3 C<isl> is a thread-safe C library for manipulating
4 sets and relations of integer points bounded by affine constraints.
5 The descriptions of the sets and relations may involve
6 both parameters and existentially quantified variables.
7 All computations are performed in exact integer arithmetic
9 The C<isl> library offers functionality that is similar
10 to that offered by the C<Omega> and C<Omega+> libraries,
11 but the underlying algorithms are in most cases completely different.
13 The library is by no means complete and some fairly basic
14 functionality is still missing.
15 Still, even in its current form, the library has been successfully
16 used as a backend polyhedral library for the polyhedral
17 scanner C<CLooG> and as part of an equivalence checker of
18 static affine programs.
19 For bug reports, feature requests and questions,
20 visit the the discussion group at
21 L<http://groups.google.com/group/isl-development>.
23 =head2 Backward Incompatible Changes
25 =head3 Changes since isl-0.02
29 =item * The old printing functions have been deprecated
30 and replaced by C<isl_printer> functions, see L<Input and Output>.
32 =item * Most functions related to dependence analysis have acquired
33 an extra C<must> argument. To obtain the old behavior, this argument
34 should be given the value 1. See L<Dependence Analysis>.
38 =head3 Changes since isl-0.03
42 =item * The function C<isl_pw_qpolynomial_fold_add> has been
43 renamed to C<isl_pw_qpolynomial_fold_fold>.
44 Similarly, C<isl_union_pw_qpolynomial_fold_add> has been
45 renamed to C<isl_union_pw_qpolynomial_fold_fold>.
49 =head3 Changes since isl-0.04
53 =item * All header files have been renamed from C<isl_header.h>
58 =head3 Changes since isl-0.05
62 =item * The functions C<isl_printer_print_basic_set> and
63 C<isl_printer_print_basic_map> no longer print a newline.
65 =item * The functions C<isl_flow_get_no_source>
66 and C<isl_union_map_compute_flow> now return
67 the accesses for which no source could be found instead of
68 the iterations where those accesses occur.
70 =item * The functions C<isl_basic_map_identity> and
71 C<isl_map_identity> now take a B<map> space as input. An old call
72 C<isl_map_identity(space)> can be rewritten to
73 C<isl_map_identity(isl_space_map_from_set(space))>.
75 =item * The function C<isl_map_power> no longer takes
76 a parameter position as input. Instead, the exponent
77 is now expressed as the domain of the resulting relation.
81 =head3 Changes since isl-0.06
85 =item * The format of C<isl_printer_print_qpolynomial>'s
86 C<ISL_FORMAT_ISL> output has changed.
87 Use C<ISL_FORMAT_C> to obtain the old output.
89 =item * The C<*_fast_*> functions have been renamed to C<*_plain_*>.
90 Some of the old names have been kept for backward compatibility,
91 but they will be removed in the future.
95 =head3 Changes since isl-0.07
99 =item * The function C<isl_pw_aff_max> has been renamed to
100 C<isl_pw_aff_union_max>.
101 Similarly, the function C<isl_pw_aff_add> has been renamed to
102 C<isl_pw_aff_union_add>.
104 =item * The C<isl_dim> type has been renamed to C<isl_space>
105 along with the associated functions.
106 Some of the old names have been kept for backward compatibility,
107 but they will be removed in the future.
109 =item * Spaces of maps, sets and parameter domains are now
110 treated differently. The distinction between map spaces and set spaces
111 has always been made on a conceptual level, but proper use of such spaces
112 was never checked. Furthermore, up until isl-0.07 there was no way
113 of explicitly creating a parameter space. These can now be created
114 directly using C<isl_space_params_alloc> or from other spaces using
117 =item * The space in which C<isl_aff>, C<isl_pw_aff>, C<isl_qpolynomial>,
118 C<isl_pw_qpolynomial>, C<isl_qpolynomial_fold> and C<isl_pw_qpolynomial_fold>
119 objects live is now a map space
120 instead of a set space. This means, for example, that the dimensions
121 of the domain of an C<isl_aff> are now considered to be of type
122 C<isl_dim_in> instead of C<isl_dim_set>. Extra functions have been
123 added to obtain the domain space. Some of the constructors still
124 take a domain space and have therefore been renamed.
126 =item * The functions C<isl_equality_alloc> and C<isl_inequality_alloc>
127 now take an C<isl_local_space> instead of an C<isl_space>.
128 An C<isl_local_space> can be created from an C<isl_space>
129 using C<isl_local_space_from_space>.
131 =item * The C<isl_div> type has been removed. Functions that used
132 to return an C<isl_div> now return an C<isl_aff>.
133 Note that the space of an C<isl_aff> is that of relation.
134 When replacing a call to C<isl_div_get_coefficient> by a call to
135 C<isl_aff_get_coefficient> any C<isl_dim_set> argument needs
136 to be replaced by C<isl_dim_in>.
137 A call to C<isl_aff_from_div> can be replaced by a call
139 A call to C<isl_qpolynomial_div(div)> call be replaced by
142 isl_qpolynomial_from_aff(isl_aff_floor(div))
144 The function C<isl_constraint_div> has also been renamed
145 to C<isl_constraint_get_div>.
147 =item * The C<nparam> argument has been removed from
148 C<isl_map_read_from_str> and similar functions.
149 When reading input in the original PolyLib format,
150 the result will have no parameters.
151 If parameters are expected, the caller may want to perform
152 dimension manipulation on the result.
156 =head3 Changes since isl-0.09
160 =item * The C<schedule_split_parallel> option has been replaced
161 by the C<schedule_split_scaled> option.
163 =item * The first argument of C<isl_pw_aff_cond> is now
164 an C<isl_pw_aff> instead of an C<isl_set>.
165 A call C<isl_pw_aff_cond(a, b, c)> can be replaced by
167 isl_pw_aff_cond(isl_set_indicator_function(a), b, c)
171 =head3 Changes since isl-0.10
175 =item * The functions C<isl_set_dim_has_lower_bound> and
176 C<isl_set_dim_has_upper_bound> have been renamed to
177 C<isl_set_dim_has_any_lower_bound> and
178 C<isl_set_dim_has_any_upper_bound>.
179 The new C<isl_set_dim_has_lower_bound> and
180 C<isl_set_dim_has_upper_bound> have slightly different meanings.
186 C<isl> is released under the MIT license.
190 Permission is hereby granted, free of charge, to any person obtaining a copy of
191 this software and associated documentation files (the "Software"), to deal in
192 the Software without restriction, including without limitation the rights to
193 use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
194 of the Software, and to permit persons to whom the Software is furnished to do
195 so, subject to the following conditions:
197 The above copyright notice and this permission notice shall be included in all
198 copies or substantial portions of the Software.
200 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
201 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
202 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
203 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
204 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
205 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
210 Note that C<isl> currently requires C<GMP>, which is released
211 under the GNU Lesser General Public License (LGPL). This means
212 that code linked against C<isl> is also linked against LGPL code.
216 The source of C<isl> can be obtained either as a tarball
217 or from the git repository. Both are available from
218 L<http://freshmeat.net/projects/isl/>.
219 The installation process depends on how you obtained
222 =head2 Installation from the git repository
226 =item 1 Clone or update the repository
228 The first time the source is obtained, you need to clone
231 git clone git://repo.or.cz/isl.git
233 To obtain updates, you need to pull in the latest changes
237 =item 2 Generate C<configure>
243 After performing the above steps, continue
244 with the L<Common installation instructions>.
246 =head2 Common installation instructions
250 =item 1 Obtain C<GMP>
252 Building C<isl> requires C<GMP>, including its headers files.
253 Your distribution may not provide these header files by default
254 and you may need to install a package called C<gmp-devel> or something
255 similar. Alternatively, C<GMP> can be built from
256 source, available from L<http://gmplib.org/>.
260 C<isl> uses the standard C<autoconf> C<configure> script.
265 optionally followed by some configure options.
266 A complete list of options can be obtained by running
270 Below we discuss some of the more common options.
272 C<isl> can optionally use C<piplib>, but no
273 C<piplib> functionality is currently used by default.
274 The C<--with-piplib> option can
275 be used to specify which C<piplib>
276 library to use, either an installed version (C<system>),
277 an externally built version (C<build>)
278 or no version (C<no>). The option C<build> is mostly useful
279 in C<configure> scripts of larger projects that bundle both C<isl>
286 Installation prefix for C<isl>
288 =item C<--with-gmp-prefix>
290 Installation prefix for C<GMP> (architecture-independent files).
292 =item C<--with-gmp-exec-prefix>
294 Installation prefix for C<GMP> (architecture-dependent files).
296 =item C<--with-piplib>
298 Which copy of C<piplib> to use, either C<no> (default), C<system> or C<build>.
300 =item C<--with-piplib-prefix>
302 Installation prefix for C<system> C<piplib> (architecture-independent files).
304 =item C<--with-piplib-exec-prefix>
306 Installation prefix for C<system> C<piplib> (architecture-dependent files).
308 =item C<--with-piplib-builddir>
310 Location where C<build> C<piplib> was built.
318 =item 4 Install (optional)
324 =head1 Integer Set Library
326 =head2 Initialization
328 All manipulations of integer sets and relations occur within
329 the context of an C<isl_ctx>.
330 A given C<isl_ctx> can only be used within a single thread.
331 All arguments of a function are required to have been allocated
332 within the same context.
333 There are currently no functions available for moving an object
334 from one C<isl_ctx> to another C<isl_ctx>. This means that
335 there is currently no way of safely moving an object from one
336 thread to another, unless the whole C<isl_ctx> is moved.
338 An C<isl_ctx> can be allocated using C<isl_ctx_alloc> and
339 freed using C<isl_ctx_free>.
340 All objects allocated within an C<isl_ctx> should be freed
341 before the C<isl_ctx> itself is freed.
343 isl_ctx *isl_ctx_alloc();
344 void isl_ctx_free(isl_ctx *ctx);
348 All operations on integers, mainly the coefficients
349 of the constraints describing the sets and relations,
350 are performed in exact integer arithmetic using C<GMP>.
351 However, to allow future versions of C<isl> to optionally
352 support fixed integer arithmetic, all calls to C<GMP>
353 are wrapped inside C<isl> specific macros.
354 The basic type is C<isl_int> and the operations below
355 are available on this type.
356 The meanings of these operations are essentially the same
357 as their C<GMP> C<mpz_> counterparts.
358 As always with C<GMP> types, C<isl_int>s need to be
359 initialized with C<isl_int_init> before they can be used
360 and they need to be released with C<isl_int_clear>
362 The user should not assume that an C<isl_int> is represented
363 as a C<mpz_t>, but should instead explicitly convert between
364 C<mpz_t>s and C<isl_int>s using C<isl_int_set_gmp> and
365 C<isl_int_get_gmp> whenever a C<mpz_t> is required.
369 =item isl_int_init(i)
371 =item isl_int_clear(i)
373 =item isl_int_set(r,i)
375 =item isl_int_set_si(r,i)
377 =item isl_int_set_gmp(r,g)
379 =item isl_int_get_gmp(i,g)
381 =item isl_int_abs(r,i)
383 =item isl_int_neg(r,i)
385 =item isl_int_swap(i,j)
387 =item isl_int_swap_or_set(i,j)
389 =item isl_int_add_ui(r,i,j)
391 =item isl_int_sub_ui(r,i,j)
393 =item isl_int_add(r,i,j)
395 =item isl_int_sub(r,i,j)
397 =item isl_int_mul(r,i,j)
399 =item isl_int_mul_ui(r,i,j)
401 =item isl_int_addmul(r,i,j)
403 =item isl_int_submul(r,i,j)
405 =item isl_int_gcd(r,i,j)
407 =item isl_int_lcm(r,i,j)
409 =item isl_int_divexact(r,i,j)
411 =item isl_int_cdiv_q(r,i,j)
413 =item isl_int_fdiv_q(r,i,j)
415 =item isl_int_fdiv_r(r,i,j)
417 =item isl_int_fdiv_q_ui(r,i,j)
419 =item isl_int_read(r,s)
421 =item isl_int_print(out,i,width)
425 =item isl_int_cmp(i,j)
427 =item isl_int_cmp_si(i,si)
429 =item isl_int_eq(i,j)
431 =item isl_int_ne(i,j)
433 =item isl_int_lt(i,j)
435 =item isl_int_le(i,j)
437 =item isl_int_gt(i,j)
439 =item isl_int_ge(i,j)
441 =item isl_int_abs_eq(i,j)
443 =item isl_int_abs_ne(i,j)
445 =item isl_int_abs_lt(i,j)
447 =item isl_int_abs_gt(i,j)
449 =item isl_int_abs_ge(i,j)
451 =item isl_int_is_zero(i)
453 =item isl_int_is_one(i)
455 =item isl_int_is_negone(i)
457 =item isl_int_is_pos(i)
459 =item isl_int_is_neg(i)
461 =item isl_int_is_nonpos(i)
463 =item isl_int_is_nonneg(i)
465 =item isl_int_is_divisible_by(i,j)
469 =head2 Sets and Relations
471 C<isl> uses six types of objects for representing sets and relations,
472 C<isl_basic_set>, C<isl_basic_map>, C<isl_set>, C<isl_map>,
473 C<isl_union_set> and C<isl_union_map>.
474 C<isl_basic_set> and C<isl_basic_map> represent sets and relations that
475 can be described as a conjunction of affine constraints, while
476 C<isl_set> and C<isl_map> represent unions of
477 C<isl_basic_set>s and C<isl_basic_map>s, respectively.
478 However, all C<isl_basic_set>s or C<isl_basic_map>s in the union need
479 to live in the same space. C<isl_union_set>s and C<isl_union_map>s
480 represent unions of C<isl_set>s or C<isl_map>s in I<different> spaces,
481 where spaces are considered different if they have a different number
482 of dimensions and/or different names (see L<"Spaces">).
483 The difference between sets and relations (maps) is that sets have
484 one set of variables, while relations have two sets of variables,
485 input variables and output variables.
487 =head2 Memory Management
489 Since a high-level operation on sets and/or relations usually involves
490 several substeps and since the user is usually not interested in
491 the intermediate results, most functions that return a new object
492 will also release all the objects passed as arguments.
493 If the user still wants to use one or more of these arguments
494 after the function call, she should pass along a copy of the
495 object rather than the object itself.
496 The user is then responsible for making sure that the original
497 object gets used somewhere else or is explicitly freed.
499 The arguments and return values of all documented functions are
500 annotated to make clear which arguments are released and which
501 arguments are preserved. In particular, the following annotations
508 C<__isl_give> means that a new object is returned.
509 The user should make sure that the returned pointer is
510 used exactly once as a value for an C<__isl_take> argument.
511 In between, it can be used as a value for as many
512 C<__isl_keep> arguments as the user likes.
513 There is one exception, and that is the case where the
514 pointer returned is C<NULL>. Is this case, the user
515 is free to use it as an C<__isl_take> argument or not.
519 C<__isl_take> means that the object the argument points to
520 is taken over by the function and may no longer be used
521 by the user as an argument to any other function.
522 The pointer value must be one returned by a function
523 returning an C<__isl_give> pointer.
524 If the user passes in a C<NULL> value, then this will
525 be treated as an error in the sense that the function will
526 not perform its usual operation. However, it will still
527 make sure that all the other C<__isl_take> arguments
532 C<__isl_keep> means that the function will only use the object
533 temporarily. After the function has finished, the user
534 can still use it as an argument to other functions.
535 A C<NULL> value will be treated in the same way as
536 a C<NULL> value for an C<__isl_take> argument.
540 =head2 Error Handling
542 C<isl> supports different ways to react in case a runtime error is triggered.
543 Runtime errors arise, e.g., if a function such as C<isl_map_intersect> is called
544 with two maps that have incompatible spaces. There are three possible ways
545 to react on error: to warn, to continue or to abort.
547 The default behavior is to warn. In this mode, C<isl> prints a warning, stores
548 the last error in the corresponding C<isl_ctx> and the function in which the
549 error was triggered returns C<NULL>. An error does not corrupt internal state,
550 such that isl can continue to be used. C<isl> also provides functions to
551 read the last error and to reset the memory that stores the last error. The
552 last error is only stored for information purposes. Its presence does not
553 change the behavior of C<isl>. Hence, resetting an error is not required to
554 continue to use isl, but only to observe new errors.
557 enum isl_error isl_ctx_last_error(isl_ctx *ctx);
558 void isl_ctx_reset_error(isl_ctx *ctx);
560 Another option is to continue on error. This is similar to warn on error mode,
561 except that C<isl> does not print any warning. This allows a program to
562 implement its own error reporting.
564 The last option is to directly abort the execution of the program from within
565 the isl library. This makes it obviously impossible to recover from an error,
566 but it allows to directly spot the error location. By aborting on error,
567 debuggers break at the location the error occurred and can provide a stack
568 trace. Other tools that automatically provide stack traces on abort or that do
569 not want to continue execution after an error was triggered may also prefer to
572 The on error behavior of isl can be specified by calling
573 C<isl_options_set_on_error> or by setting the command line option
574 C<--isl-on-error>. Valid arguments for the function call are
575 C<ISL_ON_ERROR_WARN>, C<ISL_ON_ERROR_CONTINUE> and C<ISL_ON_ERROR_ABORT>. The
576 choices for the command line option are C<warn>, C<continue> and C<abort>.
577 It is also possible to query the current error mode.
579 #include <isl/options.h>
580 int isl_options_set_on_error(isl_ctx *ctx, int val);
581 int isl_options_get_on_error(isl_ctx *ctx);
585 Identifiers are used to identify both individual dimensions
586 and tuples of dimensions. They consist of an optional name and an optional
587 user pointer. The name and the user pointer cannot both be C<NULL>, however.
588 Identifiers with the same name but different pointer values
589 are considered to be distinct.
590 Similarly, identifiers with different names but the same pointer value
591 are also considered to be distinct.
592 Equal identifiers are represented using the same object.
593 Pairs of identifiers can therefore be tested for equality using the
595 Identifiers can be constructed, copied, freed, inspected and printed
596 using the following functions.
599 __isl_give isl_id *isl_id_alloc(isl_ctx *ctx,
600 __isl_keep const char *name, void *user);
601 __isl_give isl_id *isl_id_set_free_user(
602 __isl_take isl_id *id,
603 __isl_give void (*free_user)(void *user));
604 __isl_give isl_id *isl_id_copy(isl_id *id);
605 void *isl_id_free(__isl_take isl_id *id);
607 isl_ctx *isl_id_get_ctx(__isl_keep isl_id *id);
608 void *isl_id_get_user(__isl_keep isl_id *id);
609 __isl_keep const char *isl_id_get_name(__isl_keep isl_id *id);
611 __isl_give isl_printer *isl_printer_print_id(
612 __isl_take isl_printer *p, __isl_keep isl_id *id);
614 The callback set by C<isl_id_set_free_user> is called on the user
615 pointer when the last reference to the C<isl_id> is freed.
616 Note that C<isl_id_get_name> returns a pointer to some internal
617 data structure, so the result can only be used while the
618 corresponding C<isl_id> is alive.
622 Whenever a new set, relation or similiar object is created from scratch,
623 the space in which it lives needs to be specified using an C<isl_space>.
624 Each space involves zero or more parameters and zero, one or two
625 tuples of set or input/output dimensions. The parameters and dimensions
626 are identified by an C<isl_dim_type> and a position.
627 The type C<isl_dim_param> refers to parameters,
628 the type C<isl_dim_set> refers to set dimensions (for spaces
629 with a single tuple of dimensions) and the types C<isl_dim_in>
630 and C<isl_dim_out> refer to input and output dimensions
631 (for spaces with two tuples of dimensions).
632 Local spaces (see L</"Local Spaces">) also contain dimensions
633 of type C<isl_dim_div>.
634 Note that parameters are only identified by their position within
635 a given object. Across different objects, parameters are (usually)
636 identified by their names or identifiers. Only unnamed parameters
637 are identified by their positions across objects. The use of unnamed
638 parameters is discouraged.
640 #include <isl/space.h>
641 __isl_give isl_space *isl_space_alloc(isl_ctx *ctx,
642 unsigned nparam, unsigned n_in, unsigned n_out);
643 __isl_give isl_space *isl_space_params_alloc(isl_ctx *ctx,
645 __isl_give isl_space *isl_space_set_alloc(isl_ctx *ctx,
646 unsigned nparam, unsigned dim);
647 __isl_give isl_space *isl_space_copy(__isl_keep isl_space *space);
648 void *isl_space_free(__isl_take isl_space *space);
649 unsigned isl_space_dim(__isl_keep isl_space *space,
650 enum isl_dim_type type);
652 The space used for creating a parameter domain
653 needs to be created using C<isl_space_params_alloc>.
654 For other sets, the space
655 needs to be created using C<isl_space_set_alloc>, while
656 for a relation, the space
657 needs to be created using C<isl_space_alloc>.
658 C<isl_space_dim> can be used
659 to find out the number of dimensions of each type in
660 a space, where type may be
661 C<isl_dim_param>, C<isl_dim_in> (only for relations),
662 C<isl_dim_out> (only for relations), C<isl_dim_set>
663 (only for sets) or C<isl_dim_all>.
665 To check whether a given space is that of a set or a map
666 or whether it is a parameter space, use these functions:
668 #include <isl/space.h>
669 int isl_space_is_params(__isl_keep isl_space *space);
670 int isl_space_is_set(__isl_keep isl_space *space);
671 int isl_space_is_map(__isl_keep isl_space *space);
673 Spaces can be compared using the following functions:
675 #include <isl/space.h>
676 int isl_space_is_equal(__isl_keep isl_space *space1,
677 __isl_keep isl_space *space2);
678 int isl_space_is_domain(__isl_keep isl_space *space1,
679 __isl_keep isl_space *space2);
680 int isl_space_is_range(__isl_keep isl_space *space1,
681 __isl_keep isl_space *space2);
683 C<isl_space_is_domain> checks whether the first argument is equal
684 to the domain of the second argument. This requires in particular that
685 the first argument is a set space and that the second argument
688 It is often useful to create objects that live in the
689 same space as some other object. This can be accomplished
690 by creating the new objects
691 (see L<Creating New Sets and Relations> or
692 L<Creating New (Piecewise) Quasipolynomials>) based on the space
693 of the original object.
696 __isl_give isl_space *isl_basic_set_get_space(
697 __isl_keep isl_basic_set *bset);
698 __isl_give isl_space *isl_set_get_space(__isl_keep isl_set *set);
700 #include <isl/union_set.h>
701 __isl_give isl_space *isl_union_set_get_space(
702 __isl_keep isl_union_set *uset);
705 __isl_give isl_space *isl_basic_map_get_space(
706 __isl_keep isl_basic_map *bmap);
707 __isl_give isl_space *isl_map_get_space(__isl_keep isl_map *map);
709 #include <isl/union_map.h>
710 __isl_give isl_space *isl_union_map_get_space(
711 __isl_keep isl_union_map *umap);
713 #include <isl/constraint.h>
714 __isl_give isl_space *isl_constraint_get_space(
715 __isl_keep isl_constraint *constraint);
717 #include <isl/polynomial.h>
718 __isl_give isl_space *isl_qpolynomial_get_domain_space(
719 __isl_keep isl_qpolynomial *qp);
720 __isl_give isl_space *isl_qpolynomial_get_space(
721 __isl_keep isl_qpolynomial *qp);
722 __isl_give isl_space *isl_qpolynomial_fold_get_space(
723 __isl_keep isl_qpolynomial_fold *fold);
724 __isl_give isl_space *isl_pw_qpolynomial_get_domain_space(
725 __isl_keep isl_pw_qpolynomial *pwqp);
726 __isl_give isl_space *isl_pw_qpolynomial_get_space(
727 __isl_keep isl_pw_qpolynomial *pwqp);
728 __isl_give isl_space *isl_pw_qpolynomial_fold_get_domain_space(
729 __isl_keep isl_pw_qpolynomial_fold *pwf);
730 __isl_give isl_space *isl_pw_qpolynomial_fold_get_space(
731 __isl_keep isl_pw_qpolynomial_fold *pwf);
732 __isl_give isl_space *isl_union_pw_qpolynomial_get_space(
733 __isl_keep isl_union_pw_qpolynomial *upwqp);
734 __isl_give isl_space *isl_union_pw_qpolynomial_fold_get_space(
735 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
738 __isl_give isl_space *isl_aff_get_domain_space(
739 __isl_keep isl_aff *aff);
740 __isl_give isl_space *isl_aff_get_space(
741 __isl_keep isl_aff *aff);
742 __isl_give isl_space *isl_pw_aff_get_domain_space(
743 __isl_keep isl_pw_aff *pwaff);
744 __isl_give isl_space *isl_pw_aff_get_space(
745 __isl_keep isl_pw_aff *pwaff);
746 __isl_give isl_space *isl_multi_aff_get_domain_space(
747 __isl_keep isl_multi_aff *maff);
748 __isl_give isl_space *isl_multi_aff_get_space(
749 __isl_keep isl_multi_aff *maff);
750 __isl_give isl_space *isl_pw_multi_aff_get_domain_space(
751 __isl_keep isl_pw_multi_aff *pma);
752 __isl_give isl_space *isl_pw_multi_aff_get_space(
753 __isl_keep isl_pw_multi_aff *pma);
754 __isl_give isl_space *isl_union_pw_multi_aff_get_space(
755 __isl_keep isl_union_pw_multi_aff *upma);
756 __isl_give isl_space *isl_multi_pw_aff_get_domain_space(
757 __isl_keep isl_multi_pw_aff *mpa);
758 __isl_give isl_space *isl_multi_pw_aff_get_space(
759 __isl_keep isl_multi_pw_aff *mpa);
761 #include <isl/point.h>
762 __isl_give isl_space *isl_point_get_space(
763 __isl_keep isl_point *pnt);
765 The identifiers or names of the individual dimensions may be set or read off
766 using the following functions.
768 #include <isl/space.h>
769 __isl_give isl_space *isl_space_set_dim_id(
770 __isl_take isl_space *space,
771 enum isl_dim_type type, unsigned pos,
772 __isl_take isl_id *id);
773 int isl_space_has_dim_id(__isl_keep isl_space *space,
774 enum isl_dim_type type, unsigned pos);
775 __isl_give isl_id *isl_space_get_dim_id(
776 __isl_keep isl_space *space,
777 enum isl_dim_type type, unsigned pos);
778 __isl_give isl_space *isl_space_set_dim_name(
779 __isl_take isl_space *space,
780 enum isl_dim_type type, unsigned pos,
781 __isl_keep const char *name);
782 int isl_space_has_dim_name(__isl_keep isl_space *space,
783 enum isl_dim_type type, unsigned pos);
784 __isl_keep const char *isl_space_get_dim_name(
785 __isl_keep isl_space *space,
786 enum isl_dim_type type, unsigned pos);
788 Note that C<isl_space_get_name> returns a pointer to some internal
789 data structure, so the result can only be used while the
790 corresponding C<isl_space> is alive.
791 Also note that every function that operates on two sets or relations
792 requires that both arguments have the same parameters. This also
793 means that if one of the arguments has named parameters, then the
794 other needs to have named parameters too and the names need to match.
795 Pairs of C<isl_set>, C<isl_map>, C<isl_union_set> and/or C<isl_union_map>
796 arguments may have different parameters (as long as they are named),
797 in which case the result will have as parameters the union of the parameters of
800 Given the identifier or name of a dimension (typically a parameter),
801 its position can be obtained from the following function.
803 #include <isl/space.h>
804 int isl_space_find_dim_by_id(__isl_keep isl_space *space,
805 enum isl_dim_type type, __isl_keep isl_id *id);
806 int isl_space_find_dim_by_name(__isl_keep isl_space *space,
807 enum isl_dim_type type, const char *name);
809 The identifiers or names of entire spaces may be set or read off
810 using the following functions.
812 #include <isl/space.h>
813 __isl_give isl_space *isl_space_set_tuple_id(
814 __isl_take isl_space *space,
815 enum isl_dim_type type, __isl_take isl_id *id);
816 __isl_give isl_space *isl_space_reset_tuple_id(
817 __isl_take isl_space *space, enum isl_dim_type type);
818 int isl_space_has_tuple_id(__isl_keep isl_space *space,
819 enum isl_dim_type type);
820 __isl_give isl_id *isl_space_get_tuple_id(
821 __isl_keep isl_space *space, enum isl_dim_type type);
822 __isl_give isl_space *isl_space_set_tuple_name(
823 __isl_take isl_space *space,
824 enum isl_dim_type type, const char *s);
825 int isl_space_has_tuple_name(__isl_keep isl_space *space,
826 enum isl_dim_type type);
827 const char *isl_space_get_tuple_name(__isl_keep isl_space *space,
828 enum isl_dim_type type);
830 The C<type> argument needs to be one of C<isl_dim_in>, C<isl_dim_out>
831 or C<isl_dim_set>. As with C<isl_space_get_name>,
832 the C<isl_space_get_tuple_name> function returns a pointer to some internal
834 Binary operations require the corresponding spaces of their arguments
835 to have the same name.
837 Spaces can be nested. In particular, the domain of a set or
838 the domain or range of a relation can be a nested relation.
839 The following functions can be used to construct and deconstruct
842 #include <isl/space.h>
843 int isl_space_is_wrapping(__isl_keep isl_space *space);
844 __isl_give isl_space *isl_space_wrap(__isl_take isl_space *space);
845 __isl_give isl_space *isl_space_unwrap(__isl_take isl_space *space);
847 The input to C<isl_space_is_wrapping> and C<isl_space_unwrap> should
848 be the space of a set, while that of
849 C<isl_space_wrap> should be the space of a relation.
850 Conversely, the output of C<isl_space_unwrap> is the space
851 of a relation, while that of C<isl_space_wrap> is the space of a set.
853 Spaces can be created from other spaces
854 using the following functions.
856 __isl_give isl_space *isl_space_domain(__isl_take isl_space *space);
857 __isl_give isl_space *isl_space_from_domain(__isl_take isl_space *space);
858 __isl_give isl_space *isl_space_range(__isl_take isl_space *space);
859 __isl_give isl_space *isl_space_from_range(__isl_take isl_space *space);
860 __isl_give isl_space *isl_space_params(
861 __isl_take isl_space *space);
862 __isl_give isl_space *isl_space_set_from_params(
863 __isl_take isl_space *space);
864 __isl_give isl_space *isl_space_reverse(__isl_take isl_space *space);
865 __isl_give isl_space *isl_space_join(__isl_take isl_space *left,
866 __isl_take isl_space *right);
867 __isl_give isl_space *isl_space_align_params(
868 __isl_take isl_space *space1, __isl_take isl_space *space2)
869 __isl_give isl_space *isl_space_insert_dims(__isl_take isl_space *space,
870 enum isl_dim_type type, unsigned pos, unsigned n);
871 __isl_give isl_space *isl_space_add_dims(__isl_take isl_space *space,
872 enum isl_dim_type type, unsigned n);
873 __isl_give isl_space *isl_space_drop_dims(__isl_take isl_space *space,
874 enum isl_dim_type type, unsigned first, unsigned n);
875 __isl_give isl_space *isl_space_move_dims(__isl_take isl_space *space,
876 enum isl_dim_type dst_type, unsigned dst_pos,
877 enum isl_dim_type src_type, unsigned src_pos,
879 __isl_give isl_space *isl_space_map_from_set(
880 __isl_take isl_space *space);
881 __isl_give isl_space *isl_space_map_from_domain_and_range(
882 __isl_take isl_space *domain,
883 __isl_take isl_space *range);
884 __isl_give isl_space *isl_space_zip(__isl_take isl_space *space);
885 __isl_give isl_space *isl_space_curry(
886 __isl_take isl_space *space);
887 __isl_give isl_space *isl_space_uncurry(
888 __isl_take isl_space *space);
890 Note that if dimensions are added or removed from a space, then
891 the name and the internal structure are lost.
895 A local space is essentially a space with
896 zero or more existentially quantified variables.
897 The local space of a (constraint of a) basic set or relation can be obtained
898 using the following functions.
900 #include <isl/constraint.h>
901 __isl_give isl_local_space *isl_constraint_get_local_space(
902 __isl_keep isl_constraint *constraint);
905 __isl_give isl_local_space *isl_basic_set_get_local_space(
906 __isl_keep isl_basic_set *bset);
909 __isl_give isl_local_space *isl_basic_map_get_local_space(
910 __isl_keep isl_basic_map *bmap);
912 A new local space can be created from a space using
914 #include <isl/local_space.h>
915 __isl_give isl_local_space *isl_local_space_from_space(
916 __isl_take isl_space *space);
918 They can be inspected, modified, copied and freed using the following functions.
920 #include <isl/local_space.h>
921 isl_ctx *isl_local_space_get_ctx(
922 __isl_keep isl_local_space *ls);
923 int isl_local_space_is_set(__isl_keep isl_local_space *ls);
924 int isl_local_space_dim(__isl_keep isl_local_space *ls,
925 enum isl_dim_type type);
926 int isl_local_space_has_dim_id(
927 __isl_keep isl_local_space *ls,
928 enum isl_dim_type type, unsigned pos);
929 __isl_give isl_id *isl_local_space_get_dim_id(
930 __isl_keep isl_local_space *ls,
931 enum isl_dim_type type, unsigned pos);
932 int isl_local_space_has_dim_name(
933 __isl_keep isl_local_space *ls,
934 enum isl_dim_type type, unsigned pos)
935 const char *isl_local_space_get_dim_name(
936 __isl_keep isl_local_space *ls,
937 enum isl_dim_type type, unsigned pos);
938 __isl_give isl_local_space *isl_local_space_set_dim_name(
939 __isl_take isl_local_space *ls,
940 enum isl_dim_type type, unsigned pos, const char *s);
941 __isl_give isl_local_space *isl_local_space_set_dim_id(
942 __isl_take isl_local_space *ls,
943 enum isl_dim_type type, unsigned pos,
944 __isl_take isl_id *id);
945 __isl_give isl_space *isl_local_space_get_space(
946 __isl_keep isl_local_space *ls);
947 __isl_give isl_aff *isl_local_space_get_div(
948 __isl_keep isl_local_space *ls, int pos);
949 __isl_give isl_local_space *isl_local_space_copy(
950 __isl_keep isl_local_space *ls);
951 void *isl_local_space_free(__isl_take isl_local_space *ls);
953 Two local spaces can be compared using
955 int isl_local_space_is_equal(__isl_keep isl_local_space *ls1,
956 __isl_keep isl_local_space *ls2);
958 Local spaces can be created from other local spaces
959 using the following functions.
961 __isl_give isl_local_space *isl_local_space_domain(
962 __isl_take isl_local_space *ls);
963 __isl_give isl_local_space *isl_local_space_range(
964 __isl_take isl_local_space *ls);
965 __isl_give isl_local_space *isl_local_space_from_domain(
966 __isl_take isl_local_space *ls);
967 __isl_give isl_local_space *isl_local_space_intersect(
968 __isl_take isl_local_space *ls1,
969 __isl_take isl_local_space *ls2);
970 __isl_give isl_local_space *isl_local_space_add_dims(
971 __isl_take isl_local_space *ls,
972 enum isl_dim_type type, unsigned n);
973 __isl_give isl_local_space *isl_local_space_insert_dims(
974 __isl_take isl_local_space *ls,
975 enum isl_dim_type type, unsigned first, unsigned n);
976 __isl_give isl_local_space *isl_local_space_drop_dims(
977 __isl_take isl_local_space *ls,
978 enum isl_dim_type type, unsigned first, unsigned n);
980 =head2 Input and Output
982 C<isl> supports its own input/output format, which is similar
983 to the C<Omega> format, but also supports the C<PolyLib> format
988 The C<isl> format is similar to that of C<Omega>, but has a different
989 syntax for describing the parameters and allows for the definition
990 of an existentially quantified variable as the integer division
991 of an affine expression.
992 For example, the set of integers C<i> between C<0> and C<n>
993 such that C<i % 10 <= 6> can be described as
995 [n] -> { [i] : exists (a = [i/10] : 0 <= i and i <= n and
998 A set or relation can have several disjuncts, separated
999 by the keyword C<or>. Each disjunct is either a conjunction
1000 of constraints or a projection (C<exists>) of a conjunction
1001 of constraints. The constraints are separated by the keyword
1004 =head3 C<PolyLib> format
1006 If the represented set is a union, then the first line
1007 contains a single number representing the number of disjuncts.
1008 Otherwise, a line containing the number C<1> is optional.
1010 Each disjunct is represented by a matrix of constraints.
1011 The first line contains two numbers representing
1012 the number of rows and columns,
1013 where the number of rows is equal to the number of constraints
1014 and the number of columns is equal to two plus the number of variables.
1015 The following lines contain the actual rows of the constraint matrix.
1016 In each row, the first column indicates whether the constraint
1017 is an equality (C<0>) or inequality (C<1>). The final column
1018 corresponds to the constant term.
1020 If the set is parametric, then the coefficients of the parameters
1021 appear in the last columns before the constant column.
1022 The coefficients of any existentially quantified variables appear
1023 between those of the set variables and those of the parameters.
1025 =head3 Extended C<PolyLib> format
1027 The extended C<PolyLib> format is nearly identical to the
1028 C<PolyLib> format. The only difference is that the line
1029 containing the number of rows and columns of a constraint matrix
1030 also contains four additional numbers:
1031 the number of output dimensions, the number of input dimensions,
1032 the number of local dimensions (i.e., the number of existentially
1033 quantified variables) and the number of parameters.
1034 For sets, the number of ``output'' dimensions is equal
1035 to the number of set dimensions, while the number of ``input''
1040 #include <isl/set.h>
1041 __isl_give isl_basic_set *isl_basic_set_read_from_file(
1042 isl_ctx *ctx, FILE *input);
1043 __isl_give isl_basic_set *isl_basic_set_read_from_str(
1044 isl_ctx *ctx, const char *str);
1045 __isl_give isl_set *isl_set_read_from_file(isl_ctx *ctx,
1047 __isl_give isl_set *isl_set_read_from_str(isl_ctx *ctx,
1050 #include <isl/map.h>
1051 __isl_give isl_basic_map *isl_basic_map_read_from_file(
1052 isl_ctx *ctx, FILE *input);
1053 __isl_give isl_basic_map *isl_basic_map_read_from_str(
1054 isl_ctx *ctx, const char *str);
1055 __isl_give isl_map *isl_map_read_from_file(
1056 isl_ctx *ctx, FILE *input);
1057 __isl_give isl_map *isl_map_read_from_str(isl_ctx *ctx,
1060 #include <isl/union_set.h>
1061 __isl_give isl_union_set *isl_union_set_read_from_file(
1062 isl_ctx *ctx, FILE *input);
1063 __isl_give isl_union_set *isl_union_set_read_from_str(
1064 isl_ctx *ctx, const char *str);
1066 #include <isl/union_map.h>
1067 __isl_give isl_union_map *isl_union_map_read_from_file(
1068 isl_ctx *ctx, FILE *input);
1069 __isl_give isl_union_map *isl_union_map_read_from_str(
1070 isl_ctx *ctx, const char *str);
1072 The input format is autodetected and may be either the C<PolyLib> format
1073 or the C<isl> format.
1077 Before anything can be printed, an C<isl_printer> needs to
1080 __isl_give isl_printer *isl_printer_to_file(isl_ctx *ctx,
1082 __isl_give isl_printer *isl_printer_to_str(isl_ctx *ctx);
1083 void *isl_printer_free(__isl_take isl_printer *printer);
1084 __isl_give char *isl_printer_get_str(
1085 __isl_keep isl_printer *printer);
1087 The printer can be inspected using the following functions.
1089 FILE *isl_printer_get_file(
1090 __isl_keep isl_printer *printer);
1091 int isl_printer_get_output_format(
1092 __isl_keep isl_printer *p);
1094 The behavior of the printer can be modified in various ways
1096 __isl_give isl_printer *isl_printer_set_output_format(
1097 __isl_take isl_printer *p, int output_format);
1098 __isl_give isl_printer *isl_printer_set_indent(
1099 __isl_take isl_printer *p, int indent);
1100 __isl_give isl_printer *isl_printer_indent(
1101 __isl_take isl_printer *p, int indent);
1102 __isl_give isl_printer *isl_printer_set_prefix(
1103 __isl_take isl_printer *p, const char *prefix);
1104 __isl_give isl_printer *isl_printer_set_suffix(
1105 __isl_take isl_printer *p, const char *suffix);
1107 The C<output_format> may be either C<ISL_FORMAT_ISL>, C<ISL_FORMAT_OMEGA>,
1108 C<ISL_FORMAT_POLYLIB>, C<ISL_FORMAT_EXT_POLYLIB> or C<ISL_FORMAT_LATEX>
1109 and defaults to C<ISL_FORMAT_ISL>.
1110 Each line in the output is indented by C<indent> (set by
1111 C<isl_printer_set_indent>) spaces
1112 (default: 0), prefixed by C<prefix> and suffixed by C<suffix>.
1113 In the C<PolyLib> format output,
1114 the coefficients of the existentially quantified variables
1115 appear between those of the set variables and those
1117 The function C<isl_printer_indent> increases the indentation
1118 by the specified amount (which may be negative).
1120 To actually print something, use
1122 #include <isl/printer.h>
1123 __isl_give isl_printer *isl_printer_print_double(
1124 __isl_take isl_printer *p, double d);
1126 #include <isl/set.h>
1127 __isl_give isl_printer *isl_printer_print_basic_set(
1128 __isl_take isl_printer *printer,
1129 __isl_keep isl_basic_set *bset);
1130 __isl_give isl_printer *isl_printer_print_set(
1131 __isl_take isl_printer *printer,
1132 __isl_keep isl_set *set);
1134 #include <isl/map.h>
1135 __isl_give isl_printer *isl_printer_print_basic_map(
1136 __isl_take isl_printer *printer,
1137 __isl_keep isl_basic_map *bmap);
1138 __isl_give isl_printer *isl_printer_print_map(
1139 __isl_take isl_printer *printer,
1140 __isl_keep isl_map *map);
1142 #include <isl/union_set.h>
1143 __isl_give isl_printer *isl_printer_print_union_set(
1144 __isl_take isl_printer *p,
1145 __isl_keep isl_union_set *uset);
1147 #include <isl/union_map.h>
1148 __isl_give isl_printer *isl_printer_print_union_map(
1149 __isl_take isl_printer *p,
1150 __isl_keep isl_union_map *umap);
1152 When called on a file printer, the following function flushes
1153 the file. When called on a string printer, the buffer is cleared.
1155 __isl_give isl_printer *isl_printer_flush(
1156 __isl_take isl_printer *p);
1158 =head2 Creating New Sets and Relations
1160 C<isl> has functions for creating some standard sets and relations.
1164 =item * Empty sets and relations
1166 __isl_give isl_basic_set *isl_basic_set_empty(
1167 __isl_take isl_space *space);
1168 __isl_give isl_basic_map *isl_basic_map_empty(
1169 __isl_take isl_space *space);
1170 __isl_give isl_set *isl_set_empty(
1171 __isl_take isl_space *space);
1172 __isl_give isl_map *isl_map_empty(
1173 __isl_take isl_space *space);
1174 __isl_give isl_union_set *isl_union_set_empty(
1175 __isl_take isl_space *space);
1176 __isl_give isl_union_map *isl_union_map_empty(
1177 __isl_take isl_space *space);
1179 For C<isl_union_set>s and C<isl_union_map>s, the space
1180 is only used to specify the parameters.
1182 =item * Universe sets and relations
1184 __isl_give isl_basic_set *isl_basic_set_universe(
1185 __isl_take isl_space *space);
1186 __isl_give isl_basic_map *isl_basic_map_universe(
1187 __isl_take isl_space *space);
1188 __isl_give isl_set *isl_set_universe(
1189 __isl_take isl_space *space);
1190 __isl_give isl_map *isl_map_universe(
1191 __isl_take isl_space *space);
1192 __isl_give isl_union_set *isl_union_set_universe(
1193 __isl_take isl_union_set *uset);
1194 __isl_give isl_union_map *isl_union_map_universe(
1195 __isl_take isl_union_map *umap);
1197 The sets and relations constructed by the functions above
1198 contain all integer values, while those constructed by the
1199 functions below only contain non-negative values.
1201 __isl_give isl_basic_set *isl_basic_set_nat_universe(
1202 __isl_take isl_space *space);
1203 __isl_give isl_basic_map *isl_basic_map_nat_universe(
1204 __isl_take isl_space *space);
1205 __isl_give isl_set *isl_set_nat_universe(
1206 __isl_take isl_space *space);
1207 __isl_give isl_map *isl_map_nat_universe(
1208 __isl_take isl_space *space);
1210 =item * Identity relations
1212 __isl_give isl_basic_map *isl_basic_map_identity(
1213 __isl_take isl_space *space);
1214 __isl_give isl_map *isl_map_identity(
1215 __isl_take isl_space *space);
1217 The number of input and output dimensions in C<space> needs
1220 =item * Lexicographic order
1222 __isl_give isl_map *isl_map_lex_lt(
1223 __isl_take isl_space *set_space);
1224 __isl_give isl_map *isl_map_lex_le(
1225 __isl_take isl_space *set_space);
1226 __isl_give isl_map *isl_map_lex_gt(
1227 __isl_take isl_space *set_space);
1228 __isl_give isl_map *isl_map_lex_ge(
1229 __isl_take isl_space *set_space);
1230 __isl_give isl_map *isl_map_lex_lt_first(
1231 __isl_take isl_space *space, unsigned n);
1232 __isl_give isl_map *isl_map_lex_le_first(
1233 __isl_take isl_space *space, unsigned n);
1234 __isl_give isl_map *isl_map_lex_gt_first(
1235 __isl_take isl_space *space, unsigned n);
1236 __isl_give isl_map *isl_map_lex_ge_first(
1237 __isl_take isl_space *space, unsigned n);
1239 The first four functions take a space for a B<set>
1240 and return relations that express that the elements in the domain
1241 are lexicographically less
1242 (C<isl_map_lex_lt>), less or equal (C<isl_map_lex_le>),
1243 greater (C<isl_map_lex_gt>) or greater or equal (C<isl_map_lex_ge>)
1244 than the elements in the range.
1245 The last four functions take a space for a map
1246 and return relations that express that the first C<n> dimensions
1247 in the domain are lexicographically less
1248 (C<isl_map_lex_lt_first>), less or equal (C<isl_map_lex_le_first>),
1249 greater (C<isl_map_lex_gt_first>) or greater or equal (C<isl_map_lex_ge_first>)
1250 than the first C<n> dimensions in the range.
1254 A basic set or relation can be converted to a set or relation
1255 using the following functions.
1257 __isl_give isl_set *isl_set_from_basic_set(
1258 __isl_take isl_basic_set *bset);
1259 __isl_give isl_map *isl_map_from_basic_map(
1260 __isl_take isl_basic_map *bmap);
1262 Sets and relations can be converted to union sets and relations
1263 using the following functions.
1265 __isl_give isl_union_set *isl_union_set_from_basic_set(
1266 __isl_take isl_basic_set *bset);
1267 __isl_give isl_union_map *isl_union_map_from_basic_map(
1268 __isl_take isl_basic_map *bmap);
1269 __isl_give isl_union_set *isl_union_set_from_set(
1270 __isl_take isl_set *set);
1271 __isl_give isl_union_map *isl_union_map_from_map(
1272 __isl_take isl_map *map);
1274 The inverse conversions below can only be used if the input
1275 union set or relation is known to contain elements in exactly one
1278 __isl_give isl_set *isl_set_from_union_set(
1279 __isl_take isl_union_set *uset);
1280 __isl_give isl_map *isl_map_from_union_map(
1281 __isl_take isl_union_map *umap);
1283 A zero-dimensional set can be constructed on a given parameter domain
1284 using the following function.
1286 __isl_give isl_set *isl_set_from_params(
1287 __isl_take isl_set *set);
1289 Sets and relations can be copied and freed again using the following
1292 __isl_give isl_basic_set *isl_basic_set_copy(
1293 __isl_keep isl_basic_set *bset);
1294 __isl_give isl_set *isl_set_copy(__isl_keep isl_set *set);
1295 __isl_give isl_union_set *isl_union_set_copy(
1296 __isl_keep isl_union_set *uset);
1297 __isl_give isl_basic_map *isl_basic_map_copy(
1298 __isl_keep isl_basic_map *bmap);
1299 __isl_give isl_map *isl_map_copy(__isl_keep isl_map *map);
1300 __isl_give isl_union_map *isl_union_map_copy(
1301 __isl_keep isl_union_map *umap);
1302 void *isl_basic_set_free(__isl_take isl_basic_set *bset);
1303 void *isl_set_free(__isl_take isl_set *set);
1304 void *isl_union_set_free(__isl_take isl_union_set *uset);
1305 void *isl_basic_map_free(__isl_take isl_basic_map *bmap);
1306 void *isl_map_free(__isl_take isl_map *map);
1307 void *isl_union_map_free(__isl_take isl_union_map *umap);
1309 Other sets and relations can be constructed by starting
1310 from a universe set or relation, adding equality and/or
1311 inequality constraints and then projecting out the
1312 existentially quantified variables, if any.
1313 Constraints can be constructed, manipulated and
1314 added to (or removed from) (basic) sets and relations
1315 using the following functions.
1317 #include <isl/constraint.h>
1318 __isl_give isl_constraint *isl_equality_alloc(
1319 __isl_take isl_local_space *ls);
1320 __isl_give isl_constraint *isl_inequality_alloc(
1321 __isl_take isl_local_space *ls);
1322 __isl_give isl_constraint *isl_constraint_set_constant(
1323 __isl_take isl_constraint *constraint, isl_int v);
1324 __isl_give isl_constraint *isl_constraint_set_constant_si(
1325 __isl_take isl_constraint *constraint, int v);
1326 __isl_give isl_constraint *isl_constraint_set_coefficient(
1327 __isl_take isl_constraint *constraint,
1328 enum isl_dim_type type, int pos, isl_int v);
1329 __isl_give isl_constraint *isl_constraint_set_coefficient_si(
1330 __isl_take isl_constraint *constraint,
1331 enum isl_dim_type type, int pos, int v);
1332 __isl_give isl_basic_map *isl_basic_map_add_constraint(
1333 __isl_take isl_basic_map *bmap,
1334 __isl_take isl_constraint *constraint);
1335 __isl_give isl_basic_set *isl_basic_set_add_constraint(
1336 __isl_take isl_basic_set *bset,
1337 __isl_take isl_constraint *constraint);
1338 __isl_give isl_map *isl_map_add_constraint(
1339 __isl_take isl_map *map,
1340 __isl_take isl_constraint *constraint);
1341 __isl_give isl_set *isl_set_add_constraint(
1342 __isl_take isl_set *set,
1343 __isl_take isl_constraint *constraint);
1344 __isl_give isl_basic_set *isl_basic_set_drop_constraint(
1345 __isl_take isl_basic_set *bset,
1346 __isl_take isl_constraint *constraint);
1348 For example, to create a set containing the even integers
1349 between 10 and 42, you would use the following code.
1352 isl_local_space *ls;
1354 isl_basic_set *bset;
1356 space = isl_space_set_alloc(ctx, 0, 2);
1357 bset = isl_basic_set_universe(isl_space_copy(space));
1358 ls = isl_local_space_from_space(space);
1360 c = isl_equality_alloc(isl_local_space_copy(ls));
1361 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1);
1362 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 1, 2);
1363 bset = isl_basic_set_add_constraint(bset, c);
1365 c = isl_inequality_alloc(isl_local_space_copy(ls));
1366 c = isl_constraint_set_constant_si(c, -10);
1367 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, 1);
1368 bset = isl_basic_set_add_constraint(bset, c);
1370 c = isl_inequality_alloc(ls);
1371 c = isl_constraint_set_constant_si(c, 42);
1372 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1);
1373 bset = isl_basic_set_add_constraint(bset, c);
1375 bset = isl_basic_set_project_out(bset, isl_dim_set, 1, 1);
1379 isl_basic_set *bset;
1380 bset = isl_basic_set_read_from_str(ctx,
1381 "{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}");
1383 A basic set or relation can also be constructed from two matrices
1384 describing the equalities and the inequalities.
1386 __isl_give isl_basic_set *isl_basic_set_from_constraint_matrices(
1387 __isl_take isl_space *space,
1388 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
1389 enum isl_dim_type c1,
1390 enum isl_dim_type c2, enum isl_dim_type c3,
1391 enum isl_dim_type c4);
1392 __isl_give isl_basic_map *isl_basic_map_from_constraint_matrices(
1393 __isl_take isl_space *space,
1394 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
1395 enum isl_dim_type c1,
1396 enum isl_dim_type c2, enum isl_dim_type c3,
1397 enum isl_dim_type c4, enum isl_dim_type c5);
1399 The C<isl_dim_type> arguments indicate the order in which
1400 different kinds of variables appear in the input matrices
1401 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
1402 C<isl_dim_set> and C<isl_dim_div> for sets and
1403 of C<isl_dim_cst>, C<isl_dim_param>,
1404 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div> for relations.
1406 A (basic or union) set or relation can also be constructed from a
1407 (union) (piecewise) (multiple) affine expression
1408 or a list of affine expressions
1409 (See L<"Piecewise Quasi Affine Expressions"> and
1410 L<"Piecewise Multiple Quasi Affine Expressions">).
1412 __isl_give isl_basic_map *isl_basic_map_from_aff(
1413 __isl_take isl_aff *aff);
1414 __isl_give isl_map *isl_map_from_aff(
1415 __isl_take isl_aff *aff);
1416 __isl_give isl_set *isl_set_from_pw_aff(
1417 __isl_take isl_pw_aff *pwaff);
1418 __isl_give isl_map *isl_map_from_pw_aff(
1419 __isl_take isl_pw_aff *pwaff);
1420 __isl_give isl_basic_map *isl_basic_map_from_aff_list(
1421 __isl_take isl_space *domain_space,
1422 __isl_take isl_aff_list *list);
1423 __isl_give isl_basic_map *isl_basic_map_from_multi_aff(
1424 __isl_take isl_multi_aff *maff)
1425 __isl_give isl_map *isl_map_from_multi_aff(
1426 __isl_take isl_multi_aff *maff)
1427 __isl_give isl_set *isl_set_from_pw_multi_aff(
1428 __isl_take isl_pw_multi_aff *pma);
1429 __isl_give isl_map *isl_map_from_pw_multi_aff(
1430 __isl_take isl_pw_multi_aff *pma);
1431 __isl_give isl_union_map *
1432 isl_union_map_from_union_pw_multi_aff(
1433 __isl_take isl_union_pw_multi_aff *upma);
1435 The C<domain_dim> argument describes the domain of the resulting
1436 basic relation. It is required because the C<list> may consist
1437 of zero affine expressions.
1439 =head2 Inspecting Sets and Relations
1441 Usually, the user should not have to care about the actual constraints
1442 of the sets and maps, but should instead apply the abstract operations
1443 explained in the following sections.
1444 Occasionally, however, it may be required to inspect the individual
1445 coefficients of the constraints. This section explains how to do so.
1446 In these cases, it may also be useful to have C<isl> compute
1447 an explicit representation of the existentially quantified variables.
1449 __isl_give isl_set *isl_set_compute_divs(
1450 __isl_take isl_set *set);
1451 __isl_give isl_map *isl_map_compute_divs(
1452 __isl_take isl_map *map);
1453 __isl_give isl_union_set *isl_union_set_compute_divs(
1454 __isl_take isl_union_set *uset);
1455 __isl_give isl_union_map *isl_union_map_compute_divs(
1456 __isl_take isl_union_map *umap);
1458 This explicit representation defines the existentially quantified
1459 variables as integer divisions of the other variables, possibly
1460 including earlier existentially quantified variables.
1461 An explicitly represented existentially quantified variable therefore
1462 has a unique value when the values of the other variables are known.
1463 If, furthermore, the same existentials, i.e., existentials
1464 with the same explicit representations, should appear in the
1465 same order in each of the disjuncts of a set or map, then the user should call
1466 either of the following functions.
1468 __isl_give isl_set *isl_set_align_divs(
1469 __isl_take isl_set *set);
1470 __isl_give isl_map *isl_map_align_divs(
1471 __isl_take isl_map *map);
1473 Alternatively, the existentially quantified variables can be removed
1474 using the following functions, which compute an overapproximation.
1476 __isl_give isl_basic_set *isl_basic_set_remove_divs(
1477 __isl_take isl_basic_set *bset);
1478 __isl_give isl_basic_map *isl_basic_map_remove_divs(
1479 __isl_take isl_basic_map *bmap);
1480 __isl_give isl_set *isl_set_remove_divs(
1481 __isl_take isl_set *set);
1482 __isl_give isl_map *isl_map_remove_divs(
1483 __isl_take isl_map *map);
1485 It is also possible to only remove those divs that are defined
1486 in terms of a given range of dimensions or only those for which
1487 no explicit representation is known.
1489 __isl_give isl_basic_set *
1490 isl_basic_set_remove_divs_involving_dims(
1491 __isl_take isl_basic_set *bset,
1492 enum isl_dim_type type,
1493 unsigned first, unsigned n);
1494 __isl_give isl_basic_map *
1495 isl_basic_map_remove_divs_involving_dims(
1496 __isl_take isl_basic_map *bmap,
1497 enum isl_dim_type type,
1498 unsigned first, unsigned n);
1499 __isl_give isl_set *isl_set_remove_divs_involving_dims(
1500 __isl_take isl_set *set, enum isl_dim_type type,
1501 unsigned first, unsigned n);
1502 __isl_give isl_map *isl_map_remove_divs_involving_dims(
1503 __isl_take isl_map *map, enum isl_dim_type type,
1504 unsigned first, unsigned n);
1506 __isl_give isl_basic_set *
1507 isl_basic_set_remove_unknown_divs(
1508 __isl_take isl_basic_set *bset);
1509 __isl_give isl_set *isl_set_remove_unknown_divs(
1510 __isl_take isl_set *set);
1511 __isl_give isl_map *isl_map_remove_unknown_divs(
1512 __isl_take isl_map *map);
1514 To iterate over all the sets or maps in a union set or map, use
1516 int isl_union_set_foreach_set(__isl_keep isl_union_set *uset,
1517 int (*fn)(__isl_take isl_set *set, void *user),
1519 int isl_union_map_foreach_map(__isl_keep isl_union_map *umap,
1520 int (*fn)(__isl_take isl_map *map, void *user),
1523 The number of sets or maps in a union set or map can be obtained
1526 int isl_union_set_n_set(__isl_keep isl_union_set *uset);
1527 int isl_union_map_n_map(__isl_keep isl_union_map *umap);
1529 To extract the set or map in a given space from a union, use
1531 __isl_give isl_set *isl_union_set_extract_set(
1532 __isl_keep isl_union_set *uset,
1533 __isl_take isl_space *space);
1534 __isl_give isl_map *isl_union_map_extract_map(
1535 __isl_keep isl_union_map *umap,
1536 __isl_take isl_space *space);
1538 To iterate over all the basic sets or maps in a set or map, use
1540 int isl_set_foreach_basic_set(__isl_keep isl_set *set,
1541 int (*fn)(__isl_take isl_basic_set *bset, void *user),
1543 int isl_map_foreach_basic_map(__isl_keep isl_map *map,
1544 int (*fn)(__isl_take isl_basic_map *bmap, void *user),
1547 The callback function C<fn> should return 0 if successful and
1548 -1 if an error occurs. In the latter case, or if any other error
1549 occurs, the above functions will return -1.
1551 It should be noted that C<isl> does not guarantee that
1552 the basic sets or maps passed to C<fn> are disjoint.
1553 If this is required, then the user should call one of
1554 the following functions first.
1556 __isl_give isl_set *isl_set_make_disjoint(
1557 __isl_take isl_set *set);
1558 __isl_give isl_map *isl_map_make_disjoint(
1559 __isl_take isl_map *map);
1561 The number of basic sets in a set can be obtained
1564 int isl_set_n_basic_set(__isl_keep isl_set *set);
1566 To iterate over the constraints of a basic set or map, use
1568 #include <isl/constraint.h>
1570 int isl_basic_set_n_constraint(
1571 __isl_keep isl_basic_set *bset);
1572 int isl_basic_set_foreach_constraint(
1573 __isl_keep isl_basic_set *bset,
1574 int (*fn)(__isl_take isl_constraint *c, void *user),
1576 int isl_basic_map_foreach_constraint(
1577 __isl_keep isl_basic_map *bmap,
1578 int (*fn)(__isl_take isl_constraint *c, void *user),
1580 void *isl_constraint_free(__isl_take isl_constraint *c);
1582 Again, the callback function C<fn> should return 0 if successful and
1583 -1 if an error occurs. In the latter case, or if any other error
1584 occurs, the above functions will return -1.
1585 The constraint C<c> represents either an equality or an inequality.
1586 Use the following function to find out whether a constraint
1587 represents an equality. If not, it represents an inequality.
1589 int isl_constraint_is_equality(
1590 __isl_keep isl_constraint *constraint);
1592 The coefficients of the constraints can be inspected using
1593 the following functions.
1595 int isl_constraint_is_lower_bound(
1596 __isl_keep isl_constraint *constraint,
1597 enum isl_dim_type type, unsigned pos);
1598 int isl_constraint_is_upper_bound(
1599 __isl_keep isl_constraint *constraint,
1600 enum isl_dim_type type, unsigned pos);
1601 void isl_constraint_get_constant(
1602 __isl_keep isl_constraint *constraint, isl_int *v);
1603 void isl_constraint_get_coefficient(
1604 __isl_keep isl_constraint *constraint,
1605 enum isl_dim_type type, int pos, isl_int *v);
1606 int isl_constraint_involves_dims(
1607 __isl_keep isl_constraint *constraint,
1608 enum isl_dim_type type, unsigned first, unsigned n);
1610 The explicit representations of the existentially quantified
1611 variables can be inspected using the following function.
1612 Note that the user is only allowed to use this function
1613 if the inspected set or map is the result of a call
1614 to C<isl_set_compute_divs> or C<isl_map_compute_divs>.
1615 The existentially quantified variable is equal to the floor
1616 of the returned affine expression. The affine expression
1617 itself can be inspected using the functions in
1618 L<"Piecewise Quasi Affine Expressions">.
1620 __isl_give isl_aff *isl_constraint_get_div(
1621 __isl_keep isl_constraint *constraint, int pos);
1623 To obtain the constraints of a basic set or map in matrix
1624 form, use the following functions.
1626 __isl_give isl_mat *isl_basic_set_equalities_matrix(
1627 __isl_keep isl_basic_set *bset,
1628 enum isl_dim_type c1, enum isl_dim_type c2,
1629 enum isl_dim_type c3, enum isl_dim_type c4);
1630 __isl_give isl_mat *isl_basic_set_inequalities_matrix(
1631 __isl_keep isl_basic_set *bset,
1632 enum isl_dim_type c1, enum isl_dim_type c2,
1633 enum isl_dim_type c3, enum isl_dim_type c4);
1634 __isl_give isl_mat *isl_basic_map_equalities_matrix(
1635 __isl_keep isl_basic_map *bmap,
1636 enum isl_dim_type c1,
1637 enum isl_dim_type c2, enum isl_dim_type c3,
1638 enum isl_dim_type c4, enum isl_dim_type c5);
1639 __isl_give isl_mat *isl_basic_map_inequalities_matrix(
1640 __isl_keep isl_basic_map *bmap,
1641 enum isl_dim_type c1,
1642 enum isl_dim_type c2, enum isl_dim_type c3,
1643 enum isl_dim_type c4, enum isl_dim_type c5);
1645 The C<isl_dim_type> arguments dictate the order in which
1646 different kinds of variables appear in the resulting matrix
1647 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
1648 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div>.
1650 The number of parameters, input, output or set dimensions can
1651 be obtained using the following functions.
1653 unsigned isl_basic_set_dim(__isl_keep isl_basic_set *bset,
1654 enum isl_dim_type type);
1655 unsigned isl_basic_map_dim(__isl_keep isl_basic_map *bmap,
1656 enum isl_dim_type type);
1657 unsigned isl_set_dim(__isl_keep isl_set *set,
1658 enum isl_dim_type type);
1659 unsigned isl_map_dim(__isl_keep isl_map *map,
1660 enum isl_dim_type type);
1662 To check whether the description of a set or relation depends
1663 on one or more given dimensions, it is not necessary to iterate over all
1664 constraints. Instead the following functions can be used.
1666 int isl_basic_set_involves_dims(
1667 __isl_keep isl_basic_set *bset,
1668 enum isl_dim_type type, unsigned first, unsigned n);
1669 int isl_set_involves_dims(__isl_keep isl_set *set,
1670 enum isl_dim_type type, unsigned first, unsigned n);
1671 int isl_basic_map_involves_dims(
1672 __isl_keep isl_basic_map *bmap,
1673 enum isl_dim_type type, unsigned first, unsigned n);
1674 int isl_map_involves_dims(__isl_keep isl_map *map,
1675 enum isl_dim_type type, unsigned first, unsigned n);
1677 Similarly, the following functions can be used to check whether
1678 a given dimension is involved in any lower or upper bound.
1680 int isl_set_dim_has_any_lower_bound(__isl_keep isl_set *set,
1681 enum isl_dim_type type, unsigned pos);
1682 int isl_set_dim_has_any_upper_bound(__isl_keep isl_set *set,
1683 enum isl_dim_type type, unsigned pos);
1685 Note that these functions return true even if there is a bound on
1686 the dimension on only some of the basic sets of C<set>.
1687 To check if they have a bound for all of the basic sets in C<set>,
1688 use the following functions instead.
1690 int isl_set_dim_has_lower_bound(__isl_keep isl_set *set,
1691 enum isl_dim_type type, unsigned pos);
1692 int isl_set_dim_has_upper_bound(__isl_keep isl_set *set,
1693 enum isl_dim_type type, unsigned pos);
1695 The identifiers or names of the domain and range spaces of a set
1696 or relation can be read off or set using the following functions.
1698 __isl_give isl_set *isl_set_set_tuple_id(
1699 __isl_take isl_set *set, __isl_take isl_id *id);
1700 __isl_give isl_set *isl_set_reset_tuple_id(
1701 __isl_take isl_set *set);
1702 int isl_set_has_tuple_id(__isl_keep isl_set *set);
1703 __isl_give isl_id *isl_set_get_tuple_id(
1704 __isl_keep isl_set *set);
1705 __isl_give isl_map *isl_map_set_tuple_id(
1706 __isl_take isl_map *map, enum isl_dim_type type,
1707 __isl_take isl_id *id);
1708 __isl_give isl_map *isl_map_reset_tuple_id(
1709 __isl_take isl_map *map, enum isl_dim_type type);
1710 int isl_map_has_tuple_id(__isl_keep isl_map *map,
1711 enum isl_dim_type type);
1712 __isl_give isl_id *isl_map_get_tuple_id(
1713 __isl_keep isl_map *map, enum isl_dim_type type);
1715 const char *isl_basic_set_get_tuple_name(
1716 __isl_keep isl_basic_set *bset);
1717 __isl_give isl_basic_set *isl_basic_set_set_tuple_name(
1718 __isl_take isl_basic_set *set, const char *s);
1719 int isl_set_has_tuple_name(__isl_keep isl_set *set);
1720 const char *isl_set_get_tuple_name(
1721 __isl_keep isl_set *set);
1722 const char *isl_basic_map_get_tuple_name(
1723 __isl_keep isl_basic_map *bmap,
1724 enum isl_dim_type type);
1725 __isl_give isl_basic_map *isl_basic_map_set_tuple_name(
1726 __isl_take isl_basic_map *bmap,
1727 enum isl_dim_type type, const char *s);
1728 int isl_map_has_tuple_name(__isl_keep isl_map *map,
1729 enum isl_dim_type type);
1730 const char *isl_map_get_tuple_name(
1731 __isl_keep isl_map *map,
1732 enum isl_dim_type type);
1734 As with C<isl_space_get_tuple_name>, the value returned points to
1735 an internal data structure.
1736 The identifiers, positions or names of individual dimensions can be
1737 read off using the following functions.
1739 __isl_give isl_id *isl_basic_set_get_dim_id(
1740 __isl_keep isl_basic_set *bset,
1741 enum isl_dim_type type, unsigned pos);
1742 __isl_give isl_set *isl_set_set_dim_id(
1743 __isl_take isl_set *set, enum isl_dim_type type,
1744 unsigned pos, __isl_take isl_id *id);
1745 int isl_set_has_dim_id(__isl_keep isl_set *set,
1746 enum isl_dim_type type, unsigned pos);
1747 __isl_give isl_id *isl_set_get_dim_id(
1748 __isl_keep isl_set *set, enum isl_dim_type type,
1750 int isl_basic_map_has_dim_id(
1751 __isl_keep isl_basic_map *bmap,
1752 enum isl_dim_type type, unsigned pos);
1753 __isl_give isl_map *isl_map_set_dim_id(
1754 __isl_take isl_map *map, enum isl_dim_type type,
1755 unsigned pos, __isl_take isl_id *id);
1756 int isl_map_has_dim_id(__isl_keep isl_map *map,
1757 enum isl_dim_type type, unsigned pos);
1758 __isl_give isl_id *isl_map_get_dim_id(
1759 __isl_keep isl_map *map, enum isl_dim_type type,
1762 int isl_set_find_dim_by_id(__isl_keep isl_set *set,
1763 enum isl_dim_type type, __isl_keep isl_id *id);
1764 int isl_map_find_dim_by_id(__isl_keep isl_map *map,
1765 enum isl_dim_type type, __isl_keep isl_id *id);
1766 int isl_set_find_dim_by_name(__isl_keep isl_set *set,
1767 enum isl_dim_type type, const char *name);
1768 int isl_map_find_dim_by_name(__isl_keep isl_map *map,
1769 enum isl_dim_type type, const char *name);
1771 const char *isl_constraint_get_dim_name(
1772 __isl_keep isl_constraint *constraint,
1773 enum isl_dim_type type, unsigned pos);
1774 const char *isl_basic_set_get_dim_name(
1775 __isl_keep isl_basic_set *bset,
1776 enum isl_dim_type type, unsigned pos);
1777 int isl_set_has_dim_name(__isl_keep isl_set *set,
1778 enum isl_dim_type type, unsigned pos);
1779 const char *isl_set_get_dim_name(
1780 __isl_keep isl_set *set,
1781 enum isl_dim_type type, unsigned pos);
1782 const char *isl_basic_map_get_dim_name(
1783 __isl_keep isl_basic_map *bmap,
1784 enum isl_dim_type type, unsigned pos);
1785 int isl_map_has_dim_name(__isl_keep isl_map *map,
1786 enum isl_dim_type type, unsigned pos);
1787 const char *isl_map_get_dim_name(
1788 __isl_keep isl_map *map,
1789 enum isl_dim_type type, unsigned pos);
1791 These functions are mostly useful to obtain the identifiers, positions
1792 or names of the parameters. Identifiers of individual dimensions are
1793 essentially only useful for printing. They are ignored by all other
1794 operations and may not be preserved across those operations.
1798 =head3 Unary Properties
1804 The following functions test whether the given set or relation
1805 contains any integer points. The ``plain'' variants do not perform
1806 any computations, but simply check if the given set or relation
1807 is already known to be empty.
1809 int isl_basic_set_plain_is_empty(__isl_keep isl_basic_set *bset);
1810 int isl_basic_set_is_empty(__isl_keep isl_basic_set *bset);
1811 int isl_set_plain_is_empty(__isl_keep isl_set *set);
1812 int isl_set_is_empty(__isl_keep isl_set *set);
1813 int isl_union_set_is_empty(__isl_keep isl_union_set *uset);
1814 int isl_basic_map_plain_is_empty(__isl_keep isl_basic_map *bmap);
1815 int isl_basic_map_is_empty(__isl_keep isl_basic_map *bmap);
1816 int isl_map_plain_is_empty(__isl_keep isl_map *map);
1817 int isl_map_is_empty(__isl_keep isl_map *map);
1818 int isl_union_map_is_empty(__isl_keep isl_union_map *umap);
1820 =item * Universality
1822 int isl_basic_set_is_universe(__isl_keep isl_basic_set *bset);
1823 int isl_basic_map_is_universe(__isl_keep isl_basic_map *bmap);
1824 int isl_set_plain_is_universe(__isl_keep isl_set *set);
1826 =item * Single-valuedness
1828 int isl_basic_map_is_single_valued(
1829 __isl_keep isl_basic_map *bmap);
1830 int isl_map_plain_is_single_valued(
1831 __isl_keep isl_map *map);
1832 int isl_map_is_single_valued(__isl_keep isl_map *map);
1833 int isl_union_map_is_single_valued(__isl_keep isl_union_map *umap);
1837 int isl_map_plain_is_injective(__isl_keep isl_map *map);
1838 int isl_map_is_injective(__isl_keep isl_map *map);
1839 int isl_union_map_plain_is_injective(
1840 __isl_keep isl_union_map *umap);
1841 int isl_union_map_is_injective(
1842 __isl_keep isl_union_map *umap);
1846 int isl_map_is_bijective(__isl_keep isl_map *map);
1847 int isl_union_map_is_bijective(__isl_keep isl_union_map *umap);
1851 int isl_basic_map_plain_is_fixed(
1852 __isl_keep isl_basic_map *bmap,
1853 enum isl_dim_type type, unsigned pos,
1855 int isl_set_plain_is_fixed(__isl_keep isl_set *set,
1856 enum isl_dim_type type, unsigned pos,
1858 int isl_map_plain_is_fixed(__isl_keep isl_map *map,
1859 enum isl_dim_type type, unsigned pos,
1862 Check if the relation obviously lies on a hyperplane where the given dimension
1863 has a fixed value and if so, return that value in C<*val>.
1867 To check whether a set is a parameter domain, use this function:
1869 int isl_set_is_params(__isl_keep isl_set *set);
1870 int isl_union_set_is_params(
1871 __isl_keep isl_union_set *uset);
1875 The following functions check whether the domain of the given
1876 (basic) set is a wrapped relation.
1878 int isl_basic_set_is_wrapping(
1879 __isl_keep isl_basic_set *bset);
1880 int isl_set_is_wrapping(__isl_keep isl_set *set);
1882 =item * Internal Product
1884 int isl_basic_map_can_zip(
1885 __isl_keep isl_basic_map *bmap);
1886 int isl_map_can_zip(__isl_keep isl_map *map);
1888 Check whether the product of domain and range of the given relation
1890 i.e., whether both domain and range are nested relations.
1894 int isl_basic_map_can_curry(
1895 __isl_keep isl_basic_map *bmap);
1896 int isl_map_can_curry(__isl_keep isl_map *map);
1898 Check whether the domain of the (basic) relation is a wrapped relation.
1900 int isl_basic_map_can_uncurry(
1901 __isl_keep isl_basic_map *bmap);
1902 int isl_map_can_uncurry(__isl_keep isl_map *map);
1904 Check whether the range of the (basic) relation is a wrapped relation.
1908 =head3 Binary Properties
1914 int isl_set_plain_is_equal(__isl_keep isl_set *set1,
1915 __isl_keep isl_set *set2);
1916 int isl_set_is_equal(__isl_keep isl_set *set1,
1917 __isl_keep isl_set *set2);
1918 int isl_union_set_is_equal(
1919 __isl_keep isl_union_set *uset1,
1920 __isl_keep isl_union_set *uset2);
1921 int isl_basic_map_is_equal(
1922 __isl_keep isl_basic_map *bmap1,
1923 __isl_keep isl_basic_map *bmap2);
1924 int isl_map_is_equal(__isl_keep isl_map *map1,
1925 __isl_keep isl_map *map2);
1926 int isl_map_plain_is_equal(__isl_keep isl_map *map1,
1927 __isl_keep isl_map *map2);
1928 int isl_union_map_is_equal(
1929 __isl_keep isl_union_map *umap1,
1930 __isl_keep isl_union_map *umap2);
1932 =item * Disjointness
1934 int isl_set_plain_is_disjoint(__isl_keep isl_set *set1,
1935 __isl_keep isl_set *set2);
1936 int isl_set_is_disjoint(__isl_keep isl_set *set1,
1937 __isl_keep isl_set *set2);
1938 int isl_map_is_disjoint(__isl_keep isl_map *map1,
1939 __isl_keep isl_map *map2);
1943 int isl_basic_set_is_subset(
1944 __isl_keep isl_basic_set *bset1,
1945 __isl_keep isl_basic_set *bset2);
1946 int isl_set_is_subset(__isl_keep isl_set *set1,
1947 __isl_keep isl_set *set2);
1948 int isl_set_is_strict_subset(
1949 __isl_keep isl_set *set1,
1950 __isl_keep isl_set *set2);
1951 int isl_union_set_is_subset(
1952 __isl_keep isl_union_set *uset1,
1953 __isl_keep isl_union_set *uset2);
1954 int isl_union_set_is_strict_subset(
1955 __isl_keep isl_union_set *uset1,
1956 __isl_keep isl_union_set *uset2);
1957 int isl_basic_map_is_subset(
1958 __isl_keep isl_basic_map *bmap1,
1959 __isl_keep isl_basic_map *bmap2);
1960 int isl_basic_map_is_strict_subset(
1961 __isl_keep isl_basic_map *bmap1,
1962 __isl_keep isl_basic_map *bmap2);
1963 int isl_map_is_subset(
1964 __isl_keep isl_map *map1,
1965 __isl_keep isl_map *map2);
1966 int isl_map_is_strict_subset(
1967 __isl_keep isl_map *map1,
1968 __isl_keep isl_map *map2);
1969 int isl_union_map_is_subset(
1970 __isl_keep isl_union_map *umap1,
1971 __isl_keep isl_union_map *umap2);
1972 int isl_union_map_is_strict_subset(
1973 __isl_keep isl_union_map *umap1,
1974 __isl_keep isl_union_map *umap2);
1976 Check whether the first argument is a (strict) subset of the
1981 int isl_set_plain_cmp(__isl_keep isl_set *set1,
1982 __isl_keep isl_set *set2);
1984 This function is useful for sorting C<isl_set>s.
1985 The order depends on the internal representation of the inputs.
1986 The order is fixed over different calls to the function (assuming
1987 the internal representation of the inputs has not changed), but may
1988 change over different versions of C<isl>.
1992 =head2 Unary Operations
1998 __isl_give isl_set *isl_set_complement(
1999 __isl_take isl_set *set);
2000 __isl_give isl_map *isl_map_complement(
2001 __isl_take isl_map *map);
2005 __isl_give isl_basic_map *isl_basic_map_reverse(
2006 __isl_take isl_basic_map *bmap);
2007 __isl_give isl_map *isl_map_reverse(
2008 __isl_take isl_map *map);
2009 __isl_give isl_union_map *isl_union_map_reverse(
2010 __isl_take isl_union_map *umap);
2014 __isl_give isl_basic_set *isl_basic_set_project_out(
2015 __isl_take isl_basic_set *bset,
2016 enum isl_dim_type type, unsigned first, unsigned n);
2017 __isl_give isl_basic_map *isl_basic_map_project_out(
2018 __isl_take isl_basic_map *bmap,
2019 enum isl_dim_type type, unsigned first, unsigned n);
2020 __isl_give isl_set *isl_set_project_out(__isl_take isl_set *set,
2021 enum isl_dim_type type, unsigned first, unsigned n);
2022 __isl_give isl_map *isl_map_project_out(__isl_take isl_map *map,
2023 enum isl_dim_type type, unsigned first, unsigned n);
2024 __isl_give isl_basic_set *isl_basic_set_params(
2025 __isl_take isl_basic_set *bset);
2026 __isl_give isl_basic_set *isl_basic_map_domain(
2027 __isl_take isl_basic_map *bmap);
2028 __isl_give isl_basic_set *isl_basic_map_range(
2029 __isl_take isl_basic_map *bmap);
2030 __isl_give isl_set *isl_set_params(__isl_take isl_set *set);
2031 __isl_give isl_set *isl_map_params(__isl_take isl_map *map);
2032 __isl_give isl_set *isl_map_domain(
2033 __isl_take isl_map *bmap);
2034 __isl_give isl_set *isl_map_range(
2035 __isl_take isl_map *map);
2036 __isl_give isl_set *isl_union_set_params(
2037 __isl_take isl_union_set *uset);
2038 __isl_give isl_set *isl_union_map_params(
2039 __isl_take isl_union_map *umap);
2040 __isl_give isl_union_set *isl_union_map_domain(
2041 __isl_take isl_union_map *umap);
2042 __isl_give isl_union_set *isl_union_map_range(
2043 __isl_take isl_union_map *umap);
2045 __isl_give isl_basic_map *isl_basic_map_domain_map(
2046 __isl_take isl_basic_map *bmap);
2047 __isl_give isl_basic_map *isl_basic_map_range_map(
2048 __isl_take isl_basic_map *bmap);
2049 __isl_give isl_map *isl_map_domain_map(__isl_take isl_map *map);
2050 __isl_give isl_map *isl_map_range_map(__isl_take isl_map *map);
2051 __isl_give isl_union_map *isl_union_map_domain_map(
2052 __isl_take isl_union_map *umap);
2053 __isl_give isl_union_map *isl_union_map_range_map(
2054 __isl_take isl_union_map *umap);
2056 The functions above construct a (basic, regular or union) relation
2057 that maps (a wrapped version of) the input relation to its domain or range.
2061 __isl_give isl_basic_set *isl_basic_set_eliminate(
2062 __isl_take isl_basic_set *bset,
2063 enum isl_dim_type type,
2064 unsigned first, unsigned n);
2065 __isl_give isl_set *isl_set_eliminate(
2066 __isl_take isl_set *set, enum isl_dim_type type,
2067 unsigned first, unsigned n);
2068 __isl_give isl_basic_map *isl_basic_map_eliminate(
2069 __isl_take isl_basic_map *bmap,
2070 enum isl_dim_type type,
2071 unsigned first, unsigned n);
2072 __isl_give isl_map *isl_map_eliminate(
2073 __isl_take isl_map *map, enum isl_dim_type type,
2074 unsigned first, unsigned n);
2076 Eliminate the coefficients for the given dimensions from the constraints,
2077 without removing the dimensions.
2081 __isl_give isl_basic_set *isl_basic_set_fix(
2082 __isl_take isl_basic_set *bset,
2083 enum isl_dim_type type, unsigned pos,
2085 __isl_give isl_basic_set *isl_basic_set_fix_si(
2086 __isl_take isl_basic_set *bset,
2087 enum isl_dim_type type, unsigned pos, int value);
2088 __isl_give isl_set *isl_set_fix(__isl_take isl_set *set,
2089 enum isl_dim_type type, unsigned pos,
2091 __isl_give isl_set *isl_set_fix_si(__isl_take isl_set *set,
2092 enum isl_dim_type type, unsigned pos, int value);
2093 __isl_give isl_basic_map *isl_basic_map_fix_si(
2094 __isl_take isl_basic_map *bmap,
2095 enum isl_dim_type type, unsigned pos, int value);
2096 __isl_give isl_map *isl_map_fix(__isl_take isl_map *map,
2097 enum isl_dim_type type, unsigned pos,
2099 __isl_give isl_map *isl_map_fix_si(__isl_take isl_map *map,
2100 enum isl_dim_type type, unsigned pos, int value);
2102 Intersect the set or relation with the hyperplane where the given
2103 dimension has the fixed given value.
2105 __isl_give isl_basic_map *isl_basic_map_lower_bound_si(
2106 __isl_take isl_basic_map *bmap,
2107 enum isl_dim_type type, unsigned pos, int value);
2108 __isl_give isl_basic_map *isl_basic_map_upper_bound_si(
2109 __isl_take isl_basic_map *bmap,
2110 enum isl_dim_type type, unsigned pos, int value);
2111 __isl_give isl_set *isl_set_lower_bound(
2112 __isl_take isl_set *set,
2113 enum isl_dim_type type, unsigned pos,
2115 __isl_give isl_set *isl_set_lower_bound_si(
2116 __isl_take isl_set *set,
2117 enum isl_dim_type type, unsigned pos, int value);
2118 __isl_give isl_map *isl_map_lower_bound_si(
2119 __isl_take isl_map *map,
2120 enum isl_dim_type type, unsigned pos, int value);
2121 __isl_give isl_set *isl_set_upper_bound(
2122 __isl_take isl_set *set,
2123 enum isl_dim_type type, unsigned pos,
2125 __isl_give isl_set *isl_set_upper_bound_si(
2126 __isl_take isl_set *set,
2127 enum isl_dim_type type, unsigned pos, int value);
2128 __isl_give isl_map *isl_map_upper_bound_si(
2129 __isl_take isl_map *map,
2130 enum isl_dim_type type, unsigned pos, int value);
2132 Intersect the set or relation with the half-space where the given
2133 dimension has a value bounded by the fixed given value.
2135 __isl_give isl_set *isl_set_equate(__isl_take isl_set *set,
2136 enum isl_dim_type type1, int pos1,
2137 enum isl_dim_type type2, int pos2);
2138 __isl_give isl_basic_map *isl_basic_map_equate(
2139 __isl_take isl_basic_map *bmap,
2140 enum isl_dim_type type1, int pos1,
2141 enum isl_dim_type type2, int pos2);
2142 __isl_give isl_map *isl_map_equate(__isl_take isl_map *map,
2143 enum isl_dim_type type1, int pos1,
2144 enum isl_dim_type type2, int pos2);
2146 Intersect the set or relation with the hyperplane where the given
2147 dimensions are equal to each other.
2149 __isl_give isl_map *isl_map_oppose(__isl_take isl_map *map,
2150 enum isl_dim_type type1, int pos1,
2151 enum isl_dim_type type2, int pos2);
2153 Intersect the relation with the hyperplane where the given
2154 dimensions have opposite values.
2156 __isl_give isl_basic_map *isl_basic_map_order_ge(
2157 __isl_take isl_basic_map *bmap,
2158 enum isl_dim_type type1, int pos1,
2159 enum isl_dim_type type2, int pos2);
2160 __isl_give isl_map *isl_map_order_lt(__isl_take isl_map *map,
2161 enum isl_dim_type type1, int pos1,
2162 enum isl_dim_type type2, int pos2);
2163 __isl_give isl_map *isl_map_order_gt(__isl_take isl_map *map,
2164 enum isl_dim_type type1, int pos1,
2165 enum isl_dim_type type2, int pos2);
2167 Intersect the relation with the half-space where the given
2168 dimensions satisfy the given ordering.
2172 __isl_give isl_map *isl_set_identity(
2173 __isl_take isl_set *set);
2174 __isl_give isl_union_map *isl_union_set_identity(
2175 __isl_take isl_union_set *uset);
2177 Construct an identity relation on the given (union) set.
2181 __isl_give isl_basic_set *isl_basic_map_deltas(
2182 __isl_take isl_basic_map *bmap);
2183 __isl_give isl_set *isl_map_deltas(__isl_take isl_map *map);
2184 __isl_give isl_union_set *isl_union_map_deltas(
2185 __isl_take isl_union_map *umap);
2187 These functions return a (basic) set containing the differences
2188 between image elements and corresponding domain elements in the input.
2190 __isl_give isl_basic_map *isl_basic_map_deltas_map(
2191 __isl_take isl_basic_map *bmap);
2192 __isl_give isl_map *isl_map_deltas_map(
2193 __isl_take isl_map *map);
2194 __isl_give isl_union_map *isl_union_map_deltas_map(
2195 __isl_take isl_union_map *umap);
2197 The functions above construct a (basic, regular or union) relation
2198 that maps (a wrapped version of) the input relation to its delta set.
2202 Simplify the representation of a set or relation by trying
2203 to combine pairs of basic sets or relations into a single
2204 basic set or relation.
2206 __isl_give isl_set *isl_set_coalesce(__isl_take isl_set *set);
2207 __isl_give isl_map *isl_map_coalesce(__isl_take isl_map *map);
2208 __isl_give isl_union_set *isl_union_set_coalesce(
2209 __isl_take isl_union_set *uset);
2210 __isl_give isl_union_map *isl_union_map_coalesce(
2211 __isl_take isl_union_map *umap);
2213 One of the methods for combining pairs of basic sets or relations
2214 can result in coefficients that are much larger than those that appear
2215 in the constraints of the input. By default, the coefficients are
2216 not allowed to grow larger, but this can be changed by unsetting
2217 the following option.
2219 int isl_options_set_coalesce_bounded_wrapping(
2220 isl_ctx *ctx, int val);
2221 int isl_options_get_coalesce_bounded_wrapping(
2224 =item * Detecting equalities
2226 __isl_give isl_basic_set *isl_basic_set_detect_equalities(
2227 __isl_take isl_basic_set *bset);
2228 __isl_give isl_basic_map *isl_basic_map_detect_equalities(
2229 __isl_take isl_basic_map *bmap);
2230 __isl_give isl_set *isl_set_detect_equalities(
2231 __isl_take isl_set *set);
2232 __isl_give isl_map *isl_map_detect_equalities(
2233 __isl_take isl_map *map);
2234 __isl_give isl_union_set *isl_union_set_detect_equalities(
2235 __isl_take isl_union_set *uset);
2236 __isl_give isl_union_map *isl_union_map_detect_equalities(
2237 __isl_take isl_union_map *umap);
2239 Simplify the representation of a set or relation by detecting implicit
2242 =item * Removing redundant constraints
2244 __isl_give isl_basic_set *isl_basic_set_remove_redundancies(
2245 __isl_take isl_basic_set *bset);
2246 __isl_give isl_set *isl_set_remove_redundancies(
2247 __isl_take isl_set *set);
2248 __isl_give isl_basic_map *isl_basic_map_remove_redundancies(
2249 __isl_take isl_basic_map *bmap);
2250 __isl_give isl_map *isl_map_remove_redundancies(
2251 __isl_take isl_map *map);
2255 __isl_give isl_basic_set *isl_set_convex_hull(
2256 __isl_take isl_set *set);
2257 __isl_give isl_basic_map *isl_map_convex_hull(
2258 __isl_take isl_map *map);
2260 If the input set or relation has any existentially quantified
2261 variables, then the result of these operations is currently undefined.
2265 __isl_give isl_basic_set *
2266 isl_set_unshifted_simple_hull(
2267 __isl_take isl_set *set);
2268 __isl_give isl_basic_map *
2269 isl_map_unshifted_simple_hull(
2270 __isl_take isl_map *map);
2271 __isl_give isl_basic_set *isl_set_simple_hull(
2272 __isl_take isl_set *set);
2273 __isl_give isl_basic_map *isl_map_simple_hull(
2274 __isl_take isl_map *map);
2275 __isl_give isl_union_map *isl_union_map_simple_hull(
2276 __isl_take isl_union_map *umap);
2278 These functions compute a single basic set or relation
2279 that contains the whole input set or relation.
2280 In particular, the output is described by translates
2281 of the constraints describing the basic sets or relations in the input.
2282 In case of C<isl_set_unshifted_simple_hull>, only the original
2283 constraints are used, without any translation.
2287 (See \autoref{s:simple hull}.)
2293 __isl_give isl_basic_set *isl_basic_set_affine_hull(
2294 __isl_take isl_basic_set *bset);
2295 __isl_give isl_basic_set *isl_set_affine_hull(
2296 __isl_take isl_set *set);
2297 __isl_give isl_union_set *isl_union_set_affine_hull(
2298 __isl_take isl_union_set *uset);
2299 __isl_give isl_basic_map *isl_basic_map_affine_hull(
2300 __isl_take isl_basic_map *bmap);
2301 __isl_give isl_basic_map *isl_map_affine_hull(
2302 __isl_take isl_map *map);
2303 __isl_give isl_union_map *isl_union_map_affine_hull(
2304 __isl_take isl_union_map *umap);
2306 In case of union sets and relations, the affine hull is computed
2309 =item * Polyhedral hull
2311 __isl_give isl_basic_set *isl_set_polyhedral_hull(
2312 __isl_take isl_set *set);
2313 __isl_give isl_basic_map *isl_map_polyhedral_hull(
2314 __isl_take isl_map *map);
2315 __isl_give isl_union_set *isl_union_set_polyhedral_hull(
2316 __isl_take isl_union_set *uset);
2317 __isl_give isl_union_map *isl_union_map_polyhedral_hull(
2318 __isl_take isl_union_map *umap);
2320 These functions compute a single basic set or relation
2321 not involving any existentially quantified variables
2322 that contains the whole input set or relation.
2323 In case of union sets and relations, the polyhedral hull is computed
2326 =item * Other approximations
2328 __isl_give isl_basic_set *
2329 isl_basic_set_drop_constraints_involving_dims(
2330 __isl_take isl_basic_set *bset,
2331 enum isl_dim_type type,
2332 unsigned first, unsigned n);
2333 __isl_give isl_basic_set *
2334 isl_basic_set_drop_constraints_not_involving_dims(
2335 __isl_take isl_basic_set *bset,
2336 enum isl_dim_type type,
2337 unsigned first, unsigned n);
2338 __isl_give isl_set *
2339 isl_set_drop_constraints_involving_dims(
2340 __isl_take isl_set *set,
2341 enum isl_dim_type type,
2342 unsigned first, unsigned n);
2343 __isl_give isl_map *
2344 isl_map_drop_constraints_involving_dims(
2345 __isl_take isl_map *map,
2346 enum isl_dim_type type,
2347 unsigned first, unsigned n);
2349 These functions drop any constraints (not) involving the specified dimensions.
2350 Note that the result depends on the representation of the input.
2354 __isl_give isl_basic_set *isl_basic_set_sample(
2355 __isl_take isl_basic_set *bset);
2356 __isl_give isl_basic_set *isl_set_sample(
2357 __isl_take isl_set *set);
2358 __isl_give isl_basic_map *isl_basic_map_sample(
2359 __isl_take isl_basic_map *bmap);
2360 __isl_give isl_basic_map *isl_map_sample(
2361 __isl_take isl_map *map);
2363 If the input (basic) set or relation is non-empty, then return
2364 a singleton subset of the input. Otherwise, return an empty set.
2366 =item * Optimization
2368 #include <isl/ilp.h>
2369 enum isl_lp_result isl_basic_set_max(
2370 __isl_keep isl_basic_set *bset,
2371 __isl_keep isl_aff *obj, isl_int *opt)
2372 enum isl_lp_result isl_set_min(__isl_keep isl_set *set,
2373 __isl_keep isl_aff *obj, isl_int *opt);
2374 enum isl_lp_result isl_set_max(__isl_keep isl_set *set,
2375 __isl_keep isl_aff *obj, isl_int *opt);
2377 Compute the minimum or maximum of the integer affine expression C<obj>
2378 over the points in C<set>, returning the result in C<opt>.
2379 The return value may be one of C<isl_lp_error>,
2380 C<isl_lp_ok>, C<isl_lp_unbounded> or C<isl_lp_empty>.
2382 =item * Parametric optimization
2384 __isl_give isl_pw_aff *isl_set_dim_min(
2385 __isl_take isl_set *set, int pos);
2386 __isl_give isl_pw_aff *isl_set_dim_max(
2387 __isl_take isl_set *set, int pos);
2388 __isl_give isl_pw_aff *isl_map_dim_max(
2389 __isl_take isl_map *map, int pos);
2391 Compute the minimum or maximum of the given set or output dimension
2392 as a function of the parameters (and input dimensions), but independently
2393 of the other set or output dimensions.
2394 For lexicographic optimization, see L<"Lexicographic Optimization">.
2398 The following functions compute either the set of (rational) coefficient
2399 values of valid constraints for the given set or the set of (rational)
2400 values satisfying the constraints with coefficients from the given set.
2401 Internally, these two sets of functions perform essentially the
2402 same operations, except that the set of coefficients is assumed to
2403 be a cone, while the set of values may be any polyhedron.
2404 The current implementation is based on the Farkas lemma and
2405 Fourier-Motzkin elimination, but this may change or be made optional
2406 in future. In particular, future implementations may use different
2407 dualization algorithms or skip the elimination step.
2409 __isl_give isl_basic_set *isl_basic_set_coefficients(
2410 __isl_take isl_basic_set *bset);
2411 __isl_give isl_basic_set *isl_set_coefficients(
2412 __isl_take isl_set *set);
2413 __isl_give isl_union_set *isl_union_set_coefficients(
2414 __isl_take isl_union_set *bset);
2415 __isl_give isl_basic_set *isl_basic_set_solutions(
2416 __isl_take isl_basic_set *bset);
2417 __isl_give isl_basic_set *isl_set_solutions(
2418 __isl_take isl_set *set);
2419 __isl_give isl_union_set *isl_union_set_solutions(
2420 __isl_take isl_union_set *bset);
2424 __isl_give isl_map *isl_map_fixed_power(
2425 __isl_take isl_map *map, isl_int exp);
2426 __isl_give isl_union_map *isl_union_map_fixed_power(
2427 __isl_take isl_union_map *umap, isl_int exp);
2429 Compute the given power of C<map>, where C<exp> is assumed to be non-zero.
2430 If the exponent C<exp> is negative, then the -C<exp> th power of the inverse
2431 of C<map> is computed.
2433 __isl_give isl_map *isl_map_power(__isl_take isl_map *map,
2435 __isl_give isl_union_map *isl_union_map_power(
2436 __isl_take isl_union_map *umap, int *exact);
2438 Compute a parametric representation for all positive powers I<k> of C<map>.
2439 The result maps I<k> to a nested relation corresponding to the
2440 I<k>th power of C<map>.
2441 The result may be an overapproximation. If the result is known to be exact,
2442 then C<*exact> is set to C<1>.
2444 =item * Transitive closure
2446 __isl_give isl_map *isl_map_transitive_closure(
2447 __isl_take isl_map *map, int *exact);
2448 __isl_give isl_union_map *isl_union_map_transitive_closure(
2449 __isl_take isl_union_map *umap, int *exact);
2451 Compute the transitive closure of C<map>.
2452 The result may be an overapproximation. If the result is known to be exact,
2453 then C<*exact> is set to C<1>.
2455 =item * Reaching path lengths
2457 __isl_give isl_map *isl_map_reaching_path_lengths(
2458 __isl_take isl_map *map, int *exact);
2460 Compute a relation that maps each element in the range of C<map>
2461 to the lengths of all paths composed of edges in C<map> that
2462 end up in the given element.
2463 The result may be an overapproximation. If the result is known to be exact,
2464 then C<*exact> is set to C<1>.
2465 To compute the I<maximal> path length, the resulting relation
2466 should be postprocessed by C<isl_map_lexmax>.
2467 In particular, if the input relation is a dependence relation
2468 (mapping sources to sinks), then the maximal path length corresponds
2469 to the free schedule.
2470 Note, however, that C<isl_map_lexmax> expects the maximum to be
2471 finite, so if the path lengths are unbounded (possibly due to
2472 the overapproximation), then you will get an error message.
2476 __isl_give isl_basic_set *isl_basic_map_wrap(
2477 __isl_take isl_basic_map *bmap);
2478 __isl_give isl_set *isl_map_wrap(
2479 __isl_take isl_map *map);
2480 __isl_give isl_union_set *isl_union_map_wrap(
2481 __isl_take isl_union_map *umap);
2482 __isl_give isl_basic_map *isl_basic_set_unwrap(
2483 __isl_take isl_basic_set *bset);
2484 __isl_give isl_map *isl_set_unwrap(
2485 __isl_take isl_set *set);
2486 __isl_give isl_union_map *isl_union_set_unwrap(
2487 __isl_take isl_union_set *uset);
2491 Remove any internal structure of domain (and range) of the given
2492 set or relation. If there is any such internal structure in the input,
2493 then the name of the space is also removed.
2495 __isl_give isl_basic_set *isl_basic_set_flatten(
2496 __isl_take isl_basic_set *bset);
2497 __isl_give isl_set *isl_set_flatten(
2498 __isl_take isl_set *set);
2499 __isl_give isl_basic_map *isl_basic_map_flatten_domain(
2500 __isl_take isl_basic_map *bmap);
2501 __isl_give isl_basic_map *isl_basic_map_flatten_range(
2502 __isl_take isl_basic_map *bmap);
2503 __isl_give isl_map *isl_map_flatten_range(
2504 __isl_take isl_map *map);
2505 __isl_give isl_map *isl_map_flatten_domain(
2506 __isl_take isl_map *map);
2507 __isl_give isl_basic_map *isl_basic_map_flatten(
2508 __isl_take isl_basic_map *bmap);
2509 __isl_give isl_map *isl_map_flatten(
2510 __isl_take isl_map *map);
2512 __isl_give isl_map *isl_set_flatten_map(
2513 __isl_take isl_set *set);
2515 The function above constructs a relation
2516 that maps the input set to a flattened version of the set.
2520 Lift the input set to a space with extra dimensions corresponding
2521 to the existentially quantified variables in the input.
2522 In particular, the result lives in a wrapped map where the domain
2523 is the original space and the range corresponds to the original
2524 existentially quantified variables.
2526 __isl_give isl_basic_set *isl_basic_set_lift(
2527 __isl_take isl_basic_set *bset);
2528 __isl_give isl_set *isl_set_lift(
2529 __isl_take isl_set *set);
2530 __isl_give isl_union_set *isl_union_set_lift(
2531 __isl_take isl_union_set *uset);
2533 Given a local space that contains the existentially quantified
2534 variables of a set, a basic relation that, when applied to
2535 a basic set, has essentially the same effect as C<isl_basic_set_lift>,
2536 can be constructed using the following function.
2538 #include <isl/local_space.h>
2539 __isl_give isl_basic_map *isl_local_space_lifting(
2540 __isl_take isl_local_space *ls);
2542 =item * Internal Product
2544 __isl_give isl_basic_map *isl_basic_map_zip(
2545 __isl_take isl_basic_map *bmap);
2546 __isl_give isl_map *isl_map_zip(
2547 __isl_take isl_map *map);
2548 __isl_give isl_union_map *isl_union_map_zip(
2549 __isl_take isl_union_map *umap);
2551 Given a relation with nested relations for domain and range,
2552 interchange the range of the domain with the domain of the range.
2556 __isl_give isl_basic_map *isl_basic_map_curry(
2557 __isl_take isl_basic_map *bmap);
2558 __isl_give isl_basic_map *isl_basic_map_uncurry(
2559 __isl_take isl_basic_map *bmap);
2560 __isl_give isl_map *isl_map_curry(
2561 __isl_take isl_map *map);
2562 __isl_give isl_map *isl_map_uncurry(
2563 __isl_take isl_map *map);
2564 __isl_give isl_union_map *isl_union_map_curry(
2565 __isl_take isl_union_map *umap);
2567 Given a relation with a nested relation for domain,
2568 the C<curry> functions
2569 move the range of the nested relation out of the domain
2570 and use it as the domain of a nested relation in the range,
2571 with the original range as range of this nested relation.
2572 The C<uncurry> functions perform the inverse operation.
2574 =item * Aligning parameters
2576 __isl_give isl_basic_set *isl_basic_set_align_params(
2577 __isl_take isl_basic_set *bset,
2578 __isl_take isl_space *model);
2579 __isl_give isl_set *isl_set_align_params(
2580 __isl_take isl_set *set,
2581 __isl_take isl_space *model);
2582 __isl_give isl_basic_map *isl_basic_map_align_params(
2583 __isl_take isl_basic_map *bmap,
2584 __isl_take isl_space *model);
2585 __isl_give isl_map *isl_map_align_params(
2586 __isl_take isl_map *map,
2587 __isl_take isl_space *model);
2589 Change the order of the parameters of the given set or relation
2590 such that the first parameters match those of C<model>.
2591 This may involve the introduction of extra parameters.
2592 All parameters need to be named.
2594 =item * Dimension manipulation
2596 __isl_give isl_set *isl_set_add_dims(
2597 __isl_take isl_set *set,
2598 enum isl_dim_type type, unsigned n);
2599 __isl_give isl_map *isl_map_add_dims(
2600 __isl_take isl_map *map,
2601 enum isl_dim_type type, unsigned n);
2602 __isl_give isl_basic_set *isl_basic_set_insert_dims(
2603 __isl_take isl_basic_set *bset,
2604 enum isl_dim_type type, unsigned pos,
2606 __isl_give isl_basic_map *isl_basic_map_insert_dims(
2607 __isl_take isl_basic_map *bmap,
2608 enum isl_dim_type type, unsigned pos,
2610 __isl_give isl_set *isl_set_insert_dims(
2611 __isl_take isl_set *set,
2612 enum isl_dim_type type, unsigned pos, unsigned n);
2613 __isl_give isl_map *isl_map_insert_dims(
2614 __isl_take isl_map *map,
2615 enum isl_dim_type type, unsigned pos, unsigned n);
2616 __isl_give isl_basic_set *isl_basic_set_move_dims(
2617 __isl_take isl_basic_set *bset,
2618 enum isl_dim_type dst_type, unsigned dst_pos,
2619 enum isl_dim_type src_type, unsigned src_pos,
2621 __isl_give isl_basic_map *isl_basic_map_move_dims(
2622 __isl_take isl_basic_map *bmap,
2623 enum isl_dim_type dst_type, unsigned dst_pos,
2624 enum isl_dim_type src_type, unsigned src_pos,
2626 __isl_give isl_set *isl_set_move_dims(
2627 __isl_take isl_set *set,
2628 enum isl_dim_type dst_type, unsigned dst_pos,
2629 enum isl_dim_type src_type, unsigned src_pos,
2631 __isl_give isl_map *isl_map_move_dims(
2632 __isl_take isl_map *map,
2633 enum isl_dim_type dst_type, unsigned dst_pos,
2634 enum isl_dim_type src_type, unsigned src_pos,
2637 It is usually not advisable to directly change the (input or output)
2638 space of a set or a relation as this removes the name and the internal
2639 structure of the space. However, the above functions can be useful
2640 to add new parameters, assuming
2641 C<isl_set_align_params> and C<isl_map_align_params>
2646 =head2 Binary Operations
2648 The two arguments of a binary operation not only need to live
2649 in the same C<isl_ctx>, they currently also need to have
2650 the same (number of) parameters.
2652 =head3 Basic Operations
2656 =item * Intersection
2658 __isl_give isl_basic_set *isl_basic_set_intersect_params(
2659 __isl_take isl_basic_set *bset1,
2660 __isl_take isl_basic_set *bset2);
2661 __isl_give isl_basic_set *isl_basic_set_intersect(
2662 __isl_take isl_basic_set *bset1,
2663 __isl_take isl_basic_set *bset2);
2664 __isl_give isl_set *isl_set_intersect_params(
2665 __isl_take isl_set *set,
2666 __isl_take isl_set *params);
2667 __isl_give isl_set *isl_set_intersect(
2668 __isl_take isl_set *set1,
2669 __isl_take isl_set *set2);
2670 __isl_give isl_union_set *isl_union_set_intersect_params(
2671 __isl_take isl_union_set *uset,
2672 __isl_take isl_set *set);
2673 __isl_give isl_union_map *isl_union_map_intersect_params(
2674 __isl_take isl_union_map *umap,
2675 __isl_take isl_set *set);
2676 __isl_give isl_union_set *isl_union_set_intersect(
2677 __isl_take isl_union_set *uset1,
2678 __isl_take isl_union_set *uset2);
2679 __isl_give isl_basic_map *isl_basic_map_intersect_domain(
2680 __isl_take isl_basic_map *bmap,
2681 __isl_take isl_basic_set *bset);
2682 __isl_give isl_basic_map *isl_basic_map_intersect_range(
2683 __isl_take isl_basic_map *bmap,
2684 __isl_take isl_basic_set *bset);
2685 __isl_give isl_basic_map *isl_basic_map_intersect(
2686 __isl_take isl_basic_map *bmap1,
2687 __isl_take isl_basic_map *bmap2);
2688 __isl_give isl_map *isl_map_intersect_params(
2689 __isl_take isl_map *map,
2690 __isl_take isl_set *params);
2691 __isl_give isl_map *isl_map_intersect_domain(
2692 __isl_take isl_map *map,
2693 __isl_take isl_set *set);
2694 __isl_give isl_map *isl_map_intersect_range(
2695 __isl_take isl_map *map,
2696 __isl_take isl_set *set);
2697 __isl_give isl_map *isl_map_intersect(
2698 __isl_take isl_map *map1,
2699 __isl_take isl_map *map2);
2700 __isl_give isl_union_map *isl_union_map_intersect_domain(
2701 __isl_take isl_union_map *umap,
2702 __isl_take isl_union_set *uset);
2703 __isl_give isl_union_map *isl_union_map_intersect_range(
2704 __isl_take isl_union_map *umap,
2705 __isl_take isl_union_set *uset);
2706 __isl_give isl_union_map *isl_union_map_intersect(
2707 __isl_take isl_union_map *umap1,
2708 __isl_take isl_union_map *umap2);
2710 The second argument to the C<_params> functions needs to be
2711 a parametric (basic) set. For the other functions, a parametric set
2712 for either argument is only allowed if the other argument is
2713 a parametric set as well.
2717 __isl_give isl_set *isl_basic_set_union(
2718 __isl_take isl_basic_set *bset1,
2719 __isl_take isl_basic_set *bset2);
2720 __isl_give isl_map *isl_basic_map_union(
2721 __isl_take isl_basic_map *bmap1,
2722 __isl_take isl_basic_map *bmap2);
2723 __isl_give isl_set *isl_set_union(
2724 __isl_take isl_set *set1,
2725 __isl_take isl_set *set2);
2726 __isl_give isl_map *isl_map_union(
2727 __isl_take isl_map *map1,
2728 __isl_take isl_map *map2);
2729 __isl_give isl_union_set *isl_union_set_union(
2730 __isl_take isl_union_set *uset1,
2731 __isl_take isl_union_set *uset2);
2732 __isl_give isl_union_map *isl_union_map_union(
2733 __isl_take isl_union_map *umap1,
2734 __isl_take isl_union_map *umap2);
2736 =item * Set difference
2738 __isl_give isl_set *isl_set_subtract(
2739 __isl_take isl_set *set1,
2740 __isl_take isl_set *set2);
2741 __isl_give isl_map *isl_map_subtract(
2742 __isl_take isl_map *map1,
2743 __isl_take isl_map *map2);
2744 __isl_give isl_map *isl_map_subtract_domain(
2745 __isl_take isl_map *map,
2746 __isl_take isl_set *dom);
2747 __isl_give isl_map *isl_map_subtract_range(
2748 __isl_take isl_map *map,
2749 __isl_take isl_set *dom);
2750 __isl_give isl_union_set *isl_union_set_subtract(
2751 __isl_take isl_union_set *uset1,
2752 __isl_take isl_union_set *uset2);
2753 __isl_give isl_union_map *isl_union_map_subtract(
2754 __isl_take isl_union_map *umap1,
2755 __isl_take isl_union_map *umap2);
2756 __isl_give isl_union_map *isl_union_map_subtract_domain(
2757 __isl_take isl_union_map *umap,
2758 __isl_take isl_union_set *dom);
2759 __isl_give isl_union_map *isl_union_map_subtract_range(
2760 __isl_take isl_union_map *umap,
2761 __isl_take isl_union_set *dom);
2765 __isl_give isl_basic_set *isl_basic_set_apply(
2766 __isl_take isl_basic_set *bset,
2767 __isl_take isl_basic_map *bmap);
2768 __isl_give isl_set *isl_set_apply(
2769 __isl_take isl_set *set,
2770 __isl_take isl_map *map);
2771 __isl_give isl_union_set *isl_union_set_apply(
2772 __isl_take isl_union_set *uset,
2773 __isl_take isl_union_map *umap);
2774 __isl_give isl_basic_map *isl_basic_map_apply_domain(
2775 __isl_take isl_basic_map *bmap1,
2776 __isl_take isl_basic_map *bmap2);
2777 __isl_give isl_basic_map *isl_basic_map_apply_range(
2778 __isl_take isl_basic_map *bmap1,
2779 __isl_take isl_basic_map *bmap2);
2780 __isl_give isl_map *isl_map_apply_domain(
2781 __isl_take isl_map *map1,
2782 __isl_take isl_map *map2);
2783 __isl_give isl_union_map *isl_union_map_apply_domain(
2784 __isl_take isl_union_map *umap1,
2785 __isl_take isl_union_map *umap2);
2786 __isl_give isl_map *isl_map_apply_range(
2787 __isl_take isl_map *map1,
2788 __isl_take isl_map *map2);
2789 __isl_give isl_union_map *isl_union_map_apply_range(
2790 __isl_take isl_union_map *umap1,
2791 __isl_take isl_union_map *umap2);
2795 __isl_give isl_basic_set *
2796 isl_basic_set_preimage_multi_aff(
2797 __isl_take isl_basic_set *bset,
2798 __isl_take isl_multi_aff *ma);
2799 __isl_give isl_set *isl_set_preimage_multi_aff(
2800 __isl_take isl_set *set,
2801 __isl_take isl_multi_aff *ma);
2802 __isl_give isl_set *isl_set_preimage_pw_multi_aff(
2803 __isl_take isl_set *set,
2804 __isl_take isl_pw_multi_aff *pma);
2806 These functions compute the preimage of the given set under
2807 the given function. In other words, the expression is plugged
2808 into the set description.
2809 Objects of types C<isl_multi_aff> and C<isl_pw_multi_aff> are described in
2810 L</"Piecewise Multiple Quasi Affine Expressions">.
2812 =item * Cartesian Product
2814 __isl_give isl_set *isl_set_product(
2815 __isl_take isl_set *set1,
2816 __isl_take isl_set *set2);
2817 __isl_give isl_union_set *isl_union_set_product(
2818 __isl_take isl_union_set *uset1,
2819 __isl_take isl_union_set *uset2);
2820 __isl_give isl_basic_map *isl_basic_map_domain_product(
2821 __isl_take isl_basic_map *bmap1,
2822 __isl_take isl_basic_map *bmap2);
2823 __isl_give isl_basic_map *isl_basic_map_range_product(
2824 __isl_take isl_basic_map *bmap1,
2825 __isl_take isl_basic_map *bmap2);
2826 __isl_give isl_basic_map *isl_basic_map_product(
2827 __isl_take isl_basic_map *bmap1,
2828 __isl_take isl_basic_map *bmap2);
2829 __isl_give isl_map *isl_map_domain_product(
2830 __isl_take isl_map *map1,
2831 __isl_take isl_map *map2);
2832 __isl_give isl_map *isl_map_range_product(
2833 __isl_take isl_map *map1,
2834 __isl_take isl_map *map2);
2835 __isl_give isl_union_map *isl_union_map_domain_product(
2836 __isl_take isl_union_map *umap1,
2837 __isl_take isl_union_map *umap2);
2838 __isl_give isl_union_map *isl_union_map_range_product(
2839 __isl_take isl_union_map *umap1,
2840 __isl_take isl_union_map *umap2);
2841 __isl_give isl_map *isl_map_product(
2842 __isl_take isl_map *map1,
2843 __isl_take isl_map *map2);
2844 __isl_give isl_union_map *isl_union_map_product(
2845 __isl_take isl_union_map *umap1,
2846 __isl_take isl_union_map *umap2);
2848 The above functions compute the cross product of the given
2849 sets or relations. The domains and ranges of the results
2850 are wrapped maps between domains and ranges of the inputs.
2851 To obtain a ``flat'' product, use the following functions
2854 __isl_give isl_basic_set *isl_basic_set_flat_product(
2855 __isl_take isl_basic_set *bset1,
2856 __isl_take isl_basic_set *bset2);
2857 __isl_give isl_set *isl_set_flat_product(
2858 __isl_take isl_set *set1,
2859 __isl_take isl_set *set2);
2860 __isl_give isl_basic_map *isl_basic_map_flat_range_product(
2861 __isl_take isl_basic_map *bmap1,
2862 __isl_take isl_basic_map *bmap2);
2863 __isl_give isl_map *isl_map_flat_domain_product(
2864 __isl_take isl_map *map1,
2865 __isl_take isl_map *map2);
2866 __isl_give isl_map *isl_map_flat_range_product(
2867 __isl_take isl_map *map1,
2868 __isl_take isl_map *map2);
2869 __isl_give isl_union_map *isl_union_map_flat_range_product(
2870 __isl_take isl_union_map *umap1,
2871 __isl_take isl_union_map *umap2);
2872 __isl_give isl_basic_map *isl_basic_map_flat_product(
2873 __isl_take isl_basic_map *bmap1,
2874 __isl_take isl_basic_map *bmap2);
2875 __isl_give isl_map *isl_map_flat_product(
2876 __isl_take isl_map *map1,
2877 __isl_take isl_map *map2);
2879 =item * Simplification
2881 __isl_give isl_basic_set *isl_basic_set_gist(
2882 __isl_take isl_basic_set *bset,
2883 __isl_take isl_basic_set *context);
2884 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
2885 __isl_take isl_set *context);
2886 __isl_give isl_set *isl_set_gist_params(
2887 __isl_take isl_set *set,
2888 __isl_take isl_set *context);
2889 __isl_give isl_union_set *isl_union_set_gist(
2890 __isl_take isl_union_set *uset,
2891 __isl_take isl_union_set *context);
2892 __isl_give isl_union_set *isl_union_set_gist_params(
2893 __isl_take isl_union_set *uset,
2894 __isl_take isl_set *set);
2895 __isl_give isl_basic_map *isl_basic_map_gist(
2896 __isl_take isl_basic_map *bmap,
2897 __isl_take isl_basic_map *context);
2898 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
2899 __isl_take isl_map *context);
2900 __isl_give isl_map *isl_map_gist_params(
2901 __isl_take isl_map *map,
2902 __isl_take isl_set *context);
2903 __isl_give isl_map *isl_map_gist_domain(
2904 __isl_take isl_map *map,
2905 __isl_take isl_set *context);
2906 __isl_give isl_map *isl_map_gist_range(
2907 __isl_take isl_map *map,
2908 __isl_take isl_set *context);
2909 __isl_give isl_union_map *isl_union_map_gist(
2910 __isl_take isl_union_map *umap,
2911 __isl_take isl_union_map *context);
2912 __isl_give isl_union_map *isl_union_map_gist_params(
2913 __isl_take isl_union_map *umap,
2914 __isl_take isl_set *set);
2915 __isl_give isl_union_map *isl_union_map_gist_domain(
2916 __isl_take isl_union_map *umap,
2917 __isl_take isl_union_set *uset);
2918 __isl_give isl_union_map *isl_union_map_gist_range(
2919 __isl_take isl_union_map *umap,
2920 __isl_take isl_union_set *uset);
2922 The gist operation returns a set or relation that has the
2923 same intersection with the context as the input set or relation.
2924 Any implicit equality in the intersection is made explicit in the result,
2925 while all inequalities that are redundant with respect to the intersection
2927 In case of union sets and relations, the gist operation is performed
2932 =head3 Lexicographic Optimization
2934 Given a (basic) set C<set> (or C<bset>) and a zero-dimensional domain C<dom>,
2935 the following functions
2936 compute a set that contains the lexicographic minimum or maximum
2937 of the elements in C<set> (or C<bset>) for those values of the parameters
2938 that satisfy C<dom>.
2939 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
2940 that contains the parameter values in C<dom> for which C<set> (or C<bset>)
2942 In other words, the union of the parameter values
2943 for which the result is non-empty and of C<*empty>
2946 __isl_give isl_set *isl_basic_set_partial_lexmin(
2947 __isl_take isl_basic_set *bset,
2948 __isl_take isl_basic_set *dom,
2949 __isl_give isl_set **empty);
2950 __isl_give isl_set *isl_basic_set_partial_lexmax(
2951 __isl_take isl_basic_set *bset,
2952 __isl_take isl_basic_set *dom,
2953 __isl_give isl_set **empty);
2954 __isl_give isl_set *isl_set_partial_lexmin(
2955 __isl_take isl_set *set, __isl_take isl_set *dom,
2956 __isl_give isl_set **empty);
2957 __isl_give isl_set *isl_set_partial_lexmax(
2958 __isl_take isl_set *set, __isl_take isl_set *dom,
2959 __isl_give isl_set **empty);
2961 Given a (basic) set C<set> (or C<bset>), the following functions simply
2962 return a set containing the lexicographic minimum or maximum
2963 of the elements in C<set> (or C<bset>).
2964 In case of union sets, the optimum is computed per space.
2966 __isl_give isl_set *isl_basic_set_lexmin(
2967 __isl_take isl_basic_set *bset);
2968 __isl_give isl_set *isl_basic_set_lexmax(
2969 __isl_take isl_basic_set *bset);
2970 __isl_give isl_set *isl_set_lexmin(
2971 __isl_take isl_set *set);
2972 __isl_give isl_set *isl_set_lexmax(
2973 __isl_take isl_set *set);
2974 __isl_give isl_union_set *isl_union_set_lexmin(
2975 __isl_take isl_union_set *uset);
2976 __isl_give isl_union_set *isl_union_set_lexmax(
2977 __isl_take isl_union_set *uset);
2979 Given a (basic) relation C<map> (or C<bmap>) and a domain C<dom>,
2980 the following functions
2981 compute a relation that maps each element of C<dom>
2982 to the single lexicographic minimum or maximum
2983 of the elements that are associated to that same
2984 element in C<map> (or C<bmap>).
2985 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
2986 that contains the elements in C<dom> that do not map
2987 to any elements in C<map> (or C<bmap>).
2988 In other words, the union of the domain of the result and of C<*empty>
2991 __isl_give isl_map *isl_basic_map_partial_lexmax(
2992 __isl_take isl_basic_map *bmap,
2993 __isl_take isl_basic_set *dom,
2994 __isl_give isl_set **empty);
2995 __isl_give isl_map *isl_basic_map_partial_lexmin(
2996 __isl_take isl_basic_map *bmap,
2997 __isl_take isl_basic_set *dom,
2998 __isl_give isl_set **empty);
2999 __isl_give isl_map *isl_map_partial_lexmax(
3000 __isl_take isl_map *map, __isl_take isl_set *dom,
3001 __isl_give isl_set **empty);
3002 __isl_give isl_map *isl_map_partial_lexmin(
3003 __isl_take isl_map *map, __isl_take isl_set *dom,
3004 __isl_give isl_set **empty);
3006 Given a (basic) map C<map> (or C<bmap>), the following functions simply
3007 return a map mapping each element in the domain of
3008 C<map> (or C<bmap>) to the lexicographic minimum or maximum
3009 of all elements associated to that element.
3010 In case of union relations, the optimum is computed per space.
3012 __isl_give isl_map *isl_basic_map_lexmin(
3013 __isl_take isl_basic_map *bmap);
3014 __isl_give isl_map *isl_basic_map_lexmax(
3015 __isl_take isl_basic_map *bmap);
3016 __isl_give isl_map *isl_map_lexmin(
3017 __isl_take isl_map *map);
3018 __isl_give isl_map *isl_map_lexmax(
3019 __isl_take isl_map *map);
3020 __isl_give isl_union_map *isl_union_map_lexmin(
3021 __isl_take isl_union_map *umap);
3022 __isl_give isl_union_map *isl_union_map_lexmax(
3023 __isl_take isl_union_map *umap);
3025 The following functions return their result in the form of
3026 a piecewise multi-affine expression
3027 (See L<"Piecewise Multiple Quasi Affine Expressions">),
3028 but are otherwise equivalent to the corresponding functions
3029 returning a basic set or relation.
3031 __isl_give isl_pw_multi_aff *
3032 isl_basic_map_lexmin_pw_multi_aff(
3033 __isl_take isl_basic_map *bmap);
3034 __isl_give isl_pw_multi_aff *
3035 isl_basic_set_partial_lexmin_pw_multi_aff(
3036 __isl_take isl_basic_set *bset,
3037 __isl_take isl_basic_set *dom,
3038 __isl_give isl_set **empty);
3039 __isl_give isl_pw_multi_aff *
3040 isl_basic_set_partial_lexmax_pw_multi_aff(
3041 __isl_take isl_basic_set *bset,
3042 __isl_take isl_basic_set *dom,
3043 __isl_give isl_set **empty);
3044 __isl_give isl_pw_multi_aff *
3045 isl_basic_map_partial_lexmin_pw_multi_aff(
3046 __isl_take isl_basic_map *bmap,
3047 __isl_take isl_basic_set *dom,
3048 __isl_give isl_set **empty);
3049 __isl_give isl_pw_multi_aff *
3050 isl_basic_map_partial_lexmax_pw_multi_aff(
3051 __isl_take isl_basic_map *bmap,
3052 __isl_take isl_basic_set *dom,
3053 __isl_give isl_set **empty);
3054 __isl_give isl_pw_multi_aff *isl_map_lexmin_pw_multi_aff(
3055 __isl_take isl_map *map);
3056 __isl_give isl_pw_multi_aff *isl_map_lexmax_pw_multi_aff(
3057 __isl_take isl_map *map);
3061 Lists are defined over several element types, including
3062 C<isl_id>, C<isl_aff>, C<isl_pw_aff>, C<isl_constraint>,
3063 C<isl_basic_set>, C<isl_set>, C<isl_ast_expr> and C<isl_ast_node>.
3064 Here we take lists of C<isl_set>s as an example.
3065 Lists can be created, copied, modified and freed using the following functions.
3067 #include <isl/list.h>
3068 __isl_give isl_set_list *isl_set_list_from_set(
3069 __isl_take isl_set *el);
3070 __isl_give isl_set_list *isl_set_list_alloc(
3071 isl_ctx *ctx, int n);
3072 __isl_give isl_set_list *isl_set_list_copy(
3073 __isl_keep isl_set_list *list);
3074 __isl_give isl_set_list *isl_set_list_insert(
3075 __isl_take isl_set_list *list, unsigned pos,
3076 __isl_take isl_set *el);
3077 __isl_give isl_set_list *isl_set_list_add(
3078 __isl_take isl_set_list *list,
3079 __isl_take isl_set *el);
3080 __isl_give isl_set_list *isl_set_list_drop(
3081 __isl_take isl_set_list *list,
3082 unsigned first, unsigned n);
3083 __isl_give isl_set_list *isl_set_list_set_set(
3084 __isl_take isl_set_list *list, int index,
3085 __isl_take isl_set *set);
3086 __isl_give isl_set_list *isl_set_list_concat(
3087 __isl_take isl_set_list *list1,
3088 __isl_take isl_set_list *list2);
3089 void *isl_set_list_free(__isl_take isl_set_list *list);
3091 C<isl_set_list_alloc> creates an empty list with a capacity for
3092 C<n> elements. C<isl_set_list_from_set> creates a list with a single
3095 Lists can be inspected using the following functions.
3097 #include <isl/list.h>
3098 isl_ctx *isl_set_list_get_ctx(__isl_keep isl_set_list *list);
3099 int isl_set_list_n_set(__isl_keep isl_set_list *list);
3100 __isl_give isl_set *isl_set_list_get_set(
3101 __isl_keep isl_set_list *list, int index);
3102 int isl_set_list_foreach(__isl_keep isl_set_list *list,
3103 int (*fn)(__isl_take isl_set *el, void *user),
3106 Lists can be printed using
3108 #include <isl/list.h>
3109 __isl_give isl_printer *isl_printer_print_set_list(
3110 __isl_take isl_printer *p,
3111 __isl_keep isl_set_list *list);
3115 Vectors can be created, copied and freed using the following functions.
3117 #include <isl/vec.h>
3118 __isl_give isl_vec *isl_vec_alloc(isl_ctx *ctx,
3120 __isl_give isl_vec *isl_vec_copy(__isl_keep isl_vec *vec);
3121 void *isl_vec_free(__isl_take isl_vec *vec);
3123 Note that the elements of a newly created vector may have arbitrary values.
3124 The elements can be changed and inspected using the following functions.
3126 isl_ctx *isl_vec_get_ctx(__isl_keep isl_vec *vec);
3127 int isl_vec_size(__isl_keep isl_vec *vec);
3128 int isl_vec_get_element(__isl_keep isl_vec *vec,
3129 int pos, isl_int *v);
3130 __isl_give isl_vec *isl_vec_set_element(
3131 __isl_take isl_vec *vec, int pos, isl_int v);
3132 __isl_give isl_vec *isl_vec_set_element_si(
3133 __isl_take isl_vec *vec, int pos, int v);
3134 __isl_give isl_vec *isl_vec_set(__isl_take isl_vec *vec,
3136 __isl_give isl_vec *isl_vec_set_si(__isl_take isl_vec *vec,
3138 __isl_give isl_vec *isl_vec_fdiv_r(__isl_take isl_vec *vec,
3141 C<isl_vec_get_element> will return a negative value if anything went wrong.
3142 In that case, the value of C<*v> is undefined.
3144 The following function can be used to concatenate two vectors.
3146 __isl_give isl_vec *isl_vec_concat(__isl_take isl_vec *vec1,
3147 __isl_take isl_vec *vec2);
3151 Matrices can be created, copied and freed using the following functions.
3153 #include <isl/mat.h>
3154 __isl_give isl_mat *isl_mat_alloc(isl_ctx *ctx,
3155 unsigned n_row, unsigned n_col);
3156 __isl_give isl_mat *isl_mat_copy(__isl_keep isl_mat *mat);
3157 void isl_mat_free(__isl_take isl_mat *mat);
3159 Note that the elements of a newly created matrix may have arbitrary values.
3160 The elements can be changed and inspected using the following functions.
3162 isl_ctx *isl_mat_get_ctx(__isl_keep isl_mat *mat);
3163 int isl_mat_rows(__isl_keep isl_mat *mat);
3164 int isl_mat_cols(__isl_keep isl_mat *mat);
3165 int isl_mat_get_element(__isl_keep isl_mat *mat,
3166 int row, int col, isl_int *v);
3167 __isl_give isl_mat *isl_mat_set_element(__isl_take isl_mat *mat,
3168 int row, int col, isl_int v);
3169 __isl_give isl_mat *isl_mat_set_element_si(__isl_take isl_mat *mat,
3170 int row, int col, int v);
3172 C<isl_mat_get_element> will return a negative value if anything went wrong.
3173 In that case, the value of C<*v> is undefined.
3175 The following function can be used to compute the (right) inverse
3176 of a matrix, i.e., a matrix such that the product of the original
3177 and the inverse (in that order) is a multiple of the identity matrix.
3178 The input matrix is assumed to be of full row-rank.
3180 __isl_give isl_mat *isl_mat_right_inverse(__isl_take isl_mat *mat);
3182 The following function can be used to compute the (right) kernel
3183 (or null space) of a matrix, i.e., a matrix such that the product of
3184 the original and the kernel (in that order) is the zero matrix.
3186 __isl_give isl_mat *isl_mat_right_kernel(__isl_take isl_mat *mat);
3188 =head2 Piecewise Quasi Affine Expressions
3190 The zero quasi affine expression or the quasi affine expression
3191 that is equal to a specified dimension on a given domain can be created using
3193 __isl_give isl_aff *isl_aff_zero_on_domain(
3194 __isl_take isl_local_space *ls);
3195 __isl_give isl_pw_aff *isl_pw_aff_zero_on_domain(
3196 __isl_take isl_local_space *ls);
3197 __isl_give isl_aff *isl_aff_var_on_domain(
3198 __isl_take isl_local_space *ls,
3199 enum isl_dim_type type, unsigned pos);
3200 __isl_give isl_pw_aff *isl_pw_aff_var_on_domain(
3201 __isl_take isl_local_space *ls,
3202 enum isl_dim_type type, unsigned pos);
3204 Note that the space in which the resulting objects live is a map space
3205 with the given space as domain and a one-dimensional range.
3207 An empty piecewise quasi affine expression (one with no cells)
3208 or a piecewise quasi affine expression with a single cell can
3209 be created using the following functions.
3211 #include <isl/aff.h>
3212 __isl_give isl_pw_aff *isl_pw_aff_empty(
3213 __isl_take isl_space *space);
3214 __isl_give isl_pw_aff *isl_pw_aff_alloc(
3215 __isl_take isl_set *set, __isl_take isl_aff *aff);
3216 __isl_give isl_pw_aff *isl_pw_aff_from_aff(
3217 __isl_take isl_aff *aff);
3219 A piecewise quasi affine expression that is equal to 1 on a set
3220 and 0 outside the set can be created using the following function.
3222 #include <isl/aff.h>
3223 __isl_give isl_pw_aff *isl_set_indicator_function(
3224 __isl_take isl_set *set);
3226 Quasi affine expressions can be copied and freed using
3228 #include <isl/aff.h>
3229 __isl_give isl_aff *isl_aff_copy(__isl_keep isl_aff *aff);
3230 void *isl_aff_free(__isl_take isl_aff *aff);
3232 __isl_give isl_pw_aff *isl_pw_aff_copy(
3233 __isl_keep isl_pw_aff *pwaff);
3234 void *isl_pw_aff_free(__isl_take isl_pw_aff *pwaff);
3236 A (rational) bound on a dimension can be extracted from an C<isl_constraint>
3237 using the following function. The constraint is required to have
3238 a non-zero coefficient for the specified dimension.
3240 #include <isl/constraint.h>
3241 __isl_give isl_aff *isl_constraint_get_bound(
3242 __isl_keep isl_constraint *constraint,
3243 enum isl_dim_type type, int pos);
3245 The entire affine expression of the constraint can also be extracted
3246 using the following function.
3248 #include <isl/constraint.h>
3249 __isl_give isl_aff *isl_constraint_get_aff(
3250 __isl_keep isl_constraint *constraint);
3252 Conversely, an equality constraint equating
3253 the affine expression to zero or an inequality constraint enforcing
3254 the affine expression to be non-negative, can be constructed using
3256 __isl_give isl_constraint *isl_equality_from_aff(
3257 __isl_take isl_aff *aff);
3258 __isl_give isl_constraint *isl_inequality_from_aff(
3259 __isl_take isl_aff *aff);
3261 The expression can be inspected using
3263 #include <isl/aff.h>
3264 isl_ctx *isl_aff_get_ctx(__isl_keep isl_aff *aff);
3265 int isl_aff_dim(__isl_keep isl_aff *aff,
3266 enum isl_dim_type type);
3267 __isl_give isl_local_space *isl_aff_get_domain_local_space(
3268 __isl_keep isl_aff *aff);
3269 __isl_give isl_local_space *isl_aff_get_local_space(
3270 __isl_keep isl_aff *aff);
3271 const char *isl_aff_get_dim_name(__isl_keep isl_aff *aff,
3272 enum isl_dim_type type, unsigned pos);
3273 const char *isl_pw_aff_get_dim_name(
3274 __isl_keep isl_pw_aff *pa,
3275 enum isl_dim_type type, unsigned pos);
3276 int isl_pw_aff_has_dim_id(__isl_keep isl_pw_aff *pa,
3277 enum isl_dim_type type, unsigned pos);
3278 __isl_give isl_id *isl_pw_aff_get_dim_id(
3279 __isl_keep isl_pw_aff *pa,
3280 enum isl_dim_type type, unsigned pos);
3281 __isl_give isl_id *isl_pw_aff_get_tuple_id(
3282 __isl_keep isl_pw_aff *pa,
3283 enum isl_dim_type type);
3284 int isl_aff_get_constant(__isl_keep isl_aff *aff,
3286 int isl_aff_get_coefficient(__isl_keep isl_aff *aff,
3287 enum isl_dim_type type, int pos, isl_int *v);
3288 int isl_aff_get_denominator(__isl_keep isl_aff *aff,
3290 __isl_give isl_aff *isl_aff_get_div(
3291 __isl_keep isl_aff *aff, int pos);
3293 int isl_pw_aff_n_piece(__isl_keep isl_pw_aff *pwaff);
3294 int isl_pw_aff_foreach_piece(__isl_keep isl_pw_aff *pwaff,
3295 int (*fn)(__isl_take isl_set *set,
3296 __isl_take isl_aff *aff,
3297 void *user), void *user);
3299 int isl_aff_is_cst(__isl_keep isl_aff *aff);
3300 int isl_pw_aff_is_cst(__isl_keep isl_pw_aff *pwaff);
3302 int isl_aff_involves_dims(__isl_keep isl_aff *aff,
3303 enum isl_dim_type type, unsigned first, unsigned n);
3304 int isl_pw_aff_involves_dims(__isl_keep isl_pw_aff *pwaff,
3305 enum isl_dim_type type, unsigned first, unsigned n);
3307 isl_ctx *isl_pw_aff_get_ctx(__isl_keep isl_pw_aff *pwaff);
3308 unsigned isl_pw_aff_dim(__isl_keep isl_pw_aff *pwaff,
3309 enum isl_dim_type type);
3310 int isl_pw_aff_is_empty(__isl_keep isl_pw_aff *pwaff);
3312 It can be modified using
3314 #include <isl/aff.h>
3315 __isl_give isl_pw_aff *isl_pw_aff_set_tuple_id(
3316 __isl_take isl_pw_aff *pwaff,
3317 enum isl_dim_type type, __isl_take isl_id *id);
3318 __isl_give isl_aff *isl_aff_set_dim_name(
3319 __isl_take isl_aff *aff, enum isl_dim_type type,
3320 unsigned pos, const char *s);
3321 __isl_give isl_aff *isl_aff_set_dim_id(
3322 __isl_take isl_aff *aff, enum isl_dim_type type,
3323 unsigned pos, __isl_take isl_id *id);
3324 __isl_give isl_pw_aff *isl_pw_aff_set_dim_id(
3325 __isl_take isl_pw_aff *pma,
3326 enum isl_dim_type type, unsigned pos,
3327 __isl_take isl_id *id);
3328 __isl_give isl_aff *isl_aff_set_constant(
3329 __isl_take isl_aff *aff, isl_int v);
3330 __isl_give isl_aff *isl_aff_set_constant_si(
3331 __isl_take isl_aff *aff, int v);
3332 __isl_give isl_aff *isl_aff_set_coefficient(
3333 __isl_take isl_aff *aff,
3334 enum isl_dim_type type, int pos, isl_int v);
3335 __isl_give isl_aff *isl_aff_set_coefficient_si(
3336 __isl_take isl_aff *aff,
3337 enum isl_dim_type type, int pos, int v);
3338 __isl_give isl_aff *isl_aff_set_denominator(
3339 __isl_take isl_aff *aff, isl_int v);
3341 __isl_give isl_aff *isl_aff_add_constant(
3342 __isl_take isl_aff *aff, isl_int v);
3343 __isl_give isl_aff *isl_aff_add_constant_si(
3344 __isl_take isl_aff *aff, int v);
3345 __isl_give isl_aff *isl_aff_add_constant_num(
3346 __isl_take isl_aff *aff, isl_int v);
3347 __isl_give isl_aff *isl_aff_add_constant_num_si(
3348 __isl_take isl_aff *aff, int v);
3349 __isl_give isl_aff *isl_aff_add_coefficient(
3350 __isl_take isl_aff *aff,
3351 enum isl_dim_type type, int pos, isl_int v);
3352 __isl_give isl_aff *isl_aff_add_coefficient_si(
3353 __isl_take isl_aff *aff,
3354 enum isl_dim_type type, int pos, int v);
3356 __isl_give isl_aff *isl_aff_insert_dims(
3357 __isl_take isl_aff *aff,
3358 enum isl_dim_type type, unsigned first, unsigned n);
3359 __isl_give isl_pw_aff *isl_pw_aff_insert_dims(
3360 __isl_take isl_pw_aff *pwaff,
3361 enum isl_dim_type type, unsigned first, unsigned n);
3362 __isl_give isl_aff *isl_aff_add_dims(
3363 __isl_take isl_aff *aff,
3364 enum isl_dim_type type, unsigned n);
3365 __isl_give isl_pw_aff *isl_pw_aff_add_dims(
3366 __isl_take isl_pw_aff *pwaff,
3367 enum isl_dim_type type, unsigned n);
3368 __isl_give isl_aff *isl_aff_drop_dims(
3369 __isl_take isl_aff *aff,
3370 enum isl_dim_type type, unsigned first, unsigned n);
3371 __isl_give isl_pw_aff *isl_pw_aff_drop_dims(
3372 __isl_take isl_pw_aff *pwaff,
3373 enum isl_dim_type type, unsigned first, unsigned n);
3375 Note that the C<set_constant> and C<set_coefficient> functions
3376 set the I<numerator> of the constant or coefficient, while
3377 C<add_constant> and C<add_coefficient> add an integer value to
3378 the possibly rational constant or coefficient.
3379 The C<add_constant_num> functions add an integer value to
3382 To check whether an affine expressions is obviously zero
3383 or obviously equal to some other affine expression, use
3385 #include <isl/aff.h>
3386 int isl_aff_plain_is_zero(__isl_keep isl_aff *aff);
3387 int isl_aff_plain_is_equal(__isl_keep isl_aff *aff1,
3388 __isl_keep isl_aff *aff2);
3389 int isl_pw_aff_plain_is_equal(
3390 __isl_keep isl_pw_aff *pwaff1,
3391 __isl_keep isl_pw_aff *pwaff2);
3395 #include <isl/aff.h>
3396 __isl_give isl_aff *isl_aff_add(__isl_take isl_aff *aff1,
3397 __isl_take isl_aff *aff2);
3398 __isl_give isl_pw_aff *isl_pw_aff_add(
3399 __isl_take isl_pw_aff *pwaff1,
3400 __isl_take isl_pw_aff *pwaff2);
3401 __isl_give isl_pw_aff *isl_pw_aff_min(
3402 __isl_take isl_pw_aff *pwaff1,
3403 __isl_take isl_pw_aff *pwaff2);
3404 __isl_give isl_pw_aff *isl_pw_aff_max(
3405 __isl_take isl_pw_aff *pwaff1,
3406 __isl_take isl_pw_aff *pwaff2);
3407 __isl_give isl_aff *isl_aff_sub(__isl_take isl_aff *aff1,
3408 __isl_take isl_aff *aff2);
3409 __isl_give isl_pw_aff *isl_pw_aff_sub(
3410 __isl_take isl_pw_aff *pwaff1,
3411 __isl_take isl_pw_aff *pwaff2);
3412 __isl_give isl_aff *isl_aff_neg(__isl_take isl_aff *aff);
3413 __isl_give isl_pw_aff *isl_pw_aff_neg(
3414 __isl_take isl_pw_aff *pwaff);
3415 __isl_give isl_aff *isl_aff_ceil(__isl_take isl_aff *aff);
3416 __isl_give isl_pw_aff *isl_pw_aff_ceil(
3417 __isl_take isl_pw_aff *pwaff);
3418 __isl_give isl_aff *isl_aff_floor(__isl_take isl_aff *aff);
3419 __isl_give isl_pw_aff *isl_pw_aff_floor(
3420 __isl_take isl_pw_aff *pwaff);
3421 __isl_give isl_aff *isl_aff_mod(__isl_take isl_aff *aff,
3423 __isl_give isl_pw_aff *isl_pw_aff_mod(
3424 __isl_take isl_pw_aff *pwaff, isl_int mod);
3425 __isl_give isl_aff *isl_aff_scale(__isl_take isl_aff *aff,
3427 __isl_give isl_pw_aff *isl_pw_aff_scale(
3428 __isl_take isl_pw_aff *pwaff, isl_int f);
3429 __isl_give isl_aff *isl_aff_scale_down(__isl_take isl_aff *aff,
3431 __isl_give isl_aff *isl_aff_scale_down_ui(
3432 __isl_take isl_aff *aff, unsigned f);
3433 __isl_give isl_pw_aff *isl_pw_aff_scale_down(
3434 __isl_take isl_pw_aff *pwaff, isl_int f);
3436 __isl_give isl_pw_aff *isl_pw_aff_list_min(
3437 __isl_take isl_pw_aff_list *list);
3438 __isl_give isl_pw_aff *isl_pw_aff_list_max(
3439 __isl_take isl_pw_aff_list *list);
3441 __isl_give isl_pw_aff *isl_pw_aff_coalesce(
3442 __isl_take isl_pw_aff *pwqp);
3444 __isl_give isl_aff *isl_aff_align_params(
3445 __isl_take isl_aff *aff,
3446 __isl_take isl_space *model);
3447 __isl_give isl_pw_aff *isl_pw_aff_align_params(
3448 __isl_take isl_pw_aff *pwaff,
3449 __isl_take isl_space *model);
3451 __isl_give isl_aff *isl_aff_project_domain_on_params(
3452 __isl_take isl_aff *aff);
3454 __isl_give isl_aff *isl_aff_gist_params(
3455 __isl_take isl_aff *aff,
3456 __isl_take isl_set *context);
3457 __isl_give isl_aff *isl_aff_gist(__isl_take isl_aff *aff,
3458 __isl_take isl_set *context);
3459 __isl_give isl_pw_aff *isl_pw_aff_gist_params(
3460 __isl_take isl_pw_aff *pwaff,
3461 __isl_take isl_set *context);
3462 __isl_give isl_pw_aff *isl_pw_aff_gist(
3463 __isl_take isl_pw_aff *pwaff,
3464 __isl_take isl_set *context);
3466 __isl_give isl_set *isl_pw_aff_domain(
3467 __isl_take isl_pw_aff *pwaff);
3468 __isl_give isl_pw_aff *isl_pw_aff_intersect_domain(
3469 __isl_take isl_pw_aff *pa,
3470 __isl_take isl_set *set);
3471 __isl_give isl_pw_aff *isl_pw_aff_intersect_params(
3472 __isl_take isl_pw_aff *pa,
3473 __isl_take isl_set *set);
3475 __isl_give isl_aff *isl_aff_mul(__isl_take isl_aff *aff1,
3476 __isl_take isl_aff *aff2);
3477 __isl_give isl_aff *isl_aff_div(__isl_take isl_aff *aff1,
3478 __isl_take isl_aff *aff2);
3479 __isl_give isl_pw_aff *isl_pw_aff_mul(
3480 __isl_take isl_pw_aff *pwaff1,
3481 __isl_take isl_pw_aff *pwaff2);
3482 __isl_give isl_pw_aff *isl_pw_aff_div(
3483 __isl_take isl_pw_aff *pa1,
3484 __isl_take isl_pw_aff *pa2);
3485 __isl_give isl_pw_aff *isl_pw_aff_tdiv_q(
3486 __isl_take isl_pw_aff *pa1,
3487 __isl_take isl_pw_aff *pa2);
3488 __isl_give isl_pw_aff *isl_pw_aff_tdiv_r(
3489 __isl_take isl_pw_aff *pa1,
3490 __isl_take isl_pw_aff *pa2);
3492 When multiplying two affine expressions, at least one of the two needs
3493 to be a constant. Similarly, when dividing an affine expression by another,
3494 the second expression needs to be a constant.
3495 C<isl_pw_aff_tdiv_q> computes the quotient of an integer division with
3496 rounding towards zero. C<isl_pw_aff_tdiv_r> computes the corresponding
3499 #include <isl/aff.h>
3500 __isl_give isl_aff *isl_aff_pullback_multi_aff(
3501 __isl_take isl_aff *aff,
3502 __isl_take isl_multi_aff *ma);
3503 __isl_give isl_pw_aff *isl_pw_aff_pullback_multi_aff(
3504 __isl_take isl_pw_aff *pa,
3505 __isl_take isl_multi_aff *ma);
3506 __isl_give isl_pw_aff *isl_pw_aff_pullback_pw_multi_aff(
3507 __isl_take isl_pw_aff *pa,
3508 __isl_take isl_pw_multi_aff *pma);
3510 These functions precompose the input expression by the given
3511 C<isl_multi_aff> or C<isl_pw_multi_aff>. In other words,
3512 the C<isl_multi_aff> or C<isl_pw_multi_aff> is plugged
3513 into the (piecewise) affine expression.
3514 Objects of type C<isl_multi_aff> are described in
3515 L</"Piecewise Multiple Quasi Affine Expressions">.
3517 #include <isl/aff.h>
3518 __isl_give isl_basic_set *isl_aff_zero_basic_set(
3519 __isl_take isl_aff *aff);
3520 __isl_give isl_basic_set *isl_aff_neg_basic_set(
3521 __isl_take isl_aff *aff);
3522 __isl_give isl_basic_set *isl_aff_le_basic_set(
3523 __isl_take isl_aff *aff1, __isl_take isl_aff *aff2);
3524 __isl_give isl_basic_set *isl_aff_ge_basic_set(
3525 __isl_take isl_aff *aff1, __isl_take isl_aff *aff2);
3526 __isl_give isl_set *isl_pw_aff_eq_set(
3527 __isl_take isl_pw_aff *pwaff1,
3528 __isl_take isl_pw_aff *pwaff2);
3529 __isl_give isl_set *isl_pw_aff_ne_set(
3530 __isl_take isl_pw_aff *pwaff1,
3531 __isl_take isl_pw_aff *pwaff2);
3532 __isl_give isl_set *isl_pw_aff_le_set(
3533 __isl_take isl_pw_aff *pwaff1,
3534 __isl_take isl_pw_aff *pwaff2);
3535 __isl_give isl_set *isl_pw_aff_lt_set(
3536 __isl_take isl_pw_aff *pwaff1,
3537 __isl_take isl_pw_aff *pwaff2);
3538 __isl_give isl_set *isl_pw_aff_ge_set(
3539 __isl_take isl_pw_aff *pwaff1,
3540 __isl_take isl_pw_aff *pwaff2);
3541 __isl_give isl_set *isl_pw_aff_gt_set(
3542 __isl_take isl_pw_aff *pwaff1,
3543 __isl_take isl_pw_aff *pwaff2);
3545 __isl_give isl_set *isl_pw_aff_list_eq_set(
3546 __isl_take isl_pw_aff_list *list1,
3547 __isl_take isl_pw_aff_list *list2);
3548 __isl_give isl_set *isl_pw_aff_list_ne_set(
3549 __isl_take isl_pw_aff_list *list1,
3550 __isl_take isl_pw_aff_list *list2);
3551 __isl_give isl_set *isl_pw_aff_list_le_set(
3552 __isl_take isl_pw_aff_list *list1,
3553 __isl_take isl_pw_aff_list *list2);
3554 __isl_give isl_set *isl_pw_aff_list_lt_set(
3555 __isl_take isl_pw_aff_list *list1,
3556 __isl_take isl_pw_aff_list *list2);
3557 __isl_give isl_set *isl_pw_aff_list_ge_set(
3558 __isl_take isl_pw_aff_list *list1,
3559 __isl_take isl_pw_aff_list *list2);
3560 __isl_give isl_set *isl_pw_aff_list_gt_set(
3561 __isl_take isl_pw_aff_list *list1,
3562 __isl_take isl_pw_aff_list *list2);
3564 The function C<isl_aff_neg_basic_set> returns a basic set
3565 containing those elements in the domain space
3566 of C<aff> where C<aff> is negative.
3567 The function C<isl_aff_ge_basic_set> returns a basic set
3568 containing those elements in the shared space
3569 of C<aff1> and C<aff2> where C<aff1> is greater than or equal to C<aff2>.
3570 The function C<isl_pw_aff_ge_set> returns a set
3571 containing those elements in the shared domain
3572 of C<pwaff1> and C<pwaff2> where C<pwaff1> is greater than or equal to C<pwaff2>.
3573 The functions operating on C<isl_pw_aff_list> apply the corresponding
3574 C<isl_pw_aff> function to each pair of elements in the two lists.
3576 #include <isl/aff.h>
3577 __isl_give isl_set *isl_pw_aff_nonneg_set(
3578 __isl_take isl_pw_aff *pwaff);
3579 __isl_give isl_set *isl_pw_aff_zero_set(
3580 __isl_take isl_pw_aff *pwaff);
3581 __isl_give isl_set *isl_pw_aff_non_zero_set(
3582 __isl_take isl_pw_aff *pwaff);
3584 The function C<isl_pw_aff_nonneg_set> returns a set
3585 containing those elements in the domain
3586 of C<pwaff> where C<pwaff> is non-negative.
3588 #include <isl/aff.h>
3589 __isl_give isl_pw_aff *isl_pw_aff_cond(
3590 __isl_take isl_pw_aff *cond,
3591 __isl_take isl_pw_aff *pwaff_true,
3592 __isl_take isl_pw_aff *pwaff_false);
3594 The function C<isl_pw_aff_cond> performs a conditional operator
3595 and returns an expression that is equal to C<pwaff_true>
3596 for elements where C<cond> is non-zero and equal to C<pwaff_false> for elements
3597 where C<cond> is zero.
3599 #include <isl/aff.h>
3600 __isl_give isl_pw_aff *isl_pw_aff_union_min(
3601 __isl_take isl_pw_aff *pwaff1,
3602 __isl_take isl_pw_aff *pwaff2);
3603 __isl_give isl_pw_aff *isl_pw_aff_union_max(
3604 __isl_take isl_pw_aff *pwaff1,
3605 __isl_take isl_pw_aff *pwaff2);
3606 __isl_give isl_pw_aff *isl_pw_aff_union_add(
3607 __isl_take isl_pw_aff *pwaff1,
3608 __isl_take isl_pw_aff *pwaff2);
3610 The function C<isl_pw_aff_union_max> computes a piecewise quasi-affine
3611 expression with a domain that is the union of those of C<pwaff1> and
3612 C<pwaff2> and such that on each cell, the quasi-affine expression is
3613 the maximum of those of C<pwaff1> and C<pwaff2>. If only one of
3614 C<pwaff1> or C<pwaff2> is defined on a given cell, then the
3615 associated expression is the defined one.
3617 An expression can be read from input using
3619 #include <isl/aff.h>
3620 __isl_give isl_aff *isl_aff_read_from_str(
3621 isl_ctx *ctx, const char *str);
3622 __isl_give isl_pw_aff *isl_pw_aff_read_from_str(
3623 isl_ctx *ctx, const char *str);
3625 An expression can be printed using
3627 #include <isl/aff.h>
3628 __isl_give isl_printer *isl_printer_print_aff(
3629 __isl_take isl_printer *p, __isl_keep isl_aff *aff);
3631 __isl_give isl_printer *isl_printer_print_pw_aff(
3632 __isl_take isl_printer *p,
3633 __isl_keep isl_pw_aff *pwaff);
3635 =head2 Piecewise Multiple Quasi Affine Expressions
3637 An C<isl_multi_aff> object represents a sequence of
3638 zero or more affine expressions, all defined on the same domain space.
3639 Similarly, an C<isl_multi_pw_aff> object represents a sequence of
3640 zero or more piecewise affine expressions.
3642 An C<isl_multi_aff> can be constructed from a single
3643 C<isl_aff> or an C<isl_aff_list> using the
3644 following functions. Similarly for C<isl_multi_pw_aff>.
3646 #include <isl/aff.h>
3647 __isl_give isl_multi_aff *isl_multi_aff_from_aff(
3648 __isl_take isl_aff *aff);
3649 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_from_pw_aff(
3650 __isl_take isl_pw_aff *pa);
3651 __isl_give isl_multi_aff *isl_multi_aff_from_aff_list(
3652 __isl_take isl_space *space,
3653 __isl_take isl_aff_list *list);
3655 An empty piecewise multiple quasi affine expression (one with no cells),
3656 the zero piecewise multiple quasi affine expression (with value zero
3657 for each output dimension),
3658 a piecewise multiple quasi affine expression with a single cell (with
3659 either a universe or a specified domain) or
3660 a zero-dimensional piecewise multiple quasi affine expression
3662 can be created using the following functions.
3664 #include <isl/aff.h>
3665 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_empty(
3666 __isl_take isl_space *space);
3667 __isl_give isl_multi_aff *isl_multi_aff_zero(
3668 __isl_take isl_space *space);
3669 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_zero(
3670 __isl_take isl_space *space);
3671 __isl_give isl_multi_aff *isl_multi_aff_identity(
3672 __isl_take isl_space *space);
3673 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_identity(
3674 __isl_take isl_space *space);
3675 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_identity(
3676 __isl_take isl_space *space);
3677 __isl_give isl_pw_multi_aff *
3678 isl_pw_multi_aff_from_multi_aff(
3679 __isl_take isl_multi_aff *ma);
3680 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_alloc(
3681 __isl_take isl_set *set,
3682 __isl_take isl_multi_aff *maff);
3683 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_domain(
3684 __isl_take isl_set *set);
3686 __isl_give isl_union_pw_multi_aff *
3687 isl_union_pw_multi_aff_empty(
3688 __isl_take isl_space *space);
3689 __isl_give isl_union_pw_multi_aff *
3690 isl_union_pw_multi_aff_add_pw_multi_aff(
3691 __isl_take isl_union_pw_multi_aff *upma,
3692 __isl_take isl_pw_multi_aff *pma);
3693 __isl_give isl_union_pw_multi_aff *
3694 isl_union_pw_multi_aff_from_domain(
3695 __isl_take isl_union_set *uset);
3697 A piecewise multiple quasi affine expression can also be initialized
3698 from an C<isl_set> or C<isl_map>, provided the C<isl_set> is a singleton
3699 and the C<isl_map> is single-valued.
3701 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_set(
3702 __isl_take isl_set *set);
3703 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_map(
3704 __isl_take isl_map *map);
3706 Multiple quasi affine expressions can be copied and freed using
3708 #include <isl/aff.h>
3709 __isl_give isl_multi_aff *isl_multi_aff_copy(
3710 __isl_keep isl_multi_aff *maff);
3711 void *isl_multi_aff_free(__isl_take isl_multi_aff *maff);
3713 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_copy(
3714 __isl_keep isl_pw_multi_aff *pma);
3715 void *isl_pw_multi_aff_free(
3716 __isl_take isl_pw_multi_aff *pma);
3718 __isl_give isl_union_pw_multi_aff *
3719 isl_union_pw_multi_aff_copy(
3720 __isl_keep isl_union_pw_multi_aff *upma);
3721 void *isl_union_pw_multi_aff_free(
3722 __isl_take isl_union_pw_multi_aff *upma);
3724 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_copy(
3725 __isl_keep isl_multi_pw_aff *mpa);
3726 void *isl_multi_pw_aff_free(
3727 __isl_take isl_multi_pw_aff *mpa);
3729 The expression can be inspected using
3731 #include <isl/aff.h>
3732 isl_ctx *isl_multi_aff_get_ctx(
3733 __isl_keep isl_multi_aff *maff);
3734 isl_ctx *isl_pw_multi_aff_get_ctx(
3735 __isl_keep isl_pw_multi_aff *pma);
3736 isl_ctx *isl_union_pw_multi_aff_get_ctx(
3737 __isl_keep isl_union_pw_multi_aff *upma);
3738 isl_ctx *isl_multi_pw_aff_get_ctx(
3739 __isl_keep isl_multi_pw_aff *mpa);
3740 unsigned isl_multi_aff_dim(__isl_keep isl_multi_aff *maff,
3741 enum isl_dim_type type);
3742 unsigned isl_pw_multi_aff_dim(
3743 __isl_keep isl_pw_multi_aff *pma,
3744 enum isl_dim_type type);
3745 unsigned isl_multi_pw_aff_dim(
3746 __isl_keep isl_multi_pw_aff *mpa,
3747 enum isl_dim_type type);
3748 __isl_give isl_aff *isl_multi_aff_get_aff(
3749 __isl_keep isl_multi_aff *multi, int pos);
3750 __isl_give isl_pw_aff *isl_pw_multi_aff_get_pw_aff(
3751 __isl_keep isl_pw_multi_aff *pma, int pos);
3752 __isl_give isl_pw_aff *isl_multi_pw_aff_get_pw_aff(
3753 __isl_keep isl_multi_pw_aff *mpa, int pos);
3754 const char *isl_pw_multi_aff_get_dim_name(
3755 __isl_keep isl_pw_multi_aff *pma,
3756 enum isl_dim_type type, unsigned pos);
3757 __isl_give isl_id *isl_pw_multi_aff_get_dim_id(
3758 __isl_keep isl_pw_multi_aff *pma,
3759 enum isl_dim_type type, unsigned pos);
3760 const char *isl_multi_aff_get_tuple_name(
3761 __isl_keep isl_multi_aff *multi,
3762 enum isl_dim_type type);
3763 int isl_pw_multi_aff_has_tuple_name(
3764 __isl_keep isl_pw_multi_aff *pma,
3765 enum isl_dim_type type);
3766 const char *isl_pw_multi_aff_get_tuple_name(
3767 __isl_keep isl_pw_multi_aff *pma,
3768 enum isl_dim_type type);
3769 int isl_pw_multi_aff_has_tuple_id(
3770 __isl_keep isl_pw_multi_aff *pma,
3771 enum isl_dim_type type);
3772 __isl_give isl_id *isl_pw_multi_aff_get_tuple_id(
3773 __isl_keep isl_pw_multi_aff *pma,
3774 enum isl_dim_type type);
3776 int isl_pw_multi_aff_foreach_piece(
3777 __isl_keep isl_pw_multi_aff *pma,
3778 int (*fn)(__isl_take isl_set *set,
3779 __isl_take isl_multi_aff *maff,
3780 void *user), void *user);
3782 int isl_union_pw_multi_aff_foreach_pw_multi_aff(
3783 __isl_keep isl_union_pw_multi_aff *upma,
3784 int (*fn)(__isl_take isl_pw_multi_aff *pma,
3785 void *user), void *user);
3787 It can be modified using
3789 #include <isl/aff.h>
3790 __isl_give isl_multi_aff *isl_multi_aff_set_aff(
3791 __isl_take isl_multi_aff *multi, int pos,
3792 __isl_take isl_aff *aff);
3793 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_set_pw_aff(
3794 __isl_take isl_pw_multi_aff *pma, unsigned pos,
3795 __isl_take isl_pw_aff *pa);
3796 __isl_give isl_multi_aff *isl_multi_aff_set_dim_name(
3797 __isl_take isl_multi_aff *maff,
3798 enum isl_dim_type type, unsigned pos, const char *s);
3799 __isl_give isl_multi_aff *isl_multi_aff_set_tuple_name(
3800 __isl_take isl_multi_aff *maff,
3801 enum isl_dim_type type, const char *s);
3802 __isl_give isl_multi_aff *isl_multi_aff_set_tuple_id(
3803 __isl_take isl_multi_aff *maff,
3804 enum isl_dim_type type, __isl_take isl_id *id);
3805 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_set_tuple_id(
3806 __isl_take isl_pw_multi_aff *pma,
3807 enum isl_dim_type type, __isl_take isl_id *id);
3809 __isl_give isl_multi_pw_aff *
3810 isl_multi_pw_aff_set_dim_name(
3811 __isl_take isl_multi_pw_aff *mpa,
3812 enum isl_dim_type type, unsigned pos, const char *s);
3813 __isl_give isl_multi_pw_aff *
3814 isl_multi_pw_aff_set_tuple_name(
3815 __isl_take isl_multi_pw_aff *mpa,
3816 enum isl_dim_type type, const char *s);
3818 __isl_give isl_multi_aff *isl_multi_aff_insert_dims(
3819 __isl_take isl_multi_aff *ma,
3820 enum isl_dim_type type, unsigned first, unsigned n);
3821 __isl_give isl_multi_aff *isl_multi_aff_add_dims(
3822 __isl_take isl_multi_aff *ma,
3823 enum isl_dim_type type, unsigned n);
3824 __isl_give isl_multi_aff *isl_multi_aff_drop_dims(
3825 __isl_take isl_multi_aff *maff,
3826 enum isl_dim_type type, unsigned first, unsigned n);
3827 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_drop_dims(
3828 __isl_take isl_pw_multi_aff *pma,
3829 enum isl_dim_type type, unsigned first, unsigned n);
3831 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_insert_dims(
3832 __isl_take isl_multi_pw_aff *mpa,
3833 enum isl_dim_type type, unsigned first, unsigned n);
3834 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_add_dims(
3835 __isl_take isl_multi_pw_aff *mpa,
3836 enum isl_dim_type type, unsigned n);
3838 To check whether two multiple affine expressions are
3839 obviously equal to each other, use
3841 int isl_multi_aff_plain_is_equal(__isl_keep isl_multi_aff *maff1,
3842 __isl_keep isl_multi_aff *maff2);
3843 int isl_pw_multi_aff_plain_is_equal(
3844 __isl_keep isl_pw_multi_aff *pma1,
3845 __isl_keep isl_pw_multi_aff *pma2);
3849 #include <isl/aff.h>
3850 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_lexmin(
3851 __isl_take isl_pw_multi_aff *pma1,
3852 __isl_take isl_pw_multi_aff *pma2);
3853 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_lexmax(
3854 __isl_take isl_pw_multi_aff *pma1,
3855 __isl_take isl_pw_multi_aff *pma2);
3856 __isl_give isl_multi_aff *isl_multi_aff_add(
3857 __isl_take isl_multi_aff *maff1,
3858 __isl_take isl_multi_aff *maff2);
3859 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_add(
3860 __isl_take isl_pw_multi_aff *pma1,
3861 __isl_take isl_pw_multi_aff *pma2);
3862 __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_add(
3863 __isl_take isl_union_pw_multi_aff *upma1,
3864 __isl_take isl_union_pw_multi_aff *upma2);
3865 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_add(
3866 __isl_take isl_pw_multi_aff *pma1,
3867 __isl_take isl_pw_multi_aff *pma2);
3868 __isl_give isl_multi_aff *isl_multi_aff_scale(
3869 __isl_take isl_multi_aff *maff,
3871 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_params(
3872 __isl_take isl_pw_multi_aff *pma,
3873 __isl_take isl_set *set);
3874 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_domain(
3875 __isl_take isl_pw_multi_aff *pma,
3876 __isl_take isl_set *set);
3877 __isl_give isl_multi_aff *isl_multi_aff_lift(
3878 __isl_take isl_multi_aff *maff,
3879 __isl_give isl_local_space **ls);
3880 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_coalesce(
3881 __isl_take isl_pw_multi_aff *pma);
3882 __isl_give isl_multi_aff *isl_multi_aff_align_params(
3883 __isl_take isl_multi_aff *multi,
3884 __isl_take isl_space *model);
3885 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_align_params(
3886 __isl_take isl_pw_multi_aff *pma,
3887 __isl_take isl_space *model);
3888 __isl_give isl_pw_multi_aff *
3889 isl_pw_multi_aff_project_domain_on_params(
3890 __isl_take isl_pw_multi_aff *pma);
3891 __isl_give isl_multi_aff *isl_multi_aff_gist_params(
3892 __isl_take isl_multi_aff *maff,
3893 __isl_take isl_set *context);
3894 __isl_give isl_multi_aff *isl_multi_aff_gist(
3895 __isl_take isl_multi_aff *maff,
3896 __isl_take isl_set *context);
3897 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_gist_params(
3898 __isl_take isl_pw_multi_aff *pma,
3899 __isl_take isl_set *set);
3900 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_gist(
3901 __isl_take isl_pw_multi_aff *pma,
3902 __isl_take isl_set *set);
3903 __isl_give isl_set *isl_pw_multi_aff_domain(
3904 __isl_take isl_pw_multi_aff *pma);
3905 __isl_give isl_union_set *isl_union_pw_multi_aff_domain(
3906 __isl_take isl_union_pw_multi_aff *upma);
3907 __isl_give isl_multi_aff *isl_multi_aff_range_splice(
3908 __isl_take isl_multi_aff *ma1, unsigned pos,
3909 __isl_take isl_multi_aff *ma2);
3910 __isl_give isl_multi_aff *isl_multi_aff_splice(
3911 __isl_take isl_multi_aff *ma1,
3912 unsigned in_pos, unsigned out_pos,
3913 __isl_take isl_multi_aff *ma2);
3914 __isl_give isl_multi_aff *isl_multi_aff_range_product(
3915 __isl_take isl_multi_aff *ma1,
3916 __isl_take isl_multi_aff *ma2);
3917 __isl_give isl_multi_aff *isl_multi_aff_flat_range_product(
3918 __isl_take isl_multi_aff *ma1,
3919 __isl_take isl_multi_aff *ma2);
3920 __isl_give isl_multi_aff *isl_multi_aff_product(
3921 __isl_take isl_multi_aff *ma1,
3922 __isl_take isl_multi_aff *ma2);
3923 __isl_give isl_pw_multi_aff *
3924 isl_pw_multi_aff_range_product(
3925 __isl_take isl_pw_multi_aff *pma1,
3926 __isl_take isl_pw_multi_aff *pma2);
3927 __isl_give isl_pw_multi_aff *
3928 isl_pw_multi_aff_flat_range_product(
3929 __isl_take isl_pw_multi_aff *pma1,
3930 __isl_take isl_pw_multi_aff *pma2);
3931 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_product(
3932 __isl_take isl_pw_multi_aff *pma1,
3933 __isl_take isl_pw_multi_aff *pma2);
3934 __isl_give isl_union_pw_multi_aff *
3935 isl_union_pw_multi_aff_flat_range_product(
3936 __isl_take isl_union_pw_multi_aff *upma1,
3937 __isl_take isl_union_pw_multi_aff *upma2);
3938 __isl_give isl_multi_pw_aff *
3939 isl_multi_pw_aff_range_splice(
3940 __isl_take isl_multi_pw_aff *mpa1, unsigned pos,
3941 __isl_take isl_multi_pw_aff *mpa2);
3942 __isl_give isl_multi_pw_aff *isl_multi_pw_aff_splice(
3943 __isl_take isl_multi_pw_aff *mpa1,
3944 unsigned in_pos, unsigned out_pos,
3945 __isl_take isl_multi_pw_aff *mpa2);
3946 __isl_give isl_multi_pw_aff *
3947 isl_multi_pw_aff_range_product(
3948 __isl_take isl_multi_pw_aff *mpa1,
3949 __isl_take isl_multi_pw_aff *mpa2);
3950 __isl_give isl_multi_pw_aff *
3951 isl_multi_pw_aff_flat_range_product(
3952 __isl_take isl_multi_pw_aff *mpa1,
3953 __isl_take isl_multi_pw_aff *mpa2);
3955 If the C<ls> argument of C<isl_multi_aff_lift> is not C<NULL>,
3956 then it is assigned the local space that lies at the basis of
3957 the lifting applied.
3959 #include <isl/aff.h>
3960 __isl_give isl_multi_aff *isl_multi_aff_pullback_multi_aff(
3961 __isl_take isl_multi_aff *ma1,
3962 __isl_take isl_multi_aff *ma2);
3963 __isl_give isl_pw_multi_aff *
3964 isl_pw_multi_aff_pullback_multi_aff(
3965 __isl_take isl_pw_multi_aff *pma,
3966 __isl_take isl_multi_aff *ma);
3967 __isl_give isl_pw_multi_aff *
3968 isl_pw_multi_aff_pullback_pw_multi_aff(
3969 __isl_take isl_pw_multi_aff *pma1,
3970 __isl_take isl_pw_multi_aff *pma2);
3972 The function C<isl_multi_aff_pullback_multi_aff> precomposes C<ma1> by C<ma2>.
3973 In other words, C<ma2> is plugged
3976 __isl_give isl_set *isl_multi_aff_lex_le_set(
3977 __isl_take isl_multi_aff *ma1,
3978 __isl_take isl_multi_aff *ma2);
3979 __isl_give isl_set *isl_multi_aff_lex_ge_set(
3980 __isl_take isl_multi_aff *ma1,
3981 __isl_take isl_multi_aff *ma2);
3983 The function C<isl_multi_aff_lex_le_set> returns a set
3984 containing those elements in the shared domain space
3985 where C<ma1> is lexicographically smaller than or
3988 An expression can be read from input using
3990 #include <isl/aff.h>
3991 __isl_give isl_multi_aff *isl_multi_aff_read_from_str(
3992 isl_ctx *ctx, const char *str);
3993 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_read_from_str(
3994 isl_ctx *ctx, const char *str);
3996 An expression can be printed using
3998 #include <isl/aff.h>
3999 __isl_give isl_printer *isl_printer_print_multi_aff(
4000 __isl_take isl_printer *p,
4001 __isl_keep isl_multi_aff *maff);
4002 __isl_give isl_printer *isl_printer_print_pw_multi_aff(
4003 __isl_take isl_printer *p,
4004 __isl_keep isl_pw_multi_aff *pma);
4005 __isl_give isl_printer *isl_printer_print_union_pw_multi_aff(
4006 __isl_take isl_printer *p,
4007 __isl_keep isl_union_pw_multi_aff *upma);
4008 __isl_give isl_printer *isl_printer_print_multi_pw_aff(
4009 __isl_take isl_printer *p,
4010 __isl_keep isl_multi_pw_aff *mpa);
4014 Points are elements of a set. They can be used to construct
4015 simple sets (boxes) or they can be used to represent the
4016 individual elements of a set.
4017 The zero point (the origin) can be created using
4019 __isl_give isl_point *isl_point_zero(__isl_take isl_space *space);
4021 The coordinates of a point can be inspected, set and changed
4024 int isl_point_get_coordinate(__isl_keep isl_point *pnt,
4025 enum isl_dim_type type, int pos, isl_int *v);
4026 __isl_give isl_point *isl_point_set_coordinate(
4027 __isl_take isl_point *pnt,
4028 enum isl_dim_type type, int pos, isl_int v);
4030 __isl_give isl_point *isl_point_add_ui(
4031 __isl_take isl_point *pnt,
4032 enum isl_dim_type type, int pos, unsigned val);
4033 __isl_give isl_point *isl_point_sub_ui(
4034 __isl_take isl_point *pnt,
4035 enum isl_dim_type type, int pos, unsigned val);
4037 Other properties can be obtained using
4039 isl_ctx *isl_point_get_ctx(__isl_keep isl_point *pnt);
4041 Points can be copied or freed using
4043 __isl_give isl_point *isl_point_copy(
4044 __isl_keep isl_point *pnt);
4045 void isl_point_free(__isl_take isl_point *pnt);
4047 A singleton set can be created from a point using
4049 __isl_give isl_basic_set *isl_basic_set_from_point(
4050 __isl_take isl_point *pnt);
4051 __isl_give isl_set *isl_set_from_point(
4052 __isl_take isl_point *pnt);
4054 and a box can be created from two opposite extremal points using
4056 __isl_give isl_basic_set *isl_basic_set_box_from_points(
4057 __isl_take isl_point *pnt1,
4058 __isl_take isl_point *pnt2);
4059 __isl_give isl_set *isl_set_box_from_points(
4060 __isl_take isl_point *pnt1,
4061 __isl_take isl_point *pnt2);
4063 All elements of a B<bounded> (union) set can be enumerated using
4064 the following functions.
4066 int isl_set_foreach_point(__isl_keep isl_set *set,
4067 int (*fn)(__isl_take isl_point *pnt, void *user),
4069 int isl_union_set_foreach_point(__isl_keep isl_union_set *uset,
4070 int (*fn)(__isl_take isl_point *pnt, void *user),
4073 The function C<fn> is called for each integer point in
4074 C<set> with as second argument the last argument of
4075 the C<isl_set_foreach_point> call. The function C<fn>
4076 should return C<0> on success and C<-1> on failure.
4077 In the latter case, C<isl_set_foreach_point> will stop
4078 enumerating and return C<-1> as well.
4079 If the enumeration is performed successfully and to completion,
4080 then C<isl_set_foreach_point> returns C<0>.
4082 To obtain a single point of a (basic) set, use
4084 __isl_give isl_point *isl_basic_set_sample_point(
4085 __isl_take isl_basic_set *bset);
4086 __isl_give isl_point *isl_set_sample_point(
4087 __isl_take isl_set *set);
4089 If C<set> does not contain any (integer) points, then the
4090 resulting point will be ``void'', a property that can be
4093 int isl_point_is_void(__isl_keep isl_point *pnt);
4095 =head2 Piecewise Quasipolynomials
4097 A piecewise quasipolynomial is a particular kind of function that maps
4098 a parametric point to a rational value.
4099 More specifically, a quasipolynomial is a polynomial expression in greatest
4100 integer parts of affine expressions of parameters and variables.
4101 A piecewise quasipolynomial is a subdivision of a given parametric
4102 domain into disjoint cells with a quasipolynomial associated to
4103 each cell. The value of the piecewise quasipolynomial at a given
4104 point is the value of the quasipolynomial associated to the cell
4105 that contains the point. Outside of the union of cells,
4106 the value is assumed to be zero.
4107 For example, the piecewise quasipolynomial
4109 [n] -> { [x] -> ((1 + n) - x) : x <= n and x >= 0 }
4111 maps C<x> to C<1 + n - x> for values of C<x> between C<0> and C<n>.
4112 A given piecewise quasipolynomial has a fixed domain dimension.
4113 Union piecewise quasipolynomials are used to contain piecewise quasipolynomials
4114 defined over different domains.
4115 Piecewise quasipolynomials are mainly used by the C<barvinok>
4116 library for representing the number of elements in a parametric set or map.
4117 For example, the piecewise quasipolynomial above represents
4118 the number of points in the map
4120 [n] -> { [x] -> [y] : x,y >= 0 and 0 <= x + y <= n }
4122 =head3 Input and Output
4124 Piecewise quasipolynomials can be read from input using
4126 __isl_give isl_union_pw_qpolynomial *
4127 isl_union_pw_qpolynomial_read_from_str(
4128 isl_ctx *ctx, const char *str);
4130 Quasipolynomials and piecewise quasipolynomials can be printed
4131 using the following functions.
4133 __isl_give isl_printer *isl_printer_print_qpolynomial(
4134 __isl_take isl_printer *p,
4135 __isl_keep isl_qpolynomial *qp);
4137 __isl_give isl_printer *isl_printer_print_pw_qpolynomial(
4138 __isl_take isl_printer *p,
4139 __isl_keep isl_pw_qpolynomial *pwqp);
4141 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial(
4142 __isl_take isl_printer *p,
4143 __isl_keep isl_union_pw_qpolynomial *upwqp);
4145 The output format of the printer
4146 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
4147 For C<isl_printer_print_union_pw_qpolynomial>, only C<ISL_FORMAT_ISL>
4149 In case of printing in C<ISL_FORMAT_C>, the user may want
4150 to set the names of all dimensions
4152 __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name(
4153 __isl_take isl_qpolynomial *qp,
4154 enum isl_dim_type type, unsigned pos,
4156 __isl_give isl_pw_qpolynomial *
4157 isl_pw_qpolynomial_set_dim_name(
4158 __isl_take isl_pw_qpolynomial *pwqp,
4159 enum isl_dim_type type, unsigned pos,
4162 =head3 Creating New (Piecewise) Quasipolynomials
4164 Some simple quasipolynomials can be created using the following functions.
4165 More complicated quasipolynomials can be created by applying
4166 operations such as addition and multiplication
4167 on the resulting quasipolynomials
4169 __isl_give isl_qpolynomial *isl_qpolynomial_zero_on_domain(
4170 __isl_take isl_space *domain);
4171 __isl_give isl_qpolynomial *isl_qpolynomial_one_on_domain(
4172 __isl_take isl_space *domain);
4173 __isl_give isl_qpolynomial *isl_qpolynomial_infty_on_domain(
4174 __isl_take isl_space *domain);
4175 __isl_give isl_qpolynomial *isl_qpolynomial_neginfty_on_domain(
4176 __isl_take isl_space *domain);
4177 __isl_give isl_qpolynomial *isl_qpolynomial_nan_on_domain(
4178 __isl_take isl_space *domain);
4179 __isl_give isl_qpolynomial *isl_qpolynomial_rat_cst_on_domain(
4180 __isl_take isl_space *domain,
4181 const isl_int n, const isl_int d);
4182 __isl_give isl_qpolynomial *isl_qpolynomial_var_on_domain(
4183 __isl_take isl_space *domain,
4184 enum isl_dim_type type, unsigned pos);
4185 __isl_give isl_qpolynomial *isl_qpolynomial_from_aff(
4186 __isl_take isl_aff *aff);
4188 Note that the space in which a quasipolynomial lives is a map space
4189 with a one-dimensional range. The C<domain> argument in some of
4190 the functions above corresponds to the domain of this map space.
4192 The zero piecewise quasipolynomial or a piecewise quasipolynomial
4193 with a single cell can be created using the following functions.
4194 Multiple of these single cell piecewise quasipolynomials can
4195 be combined to create more complicated piecewise quasipolynomials.
4197 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_zero(
4198 __isl_take isl_space *space);
4199 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_alloc(
4200 __isl_take isl_set *set,
4201 __isl_take isl_qpolynomial *qp);
4202 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_qpolynomial(
4203 __isl_take isl_qpolynomial *qp);
4204 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_pw_aff(
4205 __isl_take isl_pw_aff *pwaff);
4207 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_zero(
4208 __isl_take isl_space *space);
4209 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_from_pw_qpolynomial(
4210 __isl_take isl_pw_qpolynomial *pwqp);
4211 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add_pw_qpolynomial(
4212 __isl_take isl_union_pw_qpolynomial *upwqp,
4213 __isl_take isl_pw_qpolynomial *pwqp);
4215 Quasipolynomials can be copied and freed again using the following
4218 __isl_give isl_qpolynomial *isl_qpolynomial_copy(
4219 __isl_keep isl_qpolynomial *qp);
4220 void *isl_qpolynomial_free(__isl_take isl_qpolynomial *qp);
4222 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_copy(
4223 __isl_keep isl_pw_qpolynomial *pwqp);
4224 void *isl_pw_qpolynomial_free(
4225 __isl_take isl_pw_qpolynomial *pwqp);
4227 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_copy(
4228 __isl_keep isl_union_pw_qpolynomial *upwqp);
4229 void *isl_union_pw_qpolynomial_free(
4230 __isl_take isl_union_pw_qpolynomial *upwqp);
4232 =head3 Inspecting (Piecewise) Quasipolynomials
4234 To iterate over all piecewise quasipolynomials in a union
4235 piecewise quasipolynomial, use the following function
4237 int isl_union_pw_qpolynomial_foreach_pw_qpolynomial(
4238 __isl_keep isl_union_pw_qpolynomial *upwqp,
4239 int (*fn)(__isl_take isl_pw_qpolynomial *pwqp, void *user),
4242 To extract the piecewise quasipolynomial in a given space from a union, use
4244 __isl_give isl_pw_qpolynomial *
4245 isl_union_pw_qpolynomial_extract_pw_qpolynomial(
4246 __isl_keep isl_union_pw_qpolynomial *upwqp,
4247 __isl_take isl_space *space);
4249 To iterate over the cells in a piecewise quasipolynomial,
4250 use either of the following two functions
4252 int isl_pw_qpolynomial_foreach_piece(
4253 __isl_keep isl_pw_qpolynomial *pwqp,
4254 int (*fn)(__isl_take isl_set *set,
4255 __isl_take isl_qpolynomial *qp,
4256 void *user), void *user);
4257 int isl_pw_qpolynomial_foreach_lifted_piece(
4258 __isl_keep isl_pw_qpolynomial *pwqp,
4259 int (*fn)(__isl_take isl_set *set,
4260 __isl_take isl_qpolynomial *qp,
4261 void *user), void *user);
4263 As usual, the function C<fn> should return C<0> on success
4264 and C<-1> on failure. The difference between
4265 C<isl_pw_qpolynomial_foreach_piece> and
4266 C<isl_pw_qpolynomial_foreach_lifted_piece> is that
4267 C<isl_pw_qpolynomial_foreach_lifted_piece> will first
4268 compute unique representations for all existentially quantified
4269 variables and then turn these existentially quantified variables
4270 into extra set variables, adapting the associated quasipolynomial
4271 accordingly. This means that the C<set> passed to C<fn>
4272 will not have any existentially quantified variables, but that
4273 the dimensions of the sets may be different for different
4274 invocations of C<fn>.
4276 To iterate over all terms in a quasipolynomial,
4279 int isl_qpolynomial_foreach_term(
4280 __isl_keep isl_qpolynomial *qp,
4281 int (*fn)(__isl_take isl_term *term,
4282 void *user), void *user);
4284 The terms themselves can be inspected and freed using
4287 unsigned isl_term_dim(__isl_keep isl_term *term,
4288 enum isl_dim_type type);
4289 void isl_term_get_num(__isl_keep isl_term *term,
4291 void isl_term_get_den(__isl_keep isl_term *term,
4293 int isl_term_get_exp(__isl_keep isl_term *term,
4294 enum isl_dim_type type, unsigned pos);
4295 __isl_give isl_aff *isl_term_get_div(
4296 __isl_keep isl_term *term, unsigned pos);
4297 void isl_term_free(__isl_take isl_term *term);
4299 Each term is a product of parameters, set variables and
4300 integer divisions. The function C<isl_term_get_exp>
4301 returns the exponent of a given dimensions in the given term.
4302 The C<isl_int>s in the arguments of C<isl_term_get_num>
4303 and C<isl_term_get_den> need to have been initialized
4304 using C<isl_int_init> before calling these functions.
4306 =head3 Properties of (Piecewise) Quasipolynomials
4308 To check whether a quasipolynomial is actually a constant,
4309 use the following function.
4311 int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp,
4312 isl_int *n, isl_int *d);
4314 If C<qp> is a constant and if C<n> and C<d> are not C<NULL>
4315 then the numerator and denominator of the constant
4316 are returned in C<*n> and C<*d>, respectively.
4318 To check whether two union piecewise quasipolynomials are
4319 obviously equal, use
4321 int isl_union_pw_qpolynomial_plain_is_equal(
4322 __isl_keep isl_union_pw_qpolynomial *upwqp1,
4323 __isl_keep isl_union_pw_qpolynomial *upwqp2);
4325 =head3 Operations on (Piecewise) Quasipolynomials
4327 __isl_give isl_qpolynomial *isl_qpolynomial_scale(
4328 __isl_take isl_qpolynomial *qp, isl_int v);
4329 __isl_give isl_qpolynomial *isl_qpolynomial_neg(
4330 __isl_take isl_qpolynomial *qp);
4331 __isl_give isl_qpolynomial *isl_qpolynomial_add(
4332 __isl_take isl_qpolynomial *qp1,
4333 __isl_take isl_qpolynomial *qp2);
4334 __isl_give isl_qpolynomial *isl_qpolynomial_sub(
4335 __isl_take isl_qpolynomial *qp1,
4336 __isl_take isl_qpolynomial *qp2);
4337 __isl_give isl_qpolynomial *isl_qpolynomial_mul(
4338 __isl_take isl_qpolynomial *qp1,
4339 __isl_take isl_qpolynomial *qp2);
4340 __isl_give isl_qpolynomial *isl_qpolynomial_pow(
4341 __isl_take isl_qpolynomial *qp, unsigned exponent);
4343 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add(
4344 __isl_take isl_pw_qpolynomial *pwqp1,
4345 __isl_take isl_pw_qpolynomial *pwqp2);
4346 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_sub(
4347 __isl_take isl_pw_qpolynomial *pwqp1,
4348 __isl_take isl_pw_qpolynomial *pwqp2);
4349 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_disjoint(
4350 __isl_take isl_pw_qpolynomial *pwqp1,
4351 __isl_take isl_pw_qpolynomial *pwqp2);
4352 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_neg(
4353 __isl_take isl_pw_qpolynomial *pwqp);
4354 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
4355 __isl_take isl_pw_qpolynomial *pwqp1,
4356 __isl_take isl_pw_qpolynomial *pwqp2);
4357 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_pow(
4358 __isl_take isl_pw_qpolynomial *pwqp, unsigned exponent);
4360 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add(
4361 __isl_take isl_union_pw_qpolynomial *upwqp1,
4362 __isl_take isl_union_pw_qpolynomial *upwqp2);
4363 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_sub(
4364 __isl_take isl_union_pw_qpolynomial *upwqp1,
4365 __isl_take isl_union_pw_qpolynomial *upwqp2);
4366 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul(
4367 __isl_take isl_union_pw_qpolynomial *upwqp1,
4368 __isl_take isl_union_pw_qpolynomial *upwqp2);
4370 __isl_give isl_qpolynomial *isl_pw_qpolynomial_eval(
4371 __isl_take isl_pw_qpolynomial *pwqp,
4372 __isl_take isl_point *pnt);
4374 __isl_give isl_qpolynomial *isl_union_pw_qpolynomial_eval(
4375 __isl_take isl_union_pw_qpolynomial *upwqp,
4376 __isl_take isl_point *pnt);
4378 __isl_give isl_set *isl_pw_qpolynomial_domain(
4379 __isl_take isl_pw_qpolynomial *pwqp);
4380 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_intersect_domain(
4381 __isl_take isl_pw_qpolynomial *pwpq,
4382 __isl_take isl_set *set);
4383 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_intersect_params(
4384 __isl_take isl_pw_qpolynomial *pwpq,
4385 __isl_take isl_set *set);
4387 __isl_give isl_union_set *isl_union_pw_qpolynomial_domain(
4388 __isl_take isl_union_pw_qpolynomial *upwqp);
4389 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_intersect_domain(
4390 __isl_take isl_union_pw_qpolynomial *upwpq,
4391 __isl_take isl_union_set *uset);
4392 __isl_give isl_union_pw_qpolynomial *
4393 isl_union_pw_qpolynomial_intersect_params(
4394 __isl_take isl_union_pw_qpolynomial *upwpq,
4395 __isl_take isl_set *set);
4397 __isl_give isl_qpolynomial *isl_qpolynomial_align_params(
4398 __isl_take isl_qpolynomial *qp,
4399 __isl_take isl_space *model);
4401 __isl_give isl_qpolynomial *isl_qpolynomial_project_domain_on_params(
4402 __isl_take isl_qpolynomial *qp);
4403 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_project_domain_on_params(
4404 __isl_take isl_pw_qpolynomial *pwqp);
4406 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_coalesce(
4407 __isl_take isl_union_pw_qpolynomial *upwqp);
4409 __isl_give isl_qpolynomial *isl_qpolynomial_gist_params(
4410 __isl_take isl_qpolynomial *qp,
4411 __isl_take isl_set *context);
4412 __isl_give isl_qpolynomial *isl_qpolynomial_gist(
4413 __isl_take isl_qpolynomial *qp,
4414 __isl_take isl_set *context);
4416 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist_params(
4417 __isl_take isl_pw_qpolynomial *pwqp,
4418 __isl_take isl_set *context);
4419 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist(
4420 __isl_take isl_pw_qpolynomial *pwqp,
4421 __isl_take isl_set *context);
4423 __isl_give isl_union_pw_qpolynomial *
4424 isl_union_pw_qpolynomial_gist_params(
4425 __isl_take isl_union_pw_qpolynomial *upwqp,
4426 __isl_take isl_set *context);
4427 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_gist(
4428 __isl_take isl_union_pw_qpolynomial *upwqp,
4429 __isl_take isl_union_set *context);
4431 The gist operation applies the gist operation to each of
4432 the cells in the domain of the input piecewise quasipolynomial.
4433 The context is also exploited
4434 to simplify the quasipolynomials associated to each cell.
4436 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial(
4437 __isl_take isl_pw_qpolynomial *pwqp, int sign);
4438 __isl_give isl_union_pw_qpolynomial *
4439 isl_union_pw_qpolynomial_to_polynomial(
4440 __isl_take isl_union_pw_qpolynomial *upwqp, int sign);
4442 Approximate each quasipolynomial by a polynomial. If C<sign> is positive,
4443 the polynomial will be an overapproximation. If C<sign> is negative,
4444 it will be an underapproximation. If C<sign> is zero, the approximation
4445 will lie somewhere in between.
4447 =head2 Bounds on Piecewise Quasipolynomials and Piecewise Quasipolynomial Reductions
4449 A piecewise quasipolynomial reduction is a piecewise
4450 reduction (or fold) of quasipolynomials.
4451 In particular, the reduction can be maximum or a minimum.
4452 The objects are mainly used to represent the result of
4453 an upper or lower bound on a quasipolynomial over its domain,
4454 i.e., as the result of the following function.
4456 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_bound(
4457 __isl_take isl_pw_qpolynomial *pwqp,
4458 enum isl_fold type, int *tight);
4460 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_bound(
4461 __isl_take isl_union_pw_qpolynomial *upwqp,
4462 enum isl_fold type, int *tight);
4464 The C<type> argument may be either C<isl_fold_min> or C<isl_fold_max>.
4465 If C<tight> is not C<NULL>, then C<*tight> is set to C<1>
4466 is the returned bound is known be tight, i.e., for each value
4467 of the parameters there is at least
4468 one element in the domain that reaches the bound.
4469 If the domain of C<pwqp> is not wrapping, then the bound is computed
4470 over all elements in that domain and the result has a purely parametric
4471 domain. If the domain of C<pwqp> is wrapping, then the bound is
4472 computed over the range of the wrapped relation. The domain of the
4473 wrapped relation becomes the domain of the result.
4475 A (piecewise) quasipolynomial reduction can be copied or freed using the
4476 following functions.
4478 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_copy(
4479 __isl_keep isl_qpolynomial_fold *fold);
4480 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_copy(
4481 __isl_keep isl_pw_qpolynomial_fold *pwf);
4482 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_copy(
4483 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
4484 void isl_qpolynomial_fold_free(
4485 __isl_take isl_qpolynomial_fold *fold);
4486 void *isl_pw_qpolynomial_fold_free(
4487 __isl_take isl_pw_qpolynomial_fold *pwf);
4488 void *isl_union_pw_qpolynomial_fold_free(
4489 __isl_take isl_union_pw_qpolynomial_fold *upwf);
4491 =head3 Printing Piecewise Quasipolynomial Reductions
4493 Piecewise quasipolynomial reductions can be printed
4494 using the following function.
4496 __isl_give isl_printer *isl_printer_print_pw_qpolynomial_fold(
4497 __isl_take isl_printer *p,
4498 __isl_keep isl_pw_qpolynomial_fold *pwf);
4499 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial_fold(
4500 __isl_take isl_printer *p,
4501 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
4503 For C<isl_printer_print_pw_qpolynomial_fold>,
4504 output format of the printer
4505 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
4506 For C<isl_printer_print_union_pw_qpolynomial_fold>,
4507 output format of the printer
4508 needs to be set to C<ISL_FORMAT_ISL>.
4509 In case of printing in C<ISL_FORMAT_C>, the user may want
4510 to set the names of all dimensions
4512 __isl_give isl_pw_qpolynomial_fold *
4513 isl_pw_qpolynomial_fold_set_dim_name(
4514 __isl_take isl_pw_qpolynomial_fold *pwf,
4515 enum isl_dim_type type, unsigned pos,
4518 =head3 Inspecting (Piecewise) Quasipolynomial Reductions
4520 To iterate over all piecewise quasipolynomial reductions in a union
4521 piecewise quasipolynomial reduction, use the following function
4523 int isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold(
4524 __isl_keep isl_union_pw_qpolynomial_fold *upwf,
4525 int (*fn)(__isl_take isl_pw_qpolynomial_fold *pwf,
4526 void *user), void *user);
4528 To iterate over the cells in a piecewise quasipolynomial reduction,
4529 use either of the following two functions
4531 int isl_pw_qpolynomial_fold_foreach_piece(
4532 __isl_keep isl_pw_qpolynomial_fold *pwf,
4533 int (*fn)(__isl_take isl_set *set,
4534 __isl_take isl_qpolynomial_fold *fold,
4535 void *user), void *user);
4536 int isl_pw_qpolynomial_fold_foreach_lifted_piece(
4537 __isl_keep isl_pw_qpolynomial_fold *pwf,
4538 int (*fn)(__isl_take isl_set *set,
4539 __isl_take isl_qpolynomial_fold *fold,
4540 void *user), void *user);
4542 See L<Inspecting (Piecewise) Quasipolynomials> for an explanation
4543 of the difference between these two functions.
4545 To iterate over all quasipolynomials in a reduction, use
4547 int isl_qpolynomial_fold_foreach_qpolynomial(
4548 __isl_keep isl_qpolynomial_fold *fold,
4549 int (*fn)(__isl_take isl_qpolynomial *qp,
4550 void *user), void *user);
4552 =head3 Properties of Piecewise Quasipolynomial Reductions
4554 To check whether two union piecewise quasipolynomial reductions are
4555 obviously equal, use
4557 int isl_union_pw_qpolynomial_fold_plain_is_equal(
4558 __isl_keep isl_union_pw_qpolynomial_fold *upwf1,
4559 __isl_keep isl_union_pw_qpolynomial_fold *upwf2);
4561 =head3 Operations on Piecewise Quasipolynomial Reductions
4563 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_scale(
4564 __isl_take isl_qpolynomial_fold *fold, isl_int v);
4566 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_add(
4567 __isl_take isl_pw_qpolynomial_fold *pwf1,
4568 __isl_take isl_pw_qpolynomial_fold *pwf2);
4570 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_fold(
4571 __isl_take isl_pw_qpolynomial_fold *pwf1,
4572 __isl_take isl_pw_qpolynomial_fold *pwf2);
4574 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_fold(
4575 __isl_take isl_union_pw_qpolynomial_fold *upwf1,
4576 __isl_take isl_union_pw_qpolynomial_fold *upwf2);
4578 __isl_give isl_qpolynomial *isl_pw_qpolynomial_fold_eval(
4579 __isl_take isl_pw_qpolynomial_fold *pwf,
4580 __isl_take isl_point *pnt);
4582 __isl_give isl_qpolynomial *isl_union_pw_qpolynomial_fold_eval(
4583 __isl_take isl_union_pw_qpolynomial_fold *upwf,
4584 __isl_take isl_point *pnt);
4586 __isl_give isl_pw_qpolynomial_fold *
4587 isl_pw_qpolynomial_fold_intersect_params(
4588 __isl_take isl_pw_qpolynomial_fold *pwf,
4589 __isl_take isl_set *set);
4591 __isl_give isl_union_set *isl_union_pw_qpolynomial_fold_domain(
4592 __isl_take isl_union_pw_qpolynomial_fold *upwf);
4593 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_intersect_domain(
4594 __isl_take isl_union_pw_qpolynomial_fold *upwf,
4595 __isl_take isl_union_set *uset);
4596 __isl_give isl_union_pw_qpolynomial_fold *
4597 isl_union_pw_qpolynomial_fold_intersect_params(
4598 __isl_take isl_union_pw_qpolynomial_fold *upwf,
4599 __isl_take isl_set *set);
4601 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_project_domain_on_params(
4602 __isl_take isl_pw_qpolynomial_fold *pwf);
4604 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_coalesce(
4605 __isl_take isl_pw_qpolynomial_fold *pwf);
4607 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_coalesce(
4608 __isl_take isl_union_pw_qpolynomial_fold *upwf);
4610 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist_params(
4611 __isl_take isl_qpolynomial_fold *fold,
4612 __isl_take isl_set *context);
4613 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist(
4614 __isl_take isl_qpolynomial_fold *fold,
4615 __isl_take isl_set *context);
4617 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_gist(
4618 __isl_take isl_pw_qpolynomial_fold *pwf,
4619 __isl_take isl_set *context);
4620 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_gist_params(
4621 __isl_take isl_pw_qpolynomial_fold *pwf,
4622 __isl_take isl_set *context);
4624 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_gist(
4625 __isl_take isl_union_pw_qpolynomial_fold *upwf,
4626 __isl_take isl_union_set *context);
4627 __isl_give isl_union_pw_qpolynomial_fold *
4628 isl_union_pw_qpolynomial_fold_gist_params(
4629 __isl_take isl_union_pw_qpolynomial_fold *upwf,
4630 __isl_take isl_set *context);
4632 The gist operation applies the gist operation to each of
4633 the cells in the domain of the input piecewise quasipolynomial reduction.
4634 In future, the operation will also exploit the context
4635 to simplify the quasipolynomial reductions associated to each cell.
4637 __isl_give isl_pw_qpolynomial_fold *
4638 isl_set_apply_pw_qpolynomial_fold(
4639 __isl_take isl_set *set,
4640 __isl_take isl_pw_qpolynomial_fold *pwf,
4642 __isl_give isl_pw_qpolynomial_fold *
4643 isl_map_apply_pw_qpolynomial_fold(
4644 __isl_take isl_map *map,
4645 __isl_take isl_pw_qpolynomial_fold *pwf,
4647 __isl_give isl_union_pw_qpolynomial_fold *
4648 isl_union_set_apply_union_pw_qpolynomial_fold(
4649 __isl_take isl_union_set *uset,
4650 __isl_take isl_union_pw_qpolynomial_fold *upwf,
4652 __isl_give isl_union_pw_qpolynomial_fold *
4653 isl_union_map_apply_union_pw_qpolynomial_fold(
4654 __isl_take isl_union_map *umap,
4655 __isl_take isl_union_pw_qpolynomial_fold *upwf,
4658 The functions taking a map
4659 compose the given map with the given piecewise quasipolynomial reduction.
4660 That is, compute a bound (of the same type as C<pwf> or C<upwf> itself)
4661 over all elements in the intersection of the range of the map
4662 and the domain of the piecewise quasipolynomial reduction
4663 as a function of an element in the domain of the map.
4664 The functions taking a set compute a bound over all elements in the
4665 intersection of the set and the domain of the
4666 piecewise quasipolynomial reduction.
4668 =head2 Parametric Vertex Enumeration
4670 The parametric vertex enumeration described in this section
4671 is mainly intended to be used internally and by the C<barvinok>
4674 #include <isl/vertices.h>
4675 __isl_give isl_vertices *isl_basic_set_compute_vertices(
4676 __isl_keep isl_basic_set *bset);
4678 The function C<isl_basic_set_compute_vertices> performs the
4679 actual computation of the parametric vertices and the chamber
4680 decomposition and store the result in an C<isl_vertices> object.
4681 This information can be queried by either iterating over all
4682 the vertices or iterating over all the chambers or cells
4683 and then iterating over all vertices that are active on the chamber.
4685 int isl_vertices_foreach_vertex(
4686 __isl_keep isl_vertices *vertices,
4687 int (*fn)(__isl_take isl_vertex *vertex, void *user),
4690 int isl_vertices_foreach_cell(
4691 __isl_keep isl_vertices *vertices,
4692 int (*fn)(__isl_take isl_cell *cell, void *user),
4694 int isl_cell_foreach_vertex(__isl_keep isl_cell *cell,
4695 int (*fn)(__isl_take isl_vertex *vertex, void *user),
4698 Other operations that can be performed on an C<isl_vertices> object are
4701 isl_ctx *isl_vertices_get_ctx(
4702 __isl_keep isl_vertices *vertices);
4703 int isl_vertices_get_n_vertices(
4704 __isl_keep isl_vertices *vertices);
4705 void isl_vertices_free(__isl_take isl_vertices *vertices);
4707 Vertices can be inspected and destroyed using the following functions.
4709 isl_ctx *isl_vertex_get_ctx(__isl_keep isl_vertex *vertex);
4710 int isl_vertex_get_id(__isl_keep isl_vertex *vertex);
4711 __isl_give isl_basic_set *isl_vertex_get_domain(
4712 __isl_keep isl_vertex *vertex);
4713 __isl_give isl_basic_set *isl_vertex_get_expr(
4714 __isl_keep isl_vertex *vertex);
4715 void isl_vertex_free(__isl_take isl_vertex *vertex);
4717 C<isl_vertex_get_expr> returns a singleton parametric set describing
4718 the vertex, while C<isl_vertex_get_domain> returns the activity domain
4720 Note that C<isl_vertex_get_domain> and C<isl_vertex_get_expr> return
4721 B<rational> basic sets, so they should mainly be used for inspection
4722 and should not be mixed with integer sets.
4724 Chambers can be inspected and destroyed using the following functions.
4726 isl_ctx *isl_cell_get_ctx(__isl_keep isl_cell *cell);
4727 __isl_give isl_basic_set *isl_cell_get_domain(
4728 __isl_keep isl_cell *cell);
4729 void isl_cell_free(__isl_take isl_cell *cell);
4731 =head1 Polyhedral Compilation Library
4733 This section collects functionality in C<isl> that has been specifically
4734 designed for use during polyhedral compilation.
4736 =head2 Dependence Analysis
4738 C<isl> contains specialized functionality for performing
4739 array dataflow analysis. That is, given a I<sink> access relation
4740 and a collection of possible I<source> access relations,
4741 C<isl> can compute relations that describe
4742 for each iteration of the sink access, which iteration
4743 of which of the source access relations was the last
4744 to access the same data element before the given iteration
4746 The resulting dependence relations map source iterations
4747 to the corresponding sink iterations.
4748 To compute standard flow dependences, the sink should be
4749 a read, while the sources should be writes.
4750 If any of the source accesses are marked as being I<may>
4751 accesses, then there will be a dependence from the last
4752 I<must> access B<and> from any I<may> access that follows
4753 this last I<must> access.
4754 In particular, if I<all> sources are I<may> accesses,
4755 then memory based dependence analysis is performed.
4756 If, on the other hand, all sources are I<must> accesses,
4757 then value based dependence analysis is performed.
4759 #include <isl/flow.h>
4761 typedef int (*isl_access_level_before)(void *first, void *second);
4763 __isl_give isl_access_info *isl_access_info_alloc(
4764 __isl_take isl_map *sink,
4765 void *sink_user, isl_access_level_before fn,
4767 __isl_give isl_access_info *isl_access_info_add_source(
4768 __isl_take isl_access_info *acc,
4769 __isl_take isl_map *source, int must,
4771 void *isl_access_info_free(__isl_take isl_access_info *acc);
4773 __isl_give isl_flow *isl_access_info_compute_flow(
4774 __isl_take isl_access_info *acc);
4776 int isl_flow_foreach(__isl_keep isl_flow *deps,
4777 int (*fn)(__isl_take isl_map *dep, int must,
4778 void *dep_user, void *user),
4780 __isl_give isl_map *isl_flow_get_no_source(
4781 __isl_keep isl_flow *deps, int must);
4782 void isl_flow_free(__isl_take isl_flow *deps);
4784 The function C<isl_access_info_compute_flow> performs the actual
4785 dependence analysis. The other functions are used to construct
4786 the input for this function or to read off the output.
4788 The input is collected in an C<isl_access_info>, which can
4789 be created through a call to C<isl_access_info_alloc>.
4790 The arguments to this functions are the sink access relation
4791 C<sink>, a token C<sink_user> used to identify the sink
4792 access to the user, a callback function for specifying the
4793 relative order of source and sink accesses, and the number
4794 of source access relations that will be added.
4795 The callback function has type C<int (*)(void *first, void *second)>.
4796 The function is called with two user supplied tokens identifying
4797 either a source or the sink and it should return the shared nesting
4798 level and the relative order of the two accesses.
4799 In particular, let I<n> be the number of loops shared by
4800 the two accesses. If C<first> precedes C<second> textually,
4801 then the function should return I<2 * n + 1>; otherwise,
4802 it should return I<2 * n>.
4803 The sources can be added to the C<isl_access_info> by performing
4804 (at most) C<max_source> calls to C<isl_access_info_add_source>.
4805 C<must> indicates whether the source is a I<must> access
4806 or a I<may> access. Note that a multi-valued access relation
4807 should only be marked I<must> if every iteration in the domain
4808 of the relation accesses I<all> elements in its image.
4809 The C<source_user> token is again used to identify
4810 the source access. The range of the source access relation
4811 C<source> should have the same dimension as the range
4812 of the sink access relation.
4813 The C<isl_access_info_free> function should usually not be
4814 called explicitly, because it is called implicitly by
4815 C<isl_access_info_compute_flow>.
4817 The result of the dependence analysis is collected in an
4818 C<isl_flow>. There may be elements of
4819 the sink access for which no preceding source access could be
4820 found or for which all preceding sources are I<may> accesses.
4821 The relations containing these elements can be obtained through
4822 calls to C<isl_flow_get_no_source>, the first with C<must> set
4823 and the second with C<must> unset.
4824 In the case of standard flow dependence analysis,
4825 with the sink a read and the sources I<must> writes,
4826 the first relation corresponds to the reads from uninitialized
4827 array elements and the second relation is empty.
4828 The actual flow dependences can be extracted using
4829 C<isl_flow_foreach>. This function will call the user-specified
4830 callback function C<fn> for each B<non-empty> dependence between
4831 a source and the sink. The callback function is called
4832 with four arguments, the actual flow dependence relation
4833 mapping source iterations to sink iterations, a boolean that
4834 indicates whether it is a I<must> or I<may> dependence, a token
4835 identifying the source and an additional C<void *> with value
4836 equal to the third argument of the C<isl_flow_foreach> call.
4837 A dependence is marked I<must> if it originates from a I<must>
4838 source and if it is not followed by any I<may> sources.
4840 After finishing with an C<isl_flow>, the user should call
4841 C<isl_flow_free> to free all associated memory.
4843 A higher-level interface to dependence analysis is provided
4844 by the following function.
4846 #include <isl/flow.h>
4848 int isl_union_map_compute_flow(__isl_take isl_union_map *sink,
4849 __isl_take isl_union_map *must_source,
4850 __isl_take isl_union_map *may_source,
4851 __isl_take isl_union_map *schedule,
4852 __isl_give isl_union_map **must_dep,
4853 __isl_give isl_union_map **may_dep,
4854 __isl_give isl_union_map **must_no_source,
4855 __isl_give isl_union_map **may_no_source);
4857 The arrays are identified by the tuple names of the ranges
4858 of the accesses. The iteration domains by the tuple names
4859 of the domains of the accesses and of the schedule.
4860 The relative order of the iteration domains is given by the
4861 schedule. The relations returned through C<must_no_source>
4862 and C<may_no_source> are subsets of C<sink>.
4863 Any of C<must_dep>, C<may_dep>, C<must_no_source>
4864 or C<may_no_source> may be C<NULL>, but a C<NULL> value for
4865 any of the other arguments is treated as an error.
4867 =head3 Interaction with Dependence Analysis
4869 During the dependence analysis, we frequently need to perform
4870 the following operation. Given a relation between sink iterations
4871 and potential source iterations from a particular source domain,
4872 what is the last potential source iteration corresponding to each
4873 sink iteration. It can sometimes be convenient to adjust
4874 the set of potential source iterations before or after each such operation.
4875 The prototypical example is fuzzy array dataflow analysis,
4876 where we need to analyze if, based on data-dependent constraints,
4877 the sink iteration can ever be executed without one or more of
4878 the corresponding potential source iterations being executed.
4879 If so, we can introduce extra parameters and select an unknown
4880 but fixed source iteration from the potential source iterations.
4881 To be able to perform such manipulations, C<isl> provides the following
4884 #include <isl/flow.h>
4886 typedef __isl_give isl_restriction *(*isl_access_restrict)(
4887 __isl_keep isl_map *source_map,
4888 __isl_keep isl_set *sink, void *source_user,
4890 __isl_give isl_access_info *isl_access_info_set_restrict(
4891 __isl_take isl_access_info *acc,
4892 isl_access_restrict fn, void *user);
4894 The function C<isl_access_info_set_restrict> should be called
4895 before calling C<isl_access_info_compute_flow> and registers a callback function
4896 that will be called any time C<isl> is about to compute the last
4897 potential source. The first argument is the (reverse) proto-dependence,
4898 mapping sink iterations to potential source iterations.
4899 The second argument represents the sink iterations for which
4900 we want to compute the last source iteration.
4901 The third argument is the token corresponding to the source
4902 and the final argument is the token passed to C<isl_access_info_set_restrict>.
4903 The callback is expected to return a restriction on either the input or
4904 the output of the operation computing the last potential source.
4905 If the input needs to be restricted then restrictions are needed
4906 for both the source and the sink iterations. The sink iterations
4907 and the potential source iterations will be intersected with these sets.
4908 If the output needs to be restricted then only a restriction on the source
4909 iterations is required.
4910 If any error occurs, the callback should return C<NULL>.
4911 An C<isl_restriction> object can be created, freed and inspected
4912 using the following functions.
4914 #include <isl/flow.h>
4916 __isl_give isl_restriction *isl_restriction_input(
4917 __isl_take isl_set *source_restr,
4918 __isl_take isl_set *sink_restr);
4919 __isl_give isl_restriction *isl_restriction_output(
4920 __isl_take isl_set *source_restr);
4921 __isl_give isl_restriction *isl_restriction_none(
4922 __isl_take isl_map *source_map);
4923 __isl_give isl_restriction *isl_restriction_empty(
4924 __isl_take isl_map *source_map);
4925 void *isl_restriction_free(
4926 __isl_take isl_restriction *restr);
4927 isl_ctx *isl_restriction_get_ctx(
4928 __isl_keep isl_restriction *restr);
4930 C<isl_restriction_none> and C<isl_restriction_empty> are special
4931 cases of C<isl_restriction_input>. C<isl_restriction_none>
4932 is essentially equivalent to
4934 isl_restriction_input(isl_set_universe(
4935 isl_space_range(isl_map_get_space(source_map))),
4937 isl_space_domain(isl_map_get_space(source_map))));
4939 whereas C<isl_restriction_empty> is essentially equivalent to
4941 isl_restriction_input(isl_set_empty(
4942 isl_space_range(isl_map_get_space(source_map))),
4944 isl_space_domain(isl_map_get_space(source_map))));
4948 B<The functionality described in this section is fairly new
4949 and may be subject to change.>
4951 The following function can be used to compute a schedule
4952 for a union of domains.
4953 By default, the algorithm used to construct the schedule is similar
4954 to that of C<Pluto>.
4955 Alternatively, Feautrier's multi-dimensional scheduling algorithm can
4957 The generated schedule respects all C<validity> dependences.
4958 That is, all dependence distances over these dependences in the
4959 scheduled space are lexicographically positive.
4960 The default algorithm tries to minimize the dependence distances over
4961 C<proximity> dependences.
4962 Moreover, it tries to obtain sequences (bands) of schedule dimensions
4963 for groups of domains where the dependence distances have only
4964 non-negative values.
4965 When using Feautrier's algorithm, the C<proximity> dependence
4966 distances are only minimized during the extension to a
4967 full-dimensional schedule.
4969 #include <isl/schedule.h>
4970 __isl_give isl_schedule *isl_union_set_compute_schedule(
4971 __isl_take isl_union_set *domain,
4972 __isl_take isl_union_map *validity,
4973 __isl_take isl_union_map *proximity);
4974 void *isl_schedule_free(__isl_take isl_schedule *sched);
4976 A mapping from the domains to the scheduled space can be obtained
4977 from an C<isl_schedule> using the following function.
4979 __isl_give isl_union_map *isl_schedule_get_map(
4980 __isl_keep isl_schedule *sched);
4982 A representation of the schedule can be printed using
4984 __isl_give isl_printer *isl_printer_print_schedule(
4985 __isl_take isl_printer *p,
4986 __isl_keep isl_schedule *schedule);
4988 A representation of the schedule as a forest of bands can be obtained
4989 using the following function.
4991 __isl_give isl_band_list *isl_schedule_get_band_forest(
4992 __isl_keep isl_schedule *schedule);
4994 The individual bands can be visited in depth-first post-order
4995 using the following function.
4997 #include <isl/schedule.h>
4998 int isl_schedule_foreach_band(
4999 __isl_keep isl_schedule *sched,
5000 int (*fn)(__isl_keep isl_band *band, void *user),
5003 The list can be manipulated as explained in L<"Lists">.
5004 The bands inside the list can be copied and freed using the following
5007 #include <isl/band.h>
5008 __isl_give isl_band *isl_band_copy(
5009 __isl_keep isl_band *band);
5010 void *isl_band_free(__isl_take isl_band *band);
5012 Each band contains zero or more scheduling dimensions.
5013 These are referred to as the members of the band.
5014 The section of the schedule that corresponds to the band is
5015 referred to as the partial schedule of the band.
5016 For those nodes that participate in a band, the outer scheduling
5017 dimensions form the prefix schedule, while the inner scheduling
5018 dimensions form the suffix schedule.
5019 That is, if we take a cut of the band forest, then the union of
5020 the concatenations of the prefix, partial and suffix schedules of
5021 each band in the cut is equal to the entire schedule (modulo
5022 some possible padding at the end with zero scheduling dimensions).
5023 The properties of a band can be inspected using the following functions.
5025 #include <isl/band.h>
5026 isl_ctx *isl_band_get_ctx(__isl_keep isl_band *band);
5028 int isl_band_has_children(__isl_keep isl_band *band);
5029 __isl_give isl_band_list *isl_band_get_children(
5030 __isl_keep isl_band *band);
5032 __isl_give isl_union_map *isl_band_get_prefix_schedule(
5033 __isl_keep isl_band *band);
5034 __isl_give isl_union_map *isl_band_get_partial_schedule(
5035 __isl_keep isl_band *band);
5036 __isl_give isl_union_map *isl_band_get_suffix_schedule(
5037 __isl_keep isl_band *band);
5039 int isl_band_n_member(__isl_keep isl_band *band);
5040 int isl_band_member_is_zero_distance(
5041 __isl_keep isl_band *band, int pos);
5043 int isl_band_list_foreach_band(
5044 __isl_keep isl_band_list *list,
5045 int (*fn)(__isl_keep isl_band *band, void *user),
5048 Note that a scheduling dimension is considered to be ``zero
5049 distance'' if it does not carry any proximity dependences
5051 That is, if the dependence distances of the proximity
5052 dependences are all zero in that direction (for fixed
5053 iterations of outer bands).
5054 Like C<isl_schedule_foreach_band>,
5055 the function C<isl_band_list_foreach_band> calls C<fn> on the bands
5056 in depth-first post-order.
5058 A band can be tiled using the following function.
5060 #include <isl/band.h>
5061 int isl_band_tile(__isl_keep isl_band *band,
5062 __isl_take isl_vec *sizes);
5064 int isl_options_set_tile_scale_tile_loops(isl_ctx *ctx,
5066 int isl_options_get_tile_scale_tile_loops(isl_ctx *ctx);
5068 The C<isl_band_tile> function tiles the band using the given tile sizes
5069 inside its schedule.
5070 A new child band is created to represent the point loops and it is
5071 inserted between the modified band and its children.
5072 The C<tile_scale_tile_loops> option specifies whether the tile
5073 loops iterators should be scaled by the tile sizes.
5075 A representation of the band can be printed using
5077 #include <isl/band.h>
5078 __isl_give isl_printer *isl_printer_print_band(
5079 __isl_take isl_printer *p,
5080 __isl_keep isl_band *band);
5084 #include <isl/schedule.h>
5085 int isl_options_set_schedule_max_coefficient(
5086 isl_ctx *ctx, int val);
5087 int isl_options_get_schedule_max_coefficient(
5089 int isl_options_set_schedule_max_constant_term(
5090 isl_ctx *ctx, int val);
5091 int isl_options_get_schedule_max_constant_term(
5093 int isl_options_set_schedule_fuse(isl_ctx *ctx, int val);
5094 int isl_options_get_schedule_fuse(isl_ctx *ctx);
5095 int isl_options_set_schedule_maximize_band_depth(
5096 isl_ctx *ctx, int val);
5097 int isl_options_get_schedule_maximize_band_depth(
5099 int isl_options_set_schedule_outer_zero_distance(
5100 isl_ctx *ctx, int val);
5101 int isl_options_get_schedule_outer_zero_distance(
5103 int isl_options_set_schedule_split_scaled(
5104 isl_ctx *ctx, int val);
5105 int isl_options_get_schedule_split_scaled(
5107 int isl_options_set_schedule_algorithm(
5108 isl_ctx *ctx, int val);
5109 int isl_options_get_schedule_algorithm(
5111 int isl_options_set_schedule_separate_components(
5112 isl_ctx *ctx, int val);
5113 int isl_options_get_schedule_separate_components(
5118 =item * schedule_max_coefficient
5120 This option enforces that the coefficients for variable and parameter
5121 dimensions in the calculated schedule are not larger than the specified value.
5122 This option can significantly increase the speed of the scheduling calculation
5123 and may also prevent fusing of unrelated dimensions. A value of -1 means that
5124 this option does not introduce bounds on the variable or parameter
5127 =item * schedule_max_constant_term
5129 This option enforces that the constant coefficients in the calculated schedule
5130 are not larger than the maximal constant term. This option can significantly
5131 increase the speed of the scheduling calculation and may also prevent fusing of
5132 unrelated dimensions. A value of -1 means that this option does not introduce
5133 bounds on the constant coefficients.
5135 =item * schedule_fuse
5137 This option controls the level of fusion.
5138 If this option is set to C<ISL_SCHEDULE_FUSE_MIN>, then loops in the
5139 resulting schedule will be distributed as much as possible.
5140 If this option is set to C<ISL_SCHEDULE_FUSE_MAX>, then C<isl> will
5141 try to fuse loops in the resulting schedule.
5143 =item * schedule_maximize_band_depth
5145 If this option is set, we do not split bands at the point
5146 where we detect splitting is necessary. Instead, we
5147 backtrack and split bands as early as possible. This
5148 reduces the number of splits and maximizes the width of
5149 the bands. Wider bands give more possibilities for tiling.
5150 Note that if the C<schedule_fuse> option is set to C<ISL_SCHEDULE_FUSE_MIN>,
5151 then bands will be split as early as possible, even if there is no need.
5152 The C<schedule_maximize_band_depth> option therefore has no effect in this case.
5154 =item * schedule_outer_zero_distance
5156 If this option is set, then we try to construct schedules
5157 where the outermost scheduling dimension in each band
5158 results in a zero dependence distance over the proximity
5161 =item * schedule_split_scaled
5163 If this option is set, then we try to construct schedules in which the
5164 constant term is split off from the linear part if the linear parts of
5165 the scheduling rows for all nodes in the graphs have a common non-trivial
5167 The constant term is then placed in a separate band and the linear
5170 =item * schedule_algorithm
5172 Selects the scheduling algorithm to be used.
5173 Available scheduling algorithms are C<ISL_SCHEDULE_ALGORITHM_ISL>
5174 and C<ISL_SCHEDULE_ALGORITHM_FEAUTRIER>.
5176 =item * schedule_separate_components
5178 If at any point the dependence graph contains any (weakly connected) components,
5179 then these components are scheduled separately.
5180 If this option is not set, then some iterations of the domains
5181 in these components may be scheduled together.
5182 If this option is set, then the components are given consecutive
5187 =head2 AST Generation
5189 This section describes the C<isl> functionality for generating
5190 ASTs that visit all the elements
5191 in a domain in an order specified by a schedule.
5192 In particular, given a C<isl_union_map>, an AST is generated
5193 that visits all the elements in the domain of the C<isl_union_map>
5194 according to the lexicographic order of the corresponding image
5195 element(s). If the range of the C<isl_union_map> consists of
5196 elements in more than one space, then each of these spaces is handled
5197 separately in an arbitrary order.
5198 It should be noted that the image elements only specify the I<order>
5199 in which the corresponding domain elements should be visited.
5200 No direct relation between the image elements and the loop iterators
5201 in the generated AST should be assumed.
5203 Each AST is generated within a build. The initial build
5204 simply specifies the constraints on the parameters (if any)
5205 and can be created, inspected, copied and freed using the following functions.
5207 #include <isl/ast_build.h>
5208 __isl_give isl_ast_build *isl_ast_build_from_context(
5209 __isl_take isl_set *set);
5210 isl_ctx *isl_ast_build_get_ctx(
5211 __isl_keep isl_ast_build *build);
5212 __isl_give isl_ast_build *isl_ast_build_copy(
5213 __isl_keep isl_ast_build *build);
5214 void *isl_ast_build_free(
5215 __isl_take isl_ast_build *build);
5217 The C<set> argument is usually a parameter set with zero or more parameters.
5218 More C<isl_ast_build> functions are described in L</"Nested AST Generation">
5219 and L</"Fine-grained Control over AST Generation">.
5220 Finally, the AST itself can be constructed using the following
5223 #include <isl/ast_build.h>
5224 __isl_give isl_ast_node *isl_ast_build_ast_from_schedule(
5225 __isl_keep isl_ast_build *build,
5226 __isl_take isl_union_map *schedule);
5228 =head3 Inspecting the AST
5230 The basic properties of an AST node can be obtained as follows.
5232 #include <isl/ast.h>
5233 isl_ctx *isl_ast_node_get_ctx(
5234 __isl_keep isl_ast_node *node);
5235 enum isl_ast_node_type isl_ast_node_get_type(
5236 __isl_keep isl_ast_node *node);
5238 The type of an AST node is one of
5239 C<isl_ast_node_for>,
5241 C<isl_ast_node_block> or
5242 C<isl_ast_node_user>.
5243 An C<isl_ast_node_for> represents a for node.
5244 An C<isl_ast_node_if> represents an if node.
5245 An C<isl_ast_node_block> represents a compound node.
5246 An C<isl_ast_node_user> represents an expression statement.
5247 An expression statement typically corresponds to a domain element, i.e.,
5248 one of the elements that is visited by the AST.
5250 Each type of node has its own additional properties.
5252 #include <isl/ast.h>
5253 __isl_give isl_ast_expr *isl_ast_node_for_get_iterator(
5254 __isl_keep isl_ast_node *node);
5255 __isl_give isl_ast_expr *isl_ast_node_for_get_init(
5256 __isl_keep isl_ast_node *node);
5257 __isl_give isl_ast_expr *isl_ast_node_for_get_cond(
5258 __isl_keep isl_ast_node *node);
5259 __isl_give isl_ast_expr *isl_ast_node_for_get_inc(
5260 __isl_keep isl_ast_node *node);
5261 __isl_give isl_ast_node *isl_ast_node_for_get_body(
5262 __isl_keep isl_ast_node *node);
5263 int isl_ast_node_for_is_degenerate(
5264 __isl_keep isl_ast_node *node);
5266 An C<isl_ast_for> is considered degenerate if it is known to execute
5269 #include <isl/ast.h>
5270 __isl_give isl_ast_expr *isl_ast_node_if_get_cond(
5271 __isl_keep isl_ast_node *node);
5272 __isl_give isl_ast_node *isl_ast_node_if_get_then(
5273 __isl_keep isl_ast_node *node);
5274 int isl_ast_node_if_has_else(
5275 __isl_keep isl_ast_node *node);
5276 __isl_give isl_ast_node *isl_ast_node_if_get_else(
5277 __isl_keep isl_ast_node *node);
5279 __isl_give isl_ast_node_list *
5280 isl_ast_node_block_get_children(
5281 __isl_keep isl_ast_node *node);
5283 __isl_give isl_ast_expr *isl_ast_node_user_get_expr(
5284 __isl_keep isl_ast_node *node);
5286 Each of the returned C<isl_ast_expr>s can in turn be inspected using
5287 the following functions.
5289 #include <isl/ast.h>
5290 isl_ctx *isl_ast_expr_get_ctx(
5291 __isl_keep isl_ast_expr *expr);
5292 enum isl_ast_expr_type isl_ast_expr_get_type(
5293 __isl_keep isl_ast_expr *expr);
5295 The type of an AST expression is one of
5297 C<isl_ast_expr_id> or
5298 C<isl_ast_expr_int>.
5299 An C<isl_ast_expr_op> represents the result of an operation.
5300 An C<isl_ast_expr_id> represents an identifier.
5301 An C<isl_ast_expr_int> represents an integer value.
5303 Each type of expression has its own additional properties.
5305 #include <isl/ast.h>
5306 enum isl_ast_op_type isl_ast_expr_get_op_type(
5307 __isl_keep isl_ast_expr *expr);
5308 int isl_ast_expr_get_op_n_arg(__isl_keep isl_ast_expr *expr);
5309 __isl_give isl_ast_expr *isl_ast_expr_get_op_arg(
5310 __isl_keep isl_ast_expr *expr, int pos);
5311 int isl_ast_node_foreach_ast_op_type(
5312 __isl_keep isl_ast_node *node,
5313 int (*fn)(enum isl_ast_op_type type, void *user),
5316 C<isl_ast_expr_get_op_type> returns the type of the operation
5317 performed. C<isl_ast_expr_get_op_n_arg> returns the number of
5318 arguments. C<isl_ast_expr_get_op_arg> returns the specified
5320 C<isl_ast_node_foreach_ast_op_type> calls C<fn> for each distinct
5321 C<isl_ast_op_type> that appears in C<node>.
5322 The operation type is one of the following.
5326 =item C<isl_ast_op_and>
5328 Logical I<and> of two arguments.
5329 Both arguments can be evaluated.
5331 =item C<isl_ast_op_and_then>
5333 Logical I<and> of two arguments.
5334 The second argument can only be evaluated if the first evaluates to true.
5336 =item C<isl_ast_op_or>
5338 Logical I<or> of two arguments.
5339 Both arguments can be evaluated.
5341 =item C<isl_ast_op_or_else>
5343 Logical I<or> of two arguments.
5344 The second argument can only be evaluated if the first evaluates to false.
5346 =item C<isl_ast_op_max>
5348 Maximum of two or more arguments.
5350 =item C<isl_ast_op_min>
5352 Minimum of two or more arguments.
5354 =item C<isl_ast_op_minus>
5358 =item C<isl_ast_op_add>
5360 Sum of two arguments.
5362 =item C<isl_ast_op_sub>
5364 Difference of two arguments.
5366 =item C<isl_ast_op_mul>
5368 Product of two arguments.
5370 =item C<isl_ast_op_div>
5372 Exact division. That is, the result is known to be an integer.
5374 =item C<isl_ast_op_fdiv_q>
5376 Result of integer division, rounded towards negative
5379 =item C<isl_ast_op_pdiv_q>
5381 Result of integer division, where dividend is known to be non-negative.
5383 =item C<isl_ast_op_pdiv_r>
5385 Remainder of integer division, where dividend is known to be non-negative.
5387 =item C<isl_ast_op_cond>
5389 Conditional operator defined on three arguments.
5390 If the first argument evaluates to true, then the result
5391 is equal to the second argument. Otherwise, the result
5392 is equal to the third argument.
5393 The second and third argument may only be evaluated if
5394 the first argument evaluates to true and false, respectively.
5395 Corresponds to C<a ? b : c> in C.
5397 =item C<isl_ast_op_select>
5399 Conditional operator defined on three arguments.
5400 If the first argument evaluates to true, then the result
5401 is equal to the second argument. Otherwise, the result
5402 is equal to the third argument.
5403 The second and third argument may be evaluated independently
5404 of the value of the first argument.
5405 Corresponds to C<a * b + (1 - a) * c> in C.
5407 =item C<isl_ast_op_eq>
5411 =item C<isl_ast_op_le>
5413 Less than or equal relation.
5415 =item C<isl_ast_op_ge>
5417 Greater than or equal relation.
5419 =item C<isl_ast_op_call>
5422 The number of arguments of the C<isl_ast_expr> is one more than
5423 the number of arguments in the function call, the first argument
5424 representing the function being called.
5428 #include <isl/ast.h>
5429 __isl_give isl_id *isl_ast_expr_get_id(
5430 __isl_keep isl_ast_expr *expr);
5432 Return the identifier represented by the AST expression.
5434 #include <isl/ast.h>
5435 int isl_ast_expr_get_int(__isl_keep isl_ast_expr *expr,
5438 Return the integer represented by the AST expression.
5439 Note that the integer is returned through the C<v> argument.
5440 The return value of the function itself indicates whether the
5441 operation was performed successfully.
5443 =head3 Manipulating and printing the AST
5445 AST nodes can be copied and freed using the following functions.
5447 #include <isl/ast.h>
5448 __isl_give isl_ast_node *isl_ast_node_copy(
5449 __isl_keep isl_ast_node *node);
5450 void *isl_ast_node_free(__isl_take isl_ast_node *node);
5452 AST expressions can be copied and freed using the following functions.
5454 #include <isl/ast.h>
5455 __isl_give isl_ast_expr *isl_ast_expr_copy(
5456 __isl_keep isl_ast_expr *expr);
5457 void *isl_ast_expr_free(__isl_take isl_ast_expr *expr);
5459 New AST expressions can be created either directly or within
5460 the context of an C<isl_ast_build>.
5462 #include <isl/ast.h>
5463 __isl_give isl_ast_expr *isl_ast_expr_from_id(
5464 __isl_take isl_id *id);
5465 __isl_give isl_ast_expr *isl_ast_expr_neg(
5466 __isl_take isl_ast_expr *expr);
5467 __isl_give isl_ast_expr *isl_ast_expr_add(
5468 __isl_take isl_ast_expr *expr1,
5469 __isl_take isl_ast_expr *expr2);
5470 __isl_give isl_ast_expr *isl_ast_expr_sub(
5471 __isl_take isl_ast_expr *expr1,
5472 __isl_take isl_ast_expr *expr2);
5473 __isl_give isl_ast_expr *isl_ast_expr_mul(
5474 __isl_take isl_ast_expr *expr1,
5475 __isl_take isl_ast_expr *expr2);
5476 __isl_give isl_ast_expr *isl_ast_expr_div(
5477 __isl_take isl_ast_expr *expr1,
5478 __isl_take isl_ast_expr *expr2);
5479 __isl_give isl_ast_expr *isl_ast_expr_and(
5480 __isl_take isl_ast_expr *expr1,
5481 __isl_take isl_ast_expr *expr2)
5482 __isl_give isl_ast_expr *isl_ast_expr_or(
5483 __isl_take isl_ast_expr *expr1,
5484 __isl_take isl_ast_expr *expr2)
5486 #include <isl/ast_build.h>
5487 __isl_give isl_ast_expr *isl_ast_build_expr_from_pw_aff(
5488 __isl_keep isl_ast_build *build,
5489 __isl_take isl_pw_aff *pa);
5490 __isl_give isl_ast_expr *
5491 isl_ast_build_call_from_pw_multi_aff(
5492 __isl_keep isl_ast_build *build,
5493 __isl_take isl_pw_multi_aff *pma);
5495 The domains of C<pa> and C<pma> should correspond
5496 to the schedule space of C<build>.
5497 The tuple id of C<pma> is used as the function being called.
5499 User specified data can be attached to an C<isl_ast_node> and obtained
5500 from the same C<isl_ast_node> using the following functions.
5502 #include <isl/ast.h>
5503 __isl_give isl_ast_node *isl_ast_node_set_annotation(
5504 __isl_take isl_ast_node *node,
5505 __isl_take isl_id *annotation);
5506 __isl_give isl_id *isl_ast_node_get_annotation(
5507 __isl_keep isl_ast_node *node);
5509 Basic printing can be performed using the following functions.
5511 #include <isl/ast.h>
5512 __isl_give isl_printer *isl_printer_print_ast_expr(
5513 __isl_take isl_printer *p,
5514 __isl_keep isl_ast_expr *expr);
5515 __isl_give isl_printer *isl_printer_print_ast_node(
5516 __isl_take isl_printer *p,
5517 __isl_keep isl_ast_node *node);
5519 More advanced printing can be performed using the following functions.
5521 #include <isl/ast.h>
5522 __isl_give isl_printer *isl_ast_op_type_print_macro(
5523 enum isl_ast_op_type type,
5524 __isl_take isl_printer *p);
5525 __isl_give isl_printer *isl_ast_node_print_macros(
5526 __isl_keep isl_ast_node *node,
5527 __isl_take isl_printer *p);
5528 __isl_give isl_printer *isl_ast_node_print(
5529 __isl_keep isl_ast_node *node,
5530 __isl_take isl_printer *p,
5531 __isl_keep isl_ast_print_options *options);
5532 __isl_give isl_printer *isl_ast_node_for_print(
5533 __isl_keep isl_ast_node *node,
5534 __isl_take isl_printer *p,
5535 __isl_keep isl_ast_print_options *options);
5536 __isl_give isl_printer *isl_ast_node_if_print(
5537 __isl_keep isl_ast_node *node,
5538 __isl_take isl_printer *p,
5539 __isl_keep isl_ast_print_options *options);
5541 While printing an C<isl_ast_node> in C<ISL_FORMAT_C>,
5542 C<isl> may print out an AST that makes use of macros such
5543 as C<floord>, C<min> and C<max>.
5544 C<isl_ast_op_type_print_macro> prints out the macro
5545 corresponding to a specific C<isl_ast_op_type>.
5546 C<isl_ast_node_print_macros> scans the C<isl_ast_node>
5547 for expressions where these macros would be used and prints
5548 out the required macro definitions.
5549 Essentially, C<isl_ast_node_print_macros> calls
5550 C<isl_ast_node_foreach_ast_op_type> with C<isl_ast_op_type_print_macro>
5551 as function argument.
5552 C<isl_ast_node_print>, C<isl_ast_node_for_print> and
5553 C<isl_ast_node_if_print> print an C<isl_ast_node>
5554 in C<ISL_FORMAT_C>, but allow for some extra control
5555 through an C<isl_ast_print_options> object.
5556 This object can be created using the following functions.
5558 #include <isl/ast.h>
5559 __isl_give isl_ast_print_options *
5560 isl_ast_print_options_alloc(isl_ctx *ctx);
5561 void *isl_ast_print_options_free(
5562 __isl_take isl_ast_print_options *options);
5564 __isl_give isl_ast_print_options *
5565 isl_ast_print_options_set_print_user(
5566 __isl_take isl_ast_print_options *options,
5567 __isl_give isl_printer *(*print_user)(
5568 __isl_take isl_printer *p,
5569 __isl_keep isl_ast_node *node, void *user),
5571 __isl_give isl_ast_print_options *
5572 isl_ast_print_options_set_print_for(
5573 __isl_take isl_ast_print_options *options,
5574 __isl_give isl_printer *(*print_for)(
5575 __isl_take isl_printer *p,
5576 __isl_keep isl_ast_node *node, void *user),
5579 The callback set by C<isl_ast_print_options_set_print_domain>
5580 is called whenever a node of type C<isl_ast_node_user> needs to
5582 The callback set by C<isl_ast_print_options_set_print_for>
5583 is called whenever a node of type C<isl_ast_node_for> needs to
5585 Note that C<isl_ast_node_for_print> will I<not> call the
5586 callback set by C<isl_ast_print_options_set_print_for> on the node
5587 on which C<isl_ast_node_for_print> is called, but only on nested
5588 nodes of type C<isl_ast_node_for>. It is therefore safe to
5589 call C<isl_ast_node_for_print> from within the callback set by
5590 C<isl_ast_print_options_set_print_for>.
5592 The following option determines the type to be used for iterators
5593 while printing the AST.
5595 int isl_options_set_ast_iterator_type(
5596 isl_ctx *ctx, const char *val);
5597 const char *isl_options_get_ast_iterator_type(
5602 #include <isl/ast_build.h>
5603 int isl_options_set_ast_build_atomic_upper_bound(
5604 isl_ctx *ctx, int val);
5605 int isl_options_get_ast_build_atomic_upper_bound(
5607 int isl_options_set_ast_build_prefer_pdiv(isl_ctx *ctx,
5609 int isl_options_get_ast_build_prefer_pdiv(isl_ctx *ctx);
5610 int isl_options_set_ast_build_exploit_nested_bounds(
5611 isl_ctx *ctx, int val);
5612 int isl_options_get_ast_build_exploit_nested_bounds(
5614 int isl_options_set_ast_build_group_coscheduled(
5615 isl_ctx *ctx, int val);
5616 int isl_options_get_ast_build_group_coscheduled(
5618 int isl_options_set_ast_build_scale_strides(
5619 isl_ctx *ctx, int val);
5620 int isl_options_get_ast_build_scale_strides(
5625 =item * ast_build_atomic_upper_bound
5627 Generate loop upper bounds that consist of the current loop iterator,
5628 an operator and an expression not involving the iterator.
5629 If this option is not set, then the current loop iterator may appear
5630 several times in the upper bound.
5631 For example, when this option is turned off, AST generation
5634 [n] -> { A[i] -> [i] : 0 <= i <= 100, n }
5638 for (int c0 = 0; c0 <= 100 && n >= c0; c0 += 1)
5641 When the option is turned on, the following AST is generated
5643 for (int c0 = 0; c0 <= min(100, n); c0 += 1)
5646 =item * ast_build_prefer_pdiv
5648 If this option is turned off, then the AST generation will
5649 produce ASTs that may only contain C<isl_ast_op_fdiv_q>
5650 operators, but no C<isl_ast_op_pdiv_q> or
5651 C<isl_ast_op_pdiv_r> operators.
5652 If this options is turned on, then C<isl> will try to convert
5653 some of the C<isl_ast_op_fdiv_q> operators to (expressions containing)
5654 C<isl_ast_op_pdiv_q> or C<isl_ast_op_pdiv_r> operators.
5656 =item * ast_build_exploit_nested_bounds
5658 Simplify conditions based on bounds of nested for loops.
5659 In particular, remove conditions that are implied by the fact
5660 that one or more nested loops have at least one iteration,
5661 meaning that the upper bound is at least as large as the lower bound.
5662 For example, when this option is turned off, AST generation
5665 [N,M] -> { A[i,j] -> [i,j] : 0 <= i <= N and
5671 for (int c0 = 0; c0 <= N; c0 += 1)
5672 for (int c1 = 0; c1 <= M; c1 += 1)
5675 When the option is turned on, the following AST is generated
5677 for (int c0 = 0; c0 <= N; c0 += 1)
5678 for (int c1 = 0; c1 <= M; c1 += 1)
5681 =item * ast_build_group_coscheduled
5683 If two domain elements are assigned the same schedule point, then
5684 they may be executed in any order and they may even appear in different
5685 loops. If this options is set, then the AST generator will make
5686 sure that coscheduled domain elements do not appear in separate parts
5687 of the AST. This is useful in case of nested AST generation
5688 if the outer AST generation is given only part of a schedule
5689 and the inner AST generation should handle the domains that are
5690 coscheduled by this initial part of the schedule together.
5691 For example if an AST is generated for a schedule
5693 { A[i] -> [0]; B[i] -> [0] }
5695 then the C<isl_ast_build_set_create_leaf> callback described
5696 below may get called twice, once for each domain.
5697 Setting this option ensures that the callback is only called once
5698 on both domains together.
5700 =item * ast_build_separation_bounds
5702 This option specifies which bounds to use during separation.
5703 If this option is set to C<ISL_AST_BUILD_SEPARATION_BOUNDS_IMPLICIT>
5704 then all (possibly implicit) bounds on the current dimension will
5705 be used during separation.
5706 If this option is set to C<ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT>
5707 then only those bounds that are explicitly available will
5708 be used during separation.
5710 =item * ast_build_scale_strides
5712 This option specifies whether the AST generator is allowed
5713 to scale down iterators of strided loops.
5717 =head3 Fine-grained Control over AST Generation
5719 Besides specifying the constraints on the parameters,
5720 an C<isl_ast_build> object can be used to control
5721 various aspects of the AST generation process.
5722 The most prominent way of control is through ``options'',
5723 which can be set using the following function.
5725 #include <isl/ast_build.h>
5726 __isl_give isl_ast_build *
5727 isl_ast_build_set_options(
5728 __isl_take isl_ast_build *control,
5729 __isl_take isl_union_map *options);
5731 The options are encoded in an <isl_union_map>.
5732 The domain of this union relation refers to the schedule domain,
5733 i.e., the range of the schedule passed to C<isl_ast_build_ast_from_schedule>.
5734 In the case of nested AST generation (see L</"Nested AST Generation">),
5735 the domain of C<options> should refer to the extra piece of the schedule.
5736 That is, it should be equal to the range of the wrapped relation in the
5737 range of the schedule.
5738 The range of the options can consist of elements in one or more spaces,
5739 the names of which determine the effect of the option.
5740 The values of the range typically also refer to the schedule dimension
5741 to which the option applies. In case of nested AST generation
5742 (see L</"Nested AST Generation">), these values refer to the position
5743 of the schedule dimension within the innermost AST generation.
5744 The constraints on the domain elements of
5745 the option should only refer to this dimension and earlier dimensions.
5746 We consider the following spaces.
5750 =item C<separation_class>
5752 This space is a wrapped relation between two one dimensional spaces.
5753 The input space represents the schedule dimension to which the option
5754 applies and the output space represents the separation class.
5755 While constructing a loop corresponding to the specified schedule
5756 dimension(s), the AST generator will try to generate separate loops
5757 for domain elements that are assigned different classes.
5758 If only some of the elements are assigned a class, then those elements
5759 that are not assigned any class will be treated as belonging to a class
5760 that is separate from the explicitly assigned classes.
5761 The typical use case for this option is to separate full tiles from
5763 The other options, described below, are applied after the separation
5766 As an example, consider the separation into full and partial tiles
5767 of a tiling of a triangular domain.
5768 Take, for example, the domain
5770 { A[i,j] : 0 <= i,j and i + j <= 100 }
5772 and a tiling into tiles of 10 by 10. The input to the AST generator
5773 is then the schedule
5775 { A[i,j] -> [([i/10]),[j/10],i,j] : 0 <= i,j and
5778 Without any options, the following AST is generated
5780 for (int c0 = 0; c0 <= 10; c0 += 1)
5781 for (int c1 = 0; c1 <= -c0 + 10; c1 += 1)
5782 for (int c2 = 10 * c0;
5783 c2 <= min(-10 * c1 + 100, 10 * c0 + 9);
5785 for (int c3 = 10 * c1;
5786 c3 <= min(10 * c1 + 9, -c2 + 100);
5790 Separation into full and partial tiles can be obtained by assigning
5791 a class, say C<0>, to the full tiles. The full tiles are represented by those
5792 values of the first and second schedule dimensions for which there are
5793 values of the third and fourth dimensions to cover an entire tile.
5794 That is, we need to specify the following option
5796 { [a,b,c,d] -> separation_class[[0]->[0]] :
5797 exists b': 0 <= 10a,10b' and
5798 10a+9+10b'+9 <= 100;
5799 [a,b,c,d] -> separation_class[[1]->[0]] :
5800 0 <= 10a,10b and 10a+9+10b+9 <= 100 }
5804 { [a, b, c, d] -> separation_class[[1] -> [0]] :
5805 a >= 0 and b >= 0 and b <= 8 - a;
5806 [a, b, c, d] -> separation_class[[0] -> [0]] :
5809 With this option, the generated AST is as follows
5812 for (int c0 = 0; c0 <= 8; c0 += 1) {
5813 for (int c1 = 0; c1 <= -c0 + 8; c1 += 1)
5814 for (int c2 = 10 * c0;
5815 c2 <= 10 * c0 + 9; c2 += 1)
5816 for (int c3 = 10 * c1;
5817 c3 <= 10 * c1 + 9; c3 += 1)
5819 for (int c1 = -c0 + 9; c1 <= -c0 + 10; c1 += 1)
5820 for (int c2 = 10 * c0;
5821 c2 <= min(-10 * c1 + 100, 10 * c0 + 9);
5823 for (int c3 = 10 * c1;
5824 c3 <= min(-c2 + 100, 10 * c1 + 9);
5828 for (int c0 = 9; c0 <= 10; c0 += 1)
5829 for (int c1 = 0; c1 <= -c0 + 10; c1 += 1)
5830 for (int c2 = 10 * c0;
5831 c2 <= min(-10 * c1 + 100, 10 * c0 + 9);
5833 for (int c3 = 10 * c1;
5834 c3 <= min(10 * c1 + 9, -c2 + 100);
5841 This is a single-dimensional space representing the schedule dimension(s)
5842 to which ``separation'' should be applied. Separation tries to split
5843 a loop into several pieces if this can avoid the generation of guards
5845 See also the C<atomic> option.
5849 This is a single-dimensional space representing the schedule dimension(s)
5850 for which the domains should be considered ``atomic''. That is, the
5851 AST generator will make sure that any given domain space will only appear
5852 in a single loop at the specified level.
5854 Consider the following schedule
5856 { a[i] -> [i] : 0 <= i < 10;
5857 b[i] -> [i+1] : 0 <= i < 10 }
5859 If the following option is specified
5861 { [i] -> separate[x] }
5863 then the following AST will be generated
5867 for (int c0 = 1; c0 <= 9; c0 += 1) {
5874 If, on the other hand, the following option is specified
5876 { [i] -> atomic[x] }
5878 then the following AST will be generated
5880 for (int c0 = 0; c0 <= 10; c0 += 1) {
5887 If neither C<atomic> nor C<separate> is specified, then the AST generator
5888 may produce either of these two results or some intermediate form.
5892 This is a single-dimensional space representing the schedule dimension(s)
5893 that should be I<completely> unrolled.
5894 To obtain a partial unrolling, the user should apply an additional
5895 strip-mining to the schedule and fully unroll the inner loop.
5899 Additional control is available through the following functions.
5901 #include <isl/ast_build.h>
5902 __isl_give isl_ast_build *
5903 isl_ast_build_set_iterators(
5904 __isl_take isl_ast_build *control,
5905 __isl_take isl_id_list *iterators);
5907 The function C<isl_ast_build_set_iterators> allows the user to
5908 specify a list of iterator C<isl_id>s to be used as iterators.
5909 If the input schedule is injective, then
5910 the number of elements in this list should be as large as the dimension
5911 of the schedule space, but no direct correspondence should be assumed
5912 between dimensions and elements.
5913 If the input schedule is not injective, then an additional number
5914 of C<isl_id>s equal to the largest dimension of the input domains
5916 If the number of provided C<isl_id>s is insufficient, then additional
5917 names are automatically generated.
5919 #include <isl/ast_build.h>
5920 __isl_give isl_ast_build *
5921 isl_ast_build_set_create_leaf(
5922 __isl_take isl_ast_build *control,
5923 __isl_give isl_ast_node *(*fn)(
5924 __isl_take isl_ast_build *build,
5925 void *user), void *user);
5928 C<isl_ast_build_set_create_leaf> function allows for the
5929 specification of a callback that should be called whenever the AST
5930 generator arrives at an element of the schedule domain.
5931 The callback should return an AST node that should be inserted
5932 at the corresponding position of the AST. The default action (when
5933 the callback is not set) is to continue generating parts of the AST to scan
5934 all the domain elements associated to the schedule domain element
5935 and to insert user nodes, ``calling'' the domain element, for each of them.
5936 The C<build> argument contains the current state of the C<isl_ast_build>.
5937 To ease nested AST generation (see L</"Nested AST Generation">),
5938 all control information that is
5939 specific to the current AST generation such as the options and
5940 the callbacks has been removed from this C<isl_ast_build>.
5941 The callback would typically return the result of a nested
5943 user defined node created using the following function.
5945 #include <isl/ast.h>
5946 __isl_give isl_ast_node *isl_ast_node_alloc_user(
5947 __isl_take isl_ast_expr *expr);
5949 #include <isl/ast_build.h>
5950 __isl_give isl_ast_build *
5951 isl_ast_build_set_at_each_domain(
5952 __isl_take isl_ast_build *build,
5953 __isl_give isl_ast_node *(*fn)(
5954 __isl_take isl_ast_node *node,
5955 __isl_keep isl_ast_build *build,
5956 void *user), void *user);
5958 The callback set by C<isl_ast_build_set_at_each_domain> will
5959 be called for each domain AST node.
5960 The given C<isl_ast_build> can be used to create new
5961 C<isl_ast_expr> objects using C<isl_ast_build_expr_from_pw_aff>
5962 or C<isl_ast_build_call_from_pw_multi_aff>.
5964 =head3 Nested AST Generation
5966 C<isl> allows the user to create an AST within the context
5967 of another AST. These nested ASTs are created using the
5968 same C<isl_ast_build_ast_from_schedule> function that is used to create the
5969 outer AST. The C<build> argument should be an C<isl_ast_build>
5970 passed to a callback set by
5971 C<isl_ast_build_set_create_leaf>.
5972 The space of the range of the C<schedule> argument should refer
5973 to this build. In particular, the space should be a wrapped
5974 relation and the domain of this wrapped relation should be the
5975 same as that of the range of the schedule returned by
5976 C<isl_ast_build_get_schedule> below.
5977 In practice, the new schedule is typically
5978 created by calling C<isl_union_map_range_product> on the old schedule
5979 and some extra piece of the schedule.
5980 The space of the schedule domain is also available from
5981 the C<isl_ast_build>.
5983 #include <isl/ast_build.h>
5984 __isl_give isl_union_map *isl_ast_build_get_schedule(
5985 __isl_keep isl_ast_build *build);
5986 __isl_give isl_space *isl_ast_build_get_schedule_space(
5987 __isl_keep isl_ast_build *build);
5988 __isl_give isl_ast_build *isl_ast_build_restrict(
5989 __isl_take isl_ast_build *build,
5990 __isl_take isl_set *set);
5992 The C<isl_ast_build_get_schedule> function returns a (partial)
5993 schedule for the domains elements for which part of the AST still needs to
5994 be generated in the current build.
5995 In particular, the domain elements are mapped to those iterations of the loops
5996 enclosing the current point of the AST generation inside which
5997 the domain elements are executed.
5998 No direct correspondence between
5999 the input schedule and this schedule should be assumed.
6000 The space obtained from C<isl_ast_build_get_schedule_space> can be used
6001 to create a set for C<isl_ast_build_restrict> to intersect
6002 with the current build. In particular, the set passed to
6003 C<isl_ast_build_restrict> can have additional parameters.
6004 The ids of the set dimensions in the space returned by
6005 C<isl_ast_build_get_schedule_space> correspond to the
6006 iterators of the already generated loops.
6007 The user should not rely on the ids of the output dimensions
6008 of the relations in the union relation returned by
6009 C<isl_ast_build_get_schedule> having any particular value.
6013 Although C<isl> is mainly meant to be used as a library,
6014 it also contains some basic applications that use some
6015 of the functionality of C<isl>.
6016 The input may be specified in either the L<isl format>
6017 or the L<PolyLib format>.
6019 =head2 C<isl_polyhedron_sample>
6021 C<isl_polyhedron_sample> takes a polyhedron as input and prints
6022 an integer element of the polyhedron, if there is any.
6023 The first column in the output is the denominator and is always
6024 equal to 1. If the polyhedron contains no integer points,
6025 then a vector of length zero is printed.
6029 C<isl_pip> takes the same input as the C<example> program
6030 from the C<piplib> distribution, i.e., a set of constraints
6031 on the parameters, a line containing only -1 and finally a set
6032 of constraints on a parametric polyhedron.
6033 The coefficients of the parameters appear in the last columns
6034 (but before the final constant column).
6035 The output is the lexicographic minimum of the parametric polyhedron.
6036 As C<isl> currently does not have its own output format, the output
6037 is just a dump of the internal state.
6039 =head2 C<isl_polyhedron_minimize>
6041 C<isl_polyhedron_minimize> computes the minimum of some linear
6042 or affine objective function over the integer points in a polyhedron.
6043 If an affine objective function
6044 is given, then the constant should appear in the last column.
6046 =head2 C<isl_polytope_scan>
6048 Given a polytope, C<isl_polytope_scan> prints
6049 all integer points in the polytope.
6051 =head2 C<isl_codegen>
6053 Given a schedule, a context set and an options relation,
6054 C<isl_codegen> prints out an AST that scans the domain elements
6055 of the schedule in the order of their image(s) taking into account
6056 the constraints in the context set.