies at the basis of
3683 the lifting applied.
3685 __isl_give isl_set *isl_multi_aff_lex_le_set(
3686 __isl_take isl_multi_aff *ma1,
3687 __isl_take isl_multi_aff *ma2);
3688 __isl_give isl_set *isl_multi_aff_lex_ge_set(
3689 __isl_take isl_multi_aff *ma1,
3690 __isl_take isl_multi_aff *ma2);
3692 The function C<isl_multi_aff_lex_le_set> returns a set
3693 containing those elements in the shared domain space
3694 where C<ma1> is lexicographically smaller than or
3697 An expression can be read from input using
3699 #include <isl/aff.h>
3700 __isl_give isl_multi_aff *isl_multi_aff_read_from_str(
3701 isl_ctx *ctx, const char *str);
3702 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_read_from_str(
3703 isl_ctx *ctx, const char *str);
3705 An expression can be printed using
3707 #include <isl/aff.h>
3708 __isl_give isl_printer *isl_printer_print_multi_aff(
3709 __isl_take isl_printer *p,
3710 __isl_keep isl_multi_aff *maff);
3711 __isl_give isl_printer *isl_printer_print_pw_multi_aff(
3712 __isl_take isl_printer *p,
3713 __isl_keep isl_pw_multi_aff *pma);
3714 __isl_give isl_printer *isl_printer_print_union_pw_multi_aff(
3715 __isl_take isl_printer *p,
3716 __isl_keep isl_union_pw_multi_aff *upma);
3720 Points are elements of a set. They can be used to construct
3721 simple sets (boxes) or they can be used to represent the
3722 individual elements of a set.
3723 The zero point (the origin) can be created using
3725 __isl_give isl_point *isl_point_zero(__isl_take isl_space *space);
3727 The coordinates of a point can be inspected, set and changed
3730 int isl_point_get_coordinate(__isl_keep isl_point *pnt,
3731 enum isl_dim_type type, int pos, isl_int *v);
3732 __isl_give isl_point *isl_point_set_coordinate(
3733 __isl_take isl_point *pnt,
3734 enum isl_dim_type type, int pos, isl_int v);
3736 __isl_give isl_point *isl_point_add_ui(
3737 __isl_take isl_point *pnt,
3738 enum isl_dim_type type, int pos, unsigned val);
3739 __isl_give isl_point *isl_point_sub_ui(
3740 __isl_take isl_point *pnt,
3741 enum isl_dim_type type, int pos, unsigned val);
3743 Other properties can be obtained using
3745 isl_ctx *isl_point_get_ctx(__isl_keep isl_point *pnt);
3747 Points can be copied or freed using
3749 __isl_give isl_point *isl_point_copy(
3750 __isl_keep isl_point *pnt);
3751 void isl_point_free(__isl_take isl_point *pnt);
3753 A singleton set can be created from a point using
3755 __isl_give isl_basic_set *isl_basic_set_from_point(
3756 __isl_take isl_point *pnt);
3757 __isl_give isl_set *isl_set_from_point(
3758 __isl_take isl_point *pnt);
3760 and a box can be created from two opposite extremal points using
3762 __isl_give isl_basic_set *isl_basic_set_box_from_points(
3763 __isl_take isl_point *pnt1,
3764 __isl_take isl_point *pnt2);
3765 __isl_give isl_set *isl_set_box_from_points(
3766 __isl_take isl_point *pnt1,
3767 __isl_take isl_point *pnt2);
3769 All elements of a B<bounded> (union) set can be enumerated using
3770 the following functions.
3772 int isl_set_foreach_point(__isl_keep isl_set *set,
3773 int (*fn)(__isl_take isl_point *pnt, void *user),
3775 int isl_union_set_foreach_point(__isl_keep isl_union_set *uset,
3776 int (*fn)(__isl_take isl_point *pnt, void *user),
3779 The function C<fn> is called for each integer point in
3780 C<set> with as second argument the last argument of
3781 the C<isl_set_foreach_point> call. The function C<fn>
3782 should return C<0> on success and C<-1> on failure.
3783 In the latter case, C<isl_set_foreach_point> will stop
3784 enumerating and return C<-1> as well.
3785 If the enumeration is performed successfully and to completion,
3786 then C<isl_set_foreach_point> returns C<0>.
3788 To obtain a single point of a (basic) set, use
3790 __isl_give isl_point *isl_basic_set_sample_point(
3791 __isl_take isl_basic_set *bset);
3792 __isl_give isl_point *isl_set_sample_point(
3793 __isl_take isl_set *set);
3795 If C<set> does not contain any (integer) points, then the
3796 resulting point will be ``void'', a property that can be
3799 int isl_point_is_void(__isl_keep isl_point *pnt);
3801 =head2 Piecewise Quasipolynomials
3803 A piecewise quasipolynomial is a particular kind of function that maps
3804 a parametric point to a rational value.
3805 More specifically, a quasipolynomial is a polynomial expression in greatest
3806 integer parts of affine expressions of parameters and variables.
3807 A piecewise quasipolynomial is a subdivision of a given parametric
3808 domain into disjoint cells with a quasipolynomial associated to
3809 each cell. The value of the piecewise quasipolynomial at a given
3810 point is the value of the quasipolynomial associated to the cell
3811 that contains the point. Outside of the union of cells,
3812 the value is assumed to be zero.
3813 For example, the piecewise quasipolynomial
3815 [n] -> { [x] -> ((1 + n) - x) : x <= n and x >= 0 }
3817 maps C<x> to C<1 + n - x> for values of C<x> between C<0> and C<n>.
3818 A given piecewise quasipolynomial has a fixed domain dimension.
3819 Union piecewise quasipolynomials are used to contain piecewise quasipolynomials
3820 defined over different domains.
3821 Piecewise quasipolynomials are mainly used by the C<barvinok>
3822 library for representing the number of elements in a parametric set or map.
3823 For example, the piecewise quasipolynomial above represents
3824 the number of points in the map
3826 [n] -> { [x] -> [y] : x,y >= 0 and 0 <= x + y <= n }
3828 =head3 Input and Output
3830 Piecewise quasipolynomials can be read from input using
3832 __isl_give isl_union_pw_qpolynomial *
3833 isl_union_pw_qpolynomial_read_from_str(
3834 isl_ctx *ctx, const char *str);
3836 Quasipolynomials and piecewise quasipolynomials can be printed
3837 using the following functions.
3839 __isl_give isl_printer *isl_printer_print_qpolynomial(
3840 __isl_take isl_printer *p,
3841 __isl_keep isl_qpolynomial *qp);
3843 __isl_give isl_printer *isl_printer_print_pw_qpolynomial(
3844 __isl_take isl_printer *p,
3845 __isl_keep isl_pw_qpolynomial *pwqp);
3847 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial(
3848 __isl_take isl_printer *p,
3849 __isl_keep isl_union_pw_qpolynomial *upwqp);
3851 The output format of the printer
3852 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
3853 For C<isl_printer_print_union_pw_qpolynomial>, only C<ISL_FORMAT_ISL>
3855 In case of printing in C<ISL_FORMAT_C>, the user may want
3856 to set the names of all dimensions
3858 __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name(
3859 __isl_take isl_qpolynomial *qp,
3860 enum isl_dim_type type, unsigned pos,
3862 __isl_give isl_pw_qpolynomial *
3863 isl_pw_qpolynomial_set_dim_name(
3864 __isl_take isl_pw_qpolynomial *pwqp,
3865 enum isl_dim_type type, unsigned pos,
3868 =head3 Creating New (Piecewise) Quasipolynomials
3870 Some simple quasipolynomials can be created using the following functions.
3871 More complicated quasipolynomials can be created by applying
3872 operations such as addition and multiplication
3873 on the resulting quasipolynomials
3875 __isl_give isl_qpolynomial *isl_qpolynomial_zero_on_domain(
3876 __isl_take isl_space *domain);
3877 __isl_give isl_qpolynomial *isl_qpolynomial_one_on_domain(
3878 __isl_take isl_space *domain);
3879 __isl_give isl_qpolynomial *isl_qpolynomial_infty_on_domain(
3880 __isl_take isl_space *domain);
3881 __isl_give isl_qpolynomial *isl_qpolynomial_neginfty_on_domain(
3882 __isl_take isl_space *domain);
3883 __isl_give isl_qpolynomial *isl_qpolynomial_nan_on_domain(
3884 __isl_take isl_space *domain);
3885 __isl_give isl_qpolynomial *isl_qpolynomial_rat_cst_on_domain(
3886 __isl_take isl_space *domain,
3887 const isl_int n, const isl_int d);
3888 __isl_give isl_qpolynomial *isl_qpolynomial_var_on_domain(
3889 __isl_take isl_space *domain,
3890 enum isl_dim_type type, unsigned pos);
3891 __isl_give isl_qpolynomial *isl_qpolynomial_from_aff(
3892 __isl_take isl_aff *aff);
3894 Note that the space in which a quasipolynomial lives is a map space
3895 with a one-dimensional range. The C<domain> argument in some of
3896 the functions above corresponds to the domain of this map space.
3898 The zero piecewise quasipolynomial or a piecewise quasipolynomial
3899 with a single cell can be created using the following functions.
3900 Multiple of these single cell piecewise quasipolynomials can
3901 be combined to create more complicated piecewise quasipolynomials.
3903 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_zero(
3904 __isl_take isl_space *space);
3905 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_alloc(
3906 __isl_take isl_set *set,
3907 __isl_take isl_qpolynomial *qp);
3908 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_qpolynomial(
3909 __isl_take isl_qpolynomial *qp);
3910 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_pw_aff(
3911 __isl_take isl_pw_aff *pwaff);
3913 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_zero(
3914 __isl_take isl_space *space);
3915 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_from_pw_qpolynomial(
3916 __isl_take isl_pw_qpolynomial *pwqp);
3917 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add_pw_qpolynomial(
3918 __isl_take isl_union_pw_qpolynomial *upwqp,
3919 __isl_take isl_pw_qpolynomial *pwqp);
3921 Quasipolynomials can be copied and freed again using the following
3924 __isl_give isl_qpolynomial *isl_qpolynomial_copy(
3925 __isl_keep isl_qpolynomial *qp);
3926 void *isl_qpolynomial_free(__isl_take isl_qpolynomial *qp);
3928 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_copy(
3929 __isl_keep isl_pw_qpolynomial *pwqp);
3930 void *isl_pw_qpolynomial_free(
3931 __isl_take isl_pw_qpolynomial *pwqp);
3933 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_copy(
3934 __isl_keep isl_union_pw_qpolynomial *upwqp);
3935 void *isl_union_pw_qpolynomial_free(
3936 __isl_take isl_union_pw_qpolynomial *upwqp);
3938 =head3 Inspecting (Piecewise) Quasipolynomials
3940 To iterate over all piecewise quasipolynomials in a union
3941 piecewise quasipolynomial, use the following function
3943 int isl_union_pw_qpolynomial_foreach_pw_qpolynomial(
3944 __isl_keep isl_union_pw_qpolynomial *upwqp,
3945 int (*fn)(__isl_take isl_pw_qpolynomial *pwqp, void *user),
3948 To extract the piecewise quasipolynomial in a given space from a union, use
3950 __isl_give isl_pw_qpolynomial *
3951 isl_union_pw_qpolynomial_extract_pw_qpolynomial(
3952 __isl_keep isl_union_pw_qpolynomial *upwqp,
3953 __isl_take isl_space *space);
3955 To iterate over the cells in a piecewise quasipolynomial,
3956 use either of the following two functions
3958 int isl_pw_qpolynomial_foreach_piece(
3959 __isl_keep isl_pw_qpolynomial *pwqp,
3960 int (*fn)(__isl_take isl_set *set,
3961 __isl_take isl_qpolynomial *qp,
3962 void *user), void *user);
3963 int isl_pw_qpolynomial_foreach_lifted_piece(
3964 __isl_keep isl_pw_qpolynomial *pwqp,
3965 int (*fn)(__isl_take isl_set *set,
3966 __isl_take isl_qpolynomial *qp,
3967 void *user), void *user);
3969 As usual, the function C<fn> should return C<0> on success
3970 and C<-1> on failure. The difference between
3971 C<isl_pw_qpolynomial_foreach_piece> and
3972 C<isl_pw_qpolynomial_foreach_lifted_piece> is that
3973 C<isl_pw_qpolynomial_foreach_lifted_piece> will first
3974 compute unique representations for all existentially quantified
3975 variables and then turn these existentially quantified variables
3976 into extra set variables, adapting the associated quasipolynomial
3977 accordingly. This means that the C<set> passed to C<fn>
3978 will not have any existentially quantified variables, but that
3979 the dimensions of the sets may be different for different
3980 invocations of C<fn>.
3982 To iterate over all terms in a quasipolynomial,
3985 int isl_qpolynomial_foreach_term(
3986 __isl_keep isl_qpolynomial *qp,
3987 int (*fn)(__isl_take isl_term *term,
3988 void *user), void *user);
3990 The terms themselves can be inspected and freed using
3993 unsigned isl_term_dim(__isl_keep isl_term *term,
3994 enum isl_dim_type type);
3995 void isl_term_get_num(__isl_keep isl_term *term,
3997 void isl_term_get_den(__isl_keep isl_term *term,
3999 int isl_term_get_exp(__isl_keep isl_term *term,
4000 enum isl_dim_type type, unsigned pos);
4001 __isl_give isl_aff *isl_term_get_div(
4002 __isl_keep isl_term *term, unsigned pos);
4003 void isl_term_free(__isl_take isl_term *term);
4005 Each term is a product of parameters, set variables and
4006 integer divisions. The function C<isl_term_get_exp>
4007 returns the exponent of a given dimensions in the given term.
4008 The C<isl_int>s in the arguments of C<isl_term_get_num>
4009 and C<isl_term_get_den> need to have been initialized
4010 using C<isl_int_init> before calling these functions.
4012 =head3 Properties of (Piecewise) Quasipolynomials
4014 To check whether a quasipolynomial is actually a constant,
4015 use the following function.
4017 int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp,
4018 isl_int *n, isl_int *d);
4020 If C<qp> is a constant and if C<n> and C<d> are not C<NULL>
4021 then the numerator and denominator of the constant
4022 are returned in C<*n> and C<*d>, respectively.
4024 To check whether two union piecewise quasipolynomials are
4025 obviously equal, use
4027 int isl_union_pw_qpolynomial_plain_is_equal(
4028 __isl_keep isl_union_pw_qpolynomial *upwqp1,
4029 __isl_keep isl_union_pw_qpolynomial *upwqp2);
4031 =head3 Operations on (Piecewise) Quasipolynomials
4033 __isl_give isl_qpolynomial *isl_qpolynomial_scale(
4034 __isl_take isl_qpolynomial *qp, isl_int v);
4035 __isl_give isl_qpolynomial *isl_qpolynomial_neg(
4036 __isl_take isl_qpolynomial *qp);
4037 __isl_give isl_qpolynomial *isl_qpolynomial_add(
4038 __isl_take isl_qpolynomial *qp1,
4039 __isl_take isl_qpolynomial *qp2);
4040 __isl_give isl_qpolynomial *isl_qpolynomial_sub(
4041 __isl_take isl_qpolynomial *qp1,
4042 __isl_take isl_qpolynomial *qp2);
4043 __isl_give isl_qpolynomial *isl_qpolynomial_mul(
4044 __isl_take isl_qpolynomial *qp1,
4045 __isl_take isl_qpolynomial *qp2);
4046 __isl_give isl_qpolynomial *isl_qpolynomial_pow(
4047 __isl_take isl_qpolynomial *qp, unsigned exponent);
4049 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add(
4050 __isl_take isl_pw_qpolynomial *pwqp1,
4051 __isl_take isl_pw_qpolynomial *pwqp2);
4052 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_sub(
4053 __isl_take isl_pw_qpolynomial *pwqp1,
4054 __isl_take isl_pw_qpolynomial *pwqp2);
4055 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_disjoint(
4056 __isl_take isl_pw_qpolynomial *pwqp1,
4057 __isl_take isl_pw_qpolynomial *pwqp2);
4058 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_neg(
4059 __isl_take isl_pw_qpolynomial *pwqp);
4060 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
4061 __isl_take isl_pw_qpolynomial *pwqp1,
4062 __isl_take isl_pw_qpolynomial *pwqp2);
4063 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_pow(
4064 __isl_take isl_pw_qpolynomial *pwqp, unsigned exponent);
4066 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add(
4067 __isl_take isl_union_pw_qpolynomial *upwqp1,
4068 __isl_take isl_union_pw_qpolynomial *upwqp2);
4069 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_sub(
4070 __isl_take isl_union_pw_qpolynomial *upwqp1,
4071 __isl_take isl_union_pw_qpolynomial *upwqp2);
4072 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul(
4073 __isl_take isl_union_pw_qpolynomial *upwqp1,
4074 __isl_take isl_union_pw_qpolynomial *upwqp2);
4076 __isl_give isl_qpolynomial *isl_pw_qpolynomial_eval(
4077 __isl_take isl_pw_qpolynomial *pwqp,
4078 __isl_take isl_point *pnt);
4080 __isl_give isl_qpolynomial *isl_union_pw_qpolynomial_eval(
4081 __isl_take isl_union_pw_qpolynomial *upwqp,
4082 __isl_take isl_point *pnt);
4084 __isl_give isl_set *isl_pw_qpolynomial_domain(
4085 __isl_take isl_pw_qpolynomial *pwqp);
4086 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_intersect_domain(
4087 __isl_take isl_pw_qpolynomial *pwpq,
4088 __isl_take isl_set *set);
4089 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_intersect_params(
4090 __isl_take isl_pw_qpolynomial *pwpq,
4091 __isl_take isl_set *set);
4093 __isl_give isl_union_set *isl_union_pw_qpolynomial_domain(
4094 __isl_take isl_union_pw_qpolynomial *upwqp);
4095 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_intersect_domain(
4096 __isl_take isl_union_pw_qpolynomial *upwpq,
4097 __isl_take isl_union_set *uset);
4098 __isl_give isl_union_pw_qpolynomial *
4099 isl_union_pw_qpolynomial_intersect_params(
4100 __isl_take isl_union_pw_qpolynomial *upwpq,
4101 __isl_take isl_set *set);
4103 __isl_give isl_qpolynomial *isl_qpolynomial_align_params(
4104 __isl_take isl_qpolynomial *qp,
4105 __isl_take isl_space *model);
4107 __isl_give isl_qpolynomial *isl_qpolynomial_project_domain_on_params(
4108 __isl_take isl_qpolynomial *qp);
4109 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_project_domain_on_params(
4110 __isl_take isl_pw_qpolynomial *pwqp);
4112 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_coalesce(
4113 __isl_take isl_union_pw_qpolynomial *upwqp);
4115 __isl_give isl_qpolynomial *isl_qpolynomial_gist_params(
4116 __isl_take isl_qpolynomial *qp,
4117 __isl_take isl_set *context);
4118 __isl_give isl_qpolynomial *isl_qpolynomial_gist(
4119 __isl_take isl_qpolynomial *qp,
4120 __isl_take isl_set *context);
4122 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist_params(
4123 __isl_take isl_pw_qpolynomial *pwqp,
4124 __isl_take isl_set *context);
4125 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist(
4126 __isl_take isl_pw_qpolynomial *pwqp,
4127 __isl_take isl_set *context);
4129 __isl_give isl_union_pw_qpolynomial *
4130 isl_union_pw_qpolynomial_gist_params(
4131 __isl_take isl_union_pw_qpolynomial *upwqp,
4132 __isl_take isl_set *context);
4133 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_gist(
4134 __isl_take isl_union_pw_qpolynomial *upwqp,
4135 __isl_take isl_union_set *context);
4137 The gist operation applies the gist operation to each of
4138 the cells in the domain of the input piecewise quasipolynomial.
4139 The context is also exploited
4140 to simplify the quasipolynomials associated to each cell.
4142 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial(
4143 __isl_take isl_pw_qpolynomial *pwqp, int sign);
4144 __isl_give isl_union_pw_qpolynomial *
4145 isl_union_pw_qpolynomial_to_polynomial(
4146 __isl_take isl_union_pw_qpolynomial *upwqp, int sign);
4148 Approximate each quasipolynomial by a polynomial. If C<sign> is positive,
4149 the polynomial will be an overapproximation. If C<sign> is negative,
4150 it will be an underapproximation. If C<sign> is zero, the approximation
4151 will lie somewhere in between.
4153 =head2 Bounds on Piecewise Quasipolynomials and Piecewise Quasipolynomial Reductions
4155 A piecewise quasipolynomial reduction is a piecewise
4156 reduction (or fold) of quasipolynomials.
4157 In particular, the reduction can be maximum or a minimum.
4158 The objects are mainly used to represent the result of
4159 an upper or lower bound on a quasipolynomial over its domain,
4160 i.e., as the result of the following function.
4162 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_bound(
4163 __isl_take isl_pw_qpolynomial *pwqp,
4164 enum isl_fold type, int *tight);
4166 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_bound(
4167 __isl_take isl_union_pw_qpolynomial *upwqp,
4168 enum isl_fold type, int *tight);
4170 The C<type> argument may be either C<isl_fold_min> or C<isl_fold_max>.
4171 If C<tight> is not C<NULL>, then C<*tight> is set to C<1>
4172 is the returned bound is known be tight, i.e., for each value
4173 of the parameters there is at least
4174 one element in the domain that reaches the bound.
4175 If the domain of C<pwqp> is not wrapping, then the bound is computed
4176 over all elements in that domain and the result has a purely parametric
4177 domain. If the domain of C<pwqp> is wrapping, then the bound is
4178 computed over the range of the wrapped relation. The domain of the
4179 wrapped relation becomes the domain of the result.
4181 A (piecewise) quasipolynomial reduction can be copied or freed using the
4182 following functions.
4184 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_copy(
4185 __isl_keep isl_qpolynomial_fold *fold);
4186 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_copy(
4187 __isl_keep isl_pw_qpolynomial_fold *pwf);
4188 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_copy(
4189 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
4190 void isl_qpolynomial_fold_free(
4191 __isl_take isl_qpolynomial_fold *fold);
4192 void *isl_pw_qpolynomial_fold_free(
4193 __isl_take isl_pw_qpolynomial_fold *pwf);
4194 void *isl_union_pw_qpolynomial_fold_free(
4195 __isl_take isl_union_pw_qpolynomial_fold *upwf);
4197 =head3 Printing Piecewise Quasipolynomial Reductions
4199 Piecewise quasipolynomial reductions can be printed
4200 using the following function.
4202 __isl_give isl_printer *isl_printer_print_pw_qpolynomial_fold(
4203 __isl_take isl_printer *p,
4204 __isl_keep isl_pw_qpolynomial_fold *pwf);
4205 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial_fold(
4206 __isl_take isl_printer *p,
4207 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
4209 For C<isl_printer_print_pw_qpolynomial_fold>,
4210 output format of the printer
4211 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
4212 For C<isl_printer_print_union_pw_qpolynomial_fold>,
4213 output format of the printer
4214 needs to be set to C<ISL_FORMAT_ISL>.
4215 In case of printing in C<ISL_FORMAT_C>, the user may want
4216 to set the names of all dimensions
4218 __isl_give isl_pw_qpolynomial_fold *
4219 isl_pw_qpolynomial_fold_set_dim_name(
4220 __isl_take isl_pw_qpolynomial_fold *pwf,
4221 enum isl_dim_type type, unsigned pos,
4224 =head3 Inspecting (Piecewise) Quasipolynomial Reductions
4226 To iterate over all piecewise quasipolynomial reductions in a union
4227 piecewise quasipolynomial reduction, use the following function
4229 int isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold(
4230 __isl_keep isl_union_pw_qpolynomial_fold *upwf,
4231 int (*fn)(__isl_take isl_pw_qpolynomial_fold *pwf,
4232 void *user), void *user);
4234 To iterate over the cells in a piecewise quasipolynomial reduction,
4235 use either of the following two functions
4237 int isl_pw_qpolynomial_fold_foreach_piece(
4238 __isl_keep isl_pw_qpolynomial_fold *pwf,
4239 int (*fn)(__isl_take isl_set *set,
4240 __isl_take isl_qpolynomial_fold *fold,
4241 void *user), void *user);
4242 int isl_pw_qpolynomial_fold_foreach_lifted_piece(
4243 __isl_keep isl_pw_qpolynomial_fold *pwf,
4244 int (*fn)(__isl_take isl_set *set,
4245 __isl_take isl_qpolynomial_fold *fold,
4246 void *user), void *user);
4248 See L<Inspecting (Piecewise) Quasipolynomials> for an explanation
4249 of the difference between these two functions.
4251 To iterate over all quasipolynomials in a reduction, use
4253 int isl_qpolynomial_fold_foreach_qpolynomial(
4254 __isl_keep isl_qpolynomial_fold *fold,
4255 int (*fn)(__isl_take isl_qpolynomial *qp,
4256 void *user), void *user);
4258 =head3 Properties of Piecewise Quasipolynomial Reductions
4260 To check whether two union piecewise quasipolynomial reductions are
4261 obviously equal, use
4263 int isl_union_pw_qpolynomial_fold_plain_is_equal(
4264 __isl_keep isl_union_pw_qpolynomial_fold *upwf1,
4265 __isl_keep isl_union_pw_qpolynomial_fold *upwf2);
4267 =head3 Operations on Piecewise Quasipolynomial Reductions
4269 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_scale(
4270 __isl_take isl_qpolynomial_fold *fold, isl_int v);
4272 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_add(
4273 __isl_take isl_pw_qpolynomial_fold *pwf1,
4274 __isl_take isl_pw_qpolynomial_fold *pwf2);
4276 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_fold(
4277 __isl_take isl_pw_qpolynomial_fold *pwf1,
4278 __isl_take isl_pw_qpolynomial_fold *pwf2);
4280 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_fold(
4281 __isl_take isl_union_pw_qpolynomial_fold *upwf1,
4282 __isl_take isl_union_pw_qpolynomial_fold *upwf2);
4284 __isl_give isl_qpolynomial *isl_pw_qpolynomial_fold_eval(
4285 __isl_take isl_pw_qpolynomial_fold *pwf,
4286 __isl_take isl_point *pnt);
4288 __isl_give isl_qpolynomial *isl_union_pw_qpolynomial_fold_eval(
4289 __isl_take isl_union_pw_qpolynomial_fold *upwf,
4290 __isl_take isl_point *pnt);
4292 __isl_give isl_pw_qpolynomial_fold *
4293 isl_pw_qpolynomial_fold_intersect_params(
4294 __isl_take isl_pw_qpolynomial_fold *pwf,
4295 __isl_take isl_set *set);
4297 __isl_give isl_union_set *isl_union_pw_qpolynomial_fold_domain(
4298 __isl_take isl_union_pw_qpolynomial_fold *upwf);
4299 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_intersect_domain(
4300 __isl_take isl_union_pw_qpolynomial_fold *upwf,
4301 __isl_take isl_union_set *uset);
4302 __isl_give isl_union_pw_qpolynomial_fold *
4303 isl_union_pw_qpolynomial_fold_intersect_params(
4304 __isl_take isl_union_pw_qpolynomial_fold *upwf,
4305 __isl_take isl_set *set);
4307 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_project_domain_on_params(
4308 __isl_take isl_pw_qpolynomial_fold *pwf);
4310 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_coalesce(
4311 __isl_take isl_pw_qpolynomial_fold *pwf);
4313 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_coalesce(
4314 __isl_take isl_union_pw_qpolynomial_fold *upwf);
4316 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist_params(
4317 __isl_take isl_qpolynomial_fold *fold,
4318 __isl_take isl_set *context);
4319 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist(
4320 __isl_take isl_qpolynomial_fold *fold,
4321 __isl_take isl_set *context);
4323 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_gist(
4324 __isl_take isl_pw_qpolynomial_fold *pwf,
4325 __isl_take isl_set *context);
4326 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_gist_params(
4327 __isl_take isl_pw_qpolynomial_fold *pwf,
4328 __isl_take isl_set *context);
4330 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_gist(
4331 __isl_take isl_union_pw_qpolynomial_fold *upwf,
4332 __isl_take isl_union_set *context);
4333 __isl_give isl_union_pw_qpolynomial_fold *
4334 isl_union_pw_qpolynomial_fold_gist_params(
4335 __isl_take isl_union_pw_qpolynomial_fold *upwf,
4336 __isl_take isl_set *context);
4338 The gist operation applies the gist operation to each of
4339 the cells in the domain of the input piecewise quasipolynomial reduction.
4340 In future, the operation will also exploit the context
4341 to simplify the quasipolynomial reductions associated to each cell.
4343 __isl_give isl_pw_qpolynomial_fold *
4344 isl_set_apply_pw_qpolynomial_fold(
4345 __isl_take isl_set *set,
4346 __isl_take isl_pw_qpolynomial_fold *pwf,
4348 __isl_give isl_pw_qpolynomial_fold *
4349 isl_map_apply_pw_qpolynomial_fold(
4350 __isl_take isl_map *map,
4351 __isl_take isl_pw_qpolynomial_fold *pwf,
4353 __isl_give isl_union_pw_qpolynomial_fold *
4354 isl_union_set_apply_union_pw_qpolynomial_fold(
4355 __isl_take isl_union_set *uset,
4356 __isl_take isl_union_pw_qpolynomial_fold *upwf,
4358 __isl_give isl_union_pw_qpolynomial_fold *
4359 isl_union_map_apply_union_pw_qpolynomial_fold(
4360 __isl_take isl_union_map *umap,
4361 __isl_take isl_union_pw_qpolynomial_fold *upwf,
4364 The functions taking a map
4365 compose the given map with the given piecewise quasipolynomial reduction.
4366 That is, compute a bound (of the same type as C<pwf> or C<upwf> itself)
4367 over all elements in the intersection of the range of the map
4368 and the domain of the piecewise quasipolynomial reduction
4369 as a function of an element in the domain of the map.
4370 The functions taking a set compute a bound over all elements in the
4371 intersection of the set and the domain of the
4372 piecewise quasipolynomial reduction.
4374 =head2 Dependence Analysis
4376 C<isl> contains specialized functionality for performing
4377 array dataflow analysis. That is, given a I<sink> access relation
4378 and a collection of possible I<source> access relations,
4379 C<isl> can compute relations that describe
4380 for each iteration of the sink access, which iteration
4381 of which of the source access relations was the last
4382 to access the same data element before the given iteration
4384 The resulting dependence relations map source iterations
4385 to the corresponding sink iterations.
4386 To compute standard flow dependences, the sink should be
4387 a read, while the sources should be writes.
4388 If any of the source accesses are marked as being I<may>
4389 accesses, then there will be a dependence from the last
4390 I<must> access B<and> from any I<may> access that follows
4391 this last I<must> access.
4392 In particular, if I<all> sources are I<may> accesses,
4393 then memory based dependence analysis is performed.
4394 If, on the other hand, all sources are I<must> accesses,
4395 then value based dependence analysis is performed.
4397 #include <isl/flow.h>
4399 typedef int (*isl_access_level_before)(void *first, void *second);
4401 __isl_give isl_access_info *isl_access_info_alloc(
4402 __isl_take isl_map *sink,
4403 void *sink_user, isl_access_level_before fn,
4405 __isl_give isl_access_info *isl_access_info_add_source(
4406 __isl_take isl_access_info *acc,
4407 __isl_take isl_map *source, int must,
4409 void *isl_access_info_free(__isl_take isl_access_info *acc);
4411 __isl_give isl_flow *isl_access_info_compute_flow(
4412 __isl_take isl_access_info *acc);
4414 int isl_flow_foreach(__isl_keep isl_flow *deps,
4415 int (*fn)(__isl_take isl_map *dep, int must,
4416 void *dep_user, void *user),
4418 __isl_give isl_map *isl_flow_get_no_source(
4419 __isl_keep isl_flow *deps, int must);
4420 void isl_flow_free(__isl_take isl_flow *deps);
4422 The function C<isl_access_info_compute_flow> performs the actual
4423 dependence analysis. The other functions are used to construct
4424 the input for this function or to read off the output.
4426 The input is collected in an C<isl_access_info>, which can
4427 be created through a call to C<isl_access_info_alloc>.
4428 The arguments to this functions are the sink access relation
4429 C<sink>, a token C<sink_user> used to identify the sink
4430 access to the user, a callback function for specifying the
4431 relative order of source and sink accesses, and the number
4432 of source access relations that will be added.
4433 The callback function has type C<int (*)(void *first, void *second)>.
4434 The function is called with two user supplied tokens identifying
4435 either a source or the sink and it should return the shared nesting
4436 level and the relative order of the two accesses.
4437 In particular, let I<n> be the number of loops shared by
4438 the two accesses. If C<first> precedes C<second> textually,
4439 then the function should return I<2 * n + 1>; otherwise,
4440 it should return I<2 * n>.
4441 The sources can be added to the C<isl_access_info> by performing
4442 (at most) C<max_source> calls to C<isl_access_info_add_source>.
4443 C<must> indicates whether the source is a I<must> access
4444 or a I<may> access. Note that a multi-valued access relation
4445 should only be marked I<must> if every iteration in the domain
4446 of the relation accesses I<all> elements in its image.
4447 The C<source_user> token is again used to identify
4448 the source access. The range of the source access relation
4449 C<source> should have the same dimension as the range
4450 of the sink access relation.
4451 The C<isl_access_info_free> function should usually not be
4452 called explicitly, because it is called implicitly by
4453 C<isl_access_info_compute_flow>.
4455 The result of the dependence analysis is collected in an
4456 C<isl_flow>. There may be elements of
4457 the sink access for which no preceding source access could be
4458 found or for which all preceding sources are I<may> accesses.
4459 The relations containing these elements can be obtained through
4460 calls to C<isl_flow_get_no_source>, the first with C<must> set
4461 and the second with C<must> unset.
4462 In the case of standard flow dependence analysis,
4463 with the sink a read and the sources I<must> writes,
4464 the first relation corresponds to the reads from uninitialized
4465 array elements and the second relation is empty.
4466 The actual flow dependences can be extracted using
4467 C<isl_flow_foreach>. This function will call the user-specified
4468 callback function C<fn> for each B<non-empty> dependence between
4469 a source and the sink. The callback function is called
4470 with four arguments, the actual flow dependence relation
4471 mapping source iterations to sink iterations, a boolean that
4472 indicates whether it is a I<must> or I<may> dependence, a token
4473 identifying the source and an additional C<void *> with value
4474 equal to the third argument of the C<isl_flow_foreach> call.
4475 A dependence is marked I<must> if it originates from a I<must>
4476 source and if it is not followed by any I<may> sources.
4478 After finishing with an C<isl_flow>, the user should call
4479 C<isl_flow_free> to free all associated memory.
4481 A higher-level interface to dependence analysis is provided
4482 by the following function.
4484 #include <isl/flow.h>
4486 int isl_union_map_compute_flow(__isl_take isl_union_map *sink,
4487 __isl_take isl_union_map *must_source,
4488 __isl_take isl_union_map *may_source,
4489 __isl_take isl_union_map *schedule,
4490 __isl_give isl_union_map **must_dep,
4491 __isl_give isl_union_map **may_dep,
4492 __isl_give isl_union_map **must_no_source,
4493 __isl_give isl_union_map **may_no_source);
4495 The arrays are identified by the tuple names of the ranges
4496 of the accesses. The iteration domains by the tuple names
4497 of the domains of the accesses and of the schedule.
4498 The relative order of the iteration domains is given by the
4499 schedule. The relations returned through C<must_no_source>
4500 and C<may_no_source> are subsets of C<sink>.
4501 Any of C<must_dep>, C<may_dep>, C<must_no_source>
4502 or C<may_no_source> may be C<NULL>, but a C<NULL> value for
4503 any of the other arguments is treated as an error.
4505 =head3 Interaction with Dependence Analysis
4507 During the dependence analysis, we frequently need to perform
4508 the following operation. Given a relation between sink iterations
4509 and potential source iterations from a particular source domain,
4510 what is the last potential source iteration corresponding to each
4511 sink iteration. It can sometimes be convenient to adjust
4512 the set of potential source iterations before or after each such operation.
4513 The prototypical example is fuzzy array dataflow analysis,
4514 where we need to analyze if, based on data-dependent constraints,
4515 the sink iteration can ever be executed without one or more of
4516 the corresponding potential source iterations being executed.
4517 If so, we can introduce extra parameters and select an unknown
4518 but fixed source iteration from the potential source iterations.
4519 To be able to perform such manipulations, C<isl> provides the following
4522 #include <isl/flow.h>
4524 typedef __isl_give isl_restriction *(*isl_access_restrict)(
4525 __isl_keep isl_map *source_map,
4526 __isl_keep isl_set *sink, void *source_user,
4528 __isl_give isl_access_info *isl_access_info_set_restrict(
4529 __isl_take isl_access_info *acc,
4530 isl_access_restrict fn, void *user);
4532 The function C<isl_access_info_set_restrict> should be called
4533 before calling C<isl_access_info_compute_flow> and registers a callback function
4534 that will be called any time C<isl> is about to compute the last
4535 potential source. The first argument is the (reverse) proto-dependence,
4536 mapping sink iterations to potential source iterations.
4537 The second argument represents the sink iterations for which
4538 we want to compute the last source iteration.
4539 The third argument is the token corresponding to the source
4540 and the final argument is the token passed to C<isl_access_info_set_restrict>.
4541 The callback is expected to return a restriction on either the input or
4542 the output of the operation computing the last potential source.
4543 If the input needs to be restricted then restrictions are needed
4544 for both the source and the sink iterations. The sink iterations
4545 and the potential source iterations will be intersected with these sets.
4546 If the output needs to be restricted then only a restriction on the source
4547 iterations is required.
4548 If any error occurs, the callback should return C<NULL>.
4549 An C<isl_restriction> object can be created, freed and inspected
4550 using the following functions.
4552 #include <isl/flow.h>
4554 __isl_give isl_restriction *isl_restriction_input(
4555 __isl_take isl_set *source_restr,
4556 __isl_take isl_set *sink_restr);
4557 __isl_give isl_restriction *isl_restriction_output(
4558 __isl_take isl_set *source_restr);
4559 __isl_give isl_restriction *isl_restriction_none(
4560 __isl_take isl_map *source_map);
4561 __isl_give isl_restriction *isl_restriction_empty(
4562 __isl_take isl_map *source_map);
4563 void *isl_restriction_free(
4564 __isl_take isl_restriction *restr);
4565 isl_ctx *isl_restriction_get_ctx(
4566 __isl_keep isl_restriction *restr);
4568 C<isl_restriction_none> and C<isl_restriction_empty> are special
4569 cases of C<isl_restriction_input>. C<isl_restriction_none>
4570 is essentially equivalent to
4572 isl_restriction_input(isl_set_universe(
4573 isl_space_range(isl_map_get_space(source_map))),
4575 isl_space_domain(isl_map_get_space(source_map))));
4577 whereas C<isl_restriction_empty> is essentially equivalent to
4579 isl_restriction_input(isl_set_empty(
4580 isl_space_range(isl_map_get_space(source_map))),
4582 isl_space_domain(isl_map_get_space(source_map))));
4586 B<The functionality described in this section is fairly new
4587 and may be subject to change.>
4589 The following function can be used to compute a schedule
4590 for a union of domains.
4591 By default, the algorithm used to construct the schedule is similar
4592 to that of C<Pluto>.
4593 Alternatively, Feautrier's multi-dimensional scheduling algorithm can
4595 The generated schedule respects all C<validity> dependences.
4596 That is, all dependence distances over these dependences in the
4597 scheduled space are lexicographically positive.
4598 The default algorithm tries to minimize the dependence distances over
4599 C<proximity> dependences.
4600 Moreover, it tries to obtain sequences (bands) of schedule dimensions
4601 for groups of domains where the dependence distances have only
4602 non-negative values.
4603 When using Feautrier's algorithm, the C<proximity> dependence
4604 distances are only minimized during the extension to a
4605 full-dimensional schedule.
4607 #include <isl/schedule.h>
4608 __isl_give isl_schedule *isl_union_set_compute_schedule(
4609 __isl_take isl_union_set *domain,
4610 __isl_take isl_union_map *validity,
4611 __isl_take isl_union_map *proximity);
4612 void *isl_schedule_free(__isl_take isl_schedule *sched);
4614 A mapping from the domains to the scheduled space can be obtained
4615 from an C<isl_schedule> using the following function.
4617 __isl_give isl_union_map *isl_schedule_get_map(
4618 __isl_keep isl_schedule *sched);
4620 A representation of the schedule can be printed using
4622 __isl_give isl_printer *isl_printer_print_schedule(
4623 __isl_take isl_printer *p,
4624 __isl_keep isl_schedule *schedule);
4626 A representation of the schedule as a forest of bands can be obtained
4627 using the following function.
4629 __isl_give isl_band_list *isl_schedule_get_band_forest(
4630 __isl_keep isl_schedule *schedule);
4632 The individual bands can be visited in depth-first post-order
4633 using the following function.
4635 #include <isl/schedule.h>
4636 int isl_schedule_foreach_band(
4637 __isl_keep isl_schedule *sched,
4638 int (*fn)(__isl_keep isl_band *band, void *user),
4641 The list can be manipulated as explained in L<"Lists">.
4642 The bands inside the list can be copied and freed using the following
4645 #include <isl/band.h>
4646 __isl_give isl_band *isl_band_copy(
4647 __isl_keep isl_band *band);
4648 void *isl_band_free(__isl_take isl_band *band);
4650 Each band contains zero or more scheduling dimensions.
4651 These are referred to as the members of the band.
4652 The section of the schedule that corresponds to the band is
4653 referred to as the partial schedule of the band.
4654 For those nodes that participate in a band, the outer scheduling
4655 dimensions form the prefix schedule, while the inner scheduling
4656 dimensions form the suffix schedule.
4657 That is, if we take a cut of the band forest, then the union of
4658 the concatenations of the prefix, partial and suffix schedules of
4659 each band in the cut is equal to the entire schedule (modulo
4660 some possible padding at the end with zero scheduling dimensions).
4661 The properties of a band can be inspected using the following functions.
4663 #include <isl/band.h>
4664 isl_ctx *isl_band_get_ctx(__isl_keep isl_band *band);
4666 int isl_band_has_children(__isl_keep isl_band *band);
4667 __isl_give isl_band_list *isl_band_get_children(
4668 __isl_keep isl_band *band);
4670 __isl_give isl_union_map *isl_band_get_prefix_schedule(
4671 __isl_keep isl_band *band);
4672 __isl_give isl_union_map *isl_band_get_partial_schedule(
4673 __isl_keep isl_band *band);
4674 __isl_give isl_union_map *isl_band_get_suffix_schedule(
4675 __isl_keep isl_band *band);
4677 int isl_band_n_member(__isl_keep isl_band *band);
4678 int isl_band_member_is_zero_distance(
4679 __isl_keep isl_band *band, int pos);
4681 int isl_band_list_foreach_band(
4682 __isl_keep isl_band_list *list,
4683 int (*fn)(__isl_keep isl_band *band, void *user),
4686 Note that a scheduling dimension is considered to be ``zero
4687 distance'' if it does not carry any proximity dependences
4689 That is, if the dependence distances of the proximity
4690 dependences are all zero in that direction (for fixed
4691 iterations of outer bands).
4692 Like C<isl_schedule_foreach_band>,
4693 the function C<isl_band_list_foreach_band> calls C<fn> on the bands
4694 in depth-first post-order.
4696 A band can be tiled using the following function.
4698 #include <isl/band.h>
4699 int isl_band_tile(__isl_keep isl_band *band,
4700 __isl_take isl_vec *sizes);
4702 int isl_options_set_tile_scale_tile_loops(isl_ctx *ctx,
4704 int isl_options_get_tile_scale_tile_loops(isl_ctx *ctx);
4706 The C<isl_band_tile> function tiles the band using the given tile sizes
4707 inside its schedule.
4708 A new child band is created to represent the point loops and it is
4709 inserted between the modified band and its children.
4710 The C<tile_scale_tile_loops> option specifies whether the tile
4711 loops iterators should be scaled by the tile sizes.
4713 A representation of the band can be printed using
4715 #include <isl/band.h>
4716 __isl_give isl_printer *isl_printer_print_band(
4717 __isl_take isl_printer *p,
4718 __isl_keep isl_band *band);
4722 #include <isl/schedule.h>
4723 int isl_options_set_schedule_max_coefficient(
4724 isl_ctx *ctx, int val);
4725 int isl_options_get_schedule_max_coefficient(
4727 int isl_options_set_schedule_max_constant_term(
4728 isl_ctx *ctx, int val);
4729 int isl_options_get_schedule_max_constant_term(
4731 int isl_options_set_schedule_fuse(isl_ctx *ctx, int val);
4732 int isl_options_get_schedule_fuse(isl_ctx *ctx);
4733 int isl_options_set_schedule_maximize_band_depth(
4734 isl_ctx *ctx, int val);
4735 int isl_options_get_schedule_maximize_band_depth(
4737 int isl_options_set_schedule_outer_zero_distance(
4738 isl_ctx *ctx, int val);
4739 int isl_options_get_schedule_outer_zero_distance(
4741 int isl_options_set_schedule_split_scaled(
4742 isl_ctx *ctx, int val);
4743 int isl_options_get_schedule_split_scaled(
4745 int isl_options_set_schedule_algorithm(
4746 isl_ctx *ctx, int val);
4747 int isl_options_get_schedule_algorithm(
4749 int isl_options_set_schedule_separate_components(
4750 isl_ctx *ctx, int val);
4751 int isl_options_get_schedule_separate_components(
4756 =item * schedule_max_coefficient
4758 This option enforces that the coefficients for variable and parameter
4759 dimensions in the calculated schedule are not larger than the specified value.
4760 This option can significantly increase the speed of the scheduling calculation
4761 and may also prevent fusing of unrelated dimensions. A value of -1 means that
4762 this option does not introduce bounds on the variable or parameter
4765 =item * schedule_max_constant_term
4767 This option enforces that the constant coefficients in the calculated schedule
4768 are not larger than the maximal constant term. This option can significantly
4769 increase the speed of the scheduling calculation and may also prevent fusing of
4770 unrelated dimensions. A value of -1 means that this option does not introduce
4771 bounds on the constant coefficients.
4773 =item * schedule_fuse
4775 This option controls the level of fusion.
4776 If this option is set to C<ISL_SCHEDULE_FUSE_MIN>, then loops in the
4777 resulting schedule will be distributed as much as possible.
4778 If this option is set to C<ISL_SCHEDULE_FUSE_MAX>, then C<isl> will
4779 try to fuse loops in the resulting schedule.
4781 =item * schedule_maximize_band_depth
4783 If this option is set, we do not split bands at the point
4784 where we detect splitting is necessary. Instead, we
4785 backtrack and split bands as early as possible. This
4786 reduces the number of splits and maximizes the width of
4787 the bands. Wider bands give more possibilities for tiling.
4788 Note that if the C<schedule_fuse> option is set to C<ISL_SCHEDULE_FUSE_MIN>,
4789 then bands will be split as early as possible, even if there is no need.
4790 The C<schedule_maximize_band_depth> option therefore has no effect in this case.
4792 =item * schedule_outer_zero_distance
4794 If this option is set, then we try to construct schedules
4795 where the outermost scheduling dimension in each band
4796 results in a zero dependence distance over the proximity
4799 =item * schedule_split_scaled
4801 If this option is set, then we try to construct schedules in which the
4802 constant term is split off from the linear part if the linear parts of
4803 the scheduling rows for all nodes in the graphs have a common non-trivial
4805 The constant term is then placed in a separate band and the linear
4808 =item * schedule_algorithm
4810 Selects the scheduling algorithm to be used.
4811 Available scheduling algorithms are C<ISL_SCHEDULE_ALGORITHM_ISL>
4812 and C<ISL_SCHEDULE_ALGORITHM_FEAUTRIER>.
4814 =item * schedule_separate_components
4816 If at any point the dependence graph contains any (weakly connected) components,
4817 then these components are scheduled separately.
4818 If this option is not set, then some iterations of the domains
4819 in these components may be scheduled together.
4820 If this option is set, then the components are given consecutive
4825 =head2 Parametric Vertex Enumeration
4827 The parametric vertex enumeration described in this section
4828 is mainly intended to be used internally and by the C<barvinok>
4831 #include <isl/vertices.h>
4832 __isl_give isl_vertices *isl_basic_set_compute_vertices(
4833 __isl_keep isl_basic_set *bset);
4835 The function C<isl_basic_set_compute_vertices> performs the
4836 actual computation of the parametric vertices and the chamber
4837 decomposition and store the result in an C<isl_vertices> object.
4838 This information can be queried by either iterating over all
4839 the vertices or iterating over all the chambers or cells
4840 and then iterating over all vertices that are active on the chamber.
4842 int isl_vertices_foreach_vertex(
4843 __isl_keep isl_vertices *vertices,
4844 int (*fn)(__isl_take isl_vertex *vertex, void *user),
4847 int isl_vertices_foreach_cell(
4848 __isl_keep isl_vertices *vertices,
4849 int (*fn)(__isl_take isl_cell *cell, void *user),
4851 int isl_cell_foreach_vertex(__isl_keep isl_cell *cell,
4852 int (*fn)(__isl_take isl_vertex *vertex, void *user),
4855 Other operations that can be performed on an C<isl_vertices> object are
4858 isl_ctx *isl_vertices_get_ctx(
4859 __isl_keep isl_vertices *vertices);
4860 int isl_vertices_get_n_vertices(
4861 __isl_keep isl_vertices *vertices);
4862 void isl_vertices_free(__isl_take isl_vertices *vertices);
4864 Vertices can be inspected and destroyed using the following functions.
4866 isl_ctx *isl_vertex_get_ctx(__isl_keep isl_vertex *vertex);
4867 int isl_vertex_get_id(__isl_keep isl_vertex *vertex);
4868 __isl_give isl_basic_set *isl_vertex_get_domain(
4869 __isl_keep isl_vertex *vertex);
4870 __isl_give isl_basic_set *isl_vertex_get_expr(
4871 __isl_keep isl_vertex *vertex);
4872 void isl_vertex_free(__isl_take isl_vertex *vertex);
4874 C<isl_vertex_get_expr> returns a singleton parametric set describing
4875 the vertex, while C<isl_vertex_get_domain> returns the activity domain
4877 Note that C<isl_vertex_get_domain> and C<isl_vertex_get_expr> return
4878 B<rational> basic sets, so they should mainly be used for inspection
4879 and should not be mixed with integer sets.
4881 Chambers can be inspected and destroyed using the following functions.
4883 isl_ctx *isl_cell_get_ctx(__isl_keep isl_cell *cell);
4884 __isl_give isl_basic_set *isl_cell_get_domain(
4885 __isl_keep isl_cell *cell);
4886 void isl_cell_free(__isl_take isl_cell *cell);
4890 Although C<isl> is mainly meant to be used as a library,
4891 it also contains some basic applications that use some
4892 of the functionality of C<isl>.
4893 The input may be specified in either the L<isl format>
4894 or the L<PolyLib format>.
4896 =head2 C<isl_polyhedron_sample>
4898 C<isl_polyhedron_sample> takes a polyhedron as input and prints
4899 an integer element of the polyhedron, if there is any.
4900 The first column in the output is the denominator and is always
4901 equal to 1. If the polyhedron contains no integer points,
4902 then a vector of length zero is printed.
4906 C<isl_pip> takes the same input as the C<example> program
4907 from the C<piplib> distribution, i.e., a set of constraints
4908 on the parameters, a line containing only -1 and finally a set
4909 of constraints on a parametric polyhedron.
4910 The coefficients of the parameters appear in the last columns
4911 (but before the final constant column).
4912 The output is the lexicographic minimum of the parametric polyhedron.
4913 As C<isl> currently does not have its own output format, the output
4914 is just a dump of the internal state.
4916 =head2 C<isl_polyhedron_minimize>
4918 C<isl_polyhedron_minimize> computes the minimum of some linear
4919 or affine objective function over the integer points in a polyhedron.
4920 If an affine objective function
4921 is given, then the constant should appear in the last column.
4923 =head2 C<isl_polytope_scan>
4925 Given a polytope, C<isl_polytope_scan> prints
4926 all integer points in the polytope.