3 C<isl> is a thread-safe C library for manipulating
4 sets and relations of integer points bounded by affine constraints.
5 The descriptions of the sets and relations may involve
6 both parameters and existentially quantified variables.
7 All computations are performed in exact integer arithmetic
9 The C<isl> library offers functionality that is similar
10 to that offered by the C<Omega> and C<Omega+> libraries,
11 but the underlying algorithms are in most cases completely different.
13 The library is by no means complete and some fairly basic
14 functionality is still missing.
15 Still, even in its current form, the library has been successfully
16 used as a backend polyhedral library for the polyhedral
17 scanner C<CLooG> and as part of an equivalence checker of
18 static affine programs.
19 For bug reports, feature requests and questions,
20 visit the the discussion group at
21 L<http://groups.google.com/group/isl-development>.
23 =head2 Backward Incompatible Changes
25 =head3 Changes since isl-0.02
29 =item * The old printing functions have been deprecated
30 and replaced by C<isl_printer> functions, see L<Input and Output>.
32 =item * Most functions related to dependence analysis have acquired
33 an extra C<must> argument. To obtain the old behavior, this argument
34 should be given the value 1. See L<Dependence Analysis>.
38 =head3 Changes since isl-0.03
42 =item * The function C<isl_pw_qpolynomial_fold_add> has been
43 renamed to C<isl_pw_qpolynomial_fold_fold>.
44 Similarly, C<isl_union_pw_qpolynomial_fold_add> has been
45 renamed to C<isl_union_pw_qpolynomial_fold_fold>.
49 =head3 Changes since isl-0.04
53 =item * All header files have been renamed from C<isl_header.h>
58 =head3 Changes since isl-0.05
62 =item * The functions C<isl_printer_print_basic_set> and
63 C<isl_printer_print_basic_map> no longer print a newline.
65 =item * The functions C<isl_flow_get_no_source>
66 and C<isl_union_map_compute_flow> now return
67 the accesses for which no source could be found instead of
68 the iterations where those accesses occur.
70 =item * The functions C<isl_basic_map_identity> and
71 C<isl_map_identity> now take a B<map> space as input. An old call
72 C<isl_map_identity(space)> can be rewritten to
73 C<isl_map_identity(isl_space_map_from_set(space))>.
75 =item * The function C<isl_map_power> no longer takes
76 a parameter position as input. Instead, the exponent
77 is now expressed as the domain of the resulting relation.
81 =head3 Changes since isl-0.06
85 =item * The format of C<isl_printer_print_qpolynomial>'s
86 C<ISL_FORMAT_ISL> output has changed.
87 Use C<ISL_FORMAT_C> to obtain the old output.
89 =item * The C<*_fast_*> functions have been renamed to C<*_plain_*>.
90 Some of the old names have been kept for backward compatibility,
91 but they will be removed in the future.
95 =head3 Changes since isl-0.07
99 =item * The function C<isl_pw_aff_max> has been renamed to
100 C<isl_pw_aff_union_max>.
101 Similarly, the function C<isl_pw_aff_add> has been renamed to
102 C<isl_pw_aff_union_add>.
104 =item * The C<isl_dim> type has been renamed to C<isl_space>
105 along with the associated functions.
106 Some of the old names have been kept for backward compatibility,
107 but they will be removed in the future.
109 =item * Spaces of maps, sets and parameter domains are now
110 treated differently. The distinction between map spaces and set spaces
111 has always been made on a conceptual level, but proper use of such spaces
112 was never checked. Furthermore, up until isl-0.07 there was no way
113 of explicitly creating a parameter space. These can now be created
114 directly using C<isl_space_params_alloc> or from other spaces using
117 =item * The space in which C<isl_aff>, C<isl_pw_aff>, C<isl_qpolynomial>,
118 C<isl_pw_qpolynomial>, C<isl_qpolynomial_fold> and C<isl_pw_qpolynomial_fold>
119 objects live is now a map space
120 instead of a set space. This means, for example, that the dimensions
121 of the domain of an C<isl_aff> are now considered to be of type
122 C<isl_dim_in> instead of C<isl_dim_set>. Extra functions have been
123 added to obtain the domain space. Some of the constructors still
124 take a domain space and have therefore been renamed.
126 =item * The functions C<isl_equality_alloc> and C<isl_inequality_alloc>
127 now take an C<isl_local_space> instead of an C<isl_space>.
128 An C<isl_local_space> can be created from an C<isl_space>
129 using C<isl_local_space_from_space>.
131 =item * The C<isl_div> type has been removed. Functions that used
132 to return an C<isl_div> now return an C<isl_aff>.
133 Note that the space of an C<isl_aff> is that of relation.
134 When replacing a call to C<isl_div_get_coefficient> by a call to
135 C<isl_aff_get_coefficient> any C<isl_dim_set> argument needs
136 to be replaced by C<isl_dim_in>.
137 A call to C<isl_aff_from_div> can be replaced by a call
139 A call to C<isl_qpolynomial_div(div)> call be replaced by
142 isl_qpolynomial_from_aff(isl_aff_floor(div))
144 The function C<isl_constraint_div> has also been renamed
145 to C<isl_constraint_get_div>.
147 =item * The C<nparam> argument has been removed from
148 C<isl_map_read_from_str> and similar functions.
149 When reading input in the original PolyLib format,
150 the result will have no parameters.
151 If parameters are expected, the caller may want to perform
152 dimension manipulation on the result.
156 =head3 Changes since isl-0.09
160 =item * The C<schedule_split_parallel> option has been replaced
161 by the C<schedule_split_scaled> option.
167 The source of C<isl> can be obtained either as a tarball
168 or from the git repository. Both are available from
169 L<http://freshmeat.net/projects/isl/>.
170 The installation process depends on how you obtained
173 =head2 Installation from the git repository
177 =item 1 Clone or update the repository
179 The first time the source is obtained, you need to clone
182 git clone git://repo.or.cz/isl.git
184 To obtain updates, you need to pull in the latest changes
188 =item 2 Generate C<configure>
194 After performing the above steps, continue
195 with the L<Common installation instructions>.
197 =head2 Common installation instructions
201 =item 1 Obtain C<GMP>
203 Building C<isl> requires C<GMP>, including its headers files.
204 Your distribution may not provide these header files by default
205 and you may need to install a package called C<gmp-devel> or something
206 similar. Alternatively, C<GMP> can be built from
207 source, available from L<http://gmplib.org/>.
211 C<isl> uses the standard C<autoconf> C<configure> script.
216 optionally followed by some configure options.
217 A complete list of options can be obtained by running
221 Below we discuss some of the more common options.
223 C<isl> can optionally use C<piplib>, but no
224 C<piplib> functionality is currently used by default.
225 The C<--with-piplib> option can
226 be used to specify which C<piplib>
227 library to use, either an installed version (C<system>),
228 an externally built version (C<build>)
229 or no version (C<no>). The option C<build> is mostly useful
230 in C<configure> scripts of larger projects that bundle both C<isl>
237 Installation prefix for C<isl>
239 =item C<--with-gmp-prefix>
241 Installation prefix for C<GMP> (architecture-independent files).
243 =item C<--with-gmp-exec-prefix>
245 Installation prefix for C<GMP> (architecture-dependent files).
247 =item C<--with-piplib>
249 Which copy of C<piplib> to use, either C<no> (default), C<system> or C<build>.
251 =item C<--with-piplib-prefix>
253 Installation prefix for C<system> C<piplib> (architecture-independent files).
255 =item C<--with-piplib-exec-prefix>
257 Installation prefix for C<system> C<piplib> (architecture-dependent files).
259 =item C<--with-piplib-builddir>
261 Location where C<build> C<piplib> was built.
269 =item 4 Install (optional)
277 =head2 Initialization
279 All manipulations of integer sets and relations occur within
280 the context of an C<isl_ctx>.
281 A given C<isl_ctx> can only be used within a single thread.
282 All arguments of a function are required to have been allocated
283 within the same context.
284 There are currently no functions available for moving an object
285 from one C<isl_ctx> to another C<isl_ctx>. This means that
286 there is currently no way of safely moving an object from one
287 thread to another, unless the whole C<isl_ctx> is moved.
289 An C<isl_ctx> can be allocated using C<isl_ctx_alloc> and
290 freed using C<isl_ctx_free>.
291 All objects allocated within an C<isl_ctx> should be freed
292 before the C<isl_ctx> itself is freed.
294 isl_ctx *isl_ctx_alloc();
295 void isl_ctx_free(isl_ctx *ctx);
299 All operations on integers, mainly the coefficients
300 of the constraints describing the sets and relations,
301 are performed in exact integer arithmetic using C<GMP>.
302 However, to allow future versions of C<isl> to optionally
303 support fixed integer arithmetic, all calls to C<GMP>
304 are wrapped inside C<isl> specific macros.
305 The basic type is C<isl_int> and the operations below
306 are available on this type.
307 The meanings of these operations are essentially the same
308 as their C<GMP> C<mpz_> counterparts.
309 As always with C<GMP> types, C<isl_int>s need to be
310 initialized with C<isl_int_init> before they can be used
311 and they need to be released with C<isl_int_clear>
313 The user should not assume that an C<isl_int> is represented
314 as a C<mpz_t>, but should instead explicitly convert between
315 C<mpz_t>s and C<isl_int>s using C<isl_int_set_gmp> and
316 C<isl_int_get_gmp> whenever a C<mpz_t> is required.
320 =item isl_int_init(i)
322 =item isl_int_clear(i)
324 =item isl_int_set(r,i)
326 =item isl_int_set_si(r,i)
328 =item isl_int_set_gmp(r,g)
330 =item isl_int_get_gmp(i,g)
332 =item isl_int_abs(r,i)
334 =item isl_int_neg(r,i)
336 =item isl_int_swap(i,j)
338 =item isl_int_swap_or_set(i,j)
340 =item isl_int_add_ui(r,i,j)
342 =item isl_int_sub_ui(r,i,j)
344 =item isl_int_add(r,i,j)
346 =item isl_int_sub(r,i,j)
348 =item isl_int_mul(r,i,j)
350 =item isl_int_mul_ui(r,i,j)
352 =item isl_int_addmul(r,i,j)
354 =item isl_int_submul(r,i,j)
356 =item isl_int_gcd(r,i,j)
358 =item isl_int_lcm(r,i,j)
360 =item isl_int_divexact(r,i,j)
362 =item isl_int_cdiv_q(r,i,j)
364 =item isl_int_fdiv_q(r,i,j)
366 =item isl_int_fdiv_r(r,i,j)
368 =item isl_int_fdiv_q_ui(r,i,j)
370 =item isl_int_read(r,s)
372 =item isl_int_print(out,i,width)
376 =item isl_int_cmp(i,j)
378 =item isl_int_cmp_si(i,si)
380 =item isl_int_eq(i,j)
382 =item isl_int_ne(i,j)
384 =item isl_int_lt(i,j)
386 =item isl_int_le(i,j)
388 =item isl_int_gt(i,j)
390 =item isl_int_ge(i,j)
392 =item isl_int_abs_eq(i,j)
394 =item isl_int_abs_ne(i,j)
396 =item isl_int_abs_lt(i,j)
398 =item isl_int_abs_gt(i,j)
400 =item isl_int_abs_ge(i,j)
402 =item isl_int_is_zero(i)
404 =item isl_int_is_one(i)
406 =item isl_int_is_negone(i)
408 =item isl_int_is_pos(i)
410 =item isl_int_is_neg(i)
412 =item isl_int_is_nonpos(i)
414 =item isl_int_is_nonneg(i)
416 =item isl_int_is_divisible_by(i,j)
420 =head2 Sets and Relations
422 C<isl> uses six types of objects for representing sets and relations,
423 C<isl_basic_set>, C<isl_basic_map>, C<isl_set>, C<isl_map>,
424 C<isl_union_set> and C<isl_union_map>.
425 C<isl_basic_set> and C<isl_basic_map> represent sets and relations that
426 can be described as a conjunction of affine constraints, while
427 C<isl_set> and C<isl_map> represent unions of
428 C<isl_basic_set>s and C<isl_basic_map>s, respectively.
429 However, all C<isl_basic_set>s or C<isl_basic_map>s in the union need
430 to live in the same space. C<isl_union_set>s and C<isl_union_map>s
431 represent unions of C<isl_set>s or C<isl_map>s in I<different> spaces,
432 where spaces are considered different if they have a different number
433 of dimensions and/or different names (see L<"Spaces">).
434 The difference between sets and relations (maps) is that sets have
435 one set of variables, while relations have two sets of variables,
436 input variables and output variables.
438 =head2 Memory Management
440 Since a high-level operation on sets and/or relations usually involves
441 several substeps and since the user is usually not interested in
442 the intermediate results, most functions that return a new object
443 will also release all the objects passed as arguments.
444 If the user still wants to use one or more of these arguments
445 after the function call, she should pass along a copy of the
446 object rather than the object itself.
447 The user is then responsible for making sure that the original
448 object gets used somewhere else or is explicitly freed.
450 The arguments and return values of all documented functions are
451 annotated to make clear which arguments are released and which
452 arguments are preserved. In particular, the following annotations
459 C<__isl_give> means that a new object is returned.
460 The user should make sure that the returned pointer is
461 used exactly once as a value for an C<__isl_take> argument.
462 In between, it can be used as a value for as many
463 C<__isl_keep> arguments as the user likes.
464 There is one exception, and that is the case where the
465 pointer returned is C<NULL>. Is this case, the user
466 is free to use it as an C<__isl_take> argument or not.
470 C<__isl_take> means that the object the argument points to
471 is taken over by the function and may no longer be used
472 by the user as an argument to any other function.
473 The pointer value must be one returned by a function
474 returning an C<__isl_give> pointer.
475 If the user passes in a C<NULL> value, then this will
476 be treated as an error in the sense that the function will
477 not perform its usual operation. However, it will still
478 make sure that all the other C<__isl_take> arguments
483 C<__isl_keep> means that the function will only use the object
484 temporarily. After the function has finished, the user
485 can still use it as an argument to other functions.
486 A C<NULL> value will be treated in the same way as
487 a C<NULL> value for an C<__isl_take> argument.
491 =head2 Error Handling
493 C<isl> supports different ways to react in case a runtime error is triggered.
494 Runtime errors arise, e.g., if a function such as C<isl_map_intersect> is called
495 with two maps that have incompatible spaces. There are three possible ways
496 to react on error: to warn, to continue or to abort.
498 The default behavior is to warn. In this mode, C<isl> prints a warning, stores
499 the last error in the corresponding C<isl_ctx> and the function in which the
500 error was triggered returns C<NULL>. An error does not corrupt internal state,
501 such that isl can continue to be used. C<isl> also provides functions to
502 read the last error and to reset the memory that stores the last error. The
503 last error is only stored for information purposes. Its presence does not
504 change the behavior of C<isl>. Hence, resetting an error is not required to
505 continue to use isl, but only to observe new errors.
508 enum isl_error isl_ctx_last_error(isl_ctx *ctx);
509 void isl_ctx_reset_error(isl_ctx *ctx);
511 Another option is to continue on error. This is similar to warn on error mode,
512 except that C<isl> does not print any warning. This allows a program to
513 implement its own error reporting.
515 The last option is to directly abort the execution of the program from within
516 the isl library. This makes it obviously impossible to recover from an error,
517 but it allows to directly spot the error location. By aborting on error,
518 debuggers break at the location the error occurred and can provide a stack
519 trace. Other tools that automatically provide stack traces on abort or that do
520 not want to continue execution after an error was triggered may also prefer to
523 The on error behavior of isl can be specified by calling
524 C<isl_options_set_on_error> or by setting the command line option
525 C<--isl-on-error>. Valid arguments for the function call are
526 C<ISL_ON_ERROR_WARN>, C<ISL_ON_ERROR_CONTINUE> and C<ISL_ON_ERROR_ABORT>. The
527 choices for the command line option are C<warn>, C<continue> and C<abort>.
528 It is also possible to query the current error mode.
530 #include <isl/options.h>
531 int isl_options_set_on_error(isl_ctx *ctx, int val);
532 int isl_options_get_on_error(isl_ctx *ctx);
536 Identifiers are used to identify both individual dimensions
537 and tuples of dimensions. They consist of a name and an optional
538 pointer. Identifiers with the same name but different pointer values
539 are considered to be distinct.
540 Identifiers can be constructed, copied, freed, inspected and printed
541 using the following functions.
544 __isl_give isl_id *isl_id_alloc(isl_ctx *ctx,
545 __isl_keep const char *name, void *user);
546 __isl_give isl_id *isl_id_copy(isl_id *id);
547 void *isl_id_free(__isl_take isl_id *id);
549 isl_ctx *isl_id_get_ctx(__isl_keep isl_id *id);
550 void *isl_id_get_user(__isl_keep isl_id *id);
551 __isl_keep const char *isl_id_get_name(__isl_keep isl_id *id);
553 __isl_give isl_printer *isl_printer_print_id(
554 __isl_take isl_printer *p, __isl_keep isl_id *id);
556 Note that C<isl_id_get_name> returns a pointer to some internal
557 data structure, so the result can only be used while the
558 corresponding C<isl_id> is alive.
562 Whenever a new set or relation is created from scratch,
563 the space in which it lives needs to be specified using an C<isl_space>.
565 #include <isl/space.h>
566 __isl_give isl_space *isl_space_alloc(isl_ctx *ctx,
567 unsigned nparam, unsigned n_in, unsigned n_out);
568 __isl_give isl_space *isl_space_params_alloc(isl_ctx *ctx,
570 __isl_give isl_space *isl_space_set_alloc(isl_ctx *ctx,
571 unsigned nparam, unsigned dim);
572 __isl_give isl_space *isl_space_copy(__isl_keep isl_space *space);
573 void isl_space_free(__isl_take isl_space *space);
574 unsigned isl_space_dim(__isl_keep isl_space *space,
575 enum isl_dim_type type);
577 The space used for creating a parameter domain
578 needs to be created using C<isl_space_params_alloc>.
579 For other sets, the space
580 needs to be created using C<isl_space_set_alloc>, while
581 for a relation, the space
582 needs to be created using C<isl_space_alloc>.
583 C<isl_space_dim> can be used
584 to find out the number of dimensions of each type in
585 a space, where type may be
586 C<isl_dim_param>, C<isl_dim_in> (only for relations),
587 C<isl_dim_out> (only for relations), C<isl_dim_set>
588 (only for sets) or C<isl_dim_all>.
590 To check whether a given space is that of a set or a map
591 or whether it is a parameter space, use these functions:
593 #include <isl/space.h>
594 int isl_space_is_params(__isl_keep isl_space *space);
595 int isl_space_is_set(__isl_keep isl_space *space);
597 It is often useful to create objects that live in the
598 same space as some other object. This can be accomplished
599 by creating the new objects
600 (see L<Creating New Sets and Relations> or
601 L<Creating New (Piecewise) Quasipolynomials>) based on the space
602 of the original object.
605 __isl_give isl_space *isl_basic_set_get_space(
606 __isl_keep isl_basic_set *bset);
607 __isl_give isl_space *isl_set_get_space(__isl_keep isl_set *set);
609 #include <isl/union_set.h>
610 __isl_give isl_space *isl_union_set_get_space(
611 __isl_keep isl_union_set *uset);
614 __isl_give isl_space *isl_basic_map_get_space(
615 __isl_keep isl_basic_map *bmap);
616 __isl_give isl_space *isl_map_get_space(__isl_keep isl_map *map);
618 #include <isl/union_map.h>
619 __isl_give isl_space *isl_union_map_get_space(
620 __isl_keep isl_union_map *umap);
622 #include <isl/constraint.h>
623 __isl_give isl_space *isl_constraint_get_space(
624 __isl_keep isl_constraint *constraint);
626 #include <isl/polynomial.h>
627 __isl_give isl_space *isl_qpolynomial_get_domain_space(
628 __isl_keep isl_qpolynomial *qp);
629 __isl_give isl_space *isl_qpolynomial_get_space(
630 __isl_keep isl_qpolynomial *qp);
631 __isl_give isl_space *isl_qpolynomial_fold_get_space(
632 __isl_keep isl_qpolynomial_fold *fold);
633 __isl_give isl_space *isl_pw_qpolynomial_get_domain_space(
634 __isl_keep isl_pw_qpolynomial *pwqp);
635 __isl_give isl_space *isl_pw_qpolynomial_get_space(
636 __isl_keep isl_pw_qpolynomial *pwqp);
637 __isl_give isl_space *isl_pw_qpolynomial_fold_get_domain_space(
638 __isl_keep isl_pw_qpolynomial_fold *pwf);
639 __isl_give isl_space *isl_pw_qpolynomial_fold_get_space(
640 __isl_keep isl_pw_qpolynomial_fold *pwf);
641 __isl_give isl_space *isl_union_pw_qpolynomial_get_space(
642 __isl_keep isl_union_pw_qpolynomial *upwqp);
643 __isl_give isl_space *isl_union_pw_qpolynomial_fold_get_space(
644 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
647 __isl_give isl_space *isl_aff_get_domain_space(
648 __isl_keep isl_aff *aff);
649 __isl_give isl_space *isl_aff_get_space(
650 __isl_keep isl_aff *aff);
651 __isl_give isl_space *isl_pw_aff_get_domain_space(
652 __isl_keep isl_pw_aff *pwaff);
653 __isl_give isl_space *isl_pw_aff_get_space(
654 __isl_keep isl_pw_aff *pwaff);
655 __isl_give isl_space *isl_multi_aff_get_space(
656 __isl_keep isl_multi_aff *maff);
657 __isl_give isl_space *isl_pw_multi_aff_get_domain_space(
658 __isl_keep isl_pw_multi_aff *pma);
659 __isl_give isl_space *isl_pw_multi_aff_get_space(
660 __isl_keep isl_pw_multi_aff *pma);
662 #include <isl/point.h>
663 __isl_give isl_space *isl_point_get_space(
664 __isl_keep isl_point *pnt);
666 The identifiers or names of the individual dimensions may be set or read off
667 using the following functions.
669 #include <isl/space.h>
670 __isl_give isl_space *isl_space_set_dim_id(
671 __isl_take isl_space *space,
672 enum isl_dim_type type, unsigned pos,
673 __isl_take isl_id *id);
674 int isl_space_has_dim_id(__isl_keep isl_space *space,
675 enum isl_dim_type type, unsigned pos);
676 __isl_give isl_id *isl_space_get_dim_id(
677 __isl_keep isl_space *space,
678 enum isl_dim_type type, unsigned pos);
679 __isl_give isl_space *isl_space_set_dim_name(
680 __isl_take isl_space *space,
681 enum isl_dim_type type, unsigned pos,
682 __isl_keep const char *name);
683 int isl_space_has_dim_name(__isl_keep isl_space *space,
684 enum isl_dim_type type, unsigned pos);
685 __isl_keep const char *isl_space_get_dim_name(
686 __isl_keep isl_space *space,
687 enum isl_dim_type type, unsigned pos);
689 Note that C<isl_space_get_name> returns a pointer to some internal
690 data structure, so the result can only be used while the
691 corresponding C<isl_space> is alive.
692 Also note that every function that operates on two sets or relations
693 requires that both arguments have the same parameters. This also
694 means that if one of the arguments has named parameters, then the
695 other needs to have named parameters too and the names need to match.
696 Pairs of C<isl_set>, C<isl_map>, C<isl_union_set> and/or C<isl_union_map>
697 arguments may have different parameters (as long as they are named),
698 in which case the result will have as parameters the union of the parameters of
701 Given the identifier or name of a dimension (typically a parameter),
702 its position can be obtained from the following function.
704 #include <isl/space.h>
705 int isl_space_find_dim_by_id(__isl_keep isl_space *space,
706 enum isl_dim_type type, __isl_keep isl_id *id);
707 int isl_space_find_dim_by_name(__isl_keep isl_space *space,
708 enum isl_dim_type type, const char *name);
710 The identifiers or names of entire spaces may be set or read off
711 using the following functions.
713 #include <isl/space.h>
714 __isl_give isl_space *isl_space_set_tuple_id(
715 __isl_take isl_space *space,
716 enum isl_dim_type type, __isl_take isl_id *id);
717 __isl_give isl_space *isl_space_reset_tuple_id(
718 __isl_take isl_space *space, enum isl_dim_type type);
719 int isl_space_has_tuple_id(__isl_keep isl_space *space,
720 enum isl_dim_type type);
721 __isl_give isl_id *isl_space_get_tuple_id(
722 __isl_keep isl_space *space, enum isl_dim_type type);
723 __isl_give isl_space *isl_space_set_tuple_name(
724 __isl_take isl_space *space,
725 enum isl_dim_type type, const char *s);
726 const char *isl_space_get_tuple_name(__isl_keep isl_space *space,
727 enum isl_dim_type type);
729 The C<type> argument needs to be one of C<isl_dim_in>, C<isl_dim_out>
730 or C<isl_dim_set>. As with C<isl_space_get_name>,
731 the C<isl_space_get_tuple_name> function returns a pointer to some internal
733 Binary operations require the corresponding spaces of their arguments
734 to have the same name.
736 Spaces can be nested. In particular, the domain of a set or
737 the domain or range of a relation can be a nested relation.
738 The following functions can be used to construct and deconstruct
741 #include <isl/space.h>
742 int isl_space_is_wrapping(__isl_keep isl_space *space);
743 __isl_give isl_space *isl_space_wrap(__isl_take isl_space *space);
744 __isl_give isl_space *isl_space_unwrap(__isl_take isl_space *space);
746 The input to C<isl_space_is_wrapping> and C<isl_space_unwrap> should
747 be the space of a set, while that of
748 C<isl_space_wrap> should be the space of a relation.
749 Conversely, the output of C<isl_space_unwrap> is the space
750 of a relation, while that of C<isl_space_wrap> is the space of a set.
752 Spaces can be created from other spaces
753 using the following functions.
755 __isl_give isl_space *isl_space_domain(__isl_take isl_space *space);
756 __isl_give isl_space *isl_space_from_domain(__isl_take isl_space *space);
757 __isl_give isl_space *isl_space_range(__isl_take isl_space *space);
758 __isl_give isl_space *isl_space_from_range(__isl_take isl_space *space);
759 __isl_give isl_space *isl_space_params(
760 __isl_take isl_space *space);
761 __isl_give isl_space *isl_space_set_from_params(
762 __isl_take isl_space *space);
763 __isl_give isl_space *isl_space_reverse(__isl_take isl_space *space);
764 __isl_give isl_space *isl_space_join(__isl_take isl_space *left,
765 __isl_take isl_space *right);
766 __isl_give isl_space *isl_space_align_params(
767 __isl_take isl_space *space1, __isl_take isl_space *space2)
768 __isl_give isl_space *isl_space_insert_dims(__isl_take isl_space *space,
769 enum isl_dim_type type, unsigned pos, unsigned n);
770 __isl_give isl_space *isl_space_add_dims(__isl_take isl_space *space,
771 enum isl_dim_type type, unsigned n);
772 __isl_give isl_space *isl_space_drop_dims(__isl_take isl_space *space,
773 enum isl_dim_type type, unsigned first, unsigned n);
774 __isl_give isl_space *isl_space_move_dims(__isl_take isl_space *space,
775 enum isl_dim_type dst_type, unsigned dst_pos,
776 enum isl_dim_type src_type, unsigned src_pos,
778 __isl_give isl_space *isl_space_map_from_set(
779 __isl_take isl_space *space);
780 __isl_give isl_space *isl_space_map_from_domain_and_range(
781 __isl_take isl_space *domain,
782 __isl_take isl_space *range);
783 __isl_give isl_space *isl_space_zip(__isl_take isl_space *space);
785 Note that if dimensions are added or removed from a space, then
786 the name and the internal structure are lost.
790 A local space is essentially a space with
791 zero or more existentially quantified variables.
792 The local space of a basic set or relation can be obtained
793 using the following functions.
796 __isl_give isl_local_space *isl_basic_set_get_local_space(
797 __isl_keep isl_basic_set *bset);
800 __isl_give isl_local_space *isl_basic_map_get_local_space(
801 __isl_keep isl_basic_map *bmap);
803 A new local space can be created from a space using
805 #include <isl/local_space.h>
806 __isl_give isl_local_space *isl_local_space_from_space(
807 __isl_take isl_space *space);
809 They can be inspected, modified, copied and freed using the following functions.
811 #include <isl/local_space.h>
812 isl_ctx *isl_local_space_get_ctx(
813 __isl_keep isl_local_space *ls);
814 int isl_local_space_is_set(__isl_keep isl_local_space *ls);
815 int isl_local_space_dim(__isl_keep isl_local_space *ls,
816 enum isl_dim_type type);
817 const char *isl_local_space_get_dim_name(
818 __isl_keep isl_local_space *ls,
819 enum isl_dim_type type, unsigned pos);
820 __isl_give isl_local_space *isl_local_space_set_dim_name(
821 __isl_take isl_local_space *ls,
822 enum isl_dim_type type, unsigned pos, const char *s);
823 __isl_give isl_local_space *isl_local_space_set_dim_id(
824 __isl_take isl_local_space *ls,
825 enum isl_dim_type type, unsigned pos,
826 __isl_take isl_id *id);
827 __isl_give isl_space *isl_local_space_get_space(
828 __isl_keep isl_local_space *ls);
829 __isl_give isl_aff *isl_local_space_get_div(
830 __isl_keep isl_local_space *ls, int pos);
831 __isl_give isl_local_space *isl_local_space_copy(
832 __isl_keep isl_local_space *ls);
833 void *isl_local_space_free(__isl_take isl_local_space *ls);
835 Two local spaces can be compared using
837 int isl_local_space_is_equal(__isl_keep isl_local_space *ls1,
838 __isl_keep isl_local_space *ls2);
840 Local spaces can be created from other local spaces
841 using the following functions.
843 __isl_give isl_local_space *isl_local_space_domain(
844 __isl_take isl_local_space *ls);
845 __isl_give isl_local_space *isl_local_space_range(
846 __isl_take isl_local_space *ls);
847 __isl_give isl_local_space *isl_local_space_from_domain(
848 __isl_take isl_local_space *ls);
849 __isl_give isl_local_space *isl_local_space_intersect(
850 __isl_take isl_local_space *ls1,
851 __isl_take isl_local_space *ls2);
852 __isl_give isl_local_space *isl_local_space_add_dims(
853 __isl_take isl_local_space *ls,
854 enum isl_dim_type type, unsigned n);
855 __isl_give isl_local_space *isl_local_space_insert_dims(
856 __isl_take isl_local_space *ls,
857 enum isl_dim_type type, unsigned first, unsigned n);
858 __isl_give isl_local_space *isl_local_space_drop_dims(
859 __isl_take isl_local_space *ls,
860 enum isl_dim_type type, unsigned first, unsigned n);
862 =head2 Input and Output
864 C<isl> supports its own input/output format, which is similar
865 to the C<Omega> format, but also supports the C<PolyLib> format
870 The C<isl> format is similar to that of C<Omega>, but has a different
871 syntax for describing the parameters and allows for the definition
872 of an existentially quantified variable as the integer division
873 of an affine expression.
874 For example, the set of integers C<i> between C<0> and C<n>
875 such that C<i % 10 <= 6> can be described as
877 [n] -> { [i] : exists (a = [i/10] : 0 <= i and i <= n and
880 A set or relation can have several disjuncts, separated
881 by the keyword C<or>. Each disjunct is either a conjunction
882 of constraints or a projection (C<exists>) of a conjunction
883 of constraints. The constraints are separated by the keyword
886 =head3 C<PolyLib> format
888 If the represented set is a union, then the first line
889 contains a single number representing the number of disjuncts.
890 Otherwise, a line containing the number C<1> is optional.
892 Each disjunct is represented by a matrix of constraints.
893 The first line contains two numbers representing
894 the number of rows and columns,
895 where the number of rows is equal to the number of constraints
896 and the number of columns is equal to two plus the number of variables.
897 The following lines contain the actual rows of the constraint matrix.
898 In each row, the first column indicates whether the constraint
899 is an equality (C<0>) or inequality (C<1>). The final column
900 corresponds to the constant term.
902 If the set is parametric, then the coefficients of the parameters
903 appear in the last columns before the constant column.
904 The coefficients of any existentially quantified variables appear
905 between those of the set variables and those of the parameters.
907 =head3 Extended C<PolyLib> format
909 The extended C<PolyLib> format is nearly identical to the
910 C<PolyLib> format. The only difference is that the line
911 containing the number of rows and columns of a constraint matrix
912 also contains four additional numbers:
913 the number of output dimensions, the number of input dimensions,
914 the number of local dimensions (i.e., the number of existentially
915 quantified variables) and the number of parameters.
916 For sets, the number of ``output'' dimensions is equal
917 to the number of set dimensions, while the number of ``input''
923 __isl_give isl_basic_set *isl_basic_set_read_from_file(
924 isl_ctx *ctx, FILE *input);
925 __isl_give isl_basic_set *isl_basic_set_read_from_str(
926 isl_ctx *ctx, const char *str);
927 __isl_give isl_set *isl_set_read_from_file(isl_ctx *ctx,
929 __isl_give isl_set *isl_set_read_from_str(isl_ctx *ctx,
933 __isl_give isl_basic_map *isl_basic_map_read_from_file(
934 isl_ctx *ctx, FILE *input);
935 __isl_give isl_basic_map *isl_basic_map_read_from_str(
936 isl_ctx *ctx, const char *str);
937 __isl_give isl_map *isl_map_read_from_file(
938 isl_ctx *ctx, FILE *input);
939 __isl_give isl_map *isl_map_read_from_str(isl_ctx *ctx,
942 #include <isl/union_set.h>
943 __isl_give isl_union_set *isl_union_set_read_from_file(
944 isl_ctx *ctx, FILE *input);
945 __isl_give isl_union_set *isl_union_set_read_from_str(
946 isl_ctx *ctx, const char *str);
948 #include <isl/union_map.h>
949 __isl_give isl_union_map *isl_union_map_read_from_file(
950 isl_ctx *ctx, FILE *input);
951 __isl_give isl_union_map *isl_union_map_read_from_str(
952 isl_ctx *ctx, const char *str);
954 The input format is autodetected and may be either the C<PolyLib> format
955 or the C<isl> format.
959 Before anything can be printed, an C<isl_printer> needs to
962 __isl_give isl_printer *isl_printer_to_file(isl_ctx *ctx,
964 __isl_give isl_printer *isl_printer_to_str(isl_ctx *ctx);
965 void isl_printer_free(__isl_take isl_printer *printer);
966 __isl_give char *isl_printer_get_str(
967 __isl_keep isl_printer *printer);
969 The behavior of the printer can be modified in various ways
971 __isl_give isl_printer *isl_printer_set_output_format(
972 __isl_take isl_printer *p, int output_format);
973 __isl_give isl_printer *isl_printer_set_indent(
974 __isl_take isl_printer *p, int indent);
975 __isl_give isl_printer *isl_printer_indent(
976 __isl_take isl_printer *p, int indent);
977 __isl_give isl_printer *isl_printer_set_prefix(
978 __isl_take isl_printer *p, const char *prefix);
979 __isl_give isl_printer *isl_printer_set_suffix(
980 __isl_take isl_printer *p, const char *suffix);
982 The C<output_format> may be either C<ISL_FORMAT_ISL>, C<ISL_FORMAT_OMEGA>,
983 C<ISL_FORMAT_POLYLIB>, C<ISL_FORMAT_EXT_POLYLIB> or C<ISL_FORMAT_LATEX>
984 and defaults to C<ISL_FORMAT_ISL>.
985 Each line in the output is indented by C<indent> (set by
986 C<isl_printer_set_indent>) spaces
987 (default: 0), prefixed by C<prefix> and suffixed by C<suffix>.
988 In the C<PolyLib> format output,
989 the coefficients of the existentially quantified variables
990 appear between those of the set variables and those
992 The function C<isl_printer_indent> increases the indentation
993 by the specified amount (which may be negative).
995 To actually print something, use
998 __isl_give isl_printer *isl_printer_print_basic_set(
999 __isl_take isl_printer *printer,
1000 __isl_keep isl_basic_set *bset);
1001 __isl_give isl_printer *isl_printer_print_set(
1002 __isl_take isl_printer *printer,
1003 __isl_keep isl_set *set);
1005 #include <isl/map.h>
1006 __isl_give isl_printer *isl_printer_print_basic_map(
1007 __isl_take isl_printer *printer,
1008 __isl_keep isl_basic_map *bmap);
1009 __isl_give isl_printer *isl_printer_print_map(
1010 __isl_take isl_printer *printer,
1011 __isl_keep isl_map *map);
1013 #include <isl/union_set.h>
1014 __isl_give isl_printer *isl_printer_print_union_set(
1015 __isl_take isl_printer *p,
1016 __isl_keep isl_union_set *uset);
1018 #include <isl/union_map.h>
1019 __isl_give isl_printer *isl_printer_print_union_map(
1020 __isl_take isl_printer *p,
1021 __isl_keep isl_union_map *umap);
1023 When called on a file printer, the following function flushes
1024 the file. When called on a string printer, the buffer is cleared.
1026 __isl_give isl_printer *isl_printer_flush(
1027 __isl_take isl_printer *p);
1029 =head2 Creating New Sets and Relations
1031 C<isl> has functions for creating some standard sets and relations.
1035 =item * Empty sets and relations
1037 __isl_give isl_basic_set *isl_basic_set_empty(
1038 __isl_take isl_space *space);
1039 __isl_give isl_basic_map *isl_basic_map_empty(
1040 __isl_take isl_space *space);
1041 __isl_give isl_set *isl_set_empty(
1042 __isl_take isl_space *space);
1043 __isl_give isl_map *isl_map_empty(
1044 __isl_take isl_space *space);
1045 __isl_give isl_union_set *isl_union_set_empty(
1046 __isl_take isl_space *space);
1047 __isl_give isl_union_map *isl_union_map_empty(
1048 __isl_take isl_space *space);
1050 For C<isl_union_set>s and C<isl_union_map>s, the space
1051 is only used to specify the parameters.
1053 =item * Universe sets and relations
1055 __isl_give isl_basic_set *isl_basic_set_universe(
1056 __isl_take isl_space *space);
1057 __isl_give isl_basic_map *isl_basic_map_universe(
1058 __isl_take isl_space *space);
1059 __isl_give isl_set *isl_set_universe(
1060 __isl_take isl_space *space);
1061 __isl_give isl_map *isl_map_universe(
1062 __isl_take isl_space *space);
1063 __isl_give isl_union_set *isl_union_set_universe(
1064 __isl_take isl_union_set *uset);
1065 __isl_give isl_union_map *isl_union_map_universe(
1066 __isl_take isl_union_map *umap);
1068 The sets and relations constructed by the functions above
1069 contain all integer values, while those constructed by the
1070 functions below only contain non-negative values.
1072 __isl_give isl_basic_set *isl_basic_set_nat_universe(
1073 __isl_take isl_space *space);
1074 __isl_give isl_basic_map *isl_basic_map_nat_universe(
1075 __isl_take isl_space *space);
1076 __isl_give isl_set *isl_set_nat_universe(
1077 __isl_take isl_space *space);
1078 __isl_give isl_map *isl_map_nat_universe(
1079 __isl_take isl_space *space);
1081 =item * Identity relations
1083 __isl_give isl_basic_map *isl_basic_map_identity(
1084 __isl_take isl_space *space);
1085 __isl_give isl_map *isl_map_identity(
1086 __isl_take isl_space *space);
1088 The number of input and output dimensions in C<space> needs
1091 =item * Lexicographic order
1093 __isl_give isl_map *isl_map_lex_lt(
1094 __isl_take isl_space *set_space);
1095 __isl_give isl_map *isl_map_lex_le(
1096 __isl_take isl_space *set_space);
1097 __isl_give isl_map *isl_map_lex_gt(
1098 __isl_take isl_space *set_space);
1099 __isl_give isl_map *isl_map_lex_ge(
1100 __isl_take isl_space *set_space);
1101 __isl_give isl_map *isl_map_lex_lt_first(
1102 __isl_take isl_space *space, unsigned n);
1103 __isl_give isl_map *isl_map_lex_le_first(
1104 __isl_take isl_space *space, unsigned n);
1105 __isl_give isl_map *isl_map_lex_gt_first(
1106 __isl_take isl_space *space, unsigned n);
1107 __isl_give isl_map *isl_map_lex_ge_first(
1108 __isl_take isl_space *space, unsigned n);
1110 The first four functions take a space for a B<set>
1111 and return relations that express that the elements in the domain
1112 are lexicographically less
1113 (C<isl_map_lex_lt>), less or equal (C<isl_map_lex_le>),
1114 greater (C<isl_map_lex_gt>) or greater or equal (C<isl_map_lex_ge>)
1115 than the elements in the range.
1116 The last four functions take a space for a map
1117 and return relations that express that the first C<n> dimensions
1118 in the domain are lexicographically less
1119 (C<isl_map_lex_lt_first>), less or equal (C<isl_map_lex_le_first>),
1120 greater (C<isl_map_lex_gt_first>) or greater or equal (C<isl_map_lex_ge_first>)
1121 than the first C<n> dimensions in the range.
1125 A basic set or relation can be converted to a set or relation
1126 using the following functions.
1128 __isl_give isl_set *isl_set_from_basic_set(
1129 __isl_take isl_basic_set *bset);
1130 __isl_give isl_map *isl_map_from_basic_map(
1131 __isl_take isl_basic_map *bmap);
1133 Sets and relations can be converted to union sets and relations
1134 using the following functions.
1136 __isl_give isl_union_map *isl_union_map_from_map(
1137 __isl_take isl_map *map);
1138 __isl_give isl_union_set *isl_union_set_from_set(
1139 __isl_take isl_set *set);
1141 The inverse conversions below can only be used if the input
1142 union set or relation is known to contain elements in exactly one
1145 __isl_give isl_set *isl_set_from_union_set(
1146 __isl_take isl_union_set *uset);
1147 __isl_give isl_map *isl_map_from_union_map(
1148 __isl_take isl_union_map *umap);
1150 A zero-dimensional set can be constructed on a given parameter domain
1151 using the following function.
1153 __isl_give isl_set *isl_set_from_params(
1154 __isl_take isl_set *set);
1156 Sets and relations can be copied and freed again using the following
1159 __isl_give isl_basic_set *isl_basic_set_copy(
1160 __isl_keep isl_basic_set *bset);
1161 __isl_give isl_set *isl_set_copy(__isl_keep isl_set *set);
1162 __isl_give isl_union_set *isl_union_set_copy(
1163 __isl_keep isl_union_set *uset);
1164 __isl_give isl_basic_map *isl_basic_map_copy(
1165 __isl_keep isl_basic_map *bmap);
1166 __isl_give isl_map *isl_map_copy(__isl_keep isl_map *map);
1167 __isl_give isl_union_map *isl_union_map_copy(
1168 __isl_keep isl_union_map *umap);
1169 void isl_basic_set_free(__isl_take isl_basic_set *bset);
1170 void isl_set_free(__isl_take isl_set *set);
1171 void *isl_union_set_free(__isl_take isl_union_set *uset);
1172 void isl_basic_map_free(__isl_take isl_basic_map *bmap);
1173 void isl_map_free(__isl_take isl_map *map);
1174 void *isl_union_map_free(__isl_take isl_union_map *umap);
1176 Other sets and relations can be constructed by starting
1177 from a universe set or relation, adding equality and/or
1178 inequality constraints and then projecting out the
1179 existentially quantified variables, if any.
1180 Constraints can be constructed, manipulated and
1181 added to (or removed from) (basic) sets and relations
1182 using the following functions.
1184 #include <isl/constraint.h>
1185 __isl_give isl_constraint *isl_equality_alloc(
1186 __isl_take isl_local_space *ls);
1187 __isl_give isl_constraint *isl_inequality_alloc(
1188 __isl_take isl_local_space *ls);
1189 __isl_give isl_constraint *isl_constraint_set_constant(
1190 __isl_take isl_constraint *constraint, isl_int v);
1191 __isl_give isl_constraint *isl_constraint_set_constant_si(
1192 __isl_take isl_constraint *constraint, int v);
1193 __isl_give isl_constraint *isl_constraint_set_coefficient(
1194 __isl_take isl_constraint *constraint,
1195 enum isl_dim_type type, int pos, isl_int v);
1196 __isl_give isl_constraint *isl_constraint_set_coefficient_si(
1197 __isl_take isl_constraint *constraint,
1198 enum isl_dim_type type, int pos, int v);
1199 __isl_give isl_basic_map *isl_basic_map_add_constraint(
1200 __isl_take isl_basic_map *bmap,
1201 __isl_take isl_constraint *constraint);
1202 __isl_give isl_basic_set *isl_basic_set_add_constraint(
1203 __isl_take isl_basic_set *bset,
1204 __isl_take isl_constraint *constraint);
1205 __isl_give isl_map *isl_map_add_constraint(
1206 __isl_take isl_map *map,
1207 __isl_take isl_constraint *constraint);
1208 __isl_give isl_set *isl_set_add_constraint(
1209 __isl_take isl_set *set,
1210 __isl_take isl_constraint *constraint);
1211 __isl_give isl_basic_set *isl_basic_set_drop_constraint(
1212 __isl_take isl_basic_set *bset,
1213 __isl_take isl_constraint *constraint);
1215 For example, to create a set containing the even integers
1216 between 10 and 42, you would use the following code.
1219 isl_local_space *ls;
1221 isl_basic_set *bset;
1223 space = isl_space_set_alloc(ctx, 0, 2);
1224 bset = isl_basic_set_universe(isl_space_copy(space));
1225 ls = isl_local_space_from_space(space);
1227 c = isl_equality_alloc(isl_local_space_copy(ls));
1228 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1);
1229 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 1, 2);
1230 bset = isl_basic_set_add_constraint(bset, c);
1232 c = isl_inequality_alloc(isl_local_space_copy(ls));
1233 c = isl_constraint_set_constant_si(c, -10);
1234 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, 1);
1235 bset = isl_basic_set_add_constraint(bset, c);
1237 c = isl_inequality_alloc(ls);
1238 c = isl_constraint_set_constant_si(c, 42);
1239 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1);
1240 bset = isl_basic_set_add_constraint(bset, c);
1242 bset = isl_basic_set_project_out(bset, isl_dim_set, 1, 1);
1246 isl_basic_set *bset;
1247 bset = isl_basic_set_read_from_str(ctx,
1248 "{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}");
1250 A basic set or relation can also be constructed from two matrices
1251 describing the equalities and the inequalities.
1253 __isl_give isl_basic_set *isl_basic_set_from_constraint_matrices(
1254 __isl_take isl_space *space,
1255 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
1256 enum isl_dim_type c1,
1257 enum isl_dim_type c2, enum isl_dim_type c3,
1258 enum isl_dim_type c4);
1259 __isl_give isl_basic_map *isl_basic_map_from_constraint_matrices(
1260 __isl_take isl_space *space,
1261 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
1262 enum isl_dim_type c1,
1263 enum isl_dim_type c2, enum isl_dim_type c3,
1264 enum isl_dim_type c4, enum isl_dim_type c5);
1266 The C<isl_dim_type> arguments indicate the order in which
1267 different kinds of variables appear in the input matrices
1268 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
1269 C<isl_dim_set> and C<isl_dim_div> for sets and
1270 of C<isl_dim_cst>, C<isl_dim_param>,
1271 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div> for relations.
1273 A (basic) set or relation can also be constructed from a (piecewise)
1274 (multiple) affine expression
1275 or a list of affine expressions
1276 (See L<"Piecewise Quasi Affine Expressions"> and
1277 L<"Piecewise Multiple Quasi Affine Expressions">).
1279 __isl_give isl_basic_map *isl_basic_map_from_aff(
1280 __isl_take isl_aff *aff);
1281 __isl_give isl_set *isl_set_from_pw_aff(
1282 __isl_take isl_pw_aff *pwaff);
1283 __isl_give isl_map *isl_map_from_pw_aff(
1284 __isl_take isl_pw_aff *pwaff);
1285 __isl_give isl_basic_map *isl_basic_map_from_aff_list(
1286 __isl_take isl_space *domain_space,
1287 __isl_take isl_aff_list *list);
1288 __isl_give isl_basic_map *isl_basic_map_from_multi_aff(
1289 __isl_take isl_multi_aff *maff)
1290 __isl_give isl_set *isl_set_from_pw_multi_aff(
1291 __isl_take isl_pw_multi_aff *pma);
1292 __isl_give isl_map *isl_map_from_pw_multi_aff(
1293 __isl_take isl_pw_multi_aff *pma);
1295 The C<domain_dim> argument describes the domain of the resulting
1296 basic relation. It is required because the C<list> may consist
1297 of zero affine expressions.
1299 =head2 Inspecting Sets and Relations
1301 Usually, the user should not have to care about the actual constraints
1302 of the sets and maps, but should instead apply the abstract operations
1303 explained in the following sections.
1304 Occasionally, however, it may be required to inspect the individual
1305 coefficients of the constraints. This section explains how to do so.
1306 In these cases, it may also be useful to have C<isl> compute
1307 an explicit representation of the existentially quantified variables.
1309 __isl_give isl_set *isl_set_compute_divs(
1310 __isl_take isl_set *set);
1311 __isl_give isl_map *isl_map_compute_divs(
1312 __isl_take isl_map *map);
1313 __isl_give isl_union_set *isl_union_set_compute_divs(
1314 __isl_take isl_union_set *uset);
1315 __isl_give isl_union_map *isl_union_map_compute_divs(
1316 __isl_take isl_union_map *umap);
1318 This explicit representation defines the existentially quantified
1319 variables as integer divisions of the other variables, possibly
1320 including earlier existentially quantified variables.
1321 An explicitly represented existentially quantified variable therefore
1322 has a unique value when the values of the other variables are known.
1323 If, furthermore, the same existentials, i.e., existentials
1324 with the same explicit representations, should appear in the
1325 same order in each of the disjuncts of a set or map, then the user should call
1326 either of the following functions.
1328 __isl_give isl_set *isl_set_align_divs(
1329 __isl_take isl_set *set);
1330 __isl_give isl_map *isl_map_align_divs(
1331 __isl_take isl_map *map);
1333 Alternatively, the existentially quantified variables can be removed
1334 using the following functions, which compute an overapproximation.
1336 __isl_give isl_basic_set *isl_basic_set_remove_divs(
1337 __isl_take isl_basic_set *bset);
1338 __isl_give isl_basic_map *isl_basic_map_remove_divs(
1339 __isl_take isl_basic_map *bmap);
1340 __isl_give isl_set *isl_set_remove_divs(
1341 __isl_take isl_set *set);
1342 __isl_give isl_map *isl_map_remove_divs(
1343 __isl_take isl_map *map);
1345 To iterate over all the sets or maps in a union set or map, use
1347 int isl_union_set_foreach_set(__isl_keep isl_union_set *uset,
1348 int (*fn)(__isl_take isl_set *set, void *user),
1350 int isl_union_map_foreach_map(__isl_keep isl_union_map *umap,
1351 int (*fn)(__isl_take isl_map *map, void *user),
1354 The number of sets or maps in a union set or map can be obtained
1357 int isl_union_set_n_set(__isl_keep isl_union_set *uset);
1358 int isl_union_map_n_map(__isl_keep isl_union_map *umap);
1360 To extract the set or map in a given space from a union, use
1362 __isl_give isl_set *isl_union_set_extract_set(
1363 __isl_keep isl_union_set *uset,
1364 __isl_take isl_space *space);
1365 __isl_give isl_map *isl_union_map_extract_map(
1366 __isl_keep isl_union_map *umap,
1367 __isl_take isl_space *space);
1369 To iterate over all the basic sets or maps in a set or map, use
1371 int isl_set_foreach_basic_set(__isl_keep isl_set *set,
1372 int (*fn)(__isl_take isl_basic_set *bset, void *user),
1374 int isl_map_foreach_basic_map(__isl_keep isl_map *map,
1375 int (*fn)(__isl_take isl_basic_map *bmap, void *user),
1378 The callback function C<fn> should return 0 if successful and
1379 -1 if an error occurs. In the latter case, or if any other error
1380 occurs, the above functions will return -1.
1382 It should be noted that C<isl> does not guarantee that
1383 the basic sets or maps passed to C<fn> are disjoint.
1384 If this is required, then the user should call one of
1385 the following functions first.
1387 __isl_give isl_set *isl_set_make_disjoint(
1388 __isl_take isl_set *set);
1389 __isl_give isl_map *isl_map_make_disjoint(
1390 __isl_take isl_map *map);
1392 The number of basic sets in a set can be obtained
1395 int isl_set_n_basic_set(__isl_keep isl_set *set);
1397 To iterate over the constraints of a basic set or map, use
1399 #include <isl/constraint.h>
1401 int isl_basic_map_foreach_constraint(
1402 __isl_keep isl_basic_map *bmap,
1403 int (*fn)(__isl_take isl_constraint *c, void *user),
1405 void *isl_constraint_free(__isl_take isl_constraint *c);
1407 Again, the callback function C<fn> should return 0 if successful and
1408 -1 if an error occurs. In the latter case, or if any other error
1409 occurs, the above functions will return -1.
1410 The constraint C<c> represents either an equality or an inequality.
1411 Use the following function to find out whether a constraint
1412 represents an equality. If not, it represents an inequality.
1414 int isl_constraint_is_equality(
1415 __isl_keep isl_constraint *constraint);
1417 The coefficients of the constraints can be inspected using
1418 the following functions.
1420 void isl_constraint_get_constant(
1421 __isl_keep isl_constraint *constraint, isl_int *v);
1422 void isl_constraint_get_coefficient(
1423 __isl_keep isl_constraint *constraint,
1424 enum isl_dim_type type, int pos, isl_int *v);
1425 int isl_constraint_involves_dims(
1426 __isl_keep isl_constraint *constraint,
1427 enum isl_dim_type type, unsigned first, unsigned n);
1429 The explicit representations of the existentially quantified
1430 variables can be inspected using the following function.
1431 Note that the user is only allowed to use this function
1432 if the inspected set or map is the result of a call
1433 to C<isl_set_compute_divs> or C<isl_map_compute_divs>.
1434 The existentially quantified variable is equal to the floor
1435 of the returned affine expression. The affine expression
1436 itself can be inspected using the functions in
1437 L<"Piecewise Quasi Affine Expressions">.
1439 __isl_give isl_aff *isl_constraint_get_div(
1440 __isl_keep isl_constraint *constraint, int pos);
1442 To obtain the constraints of a basic set or map in matrix
1443 form, use the following functions.
1445 __isl_give isl_mat *isl_basic_set_equalities_matrix(
1446 __isl_keep isl_basic_set *bset,
1447 enum isl_dim_type c1, enum isl_dim_type c2,
1448 enum isl_dim_type c3, enum isl_dim_type c4);
1449 __isl_give isl_mat *isl_basic_set_inequalities_matrix(
1450 __isl_keep isl_basic_set *bset,
1451 enum isl_dim_type c1, enum isl_dim_type c2,
1452 enum isl_dim_type c3, enum isl_dim_type c4);
1453 __isl_give isl_mat *isl_basic_map_equalities_matrix(
1454 __isl_keep isl_basic_map *bmap,
1455 enum isl_dim_type c1,
1456 enum isl_dim_type c2, enum isl_dim_type c3,
1457 enum isl_dim_type c4, enum isl_dim_type c5);
1458 __isl_give isl_mat *isl_basic_map_inequalities_matrix(
1459 __isl_keep isl_basic_map *bmap,
1460 enum isl_dim_type c1,
1461 enum isl_dim_type c2, enum isl_dim_type c3,
1462 enum isl_dim_type c4, enum isl_dim_type c5);
1464 The C<isl_dim_type> arguments dictate the order in which
1465 different kinds of variables appear in the resulting matrix
1466 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
1467 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div>.
1469 The number of parameters, input, output or set dimensions can
1470 be obtained using the following functions.
1472 unsigned isl_basic_set_dim(__isl_keep isl_basic_set *bset,
1473 enum isl_dim_type type);
1474 unsigned isl_basic_map_dim(__isl_keep isl_basic_map *bmap,
1475 enum isl_dim_type type);
1476 unsigned isl_set_dim(__isl_keep isl_set *set,
1477 enum isl_dim_type type);
1478 unsigned isl_map_dim(__isl_keep isl_map *map,
1479 enum isl_dim_type type);
1481 To check whether the description of a set or relation depends
1482 on one or more given dimensions, it is not necessary to iterate over all
1483 constraints. Instead the following functions can be used.
1485 int isl_basic_set_involves_dims(
1486 __isl_keep isl_basic_set *bset,
1487 enum isl_dim_type type, unsigned first, unsigned n);
1488 int isl_set_involves_dims(__isl_keep isl_set *set,
1489 enum isl_dim_type type, unsigned first, unsigned n);
1490 int isl_basic_map_involves_dims(
1491 __isl_keep isl_basic_map *bmap,
1492 enum isl_dim_type type, unsigned first, unsigned n);
1493 int isl_map_involves_dims(__isl_keep isl_map *map,
1494 enum isl_dim_type type, unsigned first, unsigned n);
1496 Similarly, the following functions can be used to check whether
1497 a given dimension is involved in any lower or upper bound.
1499 int isl_set_dim_has_lower_bound(__isl_keep isl_set *set,
1500 enum isl_dim_type type, unsigned pos);
1501 int isl_set_dim_has_upper_bound(__isl_keep isl_set *set,
1502 enum isl_dim_type type, unsigned pos);
1504 The identifiers or names of the domain and range spaces of a set
1505 or relation can be read off or set using the following functions.
1507 __isl_give isl_set *isl_set_set_tuple_id(
1508 __isl_take isl_set *set, __isl_take isl_id *id);
1509 __isl_give isl_set *isl_set_reset_tuple_id(
1510 __isl_take isl_set *set);
1511 int isl_set_has_tuple_id(__isl_keep isl_set *set);
1512 __isl_give isl_id *isl_set_get_tuple_id(
1513 __isl_keep isl_set *set);
1514 __isl_give isl_map *isl_map_set_tuple_id(
1515 __isl_take isl_map *map, enum isl_dim_type type,
1516 __isl_take isl_id *id);
1517 __isl_give isl_map *isl_map_reset_tuple_id(
1518 __isl_take isl_map *map, enum isl_dim_type type);
1519 int isl_map_has_tuple_id(__isl_keep isl_map *map,
1520 enum isl_dim_type type);
1521 __isl_give isl_id *isl_map_get_tuple_id(
1522 __isl_keep isl_map *map, enum isl_dim_type type);
1524 const char *isl_basic_set_get_tuple_name(
1525 __isl_keep isl_basic_set *bset);
1526 __isl_give isl_basic_set *isl_basic_set_set_tuple_name(
1527 __isl_take isl_basic_set *set, const char *s);
1528 const char *isl_set_get_tuple_name(
1529 __isl_keep isl_set *set);
1530 const char *isl_basic_map_get_tuple_name(
1531 __isl_keep isl_basic_map *bmap,
1532 enum isl_dim_type type);
1533 __isl_give isl_basic_map *isl_basic_map_set_tuple_name(
1534 __isl_take isl_basic_map *bmap,
1535 enum isl_dim_type type, const char *s);
1536 const char *isl_map_get_tuple_name(
1537 __isl_keep isl_map *map,
1538 enum isl_dim_type type);
1540 As with C<isl_space_get_tuple_name>, the value returned points to
1541 an internal data structure.
1542 The identifiers, positions or names of individual dimensions can be
1543 read off using the following functions.
1545 __isl_give isl_set *isl_set_set_dim_id(
1546 __isl_take isl_set *set, enum isl_dim_type type,
1547 unsigned pos, __isl_take isl_id *id);
1548 int isl_set_has_dim_id(__isl_keep isl_set *set,
1549 enum isl_dim_type type, unsigned pos);
1550 __isl_give isl_id *isl_set_get_dim_id(
1551 __isl_keep isl_set *set, enum isl_dim_type type,
1553 int isl_basic_map_has_dim_id(
1554 __isl_keep isl_basic_map *bmap,
1555 enum isl_dim_type type, unsigned pos);
1556 __isl_give isl_map *isl_map_set_dim_id(
1557 __isl_take isl_map *map, enum isl_dim_type type,
1558 unsigned pos, __isl_take isl_id *id);
1559 int isl_map_has_dim_id(__isl_keep isl_map *map,
1560 enum isl_dim_type type, unsigned pos);
1561 __isl_give isl_id *isl_map_get_dim_id(
1562 __isl_keep isl_map *map, enum isl_dim_type type,
1565 int isl_set_find_dim_by_id(__isl_keep isl_set *set,
1566 enum isl_dim_type type, __isl_keep isl_id *id);
1567 int isl_map_find_dim_by_id(__isl_keep isl_map *map,
1568 enum isl_dim_type type, __isl_keep isl_id *id);
1569 int isl_set_find_dim_by_name(__isl_keep isl_set *set,
1570 enum isl_dim_type type, const char *name);
1571 int isl_map_find_dim_by_name(__isl_keep isl_map *map,
1572 enum isl_dim_type type, const char *name);
1574 const char *isl_constraint_get_dim_name(
1575 __isl_keep isl_constraint *constraint,
1576 enum isl_dim_type type, unsigned pos);
1577 const char *isl_basic_set_get_dim_name(
1578 __isl_keep isl_basic_set *bset,
1579 enum isl_dim_type type, unsigned pos);
1580 const char *isl_set_get_dim_name(
1581 __isl_keep isl_set *set,
1582 enum isl_dim_type type, unsigned pos);
1583 const char *isl_basic_map_get_dim_name(
1584 __isl_keep isl_basic_map *bmap,
1585 enum isl_dim_type type, unsigned pos);
1586 const char *isl_map_get_dim_name(
1587 __isl_keep isl_map *map,
1588 enum isl_dim_type type, unsigned pos);
1590 These functions are mostly useful to obtain the identifiers, positions
1591 or names of the parameters. Identifiers of individual dimensions are
1592 essentially only useful for printing. They are ignored by all other
1593 operations and may not be preserved across those operations.
1597 =head3 Unary Properties
1603 The following functions test whether the given set or relation
1604 contains any integer points. The ``plain'' variants do not perform
1605 any computations, but simply check if the given set or relation
1606 is already known to be empty.
1608 int isl_basic_set_plain_is_empty(__isl_keep isl_basic_set *bset);
1609 int isl_basic_set_is_empty(__isl_keep isl_basic_set *bset);
1610 int isl_set_plain_is_empty(__isl_keep isl_set *set);
1611 int isl_set_is_empty(__isl_keep isl_set *set);
1612 int isl_union_set_is_empty(__isl_keep isl_union_set *uset);
1613 int isl_basic_map_plain_is_empty(__isl_keep isl_basic_map *bmap);
1614 int isl_basic_map_is_empty(__isl_keep isl_basic_map *bmap);
1615 int isl_map_plain_is_empty(__isl_keep isl_map *map);
1616 int isl_map_is_empty(__isl_keep isl_map *map);
1617 int isl_union_map_is_empty(__isl_keep isl_union_map *umap);
1619 =item * Universality
1621 int isl_basic_set_is_universe(__isl_keep isl_basic_set *bset);
1622 int isl_basic_map_is_universe(__isl_keep isl_basic_map *bmap);
1623 int isl_set_plain_is_universe(__isl_keep isl_set *set);
1625 =item * Single-valuedness
1627 int isl_map_plain_is_single_valued(
1628 __isl_keep isl_map *map);
1629 int isl_map_is_single_valued(__isl_keep isl_map *map);
1630 int isl_union_map_is_single_valued(__isl_keep isl_union_map *umap);
1634 int isl_map_plain_is_injective(__isl_keep isl_map *map);
1635 int isl_map_is_injective(__isl_keep isl_map *map);
1636 int isl_union_map_plain_is_injective(
1637 __isl_keep isl_union_map *umap);
1638 int isl_union_map_is_injective(
1639 __isl_keep isl_union_map *umap);
1643 int isl_map_is_bijective(__isl_keep isl_map *map);
1644 int isl_union_map_is_bijective(__isl_keep isl_union_map *umap);
1648 int isl_basic_map_plain_is_fixed(
1649 __isl_keep isl_basic_map *bmap,
1650 enum isl_dim_type type, unsigned pos,
1652 int isl_set_plain_is_fixed(__isl_keep isl_set *set,
1653 enum isl_dim_type type, unsigned pos,
1655 int isl_map_plain_is_fixed(__isl_keep isl_map *map,
1656 enum isl_dim_type type, unsigned pos,
1659 Check if the relation obviously lies on a hyperplane where the given dimension
1660 has a fixed value and if so, return that value in C<*val>.
1664 To check whether a set is a parameter domain, use this function:
1666 int isl_set_is_params(__isl_keep isl_set *set);
1667 int isl_union_set_is_params(
1668 __isl_keep isl_union_set *uset);
1672 The following functions check whether the domain of the given
1673 (basic) set is a wrapped relation.
1675 int isl_basic_set_is_wrapping(
1676 __isl_keep isl_basic_set *bset);
1677 int isl_set_is_wrapping(__isl_keep isl_set *set);
1679 =item * Internal Product
1681 int isl_basic_map_can_zip(
1682 __isl_keep isl_basic_map *bmap);
1683 int isl_map_can_zip(__isl_keep isl_map *map);
1685 Check whether the product of domain and range of the given relation
1687 i.e., whether both domain and range are nested relations.
1691 =head3 Binary Properties
1697 int isl_set_plain_is_equal(__isl_keep isl_set *set1,
1698 __isl_keep isl_set *set2);
1699 int isl_set_is_equal(__isl_keep isl_set *set1,
1700 __isl_keep isl_set *set2);
1701 int isl_union_set_is_equal(
1702 __isl_keep isl_union_set *uset1,
1703 __isl_keep isl_union_set *uset2);
1704 int isl_basic_map_is_equal(
1705 __isl_keep isl_basic_map *bmap1,
1706 __isl_keep isl_basic_map *bmap2);
1707 int isl_map_is_equal(__isl_keep isl_map *map1,
1708 __isl_keep isl_map *map2);
1709 int isl_map_plain_is_equal(__isl_keep isl_map *map1,
1710 __isl_keep isl_map *map2);
1711 int isl_union_map_is_equal(
1712 __isl_keep isl_union_map *umap1,
1713 __isl_keep isl_union_map *umap2);
1715 =item * Disjointness
1717 int isl_set_plain_is_disjoint(__isl_keep isl_set *set1,
1718 __isl_keep isl_set *set2);
1722 int isl_basic_set_is_subset(
1723 __isl_keep isl_basic_set *bset1,
1724 __isl_keep isl_basic_set *bset2);
1725 int isl_set_is_subset(__isl_keep isl_set *set1,
1726 __isl_keep isl_set *set2);
1727 int isl_set_is_strict_subset(
1728 __isl_keep isl_set *set1,
1729 __isl_keep isl_set *set2);
1730 int isl_union_set_is_subset(
1731 __isl_keep isl_union_set *uset1,
1732 __isl_keep isl_union_set *uset2);
1733 int isl_union_set_is_strict_subset(
1734 __isl_keep isl_union_set *uset1,
1735 __isl_keep isl_union_set *uset2);
1736 int isl_basic_map_is_subset(
1737 __isl_keep isl_basic_map *bmap1,
1738 __isl_keep isl_basic_map *bmap2);
1739 int isl_basic_map_is_strict_subset(
1740 __isl_keep isl_basic_map *bmap1,
1741 __isl_keep isl_basic_map *bmap2);
1742 int isl_map_is_subset(
1743 __isl_keep isl_map *map1,
1744 __isl_keep isl_map *map2);
1745 int isl_map_is_strict_subset(
1746 __isl_keep isl_map *map1,
1747 __isl_keep isl_map *map2);
1748 int isl_union_map_is_subset(
1749 __isl_keep isl_union_map *umap1,
1750 __isl_keep isl_union_map *umap2);
1751 int isl_union_map_is_strict_subset(
1752 __isl_keep isl_union_map *umap1,
1753 __isl_keep isl_union_map *umap2);
1757 =head2 Unary Operations
1763 __isl_give isl_set *isl_set_complement(
1764 __isl_take isl_set *set);
1765 __isl_give isl_map *isl_map_complement(
1766 __isl_take isl_map *map);
1770 __isl_give isl_basic_map *isl_basic_map_reverse(
1771 __isl_take isl_basic_map *bmap);
1772 __isl_give isl_map *isl_map_reverse(
1773 __isl_take isl_map *map);
1774 __isl_give isl_union_map *isl_union_map_reverse(
1775 __isl_take isl_union_map *umap);
1779 __isl_give isl_basic_set *isl_basic_set_project_out(
1780 __isl_take isl_basic_set *bset,
1781 enum isl_dim_type type, unsigned first, unsigned n);
1782 __isl_give isl_basic_map *isl_basic_map_project_out(
1783 __isl_take isl_basic_map *bmap,
1784 enum isl_dim_type type, unsigned first, unsigned n);
1785 __isl_give isl_set *isl_set_project_out(__isl_take isl_set *set,
1786 enum isl_dim_type type, unsigned first, unsigned n);
1787 __isl_give isl_map *isl_map_project_out(__isl_take isl_map *map,
1788 enum isl_dim_type type, unsigned first, unsigned n);
1789 __isl_give isl_basic_set *isl_basic_set_params(
1790 __isl_take isl_basic_set *bset);
1791 __isl_give isl_basic_set *isl_basic_map_domain(
1792 __isl_take isl_basic_map *bmap);
1793 __isl_give isl_basic_set *isl_basic_map_range(
1794 __isl_take isl_basic_map *bmap);
1795 __isl_give isl_set *isl_set_params(__isl_take isl_set *set);
1796 __isl_give isl_set *isl_map_params(__isl_take isl_map *map);
1797 __isl_give isl_set *isl_map_domain(
1798 __isl_take isl_map *bmap);
1799 __isl_give isl_set *isl_map_range(
1800 __isl_take isl_map *map);
1801 __isl_give isl_set *isl_union_set_params(
1802 __isl_take isl_union_set *uset);
1803 __isl_give isl_set *isl_union_map_params(
1804 __isl_take isl_union_map *umap);
1805 __isl_give isl_union_set *isl_union_map_domain(
1806 __isl_take isl_union_map *umap);
1807 __isl_give isl_union_set *isl_union_map_range(
1808 __isl_take isl_union_map *umap);
1810 __isl_give isl_basic_map *isl_basic_map_domain_map(
1811 __isl_take isl_basic_map *bmap);
1812 __isl_give isl_basic_map *isl_basic_map_range_map(
1813 __isl_take isl_basic_map *bmap);
1814 __isl_give isl_map *isl_map_domain_map(__isl_take isl_map *map);
1815 __isl_give isl_map *isl_map_range_map(__isl_take isl_map *map);
1816 __isl_give isl_union_map *isl_union_map_domain_map(
1817 __isl_take isl_union_map *umap);
1818 __isl_give isl_union_map *isl_union_map_range_map(
1819 __isl_take isl_union_map *umap);
1821 The functions above construct a (basic, regular or union) relation
1822 that maps (a wrapped version of) the input relation to its domain or range.
1826 __isl_give isl_set *isl_set_eliminate(
1827 __isl_take isl_set *set, enum isl_dim_type type,
1828 unsigned first, unsigned n);
1829 __isl_give isl_basic_map *isl_basic_map_eliminate(
1830 __isl_take isl_basic_map *bmap,
1831 enum isl_dim_type type,
1832 unsigned first, unsigned n);
1833 __isl_give isl_map *isl_map_eliminate(
1834 __isl_take isl_map *map, enum isl_dim_type type,
1835 unsigned first, unsigned n);
1837 Eliminate the coefficients for the given dimensions from the constraints,
1838 without removing the dimensions.
1842 __isl_give isl_basic_set *isl_basic_set_fix(
1843 __isl_take isl_basic_set *bset,
1844 enum isl_dim_type type, unsigned pos,
1846 __isl_give isl_basic_set *isl_basic_set_fix_si(
1847 __isl_take isl_basic_set *bset,
1848 enum isl_dim_type type, unsigned pos, int value);
1849 __isl_give isl_set *isl_set_fix(__isl_take isl_set *set,
1850 enum isl_dim_type type, unsigned pos,
1852 __isl_give isl_set *isl_set_fix_si(__isl_take isl_set *set,
1853 enum isl_dim_type type, unsigned pos, int value);
1854 __isl_give isl_basic_map *isl_basic_map_fix_si(
1855 __isl_take isl_basic_map *bmap,
1856 enum isl_dim_type type, unsigned pos, int value);
1857 __isl_give isl_map *isl_map_fix_si(__isl_take isl_map *map,
1858 enum isl_dim_type type, unsigned pos, int value);
1860 Intersect the set or relation with the hyperplane where the given
1861 dimension has the fixed given value.
1863 __isl_give isl_basic_map *isl_basic_map_lower_bound_si(
1864 __isl_take isl_basic_map *bmap,
1865 enum isl_dim_type type, unsigned pos, int value);
1866 __isl_give isl_set *isl_set_lower_bound_si(
1867 __isl_take isl_set *set,
1868 enum isl_dim_type type, unsigned pos, int value);
1869 __isl_give isl_map *isl_map_lower_bound_si(
1870 __isl_take isl_map *map,
1871 enum isl_dim_type type, unsigned pos, int value);
1872 __isl_give isl_set *isl_set_upper_bound_si(
1873 __isl_take isl_set *set,
1874 enum isl_dim_type type, unsigned pos, int value);
1875 __isl_give isl_map *isl_map_upper_bound_si(
1876 __isl_take isl_map *map,
1877 enum isl_dim_type type, unsigned pos, int value);
1879 Intersect the set or relation with the half-space where the given
1880 dimension has a value bounded by the fixed given value.
1882 __isl_give isl_set *isl_set_equate(__isl_take isl_set *set,
1883 enum isl_dim_type type1, int pos1,
1884 enum isl_dim_type type2, int pos2);
1885 __isl_give isl_map *isl_map_equate(__isl_take isl_map *map,
1886 enum isl_dim_type type1, int pos1,
1887 enum isl_dim_type type2, int pos2);
1889 Intersect the set or relation with the hyperplane where the given
1890 dimensions are equal to each other.
1892 __isl_give isl_map *isl_map_oppose(__isl_take isl_map *map,
1893 enum isl_dim_type type1, int pos1,
1894 enum isl_dim_type type2, int pos2);
1896 Intersect the relation with the hyperplane where the given
1897 dimensions have opposite values.
1901 __isl_give isl_map *isl_set_identity(
1902 __isl_take isl_set *set);
1903 __isl_give isl_union_map *isl_union_set_identity(
1904 __isl_take isl_union_set *uset);
1906 Construct an identity relation on the given (union) set.
1910 __isl_give isl_basic_set *isl_basic_map_deltas(
1911 __isl_take isl_basic_map *bmap);
1912 __isl_give isl_set *isl_map_deltas(__isl_take isl_map *map);
1913 __isl_give isl_union_set *isl_union_map_deltas(
1914 __isl_take isl_union_map *umap);
1916 These functions return a (basic) set containing the differences
1917 between image elements and corresponding domain elements in the input.
1919 __isl_give isl_basic_map *isl_basic_map_deltas_map(
1920 __isl_take isl_basic_map *bmap);
1921 __isl_give isl_map *isl_map_deltas_map(
1922 __isl_take isl_map *map);
1923 __isl_give isl_union_map *isl_union_map_deltas_map(
1924 __isl_take isl_union_map *umap);
1926 The functions above construct a (basic, regular or union) relation
1927 that maps (a wrapped version of) the input relation to its delta set.
1931 Simplify the representation of a set or relation by trying
1932 to combine pairs of basic sets or relations into a single
1933 basic set or relation.
1935 __isl_give isl_set *isl_set_coalesce(__isl_take isl_set *set);
1936 __isl_give isl_map *isl_map_coalesce(__isl_take isl_map *map);
1937 __isl_give isl_union_set *isl_union_set_coalesce(
1938 __isl_take isl_union_set *uset);
1939 __isl_give isl_union_map *isl_union_map_coalesce(
1940 __isl_take isl_union_map *umap);
1942 =item * Detecting equalities
1944 __isl_give isl_basic_set *isl_basic_set_detect_equalities(
1945 __isl_take isl_basic_set *bset);
1946 __isl_give isl_basic_map *isl_basic_map_detect_equalities(
1947 __isl_take isl_basic_map *bmap);
1948 __isl_give isl_set *isl_set_detect_equalities(
1949 __isl_take isl_set *set);
1950 __isl_give isl_map *isl_map_detect_equalities(
1951 __isl_take isl_map *map);
1952 __isl_give isl_union_set *isl_union_set_detect_equalities(
1953 __isl_take isl_union_set *uset);
1954 __isl_give isl_union_map *isl_union_map_detect_equalities(
1955 __isl_take isl_union_map *umap);
1957 Simplify the representation of a set or relation by detecting implicit
1960 =item * Removing redundant constraints
1962 __isl_give isl_basic_set *isl_basic_set_remove_redundancies(
1963 __isl_take isl_basic_set *bset);
1964 __isl_give isl_set *isl_set_remove_redundancies(
1965 __isl_take isl_set *set);
1966 __isl_give isl_basic_map *isl_basic_map_remove_redundancies(
1967 __isl_take isl_basic_map *bmap);
1968 __isl_give isl_map *isl_map_remove_redundancies(
1969 __isl_take isl_map *map);
1973 __isl_give isl_basic_set *isl_set_convex_hull(
1974 __isl_take isl_set *set);
1975 __isl_give isl_basic_map *isl_map_convex_hull(
1976 __isl_take isl_map *map);
1978 If the input set or relation has any existentially quantified
1979 variables, then the result of these operations is currently undefined.
1983 __isl_give isl_basic_set *isl_set_simple_hull(
1984 __isl_take isl_set *set);
1985 __isl_give isl_basic_map *isl_map_simple_hull(
1986 __isl_take isl_map *map);
1987 __isl_give isl_union_map *isl_union_map_simple_hull(
1988 __isl_take isl_union_map *umap);
1990 These functions compute a single basic set or relation
1991 that contains the whole input set or relation.
1992 In particular, the output is described by translates
1993 of the constraints describing the basic sets or relations in the input.
1997 (See \autoref{s:simple hull}.)
2003 __isl_give isl_basic_set *isl_basic_set_affine_hull(
2004 __isl_take isl_basic_set *bset);
2005 __isl_give isl_basic_set *isl_set_affine_hull(
2006 __isl_take isl_set *set);
2007 __isl_give isl_union_set *isl_union_set_affine_hull(
2008 __isl_take isl_union_set *uset);
2009 __isl_give isl_basic_map *isl_basic_map_affine_hull(
2010 __isl_take isl_basic_map *bmap);
2011 __isl_give isl_basic_map *isl_map_affine_hull(
2012 __isl_take isl_map *map);
2013 __isl_give isl_union_map *isl_union_map_affine_hull(
2014 __isl_take isl_union_map *umap);
2016 In case of union sets and relations, the affine hull is computed
2019 =item * Polyhedral hull
2021 __isl_give isl_basic_set *isl_set_polyhedral_hull(
2022 __isl_take isl_set *set);
2023 __isl_give isl_basic_map *isl_map_polyhedral_hull(
2024 __isl_take isl_map *map);
2025 __isl_give isl_union_set *isl_union_set_polyhedral_hull(
2026 __isl_take isl_union_set *uset);
2027 __isl_give isl_union_map *isl_union_map_polyhedral_hull(
2028 __isl_take isl_union_map *umap);
2030 These functions compute a single basic set or relation
2031 not involving any existentially quantified variables
2032 that contains the whole input set or relation.
2033 In case of union sets and relations, the polyhedral hull is computed
2038 __isl_give isl_basic_set *isl_basic_set_sample(
2039 __isl_take isl_basic_set *bset);
2040 __isl_give isl_basic_set *isl_set_sample(
2041 __isl_take isl_set *set);
2042 __isl_give isl_basic_map *isl_basic_map_sample(
2043 __isl_take isl_basic_map *bmap);
2044 __isl_give isl_basic_map *isl_map_sample(
2045 __isl_take isl_map *map);
2047 If the input (basic) set or relation is non-empty, then return
2048 a singleton subset of the input. Otherwise, return an empty set.
2050 =item * Optimization
2052 #include <isl/ilp.h>
2053 enum isl_lp_result isl_basic_set_max(
2054 __isl_keep isl_basic_set *bset,
2055 __isl_keep isl_aff *obj, isl_int *opt)
2056 enum isl_lp_result isl_set_min(__isl_keep isl_set *set,
2057 __isl_keep isl_aff *obj, isl_int *opt);
2058 enum isl_lp_result isl_set_max(__isl_keep isl_set *set,
2059 __isl_keep isl_aff *obj, isl_int *opt);
2061 Compute the minimum or maximum of the integer affine expression C<obj>
2062 over the points in C<set>, returning the result in C<opt>.
2063 The return value may be one of C<isl_lp_error>,
2064 C<isl_lp_ok>, C<isl_lp_unbounded> or C<isl_lp_empty>.
2066 =item * Parametric optimization
2068 __isl_give isl_pw_aff *isl_set_dim_min(
2069 __isl_take isl_set *set, int pos);
2070 __isl_give isl_pw_aff *isl_set_dim_max(
2071 __isl_take isl_set *set, int pos);
2072 __isl_give isl_pw_aff *isl_map_dim_max(
2073 __isl_take isl_map *map, int pos);
2075 Compute the minimum or maximum of the given set or output dimension
2076 as a function of the parameters (and input dimensions), but independently
2077 of the other set or output dimensions.
2078 For lexicographic optimization, see L<"Lexicographic Optimization">.
2082 The following functions compute either the set of (rational) coefficient
2083 values of valid constraints for the given set or the set of (rational)
2084 values satisfying the constraints with coefficients from the given set.
2085 Internally, these two sets of functions perform essentially the
2086 same operations, except that the set of coefficients is assumed to
2087 be a cone, while the set of values may be any polyhedron.
2088 The current implementation is based on the Farkas lemma and
2089 Fourier-Motzkin elimination, but this may change or be made optional
2090 in future. In particular, future implementations may use different
2091 dualization algorithms or skip the elimination step.
2093 __isl_give isl_basic_set *isl_basic_set_coefficients(
2094 __isl_take isl_basic_set *bset);
2095 __isl_give isl_basic_set *isl_set_coefficients(
2096 __isl_take isl_set *set);
2097 __isl_give isl_union_set *isl_union_set_coefficients(
2098 __isl_take isl_union_set *bset);
2099 __isl_give isl_basic_set *isl_basic_set_solutions(
2100 __isl_take isl_basic_set *bset);
2101 __isl_give isl_basic_set *isl_set_solutions(
2102 __isl_take isl_set *set);
2103 __isl_give isl_union_set *isl_union_set_solutions(
2104 __isl_take isl_union_set *bset);
2108 __isl_give isl_map *isl_map_power(__isl_take isl_map *map,
2110 __isl_give isl_union_map *isl_union_map_power(
2111 __isl_take isl_union_map *umap, int *exact);
2113 Compute a parametric representation for all positive powers I<k> of C<map>.
2114 The result maps I<k> to a nested relation corresponding to the
2115 I<k>th power of C<map>.
2116 The result may be an overapproximation. If the result is known to be exact,
2117 then C<*exact> is set to C<1>.
2119 =item * Transitive closure
2121 __isl_give isl_map *isl_map_transitive_closure(
2122 __isl_take isl_map *map, int *exact);
2123 __isl_give isl_union_map *isl_union_map_transitive_closure(
2124 __isl_take isl_union_map *umap, int *exact);
2126 Compute the transitive closure of C<map>.
2127 The result may be an overapproximation. If the result is known to be exact,
2128 then C<*exact> is set to C<1>.
2130 =item * Reaching path lengths
2132 __isl_give isl_map *isl_map_reaching_path_lengths(
2133 __isl_take isl_map *map, int *exact);
2135 Compute a relation that maps each element in the range of C<map>
2136 to the lengths of all paths composed of edges in C<map> that
2137 end up in the given element.
2138 The result may be an overapproximation. If the result is known to be exact,
2139 then C<*exact> is set to C<1>.
2140 To compute the I<maximal> path length, the resulting relation
2141 should be postprocessed by C<isl_map_lexmax>.
2142 In particular, if the input relation is a dependence relation
2143 (mapping sources to sinks), then the maximal path length corresponds
2144 to the free schedule.
2145 Note, however, that C<isl_map_lexmax> expects the maximum to be
2146 finite, so if the path lengths are unbounded (possibly due to
2147 the overapproximation), then you will get an error message.
2151 __isl_give isl_basic_set *isl_basic_map_wrap(
2152 __isl_take isl_basic_map *bmap);
2153 __isl_give isl_set *isl_map_wrap(
2154 __isl_take isl_map *map);
2155 __isl_give isl_union_set *isl_union_map_wrap(
2156 __isl_take isl_union_map *umap);
2157 __isl_give isl_basic_map *isl_basic_set_unwrap(
2158 __isl_take isl_basic_set *bset);
2159 __isl_give isl_map *isl_set_unwrap(
2160 __isl_take isl_set *set);
2161 __isl_give isl_union_map *isl_union_set_unwrap(
2162 __isl_take isl_union_set *uset);
2166 Remove any internal structure of domain (and range) of the given
2167 set or relation. If there is any such internal structure in the input,
2168 then the name of the space is also removed.
2170 __isl_give isl_basic_set *isl_basic_set_flatten(
2171 __isl_take isl_basic_set *bset);
2172 __isl_give isl_set *isl_set_flatten(
2173 __isl_take isl_set *set);
2174 __isl_give isl_basic_map *isl_basic_map_flatten_domain(
2175 __isl_take isl_basic_map *bmap);
2176 __isl_give isl_basic_map *isl_basic_map_flatten_range(
2177 __isl_take isl_basic_map *bmap);
2178 __isl_give isl_map *isl_map_flatten_range(
2179 __isl_take isl_map *map);
2180 __isl_give isl_map *isl_map_flatten_domain(
2181 __isl_take isl_map *map);
2182 __isl_give isl_basic_map *isl_basic_map_flatten(
2183 __isl_take isl_basic_map *bmap);
2184 __isl_give isl_map *isl_map_flatten(
2185 __isl_take isl_map *map);
2187 __isl_give isl_map *isl_set_flatten_map(
2188 __isl_take isl_set *set);
2190 The function above constructs a relation
2191 that maps the input set to a flattened version of the set.
2195 Lift the input set to a space with extra dimensions corresponding
2196 to the existentially quantified variables in the input.
2197 In particular, the result lives in a wrapped map where the domain
2198 is the original space and the range corresponds to the original
2199 existentially quantified variables.
2201 __isl_give isl_basic_set *isl_basic_set_lift(
2202 __isl_take isl_basic_set *bset);
2203 __isl_give isl_set *isl_set_lift(
2204 __isl_take isl_set *set);
2205 __isl_give isl_union_set *isl_union_set_lift(
2206 __isl_take isl_union_set *uset);
2208 Given a local space that contains the existentially quantified
2209 variables of a set, a basic relation that, when applied to
2210 a basic set, has essentially the same effect as C<isl_basic_set_lift>,
2211 can be constructed using the following function.
2213 #include <isl/local_space.h>
2214 __isl_give isl_basic_map *isl_local_space_lifting(
2215 __isl_take isl_local_space *ls);
2217 =item * Internal Product
2219 __isl_give isl_basic_map *isl_basic_map_zip(
2220 __isl_take isl_basic_map *bmap);
2221 __isl_give isl_map *isl_map_zip(
2222 __isl_take isl_map *map);
2223 __isl_give isl_union_map *isl_union_map_zip(
2224 __isl_take isl_union_map *umap);
2226 Given a relation with nested relations for domain and range,
2227 interchange the range of the domain with the domain of the range.
2229 =item * Aligning parameters
2231 __isl_give isl_set *isl_set_align_params(
2232 __isl_take isl_set *set,
2233 __isl_take isl_space *model);
2234 __isl_give isl_map *isl_map_align_params(
2235 __isl_take isl_map *map,
2236 __isl_take isl_space *model);
2238 Change the order of the parameters of the given set or relation
2239 such that the first parameters match those of C<model>.
2240 This may involve the introduction of extra parameters.
2241 All parameters need to be named.
2243 =item * Dimension manipulation
2245 __isl_give isl_set *isl_set_add_dims(
2246 __isl_take isl_set *set,
2247 enum isl_dim_type type, unsigned n);
2248 __isl_give isl_map *isl_map_add_dims(
2249 __isl_take isl_map *map,
2250 enum isl_dim_type type, unsigned n);
2251 __isl_give isl_set *isl_set_insert_dims(
2252 __isl_take isl_set *set,
2253 enum isl_dim_type type, unsigned pos, unsigned n);
2254 __isl_give isl_map *isl_map_insert_dims(
2255 __isl_take isl_map *map,
2256 enum isl_dim_type type, unsigned pos, unsigned n);
2257 __isl_give isl_basic_set *isl_basic_set_move_dims(
2258 __isl_take isl_basic_set *bset,
2259 enum isl_dim_type dst_type, unsigned dst_pos,
2260 enum isl_dim_type src_type, unsigned src_pos,
2262 __isl_give isl_basic_map *isl_basic_map_move_dims(
2263 __isl_take isl_basic_map *bmap,
2264 enum isl_dim_type dst_type, unsigned dst_pos,
2265 enum isl_dim_type src_type, unsigned src_pos,
2267 __isl_give isl_set *isl_set_move_dims(
2268 __isl_take isl_set *set,
2269 enum isl_dim_type dst_type, unsigned dst_pos,
2270 enum isl_dim_type src_type, unsigned src_pos,
2272 __isl_give isl_map *isl_map_move_dims(
2273 __isl_take isl_map *map,
2274 enum isl_dim_type dst_type, unsigned dst_pos,
2275 enum isl_dim_type src_type, unsigned src_pos,
2278 It is usually not advisable to directly change the (input or output)
2279 space of a set or a relation as this removes the name and the internal
2280 structure of the space. However, the above functions can be useful
2281 to add new parameters, assuming
2282 C<isl_set_align_params> and C<isl_map_align_params>
2287 =head2 Binary Operations
2289 The two arguments of a binary operation not only need to live
2290 in the same C<isl_ctx>, they currently also need to have
2291 the same (number of) parameters.
2293 =head3 Basic Operations
2297 =item * Intersection
2299 __isl_give isl_basic_set *isl_basic_set_intersect_params(
2300 __isl_take isl_basic_set *bset1,
2301 __isl_take isl_basic_set *bset2);
2302 __isl_give isl_basic_set *isl_basic_set_intersect(
2303 __isl_take isl_basic_set *bset1,
2304 __isl_take isl_basic_set *bset2);
2305 __isl_give isl_set *isl_set_intersect_params(
2306 __isl_take isl_set *set,
2307 __isl_take isl_set *params);
2308 __isl_give isl_set *isl_set_intersect(
2309 __isl_take isl_set *set1,
2310 __isl_take isl_set *set2);
2311 __isl_give isl_union_set *isl_union_set_intersect_params(
2312 __isl_take isl_union_set *uset,
2313 __isl_take isl_set *set);
2314 __isl_give isl_union_map *isl_union_map_intersect_params(
2315 __isl_take isl_union_map *umap,
2316 __isl_take isl_set *set);
2317 __isl_give isl_union_set *isl_union_set_intersect(
2318 __isl_take isl_union_set *uset1,
2319 __isl_take isl_union_set *uset2);
2320 __isl_give isl_basic_map *isl_basic_map_intersect_domain(
2321 __isl_take isl_basic_map *bmap,
2322 __isl_take isl_basic_set *bset);
2323 __isl_give isl_basic_map *isl_basic_map_intersect_range(
2324 __isl_take isl_basic_map *bmap,
2325 __isl_take isl_basic_set *bset);
2326 __isl_give isl_basic_map *isl_basic_map_intersect(
2327 __isl_take isl_basic_map *bmap1,
2328 __isl_take isl_basic_map *bmap2);
2329 __isl_give isl_map *isl_map_intersect_params(
2330 __isl_take isl_map *map,
2331 __isl_take isl_set *params);
2332 __isl_give isl_map *isl_map_intersect_domain(
2333 __isl_take isl_map *map,
2334 __isl_take isl_set *set);
2335 __isl_give isl_map *isl_map_intersect_range(
2336 __isl_take isl_map *map,
2337 __isl_take isl_set *set);
2338 __isl_give isl_map *isl_map_intersect(
2339 __isl_take isl_map *map1,
2340 __isl_take isl_map *map2);
2341 __isl_give isl_union_map *isl_union_map_intersect_domain(
2342 __isl_take isl_union_map *umap,
2343 __isl_take isl_union_set *uset);
2344 __isl_give isl_union_map *isl_union_map_intersect_range(
2345 __isl_take isl_union_map *umap,
2346 __isl_take isl_union_set *uset);
2347 __isl_give isl_union_map *isl_union_map_intersect(
2348 __isl_take isl_union_map *umap1,
2349 __isl_take isl_union_map *umap2);
2353 __isl_give isl_set *isl_basic_set_union(
2354 __isl_take isl_basic_set *bset1,
2355 __isl_take isl_basic_set *bset2);
2356 __isl_give isl_map *isl_basic_map_union(
2357 __isl_take isl_basic_map *bmap1,
2358 __isl_take isl_basic_map *bmap2);
2359 __isl_give isl_set *isl_set_union(
2360 __isl_take isl_set *set1,
2361 __isl_take isl_set *set2);
2362 __isl_give isl_map *isl_map_union(
2363 __isl_take isl_map *map1,
2364 __isl_take isl_map *map2);
2365 __isl_give isl_union_set *isl_union_set_union(
2366 __isl_take isl_union_set *uset1,
2367 __isl_take isl_union_set *uset2);
2368 __isl_give isl_union_map *isl_union_map_union(
2369 __isl_take isl_union_map *umap1,
2370 __isl_take isl_union_map *umap2);
2372 =item * Set difference
2374 __isl_give isl_set *isl_set_subtract(
2375 __isl_take isl_set *set1,
2376 __isl_take isl_set *set2);
2377 __isl_give isl_map *isl_map_subtract(
2378 __isl_take isl_map *map1,
2379 __isl_take isl_map *map2);
2380 __isl_give isl_map *isl_map_subtract_domain(
2381 __isl_take isl_map *map,
2382 __isl_take isl_set *dom);
2383 __isl_give isl_map *isl_map_subtract_range(
2384 __isl_take isl_map *map,
2385 __isl_take isl_set *dom);
2386 __isl_give isl_union_set *isl_union_set_subtract(
2387 __isl_take isl_union_set *uset1,
2388 __isl_take isl_union_set *uset2);
2389 __isl_give isl_union_map *isl_union_map_subtract(
2390 __isl_take isl_union_map *umap1,
2391 __isl_take isl_union_map *umap2);
2395 __isl_give isl_basic_set *isl_basic_set_apply(
2396 __isl_take isl_basic_set *bset,
2397 __isl_take isl_basic_map *bmap);
2398 __isl_give isl_set *isl_set_apply(
2399 __isl_take isl_set *set,
2400 __isl_take isl_map *map);
2401 __isl_give isl_union_set *isl_union_set_apply(
2402 __isl_take isl_union_set *uset,
2403 __isl_take isl_union_map *umap);
2404 __isl_give isl_basic_map *isl_basic_map_apply_domain(
2405 __isl_take isl_basic_map *bmap1,
2406 __isl_take isl_basic_map *bmap2);
2407 __isl_give isl_basic_map *isl_basic_map_apply_range(
2408 __isl_take isl_basic_map *bmap1,
2409 __isl_take isl_basic_map *bmap2);
2410 __isl_give isl_map *isl_map_apply_domain(
2411 __isl_take isl_map *map1,
2412 __isl_take isl_map *map2);
2413 __isl_give isl_union_map *isl_union_map_apply_domain(
2414 __isl_take isl_union_map *umap1,
2415 __isl_take isl_union_map *umap2);
2416 __isl_give isl_map *isl_map_apply_range(
2417 __isl_take isl_map *map1,
2418 __isl_take isl_map *map2);
2419 __isl_give isl_union_map *isl_union_map_apply_range(
2420 __isl_take isl_union_map *umap1,
2421 __isl_take isl_union_map *umap2);
2423 =item * Cartesian Product
2425 __isl_give isl_set *isl_set_product(
2426 __isl_take isl_set *set1,
2427 __isl_take isl_set *set2);
2428 __isl_give isl_union_set *isl_union_set_product(
2429 __isl_take isl_union_set *uset1,
2430 __isl_take isl_union_set *uset2);
2431 __isl_give isl_basic_map *isl_basic_map_domain_product(
2432 __isl_take isl_basic_map *bmap1,
2433 __isl_take isl_basic_map *bmap2);
2434 __isl_give isl_basic_map *isl_basic_map_range_product(
2435 __isl_take isl_basic_map *bmap1,
2436 __isl_take isl_basic_map *bmap2);
2437 __isl_give isl_map *isl_map_domain_product(
2438 __isl_take isl_map *map1,
2439 __isl_take isl_map *map2);
2440 __isl_give isl_map *isl_map_range_product(
2441 __isl_take isl_map *map1,
2442 __isl_take isl_map *map2);
2443 __isl_give isl_union_map *isl_union_map_range_product(
2444 __isl_take isl_union_map *umap1,
2445 __isl_take isl_union_map *umap2);
2446 __isl_give isl_map *isl_map_product(
2447 __isl_take isl_map *map1,
2448 __isl_take isl_map *map2);
2449 __isl_give isl_union_map *isl_union_map_product(
2450 __isl_take isl_union_map *umap1,
2451 __isl_take isl_union_map *umap2);
2453 The above functions compute the cross product of the given
2454 sets or relations. The domains and ranges of the results
2455 are wrapped maps between domains and ranges of the inputs.
2456 To obtain a ``flat'' product, use the following functions
2459 __isl_give isl_basic_set *isl_basic_set_flat_product(
2460 __isl_take isl_basic_set *bset1,
2461 __isl_take isl_basic_set *bset2);
2462 __isl_give isl_set *isl_set_flat_product(
2463 __isl_take isl_set *set1,
2464 __isl_take isl_set *set2);
2465 __isl_give isl_basic_map *isl_basic_map_flat_range_product(
2466 __isl_take isl_basic_map *bmap1,
2467 __isl_take isl_basic_map *bmap2);
2468 __isl_give isl_map *isl_map_flat_domain_product(
2469 __isl_take isl_map *map1,
2470 __isl_take isl_map *map2);
2471 __isl_give isl_map *isl_map_flat_range_product(
2472 __isl_take isl_map *map1,
2473 __isl_take isl_map *map2);
2474 __isl_give isl_union_map *isl_union_map_flat_range_product(
2475 __isl_take isl_union_map *umap1,
2476 __isl_take isl_union_map *umap2);
2477 __isl_give isl_basic_map *isl_basic_map_flat_product(
2478 __isl_take isl_basic_map *bmap1,
2479 __isl_take isl_basic_map *bmap2);
2480 __isl_give isl_map *isl_map_flat_product(
2481 __isl_take isl_map *map1,
2482 __isl_take isl_map *map2);
2484 =item * Simplification
2486 __isl_give isl_basic_set *isl_basic_set_gist(
2487 __isl_take isl_basic_set *bset,
2488 __isl_take isl_basic_set *context);
2489 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
2490 __isl_take isl_set *context);
2491 __isl_give isl_set *isl_set_gist_params(
2492 __isl_take isl_set *set,
2493 __isl_take isl_set *context);
2494 __isl_give isl_union_set *isl_union_set_gist(
2495 __isl_take isl_union_set *uset,
2496 __isl_take isl_union_set *context);
2497 __isl_give isl_union_set *isl_union_set_gist_params(
2498 __isl_take isl_union_set *uset,
2499 __isl_take isl_set *set);
2500 __isl_give isl_basic_map *isl_basic_map_gist(
2501 __isl_take isl_basic_map *bmap,
2502 __isl_take isl_basic_map *context);
2503 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
2504 __isl_take isl_map *context);
2505 __isl_give isl_map *isl_map_gist_params(
2506 __isl_take isl_map *map,
2507 __isl_take isl_set *context);
2508 __isl_give isl_map *isl_map_gist_domain(
2509 __isl_take isl_map *map,
2510 __isl_take isl_set *context);
2511 __isl_give isl_map *isl_map_gist_range(
2512 __isl_take isl_map *map,
2513 __isl_take isl_set *context);
2514 __isl_give isl_union_map *isl_union_map_gist(
2515 __isl_take isl_union_map *umap,
2516 __isl_take isl_union_map *context);
2517 __isl_give isl_union_map *isl_union_map_gist_params(
2518 __isl_take isl_union_map *umap,
2519 __isl_take isl_set *set);
2520 __isl_give isl_union_map *isl_union_map_gist_domain(
2521 __isl_take isl_union_map *umap,
2522 __isl_take isl_union_set *uset);
2523 __isl_give isl_union_map *isl_union_map_gist_range(
2524 __isl_take isl_union_map *umap,
2525 __isl_take isl_union_set *uset);
2527 The gist operation returns a set or relation that has the
2528 same intersection with the context as the input set or relation.
2529 Any implicit equality in the intersection is made explicit in the result,
2530 while all inequalities that are redundant with respect to the intersection
2532 In case of union sets and relations, the gist operation is performed
2537 =head3 Lexicographic Optimization
2539 Given a (basic) set C<set> (or C<bset>) and a zero-dimensional domain C<dom>,
2540 the following functions
2541 compute a set that contains the lexicographic minimum or maximum
2542 of the elements in C<set> (or C<bset>) for those values of the parameters
2543 that satisfy C<dom>.
2544 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
2545 that contains the parameter values in C<dom> for which C<set> (or C<bset>)
2547 In other words, the union of the parameter values
2548 for which the result is non-empty and of C<*empty>
2551 __isl_give isl_set *isl_basic_set_partial_lexmin(
2552 __isl_take isl_basic_set *bset,
2553 __isl_take isl_basic_set *dom,
2554 __isl_give isl_set **empty);
2555 __isl_give isl_set *isl_basic_set_partial_lexmax(
2556 __isl_take isl_basic_set *bset,
2557 __isl_take isl_basic_set *dom,
2558 __isl_give isl_set **empty);
2559 __isl_give isl_set *isl_set_partial_lexmin(
2560 __isl_take isl_set *set, __isl_take isl_set *dom,
2561 __isl_give isl_set **empty);
2562 __isl_give isl_set *isl_set_partial_lexmax(
2563 __isl_take isl_set *set, __isl_take isl_set *dom,
2564 __isl_give isl_set **empty);
2566 Given a (basic) set C<set> (or C<bset>), the following functions simply
2567 return a set containing the lexicographic minimum or maximum
2568 of the elements in C<set> (or C<bset>).
2569 In case of union sets, the optimum is computed per space.
2571 __isl_give isl_set *isl_basic_set_lexmin(
2572 __isl_take isl_basic_set *bset);
2573 __isl_give isl_set *isl_basic_set_lexmax(
2574 __isl_take isl_basic_set *bset);
2575 __isl_give isl_set *isl_set_lexmin(
2576 __isl_take isl_set *set);
2577 __isl_give isl_set *isl_set_lexmax(
2578 __isl_take isl_set *set);
2579 __isl_give isl_union_set *isl_union_set_lexmin(
2580 __isl_take isl_union_set *uset);
2581 __isl_give isl_union_set *isl_union_set_lexmax(
2582 __isl_take isl_union_set *uset);
2584 Given a (basic) relation C<map> (or C<bmap>) and a domain C<dom>,
2585 the following functions
2586 compute a relation that maps each element of C<dom>
2587 to the single lexicographic minimum or maximum
2588 of the elements that are associated to that same
2589 element in C<map> (or C<bmap>).
2590 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
2591 that contains the elements in C<dom> that do not map
2592 to any elements in C<map> (or C<bmap>).
2593 In other words, the union of the domain of the result and of C<*empty>
2596 __isl_give isl_map *isl_basic_map_partial_lexmax(
2597 __isl_take isl_basic_map *bmap,
2598 __isl_take isl_basic_set *dom,
2599 __isl_give isl_set **empty);
2600 __isl_give isl_map *isl_basic_map_partial_lexmin(
2601 __isl_take isl_basic_map *bmap,
2602 __isl_take isl_basic_set *dom,
2603 __isl_give isl_set **empty);
2604 __isl_give isl_map *isl_map_partial_lexmax(
2605 __isl_take isl_map *map, __isl_take isl_set *dom,
2606 __isl_give isl_set **empty);
2607 __isl_give isl_map *isl_map_partial_lexmin(
2608 __isl_take isl_map *map, __isl_take isl_set *dom,
2609 __isl_give isl_set **empty);
2611 Given a (basic) map C<map> (or C<bmap>), the following functions simply
2612 return a map mapping each element in the domain of
2613 C<map> (or C<bmap>) to the lexicographic minimum or maximum
2614 of all elements associated to that element.
2615 In case of union relations, the optimum is computed per space.
2617 __isl_give isl_map *isl_basic_map_lexmin(
2618 __isl_take isl_basic_map *bmap);
2619 __isl_give isl_map *isl_basic_map_lexmax(
2620 __isl_take isl_basic_map *bmap);
2621 __isl_give isl_map *isl_map_lexmin(
2622 __isl_take isl_map *map);
2623 __isl_give isl_map *isl_map_lexmax(
2624 __isl_take isl_map *map);
2625 __isl_give isl_union_map *isl_union_map_lexmin(
2626 __isl_take isl_union_map *umap);
2627 __isl_give isl_union_map *isl_union_map_lexmax(
2628 __isl_take isl_union_map *umap);
2630 The following functions return their result in the form of
2631 a piecewise multi-affine expression
2632 (See L<"Piecewise Multiple Quasi Affine Expressions">),
2633 but are otherwise equivalent to the corresponding functions
2634 returning a basic set or relation.
2636 __isl_give isl_pw_multi_aff *
2637 isl_basic_map_lexmin_pw_multi_aff(
2638 __isl_take isl_basic_map *bmap);
2639 __isl_give isl_pw_multi_aff *
2640 isl_basic_set_partial_lexmin_pw_multi_aff(
2641 __isl_take isl_basic_set *bset,
2642 __isl_take isl_basic_set *dom,
2643 __isl_give isl_set **empty);
2644 __isl_give isl_pw_multi_aff *
2645 isl_basic_set_partial_lexmax_pw_multi_aff(
2646 __isl_take isl_basic_set *bset,
2647 __isl_take isl_basic_set *dom,
2648 __isl_give isl_set **empty);
2649 __isl_give isl_pw_multi_aff *
2650 isl_basic_map_partial_lexmin_pw_multi_aff(
2651 __isl_take isl_basic_map *bmap,
2652 __isl_take isl_basic_set *dom,
2653 __isl_give isl_set **empty);
2654 __isl_give isl_pw_multi_aff *
2655 isl_basic_map_partial_lexmax_pw_multi_aff(
2656 __isl_take isl_basic_map *bmap,
2657 __isl_take isl_basic_set *dom,
2658 __isl_give isl_set **empty);
2662 Lists are defined over several element types, including
2663 C<isl_aff>, C<isl_pw_aff>, C<isl_basic_set> and C<isl_set>.
2664 Here we take lists of C<isl_set>s as an example.
2665 Lists can be created, copied and freed using the following functions.
2667 #include <isl/list.h>
2668 __isl_give isl_set_list *isl_set_list_from_set(
2669 __isl_take isl_set *el);
2670 __isl_give isl_set_list *isl_set_list_alloc(
2671 isl_ctx *ctx, int n);
2672 __isl_give isl_set_list *isl_set_list_copy(
2673 __isl_keep isl_set_list *list);
2674 __isl_give isl_set_list *isl_set_list_add(
2675 __isl_take isl_set_list *list,
2676 __isl_take isl_set *el);
2677 __isl_give isl_set_list *isl_set_list_concat(
2678 __isl_take isl_set_list *list1,
2679 __isl_take isl_set_list *list2);
2680 void *isl_set_list_free(__isl_take isl_set_list *list);
2682 C<isl_set_list_alloc> creates an empty list with a capacity for
2683 C<n> elements. C<isl_set_list_from_set> creates a list with a single
2686 Lists can be inspected using the following functions.
2688 #include <isl/list.h>
2689 isl_ctx *isl_set_list_get_ctx(__isl_keep isl_set_list *list);
2690 int isl_set_list_n_set(__isl_keep isl_set_list *list);
2691 __isl_give isl_set *isl_set_list_get_set(
2692 __isl_keep isl_set_list *list, int index);
2693 int isl_set_list_foreach(__isl_keep isl_set_list *list,
2694 int (*fn)(__isl_take isl_set *el, void *user),
2697 Lists can be printed using
2699 #include <isl/list.h>
2700 __isl_give isl_printer *isl_printer_print_set_list(
2701 __isl_take isl_printer *p,
2702 __isl_keep isl_set_list *list);
2706 Matrices can be created, copied and freed using the following functions.
2708 #include <isl/mat.h>
2709 __isl_give isl_mat *isl_mat_alloc(isl_ctx *ctx,
2710 unsigned n_row, unsigned n_col);
2711 __isl_give isl_mat *isl_mat_copy(__isl_keep isl_mat *mat);
2712 void isl_mat_free(__isl_take isl_mat *mat);
2714 Note that the elements of a newly created matrix may have arbitrary values.
2715 The elements can be changed and inspected using the following functions.
2717 isl_ctx *isl_mat_get_ctx(__isl_keep isl_mat *mat);
2718 int isl_mat_rows(__isl_keep isl_mat *mat);
2719 int isl_mat_cols(__isl_keep isl_mat *mat);
2720 int isl_mat_get_element(__isl_keep isl_mat *mat,
2721 int row, int col, isl_int *v);
2722 __isl_give isl_mat *isl_mat_set_element(__isl_take isl_mat *mat,
2723 int row, int col, isl_int v);
2724 __isl_give isl_mat *isl_mat_set_element_si(__isl_take isl_mat *mat,
2725 int row, int col, int v);
2727 C<isl_mat_get_element> will return a negative value if anything went wrong.
2728 In that case, the value of C<*v> is undefined.
2730 The following function can be used to compute the (right) inverse
2731 of a matrix, i.e., a matrix such that the product of the original
2732 and the inverse (in that order) is a multiple of the identity matrix.
2733 The input matrix is assumed to be of full row-rank.
2735 __isl_give isl_mat *isl_mat_right_inverse(__isl_take isl_mat *mat);
2737 The following function can be used to compute the (right) kernel
2738 (or null space) of a matrix, i.e., a matrix such that the product of
2739 the original and the kernel (in that order) is the zero matrix.
2741 __isl_give isl_mat *isl_mat_right_kernel(__isl_take isl_mat *mat);
2743 =head2 Piecewise Quasi Affine Expressions
2745 The zero quasi affine expression on a given domain can be created using
2747 __isl_give isl_aff *isl_aff_zero_on_domain(
2748 __isl_take isl_local_space *ls);
2750 Note that the space in which the resulting object lives is a map space
2751 with the given space as domain and a one-dimensional range.
2753 An empty piecewise quasi affine expression (one with no cells)
2754 or a piecewise quasi affine expression with a single cell can
2755 be created using the following functions.
2757 #include <isl/aff.h>
2758 __isl_give isl_pw_aff *isl_pw_aff_empty(
2759 __isl_take isl_space *space);
2760 __isl_give isl_pw_aff *isl_pw_aff_alloc(
2761 __isl_take isl_set *set, __isl_take isl_aff *aff);
2762 __isl_give isl_pw_aff *isl_pw_aff_from_aff(
2763 __isl_take isl_aff *aff);
2765 Quasi affine expressions can be copied and freed using
2767 #include <isl/aff.h>
2768 __isl_give isl_aff *isl_aff_copy(__isl_keep isl_aff *aff);
2769 void *isl_aff_free(__isl_take isl_aff *aff);
2771 __isl_give isl_pw_aff *isl_pw_aff_copy(
2772 __isl_keep isl_pw_aff *pwaff);
2773 void *isl_pw_aff_free(__isl_take isl_pw_aff *pwaff);
2775 A (rational) bound on a dimension can be extracted from an C<isl_constraint>
2776 using the following function. The constraint is required to have
2777 a non-zero coefficient for the specified dimension.
2779 #include <isl/constraint.h>
2780 __isl_give isl_aff *isl_constraint_get_bound(
2781 __isl_keep isl_constraint *constraint,
2782 enum isl_dim_type type, int pos);
2784 The entire affine expression of the constraint can also be extracted
2785 using the following function.
2787 #include <isl/constraint.h>
2788 __isl_give isl_aff *isl_constraint_get_aff(
2789 __isl_keep isl_constraint *constraint);
2791 Conversely, an equality constraint equating
2792 the affine expression to zero or an inequality constraint enforcing
2793 the affine expression to be non-negative, can be constructed using
2795 __isl_give isl_constraint *isl_equality_from_aff(
2796 __isl_take isl_aff *aff);
2797 __isl_give isl_constraint *isl_inequality_from_aff(
2798 __isl_take isl_aff *aff);
2800 The expression can be inspected using
2802 #include <isl/aff.h>
2803 isl_ctx *isl_aff_get_ctx(__isl_keep isl_aff *aff);
2804 int isl_aff_dim(__isl_keep isl_aff *aff,
2805 enum isl_dim_type type);
2806 __isl_give isl_local_space *isl_aff_get_domain_local_space(
2807 __isl_keep isl_aff *aff);
2808 __isl_give isl_local_space *isl_aff_get_local_space(
2809 __isl_keep isl_aff *aff);
2810 const char *isl_aff_get_dim_name(__isl_keep isl_aff *aff,
2811 enum isl_dim_type type, unsigned pos);
2812 const char *isl_pw_aff_get_dim_name(
2813 __isl_keep isl_pw_aff *pa,
2814 enum isl_dim_type type, unsigned pos);
2815 int isl_pw_aff_has_dim_id(__isl_keep isl_pw_aff *pa,
2816 enum isl_dim_type type, unsigned pos);
2817 __isl_give isl_id *isl_pw_aff_get_dim_id(
2818 __isl_keep isl_pw_aff *pa,
2819 enum isl_dim_type type, unsigned pos);
2820 int isl_aff_get_constant(__isl_keep isl_aff *aff,
2822 int isl_aff_get_coefficient(__isl_keep isl_aff *aff,
2823 enum isl_dim_type type, int pos, isl_int *v);
2824 int isl_aff_get_denominator(__isl_keep isl_aff *aff,
2826 __isl_give isl_aff *isl_aff_get_div(
2827 __isl_keep isl_aff *aff, int pos);
2829 int isl_pw_aff_foreach_piece(__isl_keep isl_pw_aff *pwaff,
2830 int (*fn)(__isl_take isl_set *set,
2831 __isl_take isl_aff *aff,
2832 void *user), void *user);
2834 int isl_aff_is_cst(__isl_keep isl_aff *aff);
2835 int isl_pw_aff_is_cst(__isl_keep isl_pw_aff *pwaff);
2837 int isl_aff_involves_dims(__isl_keep isl_aff *aff,
2838 enum isl_dim_type type, unsigned first, unsigned n);
2839 int isl_pw_aff_involves_dims(__isl_keep isl_pw_aff *pwaff,
2840 enum isl_dim_type type, unsigned first, unsigned n);
2842 isl_ctx *isl_pw_aff_get_ctx(__isl_keep isl_pw_aff *pwaff);
2843 unsigned isl_pw_aff_dim(__isl_keep isl_pw_aff *pwaff,
2844 enum isl_dim_type type);
2845 int isl_pw_aff_is_empty(__isl_keep isl_pw_aff *pwaff);
2847 It can be modified using
2849 #include <isl/aff.h>
2850 __isl_give isl_pw_aff *isl_pw_aff_set_tuple_id(
2851 __isl_take isl_pw_aff *pwaff,
2852 enum isl_dim_type type, __isl_take isl_id *id);
2853 __isl_give isl_aff *isl_aff_set_dim_name(
2854 __isl_take isl_aff *aff, enum isl_dim_type type,
2855 unsigned pos, const char *s);
2856 __isl_give isl_aff *isl_aff_set_dim_id(
2857 __isl_take isl_aff *aff, enum isl_dim_type type,
2858 unsigned pos, __isl_take isl_id *id);
2859 __isl_give isl_pw_aff *isl_pw_aff_set_dim_id(
2860 __isl_take isl_pw_aff *pma,
2861 enum isl_dim_type type, unsigned pos,
2862 __isl_take isl_id *id);
2863 __isl_give isl_aff *isl_aff_set_constant(
2864 __isl_take isl_aff *aff, isl_int v);
2865 __isl_give isl_aff *isl_aff_set_constant_si(
2866 __isl_take isl_aff *aff, int v);
2867 __isl_give isl_aff *isl_aff_set_coefficient(
2868 __isl_take isl_aff *aff,
2869 enum isl_dim_type type, int pos, isl_int v);
2870 __isl_give isl_aff *isl_aff_set_coefficient_si(
2871 __isl_take isl_aff *aff,
2872 enum isl_dim_type type, int pos, int v);
2873 __isl_give isl_aff *isl_aff_set_denominator(
2874 __isl_take isl_aff *aff, isl_int v);
2876 __isl_give isl_aff *isl_aff_add_constant(
2877 __isl_take isl_aff *aff, isl_int v);
2878 __isl_give isl_aff *isl_aff_add_constant_si(
2879 __isl_take isl_aff *aff, int v);
2880 __isl_give isl_aff *isl_aff_add_coefficient(
2881 __isl_take isl_aff *aff,
2882 enum isl_dim_type type, int pos, isl_int v);
2883 __isl_give isl_aff *isl_aff_add_coefficient_si(
2884 __isl_take isl_aff *aff,
2885 enum isl_dim_type type, int pos, int v);
2887 __isl_give isl_aff *isl_aff_insert_dims(
2888 __isl_take isl_aff *aff,
2889 enum isl_dim_type type, unsigned first, unsigned n);
2890 __isl_give isl_pw_aff *isl_pw_aff_insert_dims(
2891 __isl_take isl_pw_aff *pwaff,
2892 enum isl_dim_type type, unsigned first, unsigned n);
2893 __isl_give isl_aff *isl_aff_add_dims(
2894 __isl_take isl_aff *aff,
2895 enum isl_dim_type type, unsigned n);
2896 __isl_give isl_pw_aff *isl_pw_aff_add_dims(
2897 __isl_take isl_pw_aff *pwaff,
2898 enum isl_dim_type type, unsigned n);
2899 __isl_give isl_aff *isl_aff_drop_dims(
2900 __isl_take isl_aff *aff,
2901 enum isl_dim_type type, unsigned first, unsigned n);
2902 __isl_give isl_pw_aff *isl_pw_aff_drop_dims(
2903 __isl_take isl_pw_aff *pwaff,
2904 enum isl_dim_type type, unsigned first, unsigned n);
2906 Note that the C<set_constant> and C<set_coefficient> functions
2907 set the I<numerator> of the constant or coefficient, while
2908 C<add_constant> and C<add_coefficient> add an integer value to
2909 the possibly rational constant or coefficient.
2911 To check whether an affine expressions is obviously zero
2912 or obviously equal to some other affine expression, use
2914 #include <isl/aff.h>
2915 int isl_aff_plain_is_zero(__isl_keep isl_aff *aff);
2916 int isl_aff_plain_is_equal(__isl_keep isl_aff *aff1,
2917 __isl_keep isl_aff *aff2);
2918 int isl_pw_aff_plain_is_equal(
2919 __isl_keep isl_pw_aff *pwaff1,
2920 __isl_keep isl_pw_aff *pwaff2);
2924 #include <isl/aff.h>
2925 __isl_give isl_aff *isl_aff_add(__isl_take isl_aff *aff1,
2926 __isl_take isl_aff *aff2);
2927 __isl_give isl_pw_aff *isl_pw_aff_add(
2928 __isl_take isl_pw_aff *pwaff1,
2929 __isl_take isl_pw_aff *pwaff2);
2930 __isl_give isl_pw_aff *isl_pw_aff_min(
2931 __isl_take isl_pw_aff *pwaff1,
2932 __isl_take isl_pw_aff *pwaff2);
2933 __isl_give isl_pw_aff *isl_pw_aff_max(
2934 __isl_take isl_pw_aff *pwaff1,
2935 __isl_take isl_pw_aff *pwaff2);
2936 __isl_give isl_aff *isl_aff_sub(__isl_take isl_aff *aff1,
2937 __isl_take isl_aff *aff2);
2938 __isl_give isl_pw_aff *isl_pw_aff_sub(
2939 __isl_take isl_pw_aff *pwaff1,
2940 __isl_take isl_pw_aff *pwaff2);
2941 __isl_give isl_aff *isl_aff_neg(__isl_take isl_aff *aff);
2942 __isl_give isl_pw_aff *isl_pw_aff_neg(
2943 __isl_take isl_pw_aff *pwaff);
2944 __isl_give isl_aff *isl_aff_ceil(__isl_take isl_aff *aff);
2945 __isl_give isl_pw_aff *isl_pw_aff_ceil(
2946 __isl_take isl_pw_aff *pwaff);
2947 __isl_give isl_aff *isl_aff_floor(__isl_take isl_aff *aff);
2948 __isl_give isl_pw_aff *isl_pw_aff_floor(
2949 __isl_take isl_pw_aff *pwaff);
2950 __isl_give isl_aff *isl_aff_mod(__isl_take isl_aff *aff,
2952 __isl_give isl_pw_aff *isl_pw_aff_mod(
2953 __isl_take isl_pw_aff *pwaff, isl_int mod);
2954 __isl_give isl_aff *isl_aff_scale(__isl_take isl_aff *aff,
2956 __isl_give isl_pw_aff *isl_pw_aff_scale(
2957 __isl_take isl_pw_aff *pwaff, isl_int f);
2958 __isl_give isl_aff *isl_aff_scale_down(__isl_take isl_aff *aff,
2960 __isl_give isl_aff *isl_aff_scale_down_ui(
2961 __isl_take isl_aff *aff, unsigned f);
2962 __isl_give isl_pw_aff *isl_pw_aff_scale_down(
2963 __isl_take isl_pw_aff *pwaff, isl_int f);
2965 __isl_give isl_pw_aff *isl_pw_aff_list_min(
2966 __isl_take isl_pw_aff_list *list);
2967 __isl_give isl_pw_aff *isl_pw_aff_list_max(
2968 __isl_take isl_pw_aff_list *list);
2970 __isl_give isl_pw_aff *isl_pw_aff_coalesce(
2971 __isl_take isl_pw_aff *pwqp);
2973 __isl_give isl_aff *isl_aff_align_params(
2974 __isl_take isl_aff *aff,
2975 __isl_take isl_space *model);
2976 __isl_give isl_pw_aff *isl_pw_aff_align_params(
2977 __isl_take isl_pw_aff *pwaff,
2978 __isl_take isl_space *model);
2980 __isl_give isl_aff *isl_aff_project_domain_on_params(
2981 __isl_take isl_aff *aff);
2983 __isl_give isl_aff *isl_aff_gist_params(
2984 __isl_take isl_aff *aff,
2985 __isl_take isl_set *context);
2986 __isl_give isl_aff *isl_aff_gist(__isl_take isl_aff *aff,
2987 __isl_take isl_set *context);
2988 __isl_give isl_pw_aff *isl_pw_aff_gist_params(
2989 __isl_take isl_pw_aff *pwaff,
2990 __isl_take isl_set *context);
2991 __isl_give isl_pw_aff *isl_pw_aff_gist(
2992 __isl_take isl_pw_aff *pwaff,
2993 __isl_take isl_set *context);
2995 __isl_give isl_set *isl_pw_aff_domain(
2996 __isl_take isl_pw_aff *pwaff);
2997 __isl_give isl_pw_aff *isl_pw_aff_intersect_domain(
2998 __isl_take isl_pw_aff *pa,
2999 __isl_take isl_set *set);
3000 __isl_give isl_pw_aff *isl_pw_aff_intersect_params(
3001 __isl_take isl_pw_aff *pa,
3002 __isl_take isl_set *set);
3004 __isl_give isl_aff *isl_aff_mul(__isl_take isl_aff *aff1,
3005 __isl_take isl_aff *aff2);
3006 __isl_give isl_pw_aff *isl_pw_aff_mul(
3007 __isl_take isl_pw_aff *pwaff1,
3008 __isl_take isl_pw_aff *pwaff2);
3010 When multiplying two affine expressions, at least one of the two needs
3013 #include <isl/aff.h>
3014 __isl_give isl_basic_set *isl_aff_le_basic_set(
3015 __isl_take isl_aff *aff1, __isl_take isl_aff *aff2);
3016 __isl_give isl_basic_set *isl_aff_ge_basic_set(
3017 __isl_take isl_aff *aff1, __isl_take isl_aff *aff2);
3018 __isl_give isl_set *isl_pw_aff_eq_set(
3019 __isl_take isl_pw_aff *pwaff1,
3020 __isl_take isl_pw_aff *pwaff2);
3021 __isl_give isl_set *isl_pw_aff_ne_set(
3022 __isl_take isl_pw_aff *pwaff1,
3023 __isl_take isl_pw_aff *pwaff2);
3024 __isl_give isl_set *isl_pw_aff_le_set(
3025 __isl_take isl_pw_aff *pwaff1,
3026 __isl_take isl_pw_aff *pwaff2);
3027 __isl_give isl_set *isl_pw_aff_lt_set(
3028 __isl_take isl_pw_aff *pwaff1,
3029 __isl_take isl_pw_aff *pwaff2);
3030 __isl_give isl_set *isl_pw_aff_ge_set(
3031 __isl_take isl_pw_aff *pwaff1,
3032 __isl_take isl_pw_aff *pwaff2);
3033 __isl_give isl_set *isl_pw_aff_gt_set(
3034 __isl_take isl_pw_aff *pwaff1,
3035 __isl_take isl_pw_aff *pwaff2);
3037 __isl_give isl_set *isl_pw_aff_list_eq_set(
3038 __isl_take isl_pw_aff_list *list1,
3039 __isl_take isl_pw_aff_list *list2);
3040 __isl_give isl_set *isl_pw_aff_list_ne_set(
3041 __isl_take isl_pw_aff_list *list1,
3042 __isl_take isl_pw_aff_list *list2);
3043 __isl_give isl_set *isl_pw_aff_list_le_set(
3044 __isl_take isl_pw_aff_list *list1,
3045 __isl_take isl_pw_aff_list *list2);
3046 __isl_give isl_set *isl_pw_aff_list_lt_set(
3047 __isl_take isl_pw_aff_list *list1,
3048 __isl_take isl_pw_aff_list *list2);
3049 __isl_give isl_set *isl_pw_aff_list_ge_set(
3050 __isl_take isl_pw_aff_list *list1,
3051 __isl_take isl_pw_aff_list *list2);
3052 __isl_give isl_set *isl_pw_aff_list_gt_set(
3053 __isl_take isl_pw_aff_list *list1,
3054 __isl_take isl_pw_aff_list *list2);
3056 The function C<isl_aff_ge_basic_set> returns a basic set
3057 containing those elements in the shared space
3058 of C<aff1> and C<aff2> where C<aff1> is greater than or equal to C<aff2>.
3059 The function C<isl_aff_ge_set> returns a set
3060 containing those elements in the shared domain
3061 of C<pwaff1> and C<pwaff2> where C<pwaff1> is greater than or equal to C<pwaff2>.
3062 The functions operating on C<isl_pw_aff_list> apply the corresponding
3063 C<isl_pw_aff> function to each pair of elements in the two lists.
3065 #include <isl/aff.h>
3066 __isl_give isl_set *isl_pw_aff_nonneg_set(
3067 __isl_take isl_pw_aff *pwaff);
3068 __isl_give isl_set *isl_pw_aff_zero_set(
3069 __isl_take isl_pw_aff *pwaff);
3070 __isl_give isl_set *isl_pw_aff_non_zero_set(
3071 __isl_take isl_pw_aff *pwaff);
3073 The function C<isl_pw_aff_nonneg_set> returns a set
3074 containing those elements in the domain
3075 of C<pwaff> where C<pwaff> is non-negative.
3077 #include <isl/aff.h>
3078 __isl_give isl_pw_aff *isl_pw_aff_cond(
3079 __isl_take isl_set *cond,
3080 __isl_take isl_pw_aff *pwaff_true,
3081 __isl_take isl_pw_aff *pwaff_false);
3083 The function C<isl_pw_aff_cond> performs a conditional operator
3084 and returns an expression that is equal to C<pwaff_true>
3085 for elements in C<cond> and equal to C<pwaff_false> for elements
3088 #include <isl/aff.h>
3089 __isl_give isl_pw_aff *isl_pw_aff_union_min(
3090 __isl_take isl_pw_aff *pwaff1,
3091 __isl_take isl_pw_aff *pwaff2);
3092 __isl_give isl_pw_aff *isl_pw_aff_union_max(
3093 __isl_take isl_pw_aff *pwaff1,
3094 __isl_take isl_pw_aff *pwaff2);
3095 __isl_give isl_pw_aff *isl_pw_aff_union_add(
3096 __isl_take isl_pw_aff *pwaff1,
3097 __isl_take isl_pw_aff *pwaff2);
3099 The function C<isl_pw_aff_union_max> computes a piecewise quasi-affine
3100 expression with a domain that is the union of those of C<pwaff1> and
3101 C<pwaff2> and such that on each cell, the quasi-affine expression is
3102 the maximum of those of C<pwaff1> and C<pwaff2>. If only one of
3103 C<pwaff1> or C<pwaff2> is defined on a given cell, then the
3104 associated expression is the defined one.
3106 An expression can be read from input using
3108 #include <isl/aff.h>
3109 __isl_give isl_aff *isl_aff_read_from_str(
3110 isl_ctx *ctx, const char *str);
3111 __isl_give isl_pw_aff *isl_pw_aff_read_from_str(
3112 isl_ctx *ctx, const char *str);
3114 An expression can be printed using
3116 #include <isl/aff.h>
3117 __isl_give isl_printer *isl_printer_print_aff(
3118 __isl_take isl_printer *p, __isl_keep isl_aff *aff);
3120 __isl_give isl_printer *isl_printer_print_pw_aff(
3121 __isl_take isl_printer *p,
3122 __isl_keep isl_pw_aff *pwaff);
3124 =head2 Piecewise Multiple Quasi Affine Expressions
3126 An C<isl_multi_aff> object represents a sequence of
3127 zero or more affine expressions, all defined on the same domain space.
3129 An C<isl_multi_aff> can be constructed from a C<isl_aff_list> using the
3132 #include <isl/aff.h>
3133 __isl_give isl_multi_aff *isl_multi_aff_from_aff_list(
3134 __isl_take isl_space *space,
3135 __isl_take isl_aff_list *list);
3137 An empty piecewise multiple quasi affine expression (one with no cells) or
3138 a piecewise multiple quasi affine expression with a single cell can
3139 be created using the following functions.
3141 #include <isl/aff.h>
3142 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_empty(
3143 __isl_take isl_space *space);
3144 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_alloc(
3145 __isl_take isl_set *set,
3146 __isl_take isl_multi_aff *maff);
3148 A piecewise multiple quasi affine expression can also be initialized
3149 from an C<isl_set> or C<isl_map>, provided the C<isl_set> is a singleton
3150 and the C<isl_map> is single-valued.
3152 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_set(
3153 __isl_take isl_set *set);
3154 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_map(
3155 __isl_take isl_map *map);
3157 Multiple quasi affine expressions can be copied and freed using
3159 #include <isl/aff.h>
3160 __isl_give isl_multi_aff *isl_multi_aff_copy(
3161 __isl_keep isl_multi_aff *maff);
3162 void *isl_multi_aff_free(__isl_take isl_multi_aff *maff);
3164 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_copy(
3165 __isl_keep isl_pw_multi_aff *pma);
3166 void *isl_pw_multi_aff_free(
3167 __isl_take isl_pw_multi_aff *pma);
3169 The expression can be inspected using
3171 #include <isl/aff.h>
3172 isl_ctx *isl_multi_aff_get_ctx(
3173 __isl_keep isl_multi_aff *maff);
3174 isl_ctx *isl_pw_multi_aff_get_ctx(
3175 __isl_keep isl_pw_multi_aff *pma);
3176 unsigned isl_multi_aff_dim(__isl_keep isl_multi_aff *maff,
3177 enum isl_dim_type type);
3178 unsigned isl_pw_multi_aff_dim(
3179 __isl_keep isl_pw_multi_aff *pma,
3180 enum isl_dim_type type);
3181 __isl_give isl_aff *isl_multi_aff_get_aff(
3182 __isl_keep isl_multi_aff *multi, int pos);
3183 __isl_give isl_pw_aff *isl_pw_multi_aff_get_pw_aff(
3184 __isl_keep isl_pw_multi_aff *pma, int pos);
3185 const char *isl_pw_multi_aff_get_dim_name(
3186 __isl_keep isl_pw_multi_aff *pma,
3187 enum isl_dim_type type, unsigned pos);
3188 __isl_give isl_id *isl_pw_multi_aff_get_dim_id(
3189 __isl_keep isl_pw_multi_aff *pma,
3190 enum isl_dim_type type, unsigned pos);
3191 const char *isl_multi_aff_get_tuple_name(
3192 __isl_keep isl_multi_aff *multi,
3193 enum isl_dim_type type);
3194 const char *isl_pw_multi_aff_get_tuple_name(
3195 __isl_keep isl_pw_multi_aff *pma,
3196 enum isl_dim_type type);
3197 int isl_pw_multi_aff_has_tuple_id(
3198 __isl_keep isl_pw_multi_aff *pma,
3199 enum isl_dim_type type);
3200 __isl_give isl_id *isl_pw_multi_aff_get_tuple_id(
3201 __isl_keep isl_pw_multi_aff *pma,
3202 enum isl_dim_type type);
3204 int isl_pw_multi_aff_foreach_piece(
3205 __isl_keep isl_pw_multi_aff *pma,
3206 int (*fn)(__isl_take isl_set *set,
3207 __isl_take isl_multi_aff *maff,
3208 void *user), void *user);
3210 It can be modified using
3212 #include <isl/aff.h>
3213 __isl_give isl_multi_aff *isl_multi_aff_set_dim_name(
3214 __isl_take isl_multi_aff *maff,
3215 enum isl_dim_type type, unsigned pos, const char *s);
3216 __isl_give isl_multi_aff *isl_multi_aff_set_tuple_id(
3217 __isl_take isl_multi_aff *maff,
3218 enum isl_dim_type type, __isl_take isl_id *id);
3219 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_set_tuple_id(
3220 __isl_take isl_pw_multi_aff *pma,
3221 enum isl_dim_type type, __isl_take isl_id *id);
3223 __isl_give isl_multi_aff *isl_multi_aff_drop_dims(
3224 __isl_take isl_multi_aff *maff,
3225 enum isl_dim_type type, unsigned first, unsigned n);
3227 To check whether two multiple affine expressions are
3228 obviously equal to each other, use
3230 int isl_multi_aff_plain_is_equal(__isl_keep isl_multi_aff *maff1,
3231 __isl_keep isl_multi_aff *maff2);
3232 int isl_pw_multi_aff_plain_is_equal(
3233 __isl_keep isl_pw_multi_aff *pma1,
3234 __isl_keep isl_pw_multi_aff *pma2);
3238 #include <isl/aff.h>
3239 __isl_give isl_multi_aff *isl_multi_aff_add(
3240 __isl_take isl_multi_aff *maff1,
3241 __isl_take isl_multi_aff *maff2);
3242 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_add(
3243 __isl_take isl_pw_multi_aff *pma1,
3244 __isl_take isl_pw_multi_aff *pma2);
3245 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_add(
3246 __isl_take isl_pw_multi_aff *pma1,
3247 __isl_take isl_pw_multi_aff *pma2);
3248 __isl_give isl_multi_aff *isl_multi_aff_scale(
3249 __isl_take isl_multi_aff *maff,
3251 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_params(
3252 __isl_take isl_pw_multi_aff *pma,
3253 __isl_take isl_set *set);
3254 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_domain(
3255 __isl_take isl_pw_multi_aff *pma,
3256 __isl_take isl_set *set);
3257 __isl_give isl_multi_aff *isl_multi_aff_lift(
3258 __isl_take isl_multi_aff *maff,
3259 __isl_give isl_local_space **ls);
3260 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_coalesce(
3261 __isl_take isl_pw_multi_aff *pma);
3262 __isl_give isl_multi_aff *isl_multi_aff_gist_params(
3263 __isl_take isl_multi_aff *maff,
3264 __isl_take isl_set *context);
3265 __isl_give isl_multi_aff *isl_multi_aff_gist(
3266 __isl_take isl_multi_aff *maff,
3267 __isl_take isl_set *context);
3268 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_gist_params(
3269 __isl_take isl_pw_multi_aff *pma,
3270 __isl_take isl_set *set);
3271 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_gist(
3272 __isl_take isl_pw_multi_aff *pma,
3273 __isl_take isl_set *set);
3274 __isl_give isl_set *isl_pw_multi_aff_domain(
3275 __isl_take isl_pw_multi_aff *pma);
3277 If the C<ls> argument of C<isl_multi_aff_lift> is not C<NULL>,
3278 then it is assigned the local space that lies at the basis of
3279 the lifting applied.
3281 An expression can be read from input using
3283 #include <isl/aff.h>
3284 __isl_give isl_multi_aff *isl_multi_aff_read_from_str(
3285 isl_ctx *ctx, const char *str);
3286 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_read_from_str(
3287 isl_ctx *ctx, const char *str);
3289 An expression can be printed using
3291 #include <isl/aff.h>
3292 __isl_give isl_printer *isl_printer_print_multi_aff(
3293 __isl_take isl_printer *p,
3294 __isl_keep isl_multi_aff *maff);
3295 __isl_give isl_printer *isl_printer_print_pw_multi_aff(
3296 __isl_take isl_printer *p,
3297 __isl_keep isl_pw_multi_aff *pma);
3301 Points are elements of a set. They can be used to construct
3302 simple sets (boxes) or they can be used to represent the
3303 individual elements of a set.
3304 The zero point (the origin) can be created using
3306 __isl_give isl_point *isl_point_zero(__isl_take isl_space *space);
3308 The coordinates of a point can be inspected, set and changed
3311 int isl_point_get_coordinate(__isl_keep isl_point *pnt,
3312 enum isl_dim_type type, int pos, isl_int *v);
3313 __isl_give isl_point *isl_point_set_coordinate(
3314 __isl_take isl_point *pnt,
3315 enum isl_dim_type type, int pos, isl_int v);
3317 __isl_give isl_point *isl_point_add_ui(
3318 __isl_take isl_point *pnt,
3319 enum isl_dim_type type, int pos, unsigned val);
3320 __isl_give isl_point *isl_point_sub_ui(
3321 __isl_take isl_point *pnt,
3322 enum isl_dim_type type, int pos, unsigned val);
3324 Other properties can be obtained using
3326 isl_ctx *isl_point_get_ctx(__isl_keep isl_point *pnt);
3328 Points can be copied or freed using
3330 __isl_give isl_point *isl_point_copy(
3331 __isl_keep isl_point *pnt);
3332 void isl_point_free(__isl_take isl_point *pnt);
3334 A singleton set can be created from a point using
3336 __isl_give isl_basic_set *isl_basic_set_from_point(
3337 __isl_take isl_point *pnt);
3338 __isl_give isl_set *isl_set_from_point(
3339 __isl_take isl_point *pnt);
3341 and a box can be created from two opposite extremal points using
3343 __isl_give isl_basic_set *isl_basic_set_box_from_points(
3344 __isl_take isl_point *pnt1,
3345 __isl_take isl_point *pnt2);
3346 __isl_give isl_set *isl_set_box_from_points(
3347 __isl_take isl_point *pnt1,
3348 __isl_take isl_point *pnt2);
3350 All elements of a B<bounded> (union) set can be enumerated using
3351 the following functions.
3353 int isl_set_foreach_point(__isl_keep isl_set *set,
3354 int (*fn)(__isl_take isl_point *pnt, void *user),
3356 int isl_union_set_foreach_point(__isl_keep isl_union_set *uset,
3357 int (*fn)(__isl_take isl_point *pnt, void *user),
3360 The function C<fn> is called for each integer point in
3361 C<set> with as second argument the last argument of
3362 the C<isl_set_foreach_point> call. The function C<fn>
3363 should return C<0> on success and C<-1> on failure.
3364 In the latter case, C<isl_set_foreach_point> will stop
3365 enumerating and return C<-1> as well.
3366 If the enumeration is performed successfully and to completion,
3367 then C<isl_set_foreach_point> returns C<0>.
3369 To obtain a single point of a (basic) set, use
3371 __isl_give isl_point *isl_basic_set_sample_point(
3372 __isl_take isl_basic_set *bset);
3373 __isl_give isl_point *isl_set_sample_point(
3374 __isl_take isl_set *set);
3376 If C<set> does not contain any (integer) points, then the
3377 resulting point will be ``void'', a property that can be
3380 int isl_point_is_void(__isl_keep isl_point *pnt);
3382 =head2 Piecewise Quasipolynomials
3384 A piecewise quasipolynomial is a particular kind of function that maps
3385 a parametric point to a rational value.
3386 More specifically, a quasipolynomial is a polynomial expression in greatest
3387 integer parts of affine expressions of parameters and variables.
3388 A piecewise quasipolynomial is a subdivision of a given parametric
3389 domain into disjoint cells with a quasipolynomial associated to
3390 each cell. The value of the piecewise quasipolynomial at a given
3391 point is the value of the quasipolynomial associated to the cell
3392 that contains the point. Outside of the union of cells,
3393 the value is assumed to be zero.
3394 For example, the piecewise quasipolynomial
3396 [n] -> { [x] -> ((1 + n) - x) : x <= n and x >= 0 }
3398 maps C<x> to C<1 + n - x> for values of C<x> between C<0> and C<n>.
3399 A given piecewise quasipolynomial has a fixed domain dimension.
3400 Union piecewise quasipolynomials are used to contain piecewise quasipolynomials
3401 defined over different domains.
3402 Piecewise quasipolynomials are mainly used by the C<barvinok>
3403 library for representing the number of elements in a parametric set or map.
3404 For example, the piecewise quasipolynomial above represents
3405 the number of points in the map
3407 [n] -> { [x] -> [y] : x,y >= 0 and 0 <= x + y <= n }
3409 =head3 Input and Output
3411 Piecewise quasipolynomials can be read from input using
3413 __isl_give isl_union_pw_qpolynomial *
3414 isl_union_pw_qpolynomial_read_from_str(
3415 isl_ctx *ctx, const char *str);
3417 Quasipolynomials and piecewise quasipolynomials can be printed
3418 using the following functions.
3420 __isl_give isl_printer *isl_printer_print_qpolynomial(
3421 __isl_take isl_printer *p,
3422 __isl_keep isl_qpolynomial *qp);
3424 __isl_give isl_printer *isl_printer_print_pw_qpolynomial(
3425 __isl_take isl_printer *p,
3426 __isl_keep isl_pw_qpolynomial *pwqp);
3428 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial(
3429 __isl_take isl_printer *p,
3430 __isl_keep isl_union_pw_qpolynomial *upwqp);
3432 The output format of the printer
3433 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
3434 For C<isl_printer_print_union_pw_qpolynomial>, only C<ISL_FORMAT_ISL>
3436 In case of printing in C<ISL_FORMAT_C>, the user may want
3437 to set the names of all dimensions
3439 __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name(
3440 __isl_take isl_qpolynomial *qp,
3441 enum isl_dim_type type, unsigned pos,
3443 __isl_give isl_pw_qpolynomial *
3444 isl_pw_qpolynomial_set_dim_name(
3445 __isl_take isl_pw_qpolynomial *pwqp,
3446 enum isl_dim_type type, unsigned pos,
3449 =head3 Creating New (Piecewise) Quasipolynomials
3451 Some simple quasipolynomials can be created using the following functions.
3452 More complicated quasipolynomials can be created by applying
3453 operations such as addition and multiplication
3454 on the resulting quasipolynomials
3456 __isl_give isl_qpolynomial *isl_qpolynomial_zero_on_domain(
3457 __isl_take isl_space *domain);
3458 __isl_give isl_qpolynomial *isl_qpolynomial_one_on_domain(
3459 __isl_take isl_space *domain);
3460 __isl_give isl_qpolynomial *isl_qpolynomial_infty_on_domain(
3461 __isl_take isl_space *domain);
3462 __isl_give isl_qpolynomial *isl_qpolynomial_neginfty_on_domain(
3463 __isl_take isl_space *domain);
3464 __isl_give isl_qpolynomial *isl_qpolynomial_nan_on_domain(
3465 __isl_take isl_space *domain);
3466 __isl_give isl_qpolynomial *isl_qpolynomial_rat_cst_on_domain(
3467 __isl_take isl_space *domain,
3468 const isl_int n, const isl_int d);
3469 __isl_give isl_qpolynomial *isl_qpolynomial_var_on_domain(
3470 __isl_take isl_space *domain,
3471 enum isl_dim_type type, unsigned pos);
3472 __isl_give isl_qpolynomial *isl_qpolynomial_from_aff(
3473 __isl_take isl_aff *aff);
3475 Note that the space in which a quasipolynomial lives is a map space
3476 with a one-dimensional range. The C<domain> argument in some of
3477 the functions above corresponds to the domain of this map space.
3479 The zero piecewise quasipolynomial or a piecewise quasipolynomial
3480 with a single cell can be created using the following functions.
3481 Multiple of these single cell piecewise quasipolynomials can
3482 be combined to create more complicated piecewise quasipolynomials.
3484 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_zero(
3485 __isl_take isl_space *space);
3486 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_alloc(
3487 __isl_take isl_set *set,
3488 __isl_take isl_qpolynomial *qp);
3489 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_qpolynomial(
3490 __isl_take isl_qpolynomial *qp);
3491 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_pw_aff(
3492 __isl_take isl_pw_aff *pwaff);
3494 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_zero(
3495 __isl_take isl_space *space);
3496 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_from_pw_qpolynomial(
3497 __isl_take isl_pw_qpolynomial *pwqp);
3498 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add_pw_qpolynomial(
3499 __isl_take isl_union_pw_qpolynomial *upwqp,
3500 __isl_take isl_pw_qpolynomial *pwqp);
3502 Quasipolynomials can be copied and freed again using the following
3505 __isl_give isl_qpolynomial *isl_qpolynomial_copy(
3506 __isl_keep isl_qpolynomial *qp);
3507 void *isl_qpolynomial_free(__isl_take isl_qpolynomial *qp);
3509 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_copy(
3510 __isl_keep isl_pw_qpolynomial *pwqp);
3511 void *isl_pw_qpolynomial_free(
3512 __isl_take isl_pw_qpolynomial *pwqp);
3514 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_copy(
3515 __isl_keep isl_union_pw_qpolynomial *upwqp);
3516 void isl_union_pw_qpolynomial_free(
3517 __isl_take isl_union_pw_qpolynomial *upwqp);
3519 =head3 Inspecting (Piecewise) Quasipolynomials
3521 To iterate over all piecewise quasipolynomials in a union
3522 piecewise quasipolynomial, use the following function
3524 int isl_union_pw_qpolynomial_foreach_pw_qpolynomial(
3525 __isl_keep isl_union_pw_qpolynomial *upwqp,
3526 int (*fn)(__isl_take isl_pw_qpolynomial *pwqp, void *user),
3529 To extract the piecewise quasipolynomial in a given space from a union, use
3531 __isl_give isl_pw_qpolynomial *
3532 isl_union_pw_qpolynomial_extract_pw_qpolynomial(
3533 __isl_keep isl_union_pw_qpolynomial *upwqp,
3534 __isl_take isl_space *space);
3536 To iterate over the cells in a piecewise quasipolynomial,
3537 use either of the following two functions
3539 int isl_pw_qpolynomial_foreach_piece(
3540 __isl_keep isl_pw_qpolynomial *pwqp,
3541 int (*fn)(__isl_take isl_set *set,
3542 __isl_take isl_qpolynomial *qp,
3543 void *user), void *user);
3544 int isl_pw_qpolynomial_foreach_lifted_piece(
3545 __isl_keep isl_pw_qpolynomial *pwqp,
3546 int (*fn)(__isl_take isl_set *set,
3547 __isl_take isl_qpolynomial *qp,
3548 void *user), void *user);
3550 As usual, the function C<fn> should return C<0> on success
3551 and C<-1> on failure. The difference between
3552 C<isl_pw_qpolynomial_foreach_piece> and
3553 C<isl_pw_qpolynomial_foreach_lifted_piece> is that
3554 C<isl_pw_qpolynomial_foreach_lifted_piece> will first
3555 compute unique representations for all existentially quantified
3556 variables and then turn these existentially quantified variables
3557 into extra set variables, adapting the associated quasipolynomial
3558 accordingly. This means that the C<set> passed to C<fn>
3559 will not have any existentially quantified variables, but that
3560 the dimensions of the sets may be different for different
3561 invocations of C<fn>.
3563 To iterate over all terms in a quasipolynomial,
3566 int isl_qpolynomial_foreach_term(
3567 __isl_keep isl_qpolynomial *qp,
3568 int (*fn)(__isl_take isl_term *term,
3569 void *user), void *user);
3571 The terms themselves can be inspected and freed using
3574 unsigned isl_term_dim(__isl_keep isl_term *term,
3575 enum isl_dim_type type);
3576 void isl_term_get_num(__isl_keep isl_term *term,
3578 void isl_term_get_den(__isl_keep isl_term *term,
3580 int isl_term_get_exp(__isl_keep isl_term *term,
3581 enum isl_dim_type type, unsigned pos);
3582 __isl_give isl_aff *isl_term_get_div(
3583 __isl_keep isl_term *term, unsigned pos);
3584 void isl_term_free(__isl_take isl_term *term);
3586 Each term is a product of parameters, set variables and
3587 integer divisions. The function C<isl_term_get_exp>
3588 returns the exponent of a given dimensions in the given term.
3589 The C<isl_int>s in the arguments of C<isl_term_get_num>
3590 and C<isl_term_get_den> need to have been initialized
3591 using C<isl_int_init> before calling these functions.
3593 =head3 Properties of (Piecewise) Quasipolynomials
3595 To check whether a quasipolynomial is actually a constant,
3596 use the following function.
3598 int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp,
3599 isl_int *n, isl_int *d);
3601 If C<qp> is a constant and if C<n> and C<d> are not C<NULL>
3602 then the numerator and denominator of the constant
3603 are returned in C<*n> and C<*d>, respectively.
3605 To check whether two union piecewise quasipolynomials are
3606 obviously equal, use
3608 int isl_union_pw_qpolynomial_plain_is_equal(
3609 __isl_keep isl_union_pw_qpolynomial *upwqp1,
3610 __isl_keep isl_union_pw_qpolynomial *upwqp2);
3612 =head3 Operations on (Piecewise) Quasipolynomials
3614 __isl_give isl_qpolynomial *isl_qpolynomial_scale(
3615 __isl_take isl_qpolynomial *qp, isl_int v);
3616 __isl_give isl_qpolynomial *isl_qpolynomial_neg(
3617 __isl_take isl_qpolynomial *qp);
3618 __isl_give isl_qpolynomial *isl_qpolynomial_add(
3619 __isl_take isl_qpolynomial *qp1,
3620 __isl_take isl_qpolynomial *qp2);
3621 __isl_give isl_qpolynomial *isl_qpolynomial_sub(
3622 __isl_take isl_qpolynomial *qp1,
3623 __isl_take isl_qpolynomial *qp2);
3624 __isl_give isl_qpolynomial *isl_qpolynomial_mul(
3625 __isl_take isl_qpolynomial *qp1,
3626 __isl_take isl_qpolynomial *qp2);
3627 __isl_give isl_qpolynomial *isl_qpolynomial_pow(
3628 __isl_take isl_qpolynomial *qp, unsigned exponent);
3630 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add(
3631 __isl_take isl_pw_qpolynomial *pwqp1,
3632 __isl_take isl_pw_qpolynomial *pwqp2);
3633 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_sub(
3634 __isl_take isl_pw_qpolynomial *pwqp1,
3635 __isl_take isl_pw_qpolynomial *pwqp2);
3636 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_disjoint(
3637 __isl_take isl_pw_qpolynomial *pwqp1,
3638 __isl_take isl_pw_qpolynomial *pwqp2);
3639 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_neg(
3640 __isl_take isl_pw_qpolynomial *pwqp);
3641 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
3642 __isl_take isl_pw_qpolynomial *pwqp1,
3643 __isl_take isl_pw_qpolynomial *pwqp2);
3644 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_pow(
3645 __isl_take isl_pw_qpolynomial *pwqp, unsigned exponent);
3647 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add(
3648 __isl_take isl_union_pw_qpolynomial *upwqp1,
3649 __isl_take isl_union_pw_qpolynomial *upwqp2);
3650 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_sub(
3651 __isl_take isl_union_pw_qpolynomial *upwqp1,
3652 __isl_take isl_union_pw_qpolynomial *upwqp2);
3653 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul(
3654 __isl_take isl_union_pw_qpolynomial *upwqp1,
3655 __isl_take isl_union_pw_qpolynomial *upwqp2);
3657 __isl_give isl_qpolynomial *isl_pw_qpolynomial_eval(
3658 __isl_take isl_pw_qpolynomial *pwqp,
3659 __isl_take isl_point *pnt);
3661 __isl_give isl_qpolynomial *isl_union_pw_qpolynomial_eval(
3662 __isl_take isl_union_pw_qpolynomial *upwqp,
3663 __isl_take isl_point *pnt);
3665 __isl_give isl_set *isl_pw_qpolynomial_domain(
3666 __isl_take isl_pw_qpolynomial *pwqp);
3667 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_intersect_domain(
3668 __isl_take isl_pw_qpolynomial *pwpq,
3669 __isl_take isl_set *set);
3670 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_intersect_params(
3671 __isl_take isl_pw_qpolynomial *pwpq,
3672 __isl_take isl_set *set);
3674 __isl_give isl_union_set *isl_union_pw_qpolynomial_domain(
3675 __isl_take isl_union_pw_qpolynomial *upwqp);
3676 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_intersect_domain(
3677 __isl_take isl_union_pw_qpolynomial *upwpq,
3678 __isl_take isl_union_set *uset);
3679 __isl_give isl_union_pw_qpolynomial *
3680 isl_union_pw_qpolynomial_intersect_params(
3681 __isl_take isl_union_pw_qpolynomial *upwpq,
3682 __isl_take isl_set *set);
3684 __isl_give isl_qpolynomial *isl_qpolynomial_align_params(
3685 __isl_take isl_qpolynomial *qp,
3686 __isl_take isl_space *model);
3688 __isl_give isl_qpolynomial *isl_qpolynomial_project_domain_on_params(
3689 __isl_take isl_qpolynomial *qp);
3690 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_project_domain_on_params(
3691 __isl_take isl_pw_qpolynomial *pwqp);
3693 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_coalesce(
3694 __isl_take isl_union_pw_qpolynomial *upwqp);
3696 __isl_give isl_qpolynomial *isl_qpolynomial_gist_params(
3697 __isl_take isl_qpolynomial *qp,
3698 __isl_take isl_set *context);
3699 __isl_give isl_qpolynomial *isl_qpolynomial_gist(
3700 __isl_take isl_qpolynomial *qp,
3701 __isl_take isl_set *context);
3703 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist_params(
3704 __isl_take isl_pw_qpolynomial *pwqp,
3705 __isl_take isl_set *context);
3706 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist(
3707 __isl_take isl_pw_qpolynomial *pwqp,
3708 __isl_take isl_set *context);
3710 __isl_give isl_union_pw_qpolynomial *
3711 isl_union_pw_qpolynomial_gist_params(
3712 __isl_take isl_union_pw_qpolynomial *upwqp,
3713 __isl_take isl_set *context);
3714 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_gist(
3715 __isl_take isl_union_pw_qpolynomial *upwqp,
3716 __isl_take isl_union_set *context);
3718 The gist operation applies the gist operation to each of
3719 the cells in the domain of the input piecewise quasipolynomial.
3720 The context is also exploited
3721 to simplify the quasipolynomials associated to each cell.
3723 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial(
3724 __isl_take isl_pw_qpolynomial *pwqp, int sign);
3725 __isl_give isl_union_pw_qpolynomial *
3726 isl_union_pw_qpolynomial_to_polynomial(
3727 __isl_take isl_union_pw_qpolynomial *upwqp, int sign);
3729 Approximate each quasipolynomial by a polynomial. If C<sign> is positive,
3730 the polynomial will be an overapproximation. If C<sign> is negative,
3731 it will be an underapproximation. If C<sign> is zero, the approximation
3732 will lie somewhere in between.
3734 =head2 Bounds on Piecewise Quasipolynomials and Piecewise Quasipolynomial Reductions
3736 A piecewise quasipolynomial reduction is a piecewise
3737 reduction (or fold) of quasipolynomials.
3738 In particular, the reduction can be maximum or a minimum.
3739 The objects are mainly used to represent the result of
3740 an upper or lower bound on a quasipolynomial over its domain,
3741 i.e., as the result of the following function.
3743 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_bound(
3744 __isl_take isl_pw_qpolynomial *pwqp,
3745 enum isl_fold type, int *tight);
3747 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_bound(
3748 __isl_take isl_union_pw_qpolynomial *upwqp,
3749 enum isl_fold type, int *tight);
3751 The C<type> argument may be either C<isl_fold_min> or C<isl_fold_max>.
3752 If C<tight> is not C<NULL>, then C<*tight> is set to C<1>
3753 is the returned bound is known be tight, i.e., for each value
3754 of the parameters there is at least
3755 one element in the domain that reaches the bound.
3756 If the domain of C<pwqp> is not wrapping, then the bound is computed
3757 over all elements in that domain and the result has a purely parametric
3758 domain. If the domain of C<pwqp> is wrapping, then the bound is
3759 computed over the range of the wrapped relation. The domain of the
3760 wrapped relation becomes the domain of the result.
3762 A (piecewise) quasipolynomial reduction can be copied or freed using the
3763 following functions.
3765 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_copy(
3766 __isl_keep isl_qpolynomial_fold *fold);
3767 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_copy(
3768 __isl_keep isl_pw_qpolynomial_fold *pwf);
3769 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_copy(
3770 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
3771 void isl_qpolynomial_fold_free(
3772 __isl_take isl_qpolynomial_fold *fold);
3773 void *isl_pw_qpolynomial_fold_free(
3774 __isl_take isl_pw_qpolynomial_fold *pwf);
3775 void isl_union_pw_qpolynomial_fold_free(
3776 __isl_take isl_union_pw_qpolynomial_fold *upwf);
3778 =head3 Printing Piecewise Quasipolynomial Reductions
3780 Piecewise quasipolynomial reductions can be printed
3781 using the following function.
3783 __isl_give isl_printer *isl_printer_print_pw_qpolynomial_fold(
3784 __isl_take isl_printer *p,
3785 __isl_keep isl_pw_qpolynomial_fold *pwf);
3786 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial_fold(
3787 __isl_take isl_printer *p,
3788 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
3790 For C<isl_printer_print_pw_qpolynomial_fold>,
3791 output format of the printer
3792 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
3793 For C<isl_printer_print_union_pw_qpolynomial_fold>,
3794 output format of the printer
3795 needs to be set to C<ISL_FORMAT_ISL>.
3796 In case of printing in C<ISL_FORMAT_C>, the user may want
3797 to set the names of all dimensions
3799 __isl_give isl_pw_qpolynomial_fold *
3800 isl_pw_qpolynomial_fold_set_dim_name(
3801 __isl_take isl_pw_qpolynomial_fold *pwf,
3802 enum isl_dim_type type, unsigned pos,
3805 =head3 Inspecting (Piecewise) Quasipolynomial Reductions
3807 To iterate over all piecewise quasipolynomial reductions in a union
3808 piecewise quasipolynomial reduction, use the following function
3810 int isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold(
3811 __isl_keep isl_union_pw_qpolynomial_fold *upwf,
3812 int (*fn)(__isl_take isl_pw_qpolynomial_fold *pwf,
3813 void *user), void *user);
3815 To iterate over the cells in a piecewise quasipolynomial reduction,
3816 use either of the following two functions
3818 int isl_pw_qpolynomial_fold_foreach_piece(
3819 __isl_keep isl_pw_qpolynomial_fold *pwf,
3820 int (*fn)(__isl_take isl_set *set,
3821 __isl_take isl_qpolynomial_fold *fold,
3822 void *user), void *user);
3823 int isl_pw_qpolynomial_fold_foreach_lifted_piece(
3824 __isl_keep isl_pw_qpolynomial_fold *pwf,
3825 int (*fn)(__isl_take isl_set *set,
3826 __isl_take isl_qpolynomial_fold *fold,
3827 void *user), void *user);
3829 See L<Inspecting (Piecewise) Quasipolynomials> for an explanation
3830 of the difference between these two functions.
3832 To iterate over all quasipolynomials in a reduction, use
3834 int isl_qpolynomial_fold_foreach_qpolynomial(
3835 __isl_keep isl_qpolynomial_fold *fold,
3836 int (*fn)(__isl_take isl_qpolynomial *qp,
3837 void *user), void *user);
3839 =head3 Properties of Piecewise Quasipolynomial Reductions
3841 To check whether two union piecewise quasipolynomial reductions are
3842 obviously equal, use
3844 int isl_union_pw_qpolynomial_fold_plain_is_equal(
3845 __isl_keep isl_union_pw_qpolynomial_fold *upwf1,
3846 __isl_keep isl_union_pw_qpolynomial_fold *upwf2);
3848 =head3 Operations on Piecewise Quasipolynomial Reductions
3850 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_scale(
3851 __isl_take isl_qpolynomial_fold *fold, isl_int v);
3853 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_add(
3854 __isl_take isl_pw_qpolynomial_fold *pwf1,
3855 __isl_take isl_pw_qpolynomial_fold *pwf2);
3857 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_fold(
3858 __isl_take isl_pw_qpolynomial_fold *pwf1,
3859 __isl_take isl_pw_qpolynomial_fold *pwf2);
3861 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_fold(
3862 __isl_take isl_union_pw_qpolynomial_fold *upwf1,
3863 __isl_take isl_union_pw_qpolynomial_fold *upwf2);
3865 __isl_give isl_qpolynomial *isl_pw_qpolynomial_fold_eval(
3866 __isl_take isl_pw_qpolynomial_fold *pwf,
3867 __isl_take isl_point *pnt);
3869 __isl_give isl_qpolynomial *isl_union_pw_qpolynomial_fold_eval(
3870 __isl_take isl_union_pw_qpolynomial_fold *upwf,
3871 __isl_take isl_point *pnt);
3873 __isl_give isl_pw_qpolynomial_fold *
3874 sl_pw_qpolynomial_fold_intersect_params(
3875 __isl_take isl_pw_qpolynomial_fold *pwf,
3876 __isl_take isl_set *set);
3878 __isl_give isl_union_set *isl_union_pw_qpolynomial_fold_domain(
3879 __isl_take isl_union_pw_qpolynomial_fold *upwf);
3880 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_intersect_domain(
3881 __isl_take isl_union_pw_qpolynomial_fold *upwf,
3882 __isl_take isl_union_set *uset);
3883 __isl_give isl_union_pw_qpolynomial_fold *
3884 isl_union_pw_qpolynomial_fold_intersect_params(
3885 __isl_take isl_union_pw_qpolynomial_fold *upwf,
3886 __isl_take isl_set *set);
3888 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_project_domain_on_params(
3889 __isl_take isl_pw_qpolynomial_fold *pwf);
3891 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_coalesce(
3892 __isl_take isl_pw_qpolynomial_fold *pwf);
3894 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_coalesce(
3895 __isl_take isl_union_pw_qpolynomial_fold *upwf);
3897 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist_params(
3898 __isl_take isl_qpolynomial_fold *fold,
3899 __isl_take isl_set *context);
3900 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist(
3901 __isl_take isl_qpolynomial_fold *fold,
3902 __isl_take isl_set *context);
3904 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_gist(
3905 __isl_take isl_pw_qpolynomial_fold *pwf,
3906 __isl_take isl_set *context);
3907 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_gist_params(
3908 __isl_take isl_pw_qpolynomial_fold *pwf,
3909 __isl_take isl_set *context);
3911 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_gist(
3912 __isl_take isl_union_pw_qpolynomial_fold *upwf,
3913 __isl_take isl_union_set *context);
3914 __isl_give isl_union_pw_qpolynomial_fold *
3915 isl_union_pw_qpolynomial_fold_gist_params(
3916 __isl_take isl_union_pw_qpolynomial_fold *upwf,
3917 __isl_take isl_set *context);
3919 The gist operation applies the gist operation to each of
3920 the cells in the domain of the input piecewise quasipolynomial reduction.
3921 In future, the operation will also exploit the context
3922 to simplify the quasipolynomial reductions associated to each cell.
3924 __isl_give isl_pw_qpolynomial_fold *
3925 isl_set_apply_pw_qpolynomial_fold(
3926 __isl_take isl_set *set,
3927 __isl_take isl_pw_qpolynomial_fold *pwf,
3929 __isl_give isl_pw_qpolynomial_fold *
3930 isl_map_apply_pw_qpolynomial_fold(
3931 __isl_take isl_map *map,
3932 __isl_take isl_pw_qpolynomial_fold *pwf,
3934 __isl_give isl_union_pw_qpolynomial_fold *
3935 isl_union_set_apply_union_pw_qpolynomial_fold(
3936 __isl_take isl_union_set *uset,
3937 __isl_take isl_union_pw_qpolynomial_fold *upwf,
3939 __isl_give isl_union_pw_qpolynomial_fold *
3940 isl_union_map_apply_union_pw_qpolynomial_fold(
3941 __isl_take isl_union_map *umap,
3942 __isl_take isl_union_pw_qpolynomial_fold *upwf,
3945 The functions taking a map
3946 compose the given map with the given piecewise quasipolynomial reduction.
3947 That is, compute a bound (of the same type as C<pwf> or C<upwf> itself)
3948 over all elements in the intersection of the range of the map
3949 and the domain of the piecewise quasipolynomial reduction
3950 as a function of an element in the domain of the map.
3951 The functions taking a set compute a bound over all elements in the
3952 intersection of the set and the domain of the
3953 piecewise quasipolynomial reduction.
3955 =head2 Dependence Analysis
3957 C<isl> contains specialized functionality for performing
3958 array dataflow analysis. That is, given a I<sink> access relation
3959 and a collection of possible I<source> access relations,
3960 C<isl> can compute relations that describe
3961 for each iteration of the sink access, which iteration
3962 of which of the source access relations was the last
3963 to access the same data element before the given iteration
3965 The resulting dependence relations map source iterations
3966 to the corresponding sink iterations.
3967 To compute standard flow dependences, the sink should be
3968 a read, while the sources should be writes.
3969 If any of the source accesses are marked as being I<may>
3970 accesses, then there will be a dependence from the last
3971 I<must> access B<and> from any I<may> access that follows
3972 this last I<must> access.
3973 In particular, if I<all> sources are I<may> accesses,
3974 then memory based dependence analysis is performed.
3975 If, on the other hand, all sources are I<must> accesses,
3976 then value based dependence analysis is performed.
3978 #include <isl/flow.h>
3980 typedef int (*isl_access_level_before)(void *first, void *second);
3982 __isl_give isl_access_info *isl_access_info_alloc(
3983 __isl_take isl_map *sink,
3984 void *sink_user, isl_access_level_before fn,
3986 __isl_give isl_access_info *isl_access_info_add_source(
3987 __isl_take isl_access_info *acc,
3988 __isl_take isl_map *source, int must,
3990 void isl_access_info_free(__isl_take isl_access_info *acc);
3992 __isl_give isl_flow *isl_access_info_compute_flow(
3993 __isl_take isl_access_info *acc);
3995 int isl_flow_foreach(__isl_keep isl_flow *deps,
3996 int (*fn)(__isl_take isl_map *dep, int must,
3997 void *dep_user, void *user),
3999 __isl_give isl_map *isl_flow_get_no_source(
4000 __isl_keep isl_flow *deps, int must);
4001 void isl_flow_free(__isl_take isl_flow *deps);
4003 The function C<isl_access_info_compute_flow> performs the actual
4004 dependence analysis. The other functions are used to construct
4005 the input for this function or to read off the output.
4007 The input is collected in an C<isl_access_info>, which can
4008 be created through a call to C<isl_access_info_alloc>.
4009 The arguments to this functions are the sink access relation
4010 C<sink>, a token C<sink_user> used to identify the sink
4011 access to the user, a callback function for specifying the
4012 relative order of source and sink accesses, and the number
4013 of source access relations that will be added.
4014 The callback function has type C<int (*)(void *first, void *second)>.
4015 The function is called with two user supplied tokens identifying
4016 either a source or the sink and it should return the shared nesting
4017 level and the relative order of the two accesses.
4018 In particular, let I<n> be the number of loops shared by
4019 the two accesses. If C<first> precedes C<second> textually,
4020 then the function should return I<2 * n + 1>; otherwise,
4021 it should return I<2 * n>.
4022 The sources can be added to the C<isl_access_info> by performing
4023 (at most) C<max_source> calls to C<isl_access_info_add_source>.
4024 C<must> indicates whether the source is a I<must> access
4025 or a I<may> access. Note that a multi-valued access relation
4026 should only be marked I<must> if every iteration in the domain
4027 of the relation accesses I<all> elements in its image.
4028 The C<source_user> token is again used to identify
4029 the source access. The range of the source access relation
4030 C<source> should have the same dimension as the range
4031 of the sink access relation.
4032 The C<isl_access_info_free> function should usually not be
4033 called explicitly, because it is called implicitly by
4034 C<isl_access_info_compute_flow>.
4036 The result of the dependence analysis is collected in an
4037 C<isl_flow>. There may be elements of
4038 the sink access for which no preceding source access could be
4039 found or for which all preceding sources are I<may> accesses.
4040 The relations containing these elements can be obtained through
4041 calls to C<isl_flow_get_no_source>, the first with C<must> set
4042 and the second with C<must> unset.
4043 In the case of standard flow dependence analysis,
4044 with the sink a read and the sources I<must> writes,
4045 the first relation corresponds to the reads from uninitialized
4046 array elements and the second relation is empty.
4047 The actual flow dependences can be extracted using
4048 C<isl_flow_foreach>. This function will call the user-specified
4049 callback function C<fn> for each B<non-empty> dependence between
4050 a source and the sink. The callback function is called
4051 with four arguments, the actual flow dependence relation
4052 mapping source iterations to sink iterations, a boolean that
4053 indicates whether it is a I<must> or I<may> dependence, a token
4054 identifying the source and an additional C<void *> with value
4055 equal to the third argument of the C<isl_flow_foreach> call.
4056 A dependence is marked I<must> if it originates from a I<must>
4057 source and if it is not followed by any I<may> sources.
4059 After finishing with an C<isl_flow>, the user should call
4060 C<isl_flow_free> to free all associated memory.
4062 A higher-level interface to dependence analysis is provided
4063 by the following function.
4065 #include <isl/flow.h>
4067 int isl_union_map_compute_flow(__isl_take isl_union_map *sink,
4068 __isl_take isl_union_map *must_source,
4069 __isl_take isl_union_map *may_source,
4070 __isl_take isl_union_map *schedule,
4071 __isl_give isl_union_map **must_dep,
4072 __isl_give isl_union_map **may_dep,
4073 __isl_give isl_union_map **must_no_source,
4074 __isl_give isl_union_map **may_no_source);
4076 The arrays are identified by the tuple names of the ranges
4077 of the accesses. The iteration domains by the tuple names
4078 of the domains of the accesses and of the schedule.
4079 The relative order of the iteration domains is given by the
4080 schedule. The relations returned through C<must_no_source>
4081 and C<may_no_source> are subsets of C<sink>.
4082 Any of C<must_dep>, C<may_dep>, C<must_no_source>
4083 or C<may_no_source> may be C<NULL>, but a C<NULL> value for
4084 any of the other arguments is treated as an error.
4086 =head3 Interaction with Dependence Analysis
4088 During the dependence analysis, we frequently need to perform
4089 the following operation. Given a relation between sink iterations
4090 and potential soure iterations from a particular source domain,
4091 what is the last potential source iteration corresponding to each
4092 sink iteration. It can sometimes be convenient to adjust
4093 the set of potential source iterations before each such operation.
4094 The prototypical example is fuzzy array dataflow analysis,
4095 where we need to analyze if, based on data-dependent constraints,
4096 the sink iteration can ever be executed without one or more of
4097 the corresponding potential source iterations being executed.
4098 If so, we can introduce extra parameters and select an unknown
4099 but fixed source iteration from the potential source iterations.
4100 To be able to perform such manipulations, C<isl> provides the following
4103 #include <isl/flow.h>
4105 typedef __isl_give isl_set *(*isl_access_restrict_sources)(
4106 __isl_take isl_map *source_map,
4107 void *sink_user, void *source_user);
4108 __isl_give isl_access_info *
4109 isl_access_info_set_restrict_sources(
4110 __isl_take isl_access_info *acc,
4111 isl_access_restrict_sources fn);
4113 The function C<isl_access_info_set_restrict_sources> should be called
4114 before C<isl_access_info_compute_flow> and registers a callback function
4115 that will be called any time C<isl> is about to compute the last
4116 potential source. The first argument is the (reverse) proto-dependence,
4117 mapping sink iterations to potential source iterations.
4118 The other two arguments are the tokens corresponding to the sink
4119 and the source. The callback is expected to return a set
4120 that restricts the source iterations. The potential source iterations
4121 will be intersected with this set. If no restrictions are required
4122 for a given C<source_map>, then the callback should return
4125 isl_space_range(isl_map_get_space(source_map)));
4127 If any error occurs, the callback should return C<NULL>.
4131 B<The functionality described in this section is fairly new
4132 and may be subject to change.>
4134 The following function can be used to compute a schedule
4135 for a union of domains.
4136 By default, the algorithm used to construct the schedule is similar
4137 to that of C<Pluto>.
4138 Alternatively, Feautrier's multi-dimensional scheduling algorithm can
4140 The generated schedule respects all C<validity> dependences.
4141 That is, all dependence distances over these dependences in the
4142 scheduled space are lexicographically positive.
4143 The default algorithm tries to minimize the dependence distances over
4144 C<proximity> dependences.
4145 Moreover, it tries to obtain sequences (bands) of schedule dimensions
4146 for groups of domains where the dependence distances have only
4147 non-negative values.
4148 When using Feautrier's algorithm, the C<proximity> dependence
4149 distances are only minimized during the extension to a
4150 full-dimensional schedule.
4152 #include <isl/schedule.h>
4153 __isl_give isl_schedule *isl_union_set_compute_schedule(
4154 __isl_take isl_union_set *domain,
4155 __isl_take isl_union_map *validity,
4156 __isl_take isl_union_map *proximity);
4157 void *isl_schedule_free(__isl_take isl_schedule *sched);
4159 A mapping from the domains to the scheduled space can be obtained
4160 from an C<isl_schedule> using the following function.
4162 __isl_give isl_union_map *isl_schedule_get_map(
4163 __isl_keep isl_schedule *sched);
4165 A representation of the schedule can be printed using
4167 __isl_give isl_printer *isl_printer_print_schedule(
4168 __isl_take isl_printer *p,
4169 __isl_keep isl_schedule *schedule);
4171 A representation of the schedule as a forest of bands can be obtained
4172 using the following function.
4174 __isl_give isl_band_list *isl_schedule_get_band_forest(
4175 __isl_keep isl_schedule *schedule);
4177 The list can be manipulated as explained in L<"Lists">.
4178 The bands inside the list can be copied and freed using the following
4181 #include <isl/band.h>
4182 __isl_give isl_band *isl_band_copy(
4183 __isl_keep isl_band *band);
4184 void *isl_band_free(__isl_take isl_band *band);
4186 Each band contains zero or more scheduling dimensions.
4187 These are referred to as the members of the band.
4188 The section of the schedule that corresponds to the band is
4189 referred to as the partial schedule of the band.
4190 For those nodes that participate in a band, the outer scheduling
4191 dimensions form the prefix schedule, while the inner scheduling
4192 dimensions form the suffix schedule.
4193 That is, if we take a cut of the band forest, then the union of
4194 the concatenations of the prefix, partial and suffix schedules of
4195 each band in the cut is equal to the entire schedule (modulo
4196 some possible padding at the end with zero scheduling dimensions).
4197 The properties of a band can be inspected using the following functions.
4199 #include <isl/band.h>
4200 isl_ctx *isl_band_get_ctx(__isl_keep isl_band *band);
4202 int isl_band_has_children(__isl_keep isl_band *band);
4203 __isl_give isl_band_list *isl_band_get_children(
4204 __isl_keep isl_band *band);
4206 __isl_give isl_union_map *isl_band_get_prefix_schedule(
4207 __isl_keep isl_band *band);
4208 __isl_give isl_union_map *isl_band_get_partial_schedule(
4209 __isl_keep isl_band *band);
4210 __isl_give isl_union_map *isl_band_get_suffix_schedule(
4211 __isl_keep isl_band *band);
4213 int isl_band_n_member(__isl_keep isl_band *band);
4214 int isl_band_member_is_zero_distance(
4215 __isl_keep isl_band *band, int pos);
4217 Note that a scheduling dimension is considered to be ``zero
4218 distance'' if it does not carry any proximity dependences
4220 That is, if the dependence distances of the proximity
4221 dependences are all zero in that direction (for fixed
4222 iterations of outer bands).
4224 A representation of the band can be printed using
4226 #include <isl/band.h>
4227 __isl_give isl_printer *isl_printer_print_band(
4228 __isl_take isl_printer *p,
4229 __isl_keep isl_band *band);
4233 #include <isl/schedule.h>
4234 int isl_options_set_schedule_max_coefficient(
4235 isl_ctx *ctx, int val);
4236 int isl_options_get_schedule_max_coefficient(
4238 int isl_options_set_schedule_max_constant_term(
4239 isl_ctx *ctx, int val);
4240 int isl_options_get_schedule_max_constant_term(
4242 int isl_options_set_schedule_maximize_band_depth(
4243 isl_ctx *ctx, int val);
4244 int isl_options_get_schedule_maximize_band_depth(
4246 int isl_options_set_schedule_outer_zero_distance(
4247 isl_ctx *ctx, int val);
4248 int isl_options_get_schedule_outer_zero_distance(
4250 int isl_options_set_schedule_split_scaled(
4251 isl_ctx *ctx, int val);
4252 int isl_options_get_schedule_split_scaled(
4254 int isl_options_set_schedule_algorithm(
4255 isl_ctx *ctx, int val);
4256 int isl_options_get_schedule_algorithm(
4262 =item * schedule_max_coefficient
4264 This option enforces that the coefficients for variable and parameter
4265 dimensions in the calculated schedule are not larger than the specified value.
4266 This option can significantly increase the speed of the scheduling calculation
4267 and may also prevent fusing of unrelated dimensions. A value of -1 means that
4268 this option does not introduce bounds on the variable or parameter
4271 =item * schedule_max_constant_term
4273 This option enforces that the constant coefficients in the calculated schedule
4274 are not larger than the maximal constant term. This option can significantly
4275 increase the speed of the scheduling calculation and may also prevent fusing of
4276 unrelated dimensions. A value of -1 means that this option does not introduce
4277 bounds on the constant coefficients.
4279 =item * schedule_maximize_band_depth
4281 If this option is set, we do not split bands at the point
4282 where we detect splitting is necessary. Instead, we
4283 backtrack and split bands as early as possible. This
4284 reduces the number of splits and maximizes the width of
4285 the bands. Wider bands give more possibilities for tiling.
4287 =item * schedule_outer_zero_distance
4289 If this option is set, then we try to construct schedules
4290 where the outermost scheduling dimension in each band
4291 results in a zero dependence distance over the proximity
4294 =item * schedule_split_scaled
4296 If this option is set, then we try to construct schedules in which the
4297 constant term is split off from the linear part if the linear parts of
4298 the scheduling rows for all nodes in the graphs have a common non-trivial
4300 The constant term is then placed in a separate band and the linear
4303 =item * schedule_algorithm
4305 Selects the scheduling algorithm to be used.
4306 Available scheduling algorithms are C<ISL_SCHEDULE_ALGORITHM_ISL>
4307 and C<ISL_SCHEDULE_ALGORITHM_FEAUTRIER>.
4311 =head2 Parametric Vertex Enumeration
4313 The parametric vertex enumeration described in this section
4314 is mainly intended to be used internally and by the C<barvinok>
4317 #include <isl/vertices.h>
4318 __isl_give isl_vertices *isl_basic_set_compute_vertices(
4319 __isl_keep isl_basic_set *bset);
4321 The function C<isl_basic_set_compute_vertices> performs the
4322 actual computation of the parametric vertices and the chamber
4323 decomposition and store the result in an C<isl_vertices> object.
4324 This information can be queried by either iterating over all
4325 the vertices or iterating over all the chambers or cells
4326 and then iterating over all vertices that are active on the chamber.
4328 int isl_vertices_foreach_vertex(
4329 __isl_keep isl_vertices *vertices,
4330 int (*fn)(__isl_take isl_vertex *vertex, void *user),
4333 int isl_vertices_foreach_cell(
4334 __isl_keep isl_vertices *vertices,
4335 int (*fn)(__isl_take isl_cell *cell, void *user),
4337 int isl_cell_foreach_vertex(__isl_keep isl_cell *cell,
4338 int (*fn)(__isl_take isl_vertex *vertex, void *user),
4341 Other operations that can be performed on an C<isl_vertices> object are
4344 isl_ctx *isl_vertices_get_ctx(
4345 __isl_keep isl_vertices *vertices);
4346 int isl_vertices_get_n_vertices(
4347 __isl_keep isl_vertices *vertices);
4348 void isl_vertices_free(__isl_take isl_vertices *vertices);
4350 Vertices can be inspected and destroyed using the following functions.
4352 isl_ctx *isl_vertex_get_ctx(__isl_keep isl_vertex *vertex);
4353 int isl_vertex_get_id(__isl_keep isl_vertex *vertex);
4354 __isl_give isl_basic_set *isl_vertex_get_domain(
4355 __isl_keep isl_vertex *vertex);
4356 __isl_give isl_basic_set *isl_vertex_get_expr(
4357 __isl_keep isl_vertex *vertex);
4358 void isl_vertex_free(__isl_take isl_vertex *vertex);
4360 C<isl_vertex_get_expr> returns a singleton parametric set describing
4361 the vertex, while C<isl_vertex_get_domain> returns the activity domain
4363 Note that C<isl_vertex_get_domain> and C<isl_vertex_get_expr> return
4364 B<rational> basic sets, so they should mainly be used for inspection
4365 and should not be mixed with integer sets.
4367 Chambers can be inspected and destroyed using the following functions.
4369 isl_ctx *isl_cell_get_ctx(__isl_keep isl_cell *cell);
4370 __isl_give isl_basic_set *isl_cell_get_domain(
4371 __isl_keep isl_cell *cell);
4372 void isl_cell_free(__isl_take isl_cell *cell);
4376 Although C<isl> is mainly meant to be used as a library,
4377 it also contains some basic applications that use some
4378 of the functionality of C<isl>.
4379 The input may be specified in either the L<isl format>
4380 or the L<PolyLib format>.
4382 =head2 C<isl_polyhedron_sample>
4384 C<isl_polyhedron_sample> takes a polyhedron as input and prints
4385 an integer element of the polyhedron, if there is any.
4386 The first column in the output is the denominator and is always
4387 equal to 1. If the polyhedron contains no integer points,
4388 then a vector of length zero is printed.
4392 C<isl_pip> takes the same input as the C<example> program
4393 from the C<piplib> distribution, i.e., a set of constraints
4394 on the parameters, a line containing only -1 and finally a set
4395 of constraints on a parametric polyhedron.
4396 The coefficients of the parameters appear in the last columns
4397 (but before the final constant column).
4398 The output is the lexicographic minimum of the parametric polyhedron.
4399 As C<isl> currently does not have its own output format, the output
4400 is just a dump of the internal state.
4402 =head2 C<isl_polyhedron_minimize>
4404 C<isl_polyhedron_minimize> computes the minimum of some linear
4405 or affine objective function over the integer points in a polyhedron.
4406 If an affine objective function
4407 is given, then the constant should appear in the last column.
4409 =head2 C<isl_polytope_scan>
4411 Given a polytope, C<isl_polytope_scan> prints
4412 all integer points in the polytope.