3 C<isl> is a thread-safe C library for manipulating
4 sets and relations of integer points bounded by affine constraints.
5 The descriptions of the sets and relations may involve
6 both parameters and existentially quantified variables.
7 All computations are performed in exact integer arithmetic
9 The C<isl> library offers functionality that is similar
10 to that offered by the C<Omega> and C<Omega+> libraries,
11 but the underlying algorithms are in most cases completely different.
13 The library is by no means complete and some fairly basic
14 functionality is still missing.
15 Still, even in its current form, the library has been successfully
16 used as a backend polyhedral library for the polyhedral
17 scanner C<CLooG> and as part of an equivalence checker of
18 static affine programs.
19 For bug reports, feature requests and questions,
20 visit the the discussion group at
21 L<http://groups.google.com/group/isl-development>.
23 =head2 Backward Incompatible Changes
25 =head3 Changes since isl-0.02
29 =item * The old printing functions have been deprecated
30 and replaced by C<isl_printer> functions, see L<Input and Output>.
32 =item * Most functions related to dependence analysis have acquired
33 an extra C<must> argument. To obtain the old behavior, this argument
34 should be given the value 1. See L<Dependence Analysis>.
38 =head3 Changes since isl-0.03
42 =item * The function C<isl_pw_qpolynomial_fold_add> has been
43 renamed to C<isl_pw_qpolynomial_fold_fold>.
44 Similarly, C<isl_union_pw_qpolynomial_fold_add> has been
45 renamed to C<isl_union_pw_qpolynomial_fold_fold>.
49 =head3 Changes since isl-0.04
53 =item * All header files have been renamed from C<isl_header.h>
58 =head3 Changes since isl-0.05
62 =item * The functions C<isl_printer_print_basic_set> and
63 C<isl_printer_print_basic_map> no longer print a newline.
65 =item * The functions C<isl_flow_get_no_source>
66 and C<isl_union_map_compute_flow> now return
67 the accesses for which no source could be found instead of
68 the iterations where those accesses occur.
70 =item * The functions C<isl_basic_map_identity> and
71 C<isl_map_identity> now take a B<map> space as input. An old call
72 C<isl_map_identity(space)> can be rewritten to
73 C<isl_map_identity(isl_space_map_from_set(space))>.
75 =item * The function C<isl_map_power> no longer takes
76 a parameter position as input. Instead, the exponent
77 is now expressed as the domain of the resulting relation.
81 =head3 Changes since isl-0.06
85 =item * The format of C<isl_printer_print_qpolynomial>'s
86 C<ISL_FORMAT_ISL> output has changed.
87 Use C<ISL_FORMAT_C> to obtain the old output.
89 =item * The C<*_fast_*> functions have been renamed to C<*_plain_*>.
90 Some of the old names have been kept for backward compatibility,
91 but they will be removed in the future.
95 =head3 Changes since isl-0.07
99 =item * The function C<isl_pw_aff_max> has been renamed to
100 C<isl_pw_aff_union_max>.
101 Similarly, the function C<isl_pw_aff_add> has been renamed to
102 C<isl_pw_aff_union_add>.
104 =item * The C<isl_dim> type has been renamed to C<isl_space>
105 along with the associated functions.
106 Some of the old names have been kept for backward compatibility,
107 but they will be removed in the future.
109 =item * Spaces of maps, sets and parameter domains are now
110 treated differently. The distinction between map spaces and set spaces
111 has always been made on a conceptual level, but proper use of such spaces
112 was never checked. Furthermore, up until isl-0.07 there was no way
113 of explicitly creating a parameter space. These can now be created
114 directly using C<isl_space_params_alloc> or from other spaces using
117 =item * The space in which C<isl_aff>, C<isl_pw_aff>, C<isl_qpolynomial>,
118 C<isl_pw_qpolynomial>, C<isl_qpolynomial_fold> and C<isl_pw_qpolynomial_fold>
119 objects live is now a map space
120 instead of a set space. This means, for example, that the dimensions
121 of the domain of an C<isl_aff> are now considered to be of type
122 C<isl_dim_in> instead of C<isl_dim_set>. Extra functions have been
123 added to obtain the domain space. Some of the constructors still
124 take a domain space and have therefore been renamed.
126 =item * The functions C<isl_equality_alloc> and C<isl_inequality_alloc>
127 now take an C<isl_local_space> instead of an C<isl_space>.
128 An C<isl_local_space> can be created from an C<isl_space>
129 using C<isl_local_space_from_space>.
131 =item * The C<isl_div> type has been removed. Functions that used
132 to return an C<isl_div> now return an C<isl_aff>.
133 Note that the space of an C<isl_aff> is that of relation.
134 When replacing a call to C<isl_div_get_coefficient> by a call to
135 C<isl_aff_get_coefficient> any C<isl_dim_set> argument needs
136 to be replaced by C<isl_dim_in>.
137 A call to C<isl_aff_from_div> can be replaced by a call
139 A call to C<isl_qpolynomial_div(div)> call be replaced by
142 isl_qpolynomial_from_aff(isl_aff_floor(div))
144 The function C<isl_constraint_div> has also been renamed
145 to C<isl_constraint_get_div>.
147 =item * The C<nparam> argument has been removed from
148 C<isl_map_read_from_str> and similar functions.
149 When reading input in the original PolyLib format,
150 the result will have no parameters.
151 If parameters are expected, the caller may want to perform
152 dimension manipulation on the result.
156 =head3 Changes since isl-0.09
160 =item * The C<schedule_split_parallel> option has been replaced
161 by the C<schedule_split_scaled> option.
163 =item * The first argument of C<isl_pw_aff_cond> is now
164 an C<isl_pw_aff> instead of an C<isl_set>.
165 A call C<isl_pw_aff_cond(a, b, c)> can be replaced by
167 isl_pw_aff_cond(isl_set_indicator_function(a), b, c)
173 The source of C<isl> can be obtained either as a tarball
174 or from the git repository. Both are available from
175 L<http://freshmeat.net/projects/isl/>.
176 The installation process depends on how you obtained
179 =head2 Installation from the git repository
183 =item 1 Clone or update the repository
185 The first time the source is obtained, you need to clone
188 git clone git://repo.or.cz/isl.git
190 To obtain updates, you need to pull in the latest changes
194 =item 2 Generate C<configure>
200 After performing the above steps, continue
201 with the L<Common installation instructions>.
203 =head2 Common installation instructions
207 =item 1 Obtain C<GMP>
209 Building C<isl> requires C<GMP>, including its headers files.
210 Your distribution may not provide these header files by default
211 and you may need to install a package called C<gmp-devel> or something
212 similar. Alternatively, C<GMP> can be built from
213 source, available from L<http://gmplib.org/>.
217 C<isl> uses the standard C<autoconf> C<configure> script.
222 optionally followed by some configure options.
223 A complete list of options can be obtained by running
227 Below we discuss some of the more common options.
229 C<isl> can optionally use C<piplib>, but no
230 C<piplib> functionality is currently used by default.
231 The C<--with-piplib> option can
232 be used to specify which C<piplib>
233 library to use, either an installed version (C<system>),
234 an externally built version (C<build>)
235 or no version (C<no>). The option C<build> is mostly useful
236 in C<configure> scripts of larger projects that bundle both C<isl>
243 Installation prefix for C<isl>
245 =item C<--with-gmp-prefix>
247 Installation prefix for C<GMP> (architecture-independent files).
249 =item C<--with-gmp-exec-prefix>
251 Installation prefix for C<GMP> (architecture-dependent files).
253 =item C<--with-piplib>
255 Which copy of C<piplib> to use, either C<no> (default), C<system> or C<build>.
257 =item C<--with-piplib-prefix>
259 Installation prefix for C<system> C<piplib> (architecture-independent files).
261 =item C<--with-piplib-exec-prefix>
263 Installation prefix for C<system> C<piplib> (architecture-dependent files).
265 =item C<--with-piplib-builddir>
267 Location where C<build> C<piplib> was built.
275 =item 4 Install (optional)
283 =head2 Initialization
285 All manipulations of integer sets and relations occur within
286 the context of an C<isl_ctx>.
287 A given C<isl_ctx> can only be used within a single thread.
288 All arguments of a function are required to have been allocated
289 within the same context.
290 There are currently no functions available for moving an object
291 from one C<isl_ctx> to another C<isl_ctx>. This means that
292 there is currently no way of safely moving an object from one
293 thread to another, unless the whole C<isl_ctx> is moved.
295 An C<isl_ctx> can be allocated using C<isl_ctx_alloc> and
296 freed using C<isl_ctx_free>.
297 All objects allocated within an C<isl_ctx> should be freed
298 before the C<isl_ctx> itself is freed.
300 isl_ctx *isl_ctx_alloc();
301 void isl_ctx_free(isl_ctx *ctx);
305 All operations on integers, mainly the coefficients
306 of the constraints describing the sets and relations,
307 are performed in exact integer arithmetic using C<GMP>.
308 However, to allow future versions of C<isl> to optionally
309 support fixed integer arithmetic, all calls to C<GMP>
310 are wrapped inside C<isl> specific macros.
311 The basic type is C<isl_int> and the operations below
312 are available on this type.
313 The meanings of these operations are essentially the same
314 as their C<GMP> C<mpz_> counterparts.
315 As always with C<GMP> types, C<isl_int>s need to be
316 initialized with C<isl_int_init> before they can be used
317 and they need to be released with C<isl_int_clear>
319 The user should not assume that an C<isl_int> is represented
320 as a C<mpz_t>, but should instead explicitly convert between
321 C<mpz_t>s and C<isl_int>s using C<isl_int_set_gmp> and
322 C<isl_int_get_gmp> whenever a C<mpz_t> is required.
326 =item isl_int_init(i)
328 =item isl_int_clear(i)
330 =item isl_int_set(r,i)
332 =item isl_int_set_si(r,i)
334 =item isl_int_set_gmp(r,g)
336 =item isl_int_get_gmp(i,g)
338 =item isl_int_abs(r,i)
340 =item isl_int_neg(r,i)
342 =item isl_int_swap(i,j)
344 =item isl_int_swap_or_set(i,j)
346 =item isl_int_add_ui(r,i,j)
348 =item isl_int_sub_ui(r,i,j)
350 =item isl_int_add(r,i,j)
352 =item isl_int_sub(r,i,j)
354 =item isl_int_mul(r,i,j)
356 =item isl_int_mul_ui(r,i,j)
358 =item isl_int_addmul(r,i,j)
360 =item isl_int_submul(r,i,j)
362 =item isl_int_gcd(r,i,j)
364 =item isl_int_lcm(r,i,j)
366 =item isl_int_divexact(r,i,j)
368 =item isl_int_cdiv_q(r,i,j)
370 =item isl_int_fdiv_q(r,i,j)
372 =item isl_int_fdiv_r(r,i,j)
374 =item isl_int_fdiv_q_ui(r,i,j)
376 =item isl_int_read(r,s)
378 =item isl_int_print(out,i,width)
382 =item isl_int_cmp(i,j)
384 =item isl_int_cmp_si(i,si)
386 =item isl_int_eq(i,j)
388 =item isl_int_ne(i,j)
390 =item isl_int_lt(i,j)
392 =item isl_int_le(i,j)
394 =item isl_int_gt(i,j)
396 =item isl_int_ge(i,j)
398 =item isl_int_abs_eq(i,j)
400 =item isl_int_abs_ne(i,j)
402 =item isl_int_abs_lt(i,j)
404 =item isl_int_abs_gt(i,j)
406 =item isl_int_abs_ge(i,j)
408 =item isl_int_is_zero(i)
410 =item isl_int_is_one(i)
412 =item isl_int_is_negone(i)
414 =item isl_int_is_pos(i)
416 =item isl_int_is_neg(i)
418 =item isl_int_is_nonpos(i)
420 =item isl_int_is_nonneg(i)
422 =item isl_int_is_divisible_by(i,j)
426 =head2 Sets and Relations
428 C<isl> uses six types of objects for representing sets and relations,
429 C<isl_basic_set>, C<isl_basic_map>, C<isl_set>, C<isl_map>,
430 C<isl_union_set> and C<isl_union_map>.
431 C<isl_basic_set> and C<isl_basic_map> represent sets and relations that
432 can be described as a conjunction of affine constraints, while
433 C<isl_set> and C<isl_map> represent unions of
434 C<isl_basic_set>s and C<isl_basic_map>s, respectively.
435 However, all C<isl_basic_set>s or C<isl_basic_map>s in the union need
436 to live in the same space. C<isl_union_set>s and C<isl_union_map>s
437 represent unions of C<isl_set>s or C<isl_map>s in I<different> spaces,
438 where spaces are considered different if they have a different number
439 of dimensions and/or different names (see L<"Spaces">).
440 The difference between sets and relations (maps) is that sets have
441 one set of variables, while relations have two sets of variables,
442 input variables and output variables.
444 =head2 Memory Management
446 Since a high-level operation on sets and/or relations usually involves
447 several substeps and since the user is usually not interested in
448 the intermediate results, most functions that return a new object
449 will also release all the objects passed as arguments.
450 If the user still wants to use one or more of these arguments
451 after the function call, she should pass along a copy of the
452 object rather than the object itself.
453 The user is then responsible for making sure that the original
454 object gets used somewhere else or is explicitly freed.
456 The arguments and return values of all documented functions are
457 annotated to make clear which arguments are released and which
458 arguments are preserved. In particular, the following annotations
465 C<__isl_give> means that a new object is returned.
466 The user should make sure that the returned pointer is
467 used exactly once as a value for an C<__isl_take> argument.
468 In between, it can be used as a value for as many
469 C<__isl_keep> arguments as the user likes.
470 There is one exception, and that is the case where the
471 pointer returned is C<NULL>. Is this case, the user
472 is free to use it as an C<__isl_take> argument or not.
476 C<__isl_take> means that the object the argument points to
477 is taken over by the function and may no longer be used
478 by the user as an argument to any other function.
479 The pointer value must be one returned by a function
480 returning an C<__isl_give> pointer.
481 If the user passes in a C<NULL> value, then this will
482 be treated as an error in the sense that the function will
483 not perform its usual operation. However, it will still
484 make sure that all the other C<__isl_take> arguments
489 C<__isl_keep> means that the function will only use the object
490 temporarily. After the function has finished, the user
491 can still use it as an argument to other functions.
492 A C<NULL> value will be treated in the same way as
493 a C<NULL> value for an C<__isl_take> argument.
497 =head2 Error Handling
499 C<isl> supports different ways to react in case a runtime error is triggered.
500 Runtime errors arise, e.g., if a function such as C<isl_map_intersect> is called
501 with two maps that have incompatible spaces. There are three possible ways
502 to react on error: to warn, to continue or to abort.
504 The default behavior is to warn. In this mode, C<isl> prints a warning, stores
505 the last error in the corresponding C<isl_ctx> and the function in which the
506 error was triggered returns C<NULL>. An error does not corrupt internal state,
507 such that isl can continue to be used. C<isl> also provides functions to
508 read the last error and to reset the memory that stores the last error. The
509 last error is only stored for information purposes. Its presence does not
510 change the behavior of C<isl>. Hence, resetting an error is not required to
511 continue to use isl, but only to observe new errors.
514 enum isl_error isl_ctx_last_error(isl_ctx *ctx);
515 void isl_ctx_reset_error(isl_ctx *ctx);
517 Another option is to continue on error. This is similar to warn on error mode,
518 except that C<isl> does not print any warning. This allows a program to
519 implement its own error reporting.
521 The last option is to directly abort the execution of the program from within
522 the isl library. This makes it obviously impossible to recover from an error,
523 but it allows to directly spot the error location. By aborting on error,
524 debuggers break at the location the error occurred and can provide a stack
525 trace. Other tools that automatically provide stack traces on abort or that do
526 not want to continue execution after an error was triggered may also prefer to
529 The on error behavior of isl can be specified by calling
530 C<isl_options_set_on_error> or by setting the command line option
531 C<--isl-on-error>. Valid arguments for the function call are
532 C<ISL_ON_ERROR_WARN>, C<ISL_ON_ERROR_CONTINUE> and C<ISL_ON_ERROR_ABORT>. The
533 choices for the command line option are C<warn>, C<continue> and C<abort>.
534 It is also possible to query the current error mode.
536 #include <isl/options.h>
537 int isl_options_set_on_error(isl_ctx *ctx, int val);
538 int isl_options_get_on_error(isl_ctx *ctx);
542 Identifiers are used to identify both individual dimensions
543 and tuples of dimensions. They consist of a name and an optional
544 pointer. Identifiers with the same name but different pointer values
545 are considered to be distinct.
546 Identifiers can be constructed, copied, freed, inspected and printed
547 using the following functions.
550 __isl_give isl_id *isl_id_alloc(isl_ctx *ctx,
551 __isl_keep const char *name, void *user);
552 __isl_give isl_id *isl_id_copy(isl_id *id);
553 void *isl_id_free(__isl_take isl_id *id);
555 isl_ctx *isl_id_get_ctx(__isl_keep isl_id *id);
556 void *isl_id_get_user(__isl_keep isl_id *id);
557 __isl_keep const char *isl_id_get_name(__isl_keep isl_id *id);
559 __isl_give isl_printer *isl_printer_print_id(
560 __isl_take isl_printer *p, __isl_keep isl_id *id);
562 Note that C<isl_id_get_name> returns a pointer to some internal
563 data structure, so the result can only be used while the
564 corresponding C<isl_id> is alive.
568 Whenever a new set or relation is created from scratch,
569 the space in which it lives needs to be specified using an C<isl_space>.
571 #include <isl/space.h>
572 __isl_give isl_space *isl_space_alloc(isl_ctx *ctx,
573 unsigned nparam, unsigned n_in, unsigned n_out);
574 __isl_give isl_space *isl_space_params_alloc(isl_ctx *ctx,
576 __isl_give isl_space *isl_space_set_alloc(isl_ctx *ctx,
577 unsigned nparam, unsigned dim);
578 __isl_give isl_space *isl_space_copy(__isl_keep isl_space *space);
579 void isl_space_free(__isl_take isl_space *space);
580 unsigned isl_space_dim(__isl_keep isl_space *space,
581 enum isl_dim_type type);
583 The space used for creating a parameter domain
584 needs to be created using C<isl_space_params_alloc>.
585 For other sets, the space
586 needs to be created using C<isl_space_set_alloc>, while
587 for a relation, the space
588 needs to be created using C<isl_space_alloc>.
589 C<isl_space_dim> can be used
590 to find out the number of dimensions of each type in
591 a space, where type may be
592 C<isl_dim_param>, C<isl_dim_in> (only for relations),
593 C<isl_dim_out> (only for relations), C<isl_dim_set>
594 (only for sets) or C<isl_dim_all>.
596 To check whether a given space is that of a set or a map
597 or whether it is a parameter space, use these functions:
599 #include <isl/space.h>
600 int isl_space_is_params(__isl_keep isl_space *space);
601 int isl_space_is_set(__isl_keep isl_space *space);
603 It is often useful to create objects that live in the
604 same space as some other object. This can be accomplished
605 by creating the new objects
606 (see L<Creating New Sets and Relations> or
607 L<Creating New (Piecewise) Quasipolynomials>) based on the space
608 of the original object.
611 __isl_give isl_space *isl_basic_set_get_space(
612 __isl_keep isl_basic_set *bset);
613 __isl_give isl_space *isl_set_get_space(__isl_keep isl_set *set);
615 #include <isl/union_set.h>
616 __isl_give isl_space *isl_union_set_get_space(
617 __isl_keep isl_union_set *uset);
620 __isl_give isl_space *isl_basic_map_get_space(
621 __isl_keep isl_basic_map *bmap);
622 __isl_give isl_space *isl_map_get_space(__isl_keep isl_map *map);
624 #include <isl/union_map.h>
625 __isl_give isl_space *isl_union_map_get_space(
626 __isl_keep isl_union_map *umap);
628 #include <isl/constraint.h>
629 __isl_give isl_space *isl_constraint_get_space(
630 __isl_keep isl_constraint *constraint);
632 #include <isl/polynomial.h>
633 __isl_give isl_space *isl_qpolynomial_get_domain_space(
634 __isl_keep isl_qpolynomial *qp);
635 __isl_give isl_space *isl_qpolynomial_get_space(
636 __isl_keep isl_qpolynomial *qp);
637 __isl_give isl_space *isl_qpolynomial_fold_get_space(
638 __isl_keep isl_qpolynomial_fold *fold);
639 __isl_give isl_space *isl_pw_qpolynomial_get_domain_space(
640 __isl_keep isl_pw_qpolynomial *pwqp);
641 __isl_give isl_space *isl_pw_qpolynomial_get_space(
642 __isl_keep isl_pw_qpolynomial *pwqp);
643 __isl_give isl_space *isl_pw_qpolynomial_fold_get_domain_space(
644 __isl_keep isl_pw_qpolynomial_fold *pwf);
645 __isl_give isl_space *isl_pw_qpolynomial_fold_get_space(
646 __isl_keep isl_pw_qpolynomial_fold *pwf);
647 __isl_give isl_space *isl_union_pw_qpolynomial_get_space(
648 __isl_keep isl_union_pw_qpolynomial *upwqp);
649 __isl_give isl_space *isl_union_pw_qpolynomial_fold_get_space(
650 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
653 __isl_give isl_space *isl_aff_get_domain_space(
654 __isl_keep isl_aff *aff);
655 __isl_give isl_space *isl_aff_get_space(
656 __isl_keep isl_aff *aff);
657 __isl_give isl_space *isl_pw_aff_get_domain_space(
658 __isl_keep isl_pw_aff *pwaff);
659 __isl_give isl_space *isl_pw_aff_get_space(
660 __isl_keep isl_pw_aff *pwaff);
661 __isl_give isl_space *isl_multi_aff_get_space(
662 __isl_keep isl_multi_aff *maff);
663 __isl_give isl_space *isl_pw_multi_aff_get_domain_space(
664 __isl_keep isl_pw_multi_aff *pma);
665 __isl_give isl_space *isl_pw_multi_aff_get_space(
666 __isl_keep isl_pw_multi_aff *pma);
668 #include <isl/point.h>
669 __isl_give isl_space *isl_point_get_space(
670 __isl_keep isl_point *pnt);
672 The identifiers or names of the individual dimensions may be set or read off
673 using the following functions.
675 #include <isl/space.h>
676 __isl_give isl_space *isl_space_set_dim_id(
677 __isl_take isl_space *space,
678 enum isl_dim_type type, unsigned pos,
679 __isl_take isl_id *id);
680 int isl_space_has_dim_id(__isl_keep isl_space *space,
681 enum isl_dim_type type, unsigned pos);
682 __isl_give isl_id *isl_space_get_dim_id(
683 __isl_keep isl_space *space,
684 enum isl_dim_type type, unsigned pos);
685 __isl_give isl_space *isl_space_set_dim_name(
686 __isl_take isl_space *space,
687 enum isl_dim_type type, unsigned pos,
688 __isl_keep const char *name);
689 int isl_space_has_dim_name(__isl_keep isl_space *space,
690 enum isl_dim_type type, unsigned pos);
691 __isl_keep const char *isl_space_get_dim_name(
692 __isl_keep isl_space *space,
693 enum isl_dim_type type, unsigned pos);
695 Note that C<isl_space_get_name> returns a pointer to some internal
696 data structure, so the result can only be used while the
697 corresponding C<isl_space> is alive.
698 Also note that every function that operates on two sets or relations
699 requires that both arguments have the same parameters. This also
700 means that if one of the arguments has named parameters, then the
701 other needs to have named parameters too and the names need to match.
702 Pairs of C<isl_set>, C<isl_map>, C<isl_union_set> and/or C<isl_union_map>
703 arguments may have different parameters (as long as they are named),
704 in which case the result will have as parameters the union of the parameters of
707 Given the identifier or name of a dimension (typically a parameter),
708 its position can be obtained from the following function.
710 #include <isl/space.h>
711 int isl_space_find_dim_by_id(__isl_keep isl_space *space,
712 enum isl_dim_type type, __isl_keep isl_id *id);
713 int isl_space_find_dim_by_name(__isl_keep isl_space *space,
714 enum isl_dim_type type, const char *name);
716 The identifiers or names of entire spaces may be set or read off
717 using the following functions.
719 #include <isl/space.h>
720 __isl_give isl_space *isl_space_set_tuple_id(
721 __isl_take isl_space *space,
722 enum isl_dim_type type, __isl_take isl_id *id);
723 __isl_give isl_space *isl_space_reset_tuple_id(
724 __isl_take isl_space *space, enum isl_dim_type type);
725 int isl_space_has_tuple_id(__isl_keep isl_space *space,
726 enum isl_dim_type type);
727 __isl_give isl_id *isl_space_get_tuple_id(
728 __isl_keep isl_space *space, enum isl_dim_type type);
729 __isl_give isl_space *isl_space_set_tuple_name(
730 __isl_take isl_space *space,
731 enum isl_dim_type type, const char *s);
732 const char *isl_space_get_tuple_name(__isl_keep isl_space *space,
733 enum isl_dim_type type);
735 The C<type> argument needs to be one of C<isl_dim_in>, C<isl_dim_out>
736 or C<isl_dim_set>. As with C<isl_space_get_name>,
737 the C<isl_space_get_tuple_name> function returns a pointer to some internal
739 Binary operations require the corresponding spaces of their arguments
740 to have the same name.
742 Spaces can be nested. In particular, the domain of a set or
743 the domain or range of a relation can be a nested relation.
744 The following functions can be used to construct and deconstruct
747 #include <isl/space.h>
748 int isl_space_is_wrapping(__isl_keep isl_space *space);
749 __isl_give isl_space *isl_space_wrap(__isl_take isl_space *space);
750 __isl_give isl_space *isl_space_unwrap(__isl_take isl_space *space);
752 The input to C<isl_space_is_wrapping> and C<isl_space_unwrap> should
753 be the space of a set, while that of
754 C<isl_space_wrap> should be the space of a relation.
755 Conversely, the output of C<isl_space_unwrap> is the space
756 of a relation, while that of C<isl_space_wrap> is the space of a set.
758 Spaces can be created from other spaces
759 using the following functions.
761 __isl_give isl_space *isl_space_domain(__isl_take isl_space *space);
762 __isl_give isl_space *isl_space_from_domain(__isl_take isl_space *space);
763 __isl_give isl_space *isl_space_range(__isl_take isl_space *space);
764 __isl_give isl_space *isl_space_from_range(__isl_take isl_space *space);
765 __isl_give isl_space *isl_space_params(
766 __isl_take isl_space *space);
767 __isl_give isl_space *isl_space_set_from_params(
768 __isl_take isl_space *space);
769 __isl_give isl_space *isl_space_reverse(__isl_take isl_space *space);
770 __isl_give isl_space *isl_space_join(__isl_take isl_space *left,
771 __isl_take isl_space *right);
772 __isl_give isl_space *isl_space_align_params(
773 __isl_take isl_space *space1, __isl_take isl_space *space2)
774 __isl_give isl_space *isl_space_insert_dims(__isl_take isl_space *space,
775 enum isl_dim_type type, unsigned pos, unsigned n);
776 __isl_give isl_space *isl_space_add_dims(__isl_take isl_space *space,
777 enum isl_dim_type type, unsigned n);
778 __isl_give isl_space *isl_space_drop_dims(__isl_take isl_space *space,
779 enum isl_dim_type type, unsigned first, unsigned n);
780 __isl_give isl_space *isl_space_move_dims(__isl_take isl_space *space,
781 enum isl_dim_type dst_type, unsigned dst_pos,
782 enum isl_dim_type src_type, unsigned src_pos,
784 __isl_give isl_space *isl_space_map_from_set(
785 __isl_take isl_space *space);
786 __isl_give isl_space *isl_space_map_from_domain_and_range(
787 __isl_take isl_space *domain,
788 __isl_take isl_space *range);
789 __isl_give isl_space *isl_space_zip(__isl_take isl_space *space);
791 Note that if dimensions are added or removed from a space, then
792 the name and the internal structure are lost.
796 A local space is essentially a space with
797 zero or more existentially quantified variables.
798 The local space of a basic set or relation can be obtained
799 using the following functions.
802 __isl_give isl_local_space *isl_basic_set_get_local_space(
803 __isl_keep isl_basic_set *bset);
806 __isl_give isl_local_space *isl_basic_map_get_local_space(
807 __isl_keep isl_basic_map *bmap);
809 A new local space can be created from a space using
811 #include <isl/local_space.h>
812 __isl_give isl_local_space *isl_local_space_from_space(
813 __isl_take isl_space *space);
815 They can be inspected, modified, copied and freed using the following functions.
817 #include <isl/local_space.h>
818 isl_ctx *isl_local_space_get_ctx(
819 __isl_keep isl_local_space *ls);
820 int isl_local_space_is_set(__isl_keep isl_local_space *ls);
821 int isl_local_space_dim(__isl_keep isl_local_space *ls,
822 enum isl_dim_type type);
823 const char *isl_local_space_get_dim_name(
824 __isl_keep isl_local_space *ls,
825 enum isl_dim_type type, unsigned pos);
826 __isl_give isl_local_space *isl_local_space_set_dim_name(
827 __isl_take isl_local_space *ls,
828 enum isl_dim_type type, unsigned pos, const char *s);
829 __isl_give isl_local_space *isl_local_space_set_dim_id(
830 __isl_take isl_local_space *ls,
831 enum isl_dim_type type, unsigned pos,
832 __isl_take isl_id *id);
833 __isl_give isl_space *isl_local_space_get_space(
834 __isl_keep isl_local_space *ls);
835 __isl_give isl_aff *isl_local_space_get_div(
836 __isl_keep isl_local_space *ls, int pos);
837 __isl_give isl_local_space *isl_local_space_copy(
838 __isl_keep isl_local_space *ls);
839 void *isl_local_space_free(__isl_take isl_local_space *ls);
841 Two local spaces can be compared using
843 int isl_local_space_is_equal(__isl_keep isl_local_space *ls1,
844 __isl_keep isl_local_space *ls2);
846 Local spaces can be created from other local spaces
847 using the following functions.
849 __isl_give isl_local_space *isl_local_space_domain(
850 __isl_take isl_local_space *ls);
851 __isl_give isl_local_space *isl_local_space_range(
852 __isl_take isl_local_space *ls);
853 __isl_give isl_local_space *isl_local_space_from_domain(
854 __isl_take isl_local_space *ls);
855 __isl_give isl_local_space *isl_local_space_intersect(
856 __isl_take isl_local_space *ls1,
857 __isl_take isl_local_space *ls2);
858 __isl_give isl_local_space *isl_local_space_add_dims(
859 __isl_take isl_local_space *ls,
860 enum isl_dim_type type, unsigned n);
861 __isl_give isl_local_space *isl_local_space_insert_dims(
862 __isl_take isl_local_space *ls,
863 enum isl_dim_type type, unsigned first, unsigned n);
864 __isl_give isl_local_space *isl_local_space_drop_dims(
865 __isl_take isl_local_space *ls,
866 enum isl_dim_type type, unsigned first, unsigned n);
868 =head2 Input and Output
870 C<isl> supports its own input/output format, which is similar
871 to the C<Omega> format, but also supports the C<PolyLib> format
876 The C<isl> format is similar to that of C<Omega>, but has a different
877 syntax for describing the parameters and allows for the definition
878 of an existentially quantified variable as the integer division
879 of an affine expression.
880 For example, the set of integers C<i> between C<0> and C<n>
881 such that C<i % 10 <= 6> can be described as
883 [n] -> { [i] : exists (a = [i/10] : 0 <= i and i <= n and
886 A set or relation can have several disjuncts, separated
887 by the keyword C<or>. Each disjunct is either a conjunction
888 of constraints or a projection (C<exists>) of a conjunction
889 of constraints. The constraints are separated by the keyword
892 =head3 C<PolyLib> format
894 If the represented set is a union, then the first line
895 contains a single number representing the number of disjuncts.
896 Otherwise, a line containing the number C<1> is optional.
898 Each disjunct is represented by a matrix of constraints.
899 The first line contains two numbers representing
900 the number of rows and columns,
901 where the number of rows is equal to the number of constraints
902 and the number of columns is equal to two plus the number of variables.
903 The following lines contain the actual rows of the constraint matrix.
904 In each row, the first column indicates whether the constraint
905 is an equality (C<0>) or inequality (C<1>). The final column
906 corresponds to the constant term.
908 If the set is parametric, then the coefficients of the parameters
909 appear in the last columns before the constant column.
910 The coefficients of any existentially quantified variables appear
911 between those of the set variables and those of the parameters.
913 =head3 Extended C<PolyLib> format
915 The extended C<PolyLib> format is nearly identical to the
916 C<PolyLib> format. The only difference is that the line
917 containing the number of rows and columns of a constraint matrix
918 also contains four additional numbers:
919 the number of output dimensions, the number of input dimensions,
920 the number of local dimensions (i.e., the number of existentially
921 quantified variables) and the number of parameters.
922 For sets, the number of ``output'' dimensions is equal
923 to the number of set dimensions, while the number of ``input''
929 __isl_give isl_basic_set *isl_basic_set_read_from_file(
930 isl_ctx *ctx, FILE *input);
931 __isl_give isl_basic_set *isl_basic_set_read_from_str(
932 isl_ctx *ctx, const char *str);
933 __isl_give isl_set *isl_set_read_from_file(isl_ctx *ctx,
935 __isl_give isl_set *isl_set_read_from_str(isl_ctx *ctx,
939 __isl_give isl_basic_map *isl_basic_map_read_from_file(
940 isl_ctx *ctx, FILE *input);
941 __isl_give isl_basic_map *isl_basic_map_read_from_str(
942 isl_ctx *ctx, const char *str);
943 __isl_give isl_map *isl_map_read_from_file(
944 isl_ctx *ctx, FILE *input);
945 __isl_give isl_map *isl_map_read_from_str(isl_ctx *ctx,
948 #include <isl/union_set.h>
949 __isl_give isl_union_set *isl_union_set_read_from_file(
950 isl_ctx *ctx, FILE *input);
951 __isl_give isl_union_set *isl_union_set_read_from_str(
952 isl_ctx *ctx, const char *str);
954 #include <isl/union_map.h>
955 __isl_give isl_union_map *isl_union_map_read_from_file(
956 isl_ctx *ctx, FILE *input);
957 __isl_give isl_union_map *isl_union_map_read_from_str(
958 isl_ctx *ctx, const char *str);
960 The input format is autodetected and may be either the C<PolyLib> format
961 or the C<isl> format.
965 Before anything can be printed, an C<isl_printer> needs to
968 __isl_give isl_printer *isl_printer_to_file(isl_ctx *ctx,
970 __isl_give isl_printer *isl_printer_to_str(isl_ctx *ctx);
971 void isl_printer_free(__isl_take isl_printer *printer);
972 __isl_give char *isl_printer_get_str(
973 __isl_keep isl_printer *printer);
975 The behavior of the printer can be modified in various ways
977 __isl_give isl_printer *isl_printer_set_output_format(
978 __isl_take isl_printer *p, int output_format);
979 __isl_give isl_printer *isl_printer_set_indent(
980 __isl_take isl_printer *p, int indent);
981 __isl_give isl_printer *isl_printer_indent(
982 __isl_take isl_printer *p, int indent);
983 __isl_give isl_printer *isl_printer_set_prefix(
984 __isl_take isl_printer *p, const char *prefix);
985 __isl_give isl_printer *isl_printer_set_suffix(
986 __isl_take isl_printer *p, const char *suffix);
988 The C<output_format> may be either C<ISL_FORMAT_ISL>, C<ISL_FORMAT_OMEGA>,
989 C<ISL_FORMAT_POLYLIB>, C<ISL_FORMAT_EXT_POLYLIB> or C<ISL_FORMAT_LATEX>
990 and defaults to C<ISL_FORMAT_ISL>.
991 Each line in the output is indented by C<indent> (set by
992 C<isl_printer_set_indent>) spaces
993 (default: 0), prefixed by C<prefix> and suffixed by C<suffix>.
994 In the C<PolyLib> format output,
995 the coefficients of the existentially quantified variables
996 appear between those of the set variables and those
998 The function C<isl_printer_indent> increases the indentation
999 by the specified amount (which may be negative).
1001 To actually print something, use
1003 #include <isl/set.h>
1004 __isl_give isl_printer *isl_printer_print_basic_set(
1005 __isl_take isl_printer *printer,
1006 __isl_keep isl_basic_set *bset);
1007 __isl_give isl_printer *isl_printer_print_set(
1008 __isl_take isl_printer *printer,
1009 __isl_keep isl_set *set);
1011 #include <isl/map.h>
1012 __isl_give isl_printer *isl_printer_print_basic_map(
1013 __isl_take isl_printer *printer,
1014 __isl_keep isl_basic_map *bmap);
1015 __isl_give isl_printer *isl_printer_print_map(
1016 __isl_take isl_printer *printer,
1017 __isl_keep isl_map *map);
1019 #include <isl/union_set.h>
1020 __isl_give isl_printer *isl_printer_print_union_set(
1021 __isl_take isl_printer *p,
1022 __isl_keep isl_union_set *uset);
1024 #include <isl/union_map.h>
1025 __isl_give isl_printer *isl_printer_print_union_map(
1026 __isl_take isl_printer *p,
1027 __isl_keep isl_union_map *umap);
1029 When called on a file printer, the following function flushes
1030 the file. When called on a string printer, the buffer is cleared.
1032 __isl_give isl_printer *isl_printer_flush(
1033 __isl_take isl_printer *p);
1035 =head2 Creating New Sets and Relations
1037 C<isl> has functions for creating some standard sets and relations.
1041 =item * Empty sets and relations
1043 __isl_give isl_basic_set *isl_basic_set_empty(
1044 __isl_take isl_space *space);
1045 __isl_give isl_basic_map *isl_basic_map_empty(
1046 __isl_take isl_space *space);
1047 __isl_give isl_set *isl_set_empty(
1048 __isl_take isl_space *space);
1049 __isl_give isl_map *isl_map_empty(
1050 __isl_take isl_space *space);
1051 __isl_give isl_union_set *isl_union_set_empty(
1052 __isl_take isl_space *space);
1053 __isl_give isl_union_map *isl_union_map_empty(
1054 __isl_take isl_space *space);
1056 For C<isl_union_set>s and C<isl_union_map>s, the space
1057 is only used to specify the parameters.
1059 =item * Universe sets and relations
1061 __isl_give isl_basic_set *isl_basic_set_universe(
1062 __isl_take isl_space *space);
1063 __isl_give isl_basic_map *isl_basic_map_universe(
1064 __isl_take isl_space *space);
1065 __isl_give isl_set *isl_set_universe(
1066 __isl_take isl_space *space);
1067 __isl_give isl_map *isl_map_universe(
1068 __isl_take isl_space *space);
1069 __isl_give isl_union_set *isl_union_set_universe(
1070 __isl_take isl_union_set *uset);
1071 __isl_give isl_union_map *isl_union_map_universe(
1072 __isl_take isl_union_map *umap);
1074 The sets and relations constructed by the functions above
1075 contain all integer values, while those constructed by the
1076 functions below only contain non-negative values.
1078 __isl_give isl_basic_set *isl_basic_set_nat_universe(
1079 __isl_take isl_space *space);
1080 __isl_give isl_basic_map *isl_basic_map_nat_universe(
1081 __isl_take isl_space *space);
1082 __isl_give isl_set *isl_set_nat_universe(
1083 __isl_take isl_space *space);
1084 __isl_give isl_map *isl_map_nat_universe(
1085 __isl_take isl_space *space);
1087 =item * Identity relations
1089 __isl_give isl_basic_map *isl_basic_map_identity(
1090 __isl_take isl_space *space);
1091 __isl_give isl_map *isl_map_identity(
1092 __isl_take isl_space *space);
1094 The number of input and output dimensions in C<space> needs
1097 =item * Lexicographic order
1099 __isl_give isl_map *isl_map_lex_lt(
1100 __isl_take isl_space *set_space);
1101 __isl_give isl_map *isl_map_lex_le(
1102 __isl_take isl_space *set_space);
1103 __isl_give isl_map *isl_map_lex_gt(
1104 __isl_take isl_space *set_space);
1105 __isl_give isl_map *isl_map_lex_ge(
1106 __isl_take isl_space *set_space);
1107 __isl_give isl_map *isl_map_lex_lt_first(
1108 __isl_take isl_space *space, unsigned n);
1109 __isl_give isl_map *isl_map_lex_le_first(
1110 __isl_take isl_space *space, unsigned n);
1111 __isl_give isl_map *isl_map_lex_gt_first(
1112 __isl_take isl_space *space, unsigned n);
1113 __isl_give isl_map *isl_map_lex_ge_first(
1114 __isl_take isl_space *space, unsigned n);
1116 The first four functions take a space for a B<set>
1117 and return relations that express that the elements in the domain
1118 are lexicographically less
1119 (C<isl_map_lex_lt>), less or equal (C<isl_map_lex_le>),
1120 greater (C<isl_map_lex_gt>) or greater or equal (C<isl_map_lex_ge>)
1121 than the elements in the range.
1122 The last four functions take a space for a map
1123 and return relations that express that the first C<n> dimensions
1124 in the domain are lexicographically less
1125 (C<isl_map_lex_lt_first>), less or equal (C<isl_map_lex_le_first>),
1126 greater (C<isl_map_lex_gt_first>) or greater or equal (C<isl_map_lex_ge_first>)
1127 than the first C<n> dimensions in the range.
1131 A basic set or relation can be converted to a set or relation
1132 using the following functions.
1134 __isl_give isl_set *isl_set_from_basic_set(
1135 __isl_take isl_basic_set *bset);
1136 __isl_give isl_map *isl_map_from_basic_map(
1137 __isl_take isl_basic_map *bmap);
1139 Sets and relations can be converted to union sets and relations
1140 using the following functions.
1142 __isl_give isl_union_map *isl_union_map_from_map(
1143 __isl_take isl_map *map);
1144 __isl_give isl_union_set *isl_union_set_from_set(
1145 __isl_take isl_set *set);
1147 The inverse conversions below can only be used if the input
1148 union set or relation is known to contain elements in exactly one
1151 __isl_give isl_set *isl_set_from_union_set(
1152 __isl_take isl_union_set *uset);
1153 __isl_give isl_map *isl_map_from_union_map(
1154 __isl_take isl_union_map *umap);
1156 A zero-dimensional set can be constructed on a given parameter domain
1157 using the following function.
1159 __isl_give isl_set *isl_set_from_params(
1160 __isl_take isl_set *set);
1162 Sets and relations can be copied and freed again using the following
1165 __isl_give isl_basic_set *isl_basic_set_copy(
1166 __isl_keep isl_basic_set *bset);
1167 __isl_give isl_set *isl_set_copy(__isl_keep isl_set *set);
1168 __isl_give isl_union_set *isl_union_set_copy(
1169 __isl_keep isl_union_set *uset);
1170 __isl_give isl_basic_map *isl_basic_map_copy(
1171 __isl_keep isl_basic_map *bmap);
1172 __isl_give isl_map *isl_map_copy(__isl_keep isl_map *map);
1173 __isl_give isl_union_map *isl_union_map_copy(
1174 __isl_keep isl_union_map *umap);
1175 void isl_basic_set_free(__isl_take isl_basic_set *bset);
1176 void isl_set_free(__isl_take isl_set *set);
1177 void *isl_union_set_free(__isl_take isl_union_set *uset);
1178 void isl_basic_map_free(__isl_take isl_basic_map *bmap);
1179 void isl_map_free(__isl_take isl_map *map);
1180 void *isl_union_map_free(__isl_take isl_union_map *umap);
1182 Other sets and relations can be constructed by starting
1183 from a universe set or relation, adding equality and/or
1184 inequality constraints and then projecting out the
1185 existentially quantified variables, if any.
1186 Constraints can be constructed, manipulated and
1187 added to (or removed from) (basic) sets and relations
1188 using the following functions.
1190 #include <isl/constraint.h>
1191 __isl_give isl_constraint *isl_equality_alloc(
1192 __isl_take isl_local_space *ls);
1193 __isl_give isl_constraint *isl_inequality_alloc(
1194 __isl_take isl_local_space *ls);
1195 __isl_give isl_constraint *isl_constraint_set_constant(
1196 __isl_take isl_constraint *constraint, isl_int v);
1197 __isl_give isl_constraint *isl_constraint_set_constant_si(
1198 __isl_take isl_constraint *constraint, int v);
1199 __isl_give isl_constraint *isl_constraint_set_coefficient(
1200 __isl_take isl_constraint *constraint,
1201 enum isl_dim_type type, int pos, isl_int v);
1202 __isl_give isl_constraint *isl_constraint_set_coefficient_si(
1203 __isl_take isl_constraint *constraint,
1204 enum isl_dim_type type, int pos, int v);
1205 __isl_give isl_basic_map *isl_basic_map_add_constraint(
1206 __isl_take isl_basic_map *bmap,
1207 __isl_take isl_constraint *constraint);
1208 __isl_give isl_basic_set *isl_basic_set_add_constraint(
1209 __isl_take isl_basic_set *bset,
1210 __isl_take isl_constraint *constraint);
1211 __isl_give isl_map *isl_map_add_constraint(
1212 __isl_take isl_map *map,
1213 __isl_take isl_constraint *constraint);
1214 __isl_give isl_set *isl_set_add_constraint(
1215 __isl_take isl_set *set,
1216 __isl_take isl_constraint *constraint);
1217 __isl_give isl_basic_set *isl_basic_set_drop_constraint(
1218 __isl_take isl_basic_set *bset,
1219 __isl_take isl_constraint *constraint);
1221 For example, to create a set containing the even integers
1222 between 10 and 42, you would use the following code.
1225 isl_local_space *ls;
1227 isl_basic_set *bset;
1229 space = isl_space_set_alloc(ctx, 0, 2);
1230 bset = isl_basic_set_universe(isl_space_copy(space));
1231 ls = isl_local_space_from_space(space);
1233 c = isl_equality_alloc(isl_local_space_copy(ls));
1234 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1);
1235 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 1, 2);
1236 bset = isl_basic_set_add_constraint(bset, c);
1238 c = isl_inequality_alloc(isl_local_space_copy(ls));
1239 c = isl_constraint_set_constant_si(c, -10);
1240 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, 1);
1241 bset = isl_basic_set_add_constraint(bset, c);
1243 c = isl_inequality_alloc(ls);
1244 c = isl_constraint_set_constant_si(c, 42);
1245 c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1);
1246 bset = isl_basic_set_add_constraint(bset, c);
1248 bset = isl_basic_set_project_out(bset, isl_dim_set, 1, 1);
1252 isl_basic_set *bset;
1253 bset = isl_basic_set_read_from_str(ctx,
1254 "{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}");
1256 A basic set or relation can also be constructed from two matrices
1257 describing the equalities and the inequalities.
1259 __isl_give isl_basic_set *isl_basic_set_from_constraint_matrices(
1260 __isl_take isl_space *space,
1261 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
1262 enum isl_dim_type c1,
1263 enum isl_dim_type c2, enum isl_dim_type c3,
1264 enum isl_dim_type c4);
1265 __isl_give isl_basic_map *isl_basic_map_from_constraint_matrices(
1266 __isl_take isl_space *space,
1267 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
1268 enum isl_dim_type c1,
1269 enum isl_dim_type c2, enum isl_dim_type c3,
1270 enum isl_dim_type c4, enum isl_dim_type c5);
1272 The C<isl_dim_type> arguments indicate the order in which
1273 different kinds of variables appear in the input matrices
1274 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
1275 C<isl_dim_set> and C<isl_dim_div> for sets and
1276 of C<isl_dim_cst>, C<isl_dim_param>,
1277 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div> for relations.
1279 A (basic) set or relation can also be constructed from a (piecewise)
1280 (multiple) affine expression
1281 or a list of affine expressions
1282 (See L<"Piecewise Quasi Affine Expressions"> and
1283 L<"Piecewise Multiple Quasi Affine Expressions">).
1285 __isl_give isl_basic_map *isl_basic_map_from_aff(
1286 __isl_take isl_aff *aff);
1287 __isl_give isl_set *isl_set_from_pw_aff(
1288 __isl_take isl_pw_aff *pwaff);
1289 __isl_give isl_map *isl_map_from_pw_aff(
1290 __isl_take isl_pw_aff *pwaff);
1291 __isl_give isl_basic_map *isl_basic_map_from_aff_list(
1292 __isl_take isl_space *domain_space,
1293 __isl_take isl_aff_list *list);
1294 __isl_give isl_basic_map *isl_basic_map_from_multi_aff(
1295 __isl_take isl_multi_aff *maff)
1296 __isl_give isl_map *isl_map_from_multi_aff(
1297 __isl_take isl_multi_aff *maff)
1298 __isl_give isl_set *isl_set_from_pw_multi_aff(
1299 __isl_take isl_pw_multi_aff *pma);
1300 __isl_give isl_map *isl_map_from_pw_multi_aff(
1301 __isl_take isl_pw_multi_aff *pma);
1303 The C<domain_dim> argument describes the domain of the resulting
1304 basic relation. It is required because the C<list> may consist
1305 of zero affine expressions.
1307 =head2 Inspecting Sets and Relations
1309 Usually, the user should not have to care about the actual constraints
1310 of the sets and maps, but should instead apply the abstract operations
1311 explained in the following sections.
1312 Occasionally, however, it may be required to inspect the individual
1313 coefficients of the constraints. This section explains how to do so.
1314 In these cases, it may also be useful to have C<isl> compute
1315 an explicit representation of the existentially quantified variables.
1317 __isl_give isl_set *isl_set_compute_divs(
1318 __isl_take isl_set *set);
1319 __isl_give isl_map *isl_map_compute_divs(
1320 __isl_take isl_map *map);
1321 __isl_give isl_union_set *isl_union_set_compute_divs(
1322 __isl_take isl_union_set *uset);
1323 __isl_give isl_union_map *isl_union_map_compute_divs(
1324 __isl_take isl_union_map *umap);
1326 This explicit representation defines the existentially quantified
1327 variables as integer divisions of the other variables, possibly
1328 including earlier existentially quantified variables.
1329 An explicitly represented existentially quantified variable therefore
1330 has a unique value when the values of the other variables are known.
1331 If, furthermore, the same existentials, i.e., existentials
1332 with the same explicit representations, should appear in the
1333 same order in each of the disjuncts of a set or map, then the user should call
1334 either of the following functions.
1336 __isl_give isl_set *isl_set_align_divs(
1337 __isl_take isl_set *set);
1338 __isl_give isl_map *isl_map_align_divs(
1339 __isl_take isl_map *map);
1341 Alternatively, the existentially quantified variables can be removed
1342 using the following functions, which compute an overapproximation.
1344 __isl_give isl_basic_set *isl_basic_set_remove_divs(
1345 __isl_take isl_basic_set *bset);
1346 __isl_give isl_basic_map *isl_basic_map_remove_divs(
1347 __isl_take isl_basic_map *bmap);
1348 __isl_give isl_set *isl_set_remove_divs(
1349 __isl_take isl_set *set);
1350 __isl_give isl_map *isl_map_remove_divs(
1351 __isl_take isl_map *map);
1353 To iterate over all the sets or maps in a union set or map, use
1355 int isl_union_set_foreach_set(__isl_keep isl_union_set *uset,
1356 int (*fn)(__isl_take isl_set *set, void *user),
1358 int isl_union_map_foreach_map(__isl_keep isl_union_map *umap,
1359 int (*fn)(__isl_take isl_map *map, void *user),
1362 The number of sets or maps in a union set or map can be obtained
1365 int isl_union_set_n_set(__isl_keep isl_union_set *uset);
1366 int isl_union_map_n_map(__isl_keep isl_union_map *umap);
1368 To extract the set or map in a given space from a union, use
1370 __isl_give isl_set *isl_union_set_extract_set(
1371 __isl_keep isl_union_set *uset,
1372 __isl_take isl_space *space);
1373 __isl_give isl_map *isl_union_map_extract_map(
1374 __isl_keep isl_union_map *umap,
1375 __isl_take isl_space *space);
1377 To iterate over all the basic sets or maps in a set or map, use
1379 int isl_set_foreach_basic_set(__isl_keep isl_set *set,
1380 int (*fn)(__isl_take isl_basic_set *bset, void *user),
1382 int isl_map_foreach_basic_map(__isl_keep isl_map *map,
1383 int (*fn)(__isl_take isl_basic_map *bmap, void *user),
1386 The callback function C<fn> should return 0 if successful and
1387 -1 if an error occurs. In the latter case, or if any other error
1388 occurs, the above functions will return -1.
1390 It should be noted that C<isl> does not guarantee that
1391 the basic sets or maps passed to C<fn> are disjoint.
1392 If this is required, then the user should call one of
1393 the following functions first.
1395 __isl_give isl_set *isl_set_make_disjoint(
1396 __isl_take isl_set *set);
1397 __isl_give isl_map *isl_map_make_disjoint(
1398 __isl_take isl_map *map);
1400 The number of basic sets in a set can be obtained
1403 int isl_set_n_basic_set(__isl_keep isl_set *set);
1405 To iterate over the constraints of a basic set or map, use
1407 #include <isl/constraint.h>
1409 int isl_basic_map_foreach_constraint(
1410 __isl_keep isl_basic_map *bmap,
1411 int (*fn)(__isl_take isl_constraint *c, void *user),
1413 void *isl_constraint_free(__isl_take isl_constraint *c);
1415 Again, the callback function C<fn> should return 0 if successful and
1416 -1 if an error occurs. In the latter case, or if any other error
1417 occurs, the above functions will return -1.
1418 The constraint C<c> represents either an equality or an inequality.
1419 Use the following function to find out whether a constraint
1420 represents an equality. If not, it represents an inequality.
1422 int isl_constraint_is_equality(
1423 __isl_keep isl_constraint *constraint);
1425 The coefficients of the constraints can be inspected using
1426 the following functions.
1428 void isl_constraint_get_constant(
1429 __isl_keep isl_constraint *constraint, isl_int *v);
1430 void isl_constraint_get_coefficient(
1431 __isl_keep isl_constraint *constraint,
1432 enum isl_dim_type type, int pos, isl_int *v);
1433 int isl_constraint_involves_dims(
1434 __isl_keep isl_constraint *constraint,
1435 enum isl_dim_type type, unsigned first, unsigned n);
1437 The explicit representations of the existentially quantified
1438 variables can be inspected using the following function.
1439 Note that the user is only allowed to use this function
1440 if the inspected set or map is the result of a call
1441 to C<isl_set_compute_divs> or C<isl_map_compute_divs>.
1442 The existentially quantified variable is equal to the floor
1443 of the returned affine expression. The affine expression
1444 itself can be inspected using the functions in
1445 L<"Piecewise Quasi Affine Expressions">.
1447 __isl_give isl_aff *isl_constraint_get_div(
1448 __isl_keep isl_constraint *constraint, int pos);
1450 To obtain the constraints of a basic set or map in matrix
1451 form, use the following functions.
1453 __isl_give isl_mat *isl_basic_set_equalities_matrix(
1454 __isl_keep isl_basic_set *bset,
1455 enum isl_dim_type c1, enum isl_dim_type c2,
1456 enum isl_dim_type c3, enum isl_dim_type c4);
1457 __isl_give isl_mat *isl_basic_set_inequalities_matrix(
1458 __isl_keep isl_basic_set *bset,
1459 enum isl_dim_type c1, enum isl_dim_type c2,
1460 enum isl_dim_type c3, enum isl_dim_type c4);
1461 __isl_give isl_mat *isl_basic_map_equalities_matrix(
1462 __isl_keep isl_basic_map *bmap,
1463 enum isl_dim_type c1,
1464 enum isl_dim_type c2, enum isl_dim_type c3,
1465 enum isl_dim_type c4, enum isl_dim_type c5);
1466 __isl_give isl_mat *isl_basic_map_inequalities_matrix(
1467 __isl_keep isl_basic_map *bmap,
1468 enum isl_dim_type c1,
1469 enum isl_dim_type c2, enum isl_dim_type c3,
1470 enum isl_dim_type c4, enum isl_dim_type c5);
1472 The C<isl_dim_type> arguments dictate the order in which
1473 different kinds of variables appear in the resulting matrix
1474 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
1475 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div>.
1477 The number of parameters, input, output or set dimensions can
1478 be obtained using the following functions.
1480 unsigned isl_basic_set_dim(__isl_keep isl_basic_set *bset,
1481 enum isl_dim_type type);
1482 unsigned isl_basic_map_dim(__isl_keep isl_basic_map *bmap,
1483 enum isl_dim_type type);
1484 unsigned isl_set_dim(__isl_keep isl_set *set,
1485 enum isl_dim_type type);
1486 unsigned isl_map_dim(__isl_keep isl_map *map,
1487 enum isl_dim_type type);
1489 To check whether the description of a set or relation depends
1490 on one or more given dimensions, it is not necessary to iterate over all
1491 constraints. Instead the following functions can be used.
1493 int isl_basic_set_involves_dims(
1494 __isl_keep isl_basic_set *bset,
1495 enum isl_dim_type type, unsigned first, unsigned n);
1496 int isl_set_involves_dims(__isl_keep isl_set *set,
1497 enum isl_dim_type type, unsigned first, unsigned n);
1498 int isl_basic_map_involves_dims(
1499 __isl_keep isl_basic_map *bmap,
1500 enum isl_dim_type type, unsigned first, unsigned n);
1501 int isl_map_involves_dims(__isl_keep isl_map *map,
1502 enum isl_dim_type type, unsigned first, unsigned n);
1504 Similarly, the following functions can be used to check whether
1505 a given dimension is involved in any lower or upper bound.
1507 int isl_set_dim_has_lower_bound(__isl_keep isl_set *set,
1508 enum isl_dim_type type, unsigned pos);
1509 int isl_set_dim_has_upper_bound(__isl_keep isl_set *set,
1510 enum isl_dim_type type, unsigned pos);
1512 The identifiers or names of the domain and range spaces of a set
1513 or relation can be read off or set using the following functions.
1515 __isl_give isl_set *isl_set_set_tuple_id(
1516 __isl_take isl_set *set, __isl_take isl_id *id);
1517 __isl_give isl_set *isl_set_reset_tuple_id(
1518 __isl_take isl_set *set);
1519 int isl_set_has_tuple_id(__isl_keep isl_set *set);
1520 __isl_give isl_id *isl_set_get_tuple_id(
1521 __isl_keep isl_set *set);
1522 __isl_give isl_map *isl_map_set_tuple_id(
1523 __isl_take isl_map *map, enum isl_dim_type type,
1524 __isl_take isl_id *id);
1525 __isl_give isl_map *isl_map_reset_tuple_id(
1526 __isl_take isl_map *map, enum isl_dim_type type);
1527 int isl_map_has_tuple_id(__isl_keep isl_map *map,
1528 enum isl_dim_type type);
1529 __isl_give isl_id *isl_map_get_tuple_id(
1530 __isl_keep isl_map *map, enum isl_dim_type type);
1532 const char *isl_basic_set_get_tuple_name(
1533 __isl_keep isl_basic_set *bset);
1534 __isl_give isl_basic_set *isl_basic_set_set_tuple_name(
1535 __isl_take isl_basic_set *set, const char *s);
1536 const char *isl_set_get_tuple_name(
1537 __isl_keep isl_set *set);
1538 const char *isl_basic_map_get_tuple_name(
1539 __isl_keep isl_basic_map *bmap,
1540 enum isl_dim_type type);
1541 __isl_give isl_basic_map *isl_basic_map_set_tuple_name(
1542 __isl_take isl_basic_map *bmap,
1543 enum isl_dim_type type, const char *s);
1544 const char *isl_map_get_tuple_name(
1545 __isl_keep isl_map *map,
1546 enum isl_dim_type type);
1548 As with C<isl_space_get_tuple_name>, the value returned points to
1549 an internal data structure.
1550 The identifiers, positions or names of individual dimensions can be
1551 read off using the following functions.
1553 __isl_give isl_set *isl_set_set_dim_id(
1554 __isl_take isl_set *set, enum isl_dim_type type,
1555 unsigned pos, __isl_take isl_id *id);
1556 int isl_set_has_dim_id(__isl_keep isl_set *set,
1557 enum isl_dim_type type, unsigned pos);
1558 __isl_give isl_id *isl_set_get_dim_id(
1559 __isl_keep isl_set *set, enum isl_dim_type type,
1561 int isl_basic_map_has_dim_id(
1562 __isl_keep isl_basic_map *bmap,
1563 enum isl_dim_type type, unsigned pos);
1564 __isl_give isl_map *isl_map_set_dim_id(
1565 __isl_take isl_map *map, enum isl_dim_type type,
1566 unsigned pos, __isl_take isl_id *id);
1567 int isl_map_has_dim_id(__isl_keep isl_map *map,
1568 enum isl_dim_type type, unsigned pos);
1569 __isl_give isl_id *isl_map_get_dim_id(
1570 __isl_keep isl_map *map, enum isl_dim_type type,
1573 int isl_set_find_dim_by_id(__isl_keep isl_set *set,
1574 enum isl_dim_type type, __isl_keep isl_id *id);
1575 int isl_map_find_dim_by_id(__isl_keep isl_map *map,
1576 enum isl_dim_type type, __isl_keep isl_id *id);
1577 int isl_set_find_dim_by_name(__isl_keep isl_set *set,
1578 enum isl_dim_type type, const char *name);
1579 int isl_map_find_dim_by_name(__isl_keep isl_map *map,
1580 enum isl_dim_type type, const char *name);
1582 const char *isl_constraint_get_dim_name(
1583 __isl_keep isl_constraint *constraint,
1584 enum isl_dim_type type, unsigned pos);
1585 const char *isl_basic_set_get_dim_name(
1586 __isl_keep isl_basic_set *bset,
1587 enum isl_dim_type type, unsigned pos);
1588 int isl_set_has_dim_name(__isl_keep isl_set *set,
1589 enum isl_dim_type type, unsigned pos);
1590 const char *isl_set_get_dim_name(
1591 __isl_keep isl_set *set,
1592 enum isl_dim_type type, unsigned pos);
1593 const char *isl_basic_map_get_dim_name(
1594 __isl_keep isl_basic_map *bmap,
1595 enum isl_dim_type type, unsigned pos);
1596 const char *isl_map_get_dim_name(
1597 __isl_keep isl_map *map,
1598 enum isl_dim_type type, unsigned pos);
1600 These functions are mostly useful to obtain the identifiers, positions
1601 or names of the parameters. Identifiers of individual dimensions are
1602 essentially only useful for printing. They are ignored by all other
1603 operations and may not be preserved across those operations.
1607 =head3 Unary Properties
1613 The following functions test whether the given set or relation
1614 contains any integer points. The ``plain'' variants do not perform
1615 any computations, but simply check if the given set or relation
1616 is already known to be empty.
1618 int isl_basic_set_plain_is_empty(__isl_keep isl_basic_set *bset);
1619 int isl_basic_set_is_empty(__isl_keep isl_basic_set *bset);
1620 int isl_set_plain_is_empty(__isl_keep isl_set *set);
1621 int isl_set_is_empty(__isl_keep isl_set *set);
1622 int isl_union_set_is_empty(__isl_keep isl_union_set *uset);
1623 int isl_basic_map_plain_is_empty(__isl_keep isl_basic_map *bmap);
1624 int isl_basic_map_is_empty(__isl_keep isl_basic_map *bmap);
1625 int isl_map_plain_is_empty(__isl_keep isl_map *map);
1626 int isl_map_is_empty(__isl_keep isl_map *map);
1627 int isl_union_map_is_empty(__isl_keep isl_union_map *umap);
1629 =item * Universality
1631 int isl_basic_set_is_universe(__isl_keep isl_basic_set *bset);
1632 int isl_basic_map_is_universe(__isl_keep isl_basic_map *bmap);
1633 int isl_set_plain_is_universe(__isl_keep isl_set *set);
1635 =item * Single-valuedness
1637 int isl_map_plain_is_single_valued(
1638 __isl_keep isl_map *map);
1639 int isl_map_is_single_valued(__isl_keep isl_map *map);
1640 int isl_union_map_is_single_valued(__isl_keep isl_union_map *umap);
1644 int isl_map_plain_is_injective(__isl_keep isl_map *map);
1645 int isl_map_is_injective(__isl_keep isl_map *map);
1646 int isl_union_map_plain_is_injective(
1647 __isl_keep isl_union_map *umap);
1648 int isl_union_map_is_injective(
1649 __isl_keep isl_union_map *umap);
1653 int isl_map_is_bijective(__isl_keep isl_map *map);
1654 int isl_union_map_is_bijective(__isl_keep isl_union_map *umap);
1658 int isl_basic_map_plain_is_fixed(
1659 __isl_keep isl_basic_map *bmap,
1660 enum isl_dim_type type, unsigned pos,
1662 int isl_set_plain_is_fixed(__isl_keep isl_set *set,
1663 enum isl_dim_type type, unsigned pos,
1665 int isl_map_plain_is_fixed(__isl_keep isl_map *map,
1666 enum isl_dim_type type, unsigned pos,
1669 Check if the relation obviously lies on a hyperplane where the given dimension
1670 has a fixed value and if so, return that value in C<*val>.
1674 To check whether a set is a parameter domain, use this function:
1676 int isl_set_is_params(__isl_keep isl_set *set);
1677 int isl_union_set_is_params(
1678 __isl_keep isl_union_set *uset);
1682 The following functions check whether the domain of the given
1683 (basic) set is a wrapped relation.
1685 int isl_basic_set_is_wrapping(
1686 __isl_keep isl_basic_set *bset);
1687 int isl_set_is_wrapping(__isl_keep isl_set *set);
1689 =item * Internal Product
1691 int isl_basic_map_can_zip(
1692 __isl_keep isl_basic_map *bmap);
1693 int isl_map_can_zip(__isl_keep isl_map *map);
1695 Check whether the product of domain and range of the given relation
1697 i.e., whether both domain and range are nested relations.
1701 =head3 Binary Properties
1707 int isl_set_plain_is_equal(__isl_keep isl_set *set1,
1708 __isl_keep isl_set *set2);
1709 int isl_set_is_equal(__isl_keep isl_set *set1,
1710 __isl_keep isl_set *set2);
1711 int isl_union_set_is_equal(
1712 __isl_keep isl_union_set *uset1,
1713 __isl_keep isl_union_set *uset2);
1714 int isl_basic_map_is_equal(
1715 __isl_keep isl_basic_map *bmap1,
1716 __isl_keep isl_basic_map *bmap2);
1717 int isl_map_is_equal(__isl_keep isl_map *map1,
1718 __isl_keep isl_map *map2);
1719 int isl_map_plain_is_equal(__isl_keep isl_map *map1,
1720 __isl_keep isl_map *map2);
1721 int isl_union_map_is_equal(
1722 __isl_keep isl_union_map *umap1,
1723 __isl_keep isl_union_map *umap2);
1725 =item * Disjointness
1727 int isl_set_plain_is_disjoint(__isl_keep isl_set *set1,
1728 __isl_keep isl_set *set2);
1732 int isl_basic_set_is_subset(
1733 __isl_keep isl_basic_set *bset1,
1734 __isl_keep isl_basic_set *bset2);
1735 int isl_set_is_subset(__isl_keep isl_set *set1,
1736 __isl_keep isl_set *set2);
1737 int isl_set_is_strict_subset(
1738 __isl_keep isl_set *set1,
1739 __isl_keep isl_set *set2);
1740 int isl_union_set_is_subset(
1741 __isl_keep isl_union_set *uset1,
1742 __isl_keep isl_union_set *uset2);
1743 int isl_union_set_is_strict_subset(
1744 __isl_keep isl_union_set *uset1,
1745 __isl_keep isl_union_set *uset2);
1746 int isl_basic_map_is_subset(
1747 __isl_keep isl_basic_map *bmap1,
1748 __isl_keep isl_basic_map *bmap2);
1749 int isl_basic_map_is_strict_subset(
1750 __isl_keep isl_basic_map *bmap1,
1751 __isl_keep isl_basic_map *bmap2);
1752 int isl_map_is_subset(
1753 __isl_keep isl_map *map1,
1754 __isl_keep isl_map *map2);
1755 int isl_map_is_strict_subset(
1756 __isl_keep isl_map *map1,
1757 __isl_keep isl_map *map2);
1758 int isl_union_map_is_subset(
1759 __isl_keep isl_union_map *umap1,
1760 __isl_keep isl_union_map *umap2);
1761 int isl_union_map_is_strict_subset(
1762 __isl_keep isl_union_map *umap1,
1763 __isl_keep isl_union_map *umap2);
1767 =head2 Unary Operations
1773 __isl_give isl_set *isl_set_complement(
1774 __isl_take isl_set *set);
1775 __isl_give isl_map *isl_map_complement(
1776 __isl_take isl_map *map);
1780 __isl_give isl_basic_map *isl_basic_map_reverse(
1781 __isl_take isl_basic_map *bmap);
1782 __isl_give isl_map *isl_map_reverse(
1783 __isl_take isl_map *map);
1784 __isl_give isl_union_map *isl_union_map_reverse(
1785 __isl_take isl_union_map *umap);
1789 __isl_give isl_basic_set *isl_basic_set_project_out(
1790 __isl_take isl_basic_set *bset,
1791 enum isl_dim_type type, unsigned first, unsigned n);
1792 __isl_give isl_basic_map *isl_basic_map_project_out(
1793 __isl_take isl_basic_map *bmap,
1794 enum isl_dim_type type, unsigned first, unsigned n);
1795 __isl_give isl_set *isl_set_project_out(__isl_take isl_set *set,
1796 enum isl_dim_type type, unsigned first, unsigned n);
1797 __isl_give isl_map *isl_map_project_out(__isl_take isl_map *map,
1798 enum isl_dim_type type, unsigned first, unsigned n);
1799 __isl_give isl_basic_set *isl_basic_set_params(
1800 __isl_take isl_basic_set *bset);
1801 __isl_give isl_basic_set *isl_basic_map_domain(
1802 __isl_take isl_basic_map *bmap);
1803 __isl_give isl_basic_set *isl_basic_map_range(
1804 __isl_take isl_basic_map *bmap);
1805 __isl_give isl_set *isl_set_params(__isl_take isl_set *set);
1806 __isl_give isl_set *isl_map_params(__isl_take isl_map *map);
1807 __isl_give isl_set *isl_map_domain(
1808 __isl_take isl_map *bmap);
1809 __isl_give isl_set *isl_map_range(
1810 __isl_take isl_map *map);
1811 __isl_give isl_set *isl_union_set_params(
1812 __isl_take isl_union_set *uset);
1813 __isl_give isl_set *isl_union_map_params(
1814 __isl_take isl_union_map *umap);
1815 __isl_give isl_union_set *isl_union_map_domain(
1816 __isl_take isl_union_map *umap);
1817 __isl_give isl_union_set *isl_union_map_range(
1818 __isl_take isl_union_map *umap);
1820 __isl_give isl_basic_map *isl_basic_map_domain_map(
1821 __isl_take isl_basic_map *bmap);
1822 __isl_give isl_basic_map *isl_basic_map_range_map(
1823 __isl_take isl_basic_map *bmap);
1824 __isl_give isl_map *isl_map_domain_map(__isl_take isl_map *map);
1825 __isl_give isl_map *isl_map_range_map(__isl_take isl_map *map);
1826 __isl_give isl_union_map *isl_union_map_domain_map(
1827 __isl_take isl_union_map *umap);
1828 __isl_give isl_union_map *isl_union_map_range_map(
1829 __isl_take isl_union_map *umap);
1831 The functions above construct a (basic, regular or union) relation
1832 that maps (a wrapped version of) the input relation to its domain or range.
1836 __isl_give isl_set *isl_set_eliminate(
1837 __isl_take isl_set *set, enum isl_dim_type type,
1838 unsigned first, unsigned n);
1839 __isl_give isl_basic_map *isl_basic_map_eliminate(
1840 __isl_take isl_basic_map *bmap,
1841 enum isl_dim_type type,
1842 unsigned first, unsigned n);
1843 __isl_give isl_map *isl_map_eliminate(
1844 __isl_take isl_map *map, enum isl_dim_type type,
1845 unsigned first, unsigned n);
1847 Eliminate the coefficients for the given dimensions from the constraints,
1848 without removing the dimensions.
1852 __isl_give isl_basic_set *isl_basic_set_fix(
1853 __isl_take isl_basic_set *bset,
1854 enum isl_dim_type type, unsigned pos,
1856 __isl_give isl_basic_set *isl_basic_set_fix_si(
1857 __isl_take isl_basic_set *bset,
1858 enum isl_dim_type type, unsigned pos, int value);
1859 __isl_give isl_set *isl_set_fix(__isl_take isl_set *set,
1860 enum isl_dim_type type, unsigned pos,
1862 __isl_give isl_set *isl_set_fix_si(__isl_take isl_set *set,
1863 enum isl_dim_type type, unsigned pos, int value);
1864 __isl_give isl_basic_map *isl_basic_map_fix_si(
1865 __isl_take isl_basic_map *bmap,
1866 enum isl_dim_type type, unsigned pos, int value);
1867 __isl_give isl_map *isl_map_fix_si(__isl_take isl_map *map,
1868 enum isl_dim_type type, unsigned pos, int value);
1870 Intersect the set or relation with the hyperplane where the given
1871 dimension has the fixed given value.
1873 __isl_give isl_basic_map *isl_basic_map_lower_bound_si(
1874 __isl_take isl_basic_map *bmap,
1875 enum isl_dim_type type, unsigned pos, int value);
1876 __isl_give isl_set *isl_set_lower_bound(
1877 __isl_take isl_set *set,
1878 enum isl_dim_type type, unsigned pos,
1880 __isl_give isl_set *isl_set_lower_bound_si(
1881 __isl_take isl_set *set,
1882 enum isl_dim_type type, unsigned pos, int value);
1883 __isl_give isl_map *isl_map_lower_bound_si(
1884 __isl_take isl_map *map,
1885 enum isl_dim_type type, unsigned pos, int value);
1886 __isl_give isl_set *isl_set_upper_bound(
1887 __isl_take isl_set *set,
1888 enum isl_dim_type type, unsigned pos,
1890 __isl_give isl_set *isl_set_upper_bound_si(
1891 __isl_take isl_set *set,
1892 enum isl_dim_type type, unsigned pos, int value);
1893 __isl_give isl_map *isl_map_upper_bound_si(
1894 __isl_take isl_map *map,
1895 enum isl_dim_type type, unsigned pos, int value);
1897 Intersect the set or relation with the half-space where the given
1898 dimension has a value bounded by the fixed given value.
1900 __isl_give isl_set *isl_set_equate(__isl_take isl_set *set,
1901 enum isl_dim_type type1, int pos1,
1902 enum isl_dim_type type2, int pos2);
1903 __isl_give isl_map *isl_map_equate(__isl_take isl_map *map,
1904 enum isl_dim_type type1, int pos1,
1905 enum isl_dim_type type2, int pos2);
1907 Intersect the set or relation with the hyperplane where the given
1908 dimensions are equal to each other.
1910 __isl_give isl_map *isl_map_oppose(__isl_take isl_map *map,
1911 enum isl_dim_type type1, int pos1,
1912 enum isl_dim_type type2, int pos2);
1914 Intersect the relation with the hyperplane where the given
1915 dimensions have opposite values.
1919 __isl_give isl_map *isl_set_identity(
1920 __isl_take isl_set *set);
1921 __isl_give isl_union_map *isl_union_set_identity(
1922 __isl_take isl_union_set *uset);
1924 Construct an identity relation on the given (union) set.
1928 __isl_give isl_basic_set *isl_basic_map_deltas(
1929 __isl_take isl_basic_map *bmap);
1930 __isl_give isl_set *isl_map_deltas(__isl_take isl_map *map);
1931 __isl_give isl_union_set *isl_union_map_deltas(
1932 __isl_take isl_union_map *umap);
1934 These functions return a (basic) set containing the differences
1935 between image elements and corresponding domain elements in the input.
1937 __isl_give isl_basic_map *isl_basic_map_deltas_map(
1938 __isl_take isl_basic_map *bmap);
1939 __isl_give isl_map *isl_map_deltas_map(
1940 __isl_take isl_map *map);
1941 __isl_give isl_union_map *isl_union_map_deltas_map(
1942 __isl_take isl_union_map *umap);
1944 The functions above construct a (basic, regular or union) relation
1945 that maps (a wrapped version of) the input relation to its delta set.
1949 Simplify the representation of a set or relation by trying
1950 to combine pairs of basic sets or relations into a single
1951 basic set or relation.
1953 __isl_give isl_set *isl_set_coalesce(__isl_take isl_set *set);
1954 __isl_give isl_map *isl_map_coalesce(__isl_take isl_map *map);
1955 __isl_give isl_union_set *isl_union_set_coalesce(
1956 __isl_take isl_union_set *uset);
1957 __isl_give isl_union_map *isl_union_map_coalesce(
1958 __isl_take isl_union_map *umap);
1960 One of the methods for combining pairs of basic sets or relations
1961 can result in coefficients that are much larger than those that appear
1962 in the constraints of the input. By default, the coefficients are
1963 not allowed to grow larger, but this can be changed by unsetting
1964 the following option.
1966 int isl_options_set_coalesce_bounded_wrapping(
1967 isl_ctx *ctx, int val);
1968 int isl_options_get_coalesce_bounded_wrapping(
1971 =item * Detecting equalities
1973 __isl_give isl_basic_set *isl_basic_set_detect_equalities(
1974 __isl_take isl_basic_set *bset);
1975 __isl_give isl_basic_map *isl_basic_map_detect_equalities(
1976 __isl_take isl_basic_map *bmap);
1977 __isl_give isl_set *isl_set_detect_equalities(
1978 __isl_take isl_set *set);
1979 __isl_give isl_map *isl_map_detect_equalities(
1980 __isl_take isl_map *map);
1981 __isl_give isl_union_set *isl_union_set_detect_equalities(
1982 __isl_take isl_union_set *uset);
1983 __isl_give isl_union_map *isl_union_map_detect_equalities(
1984 __isl_take isl_union_map *umap);
1986 Simplify the representation of a set or relation by detecting implicit
1989 =item * Removing redundant constraints
1991 __isl_give isl_basic_set *isl_basic_set_remove_redundancies(
1992 __isl_take isl_basic_set *bset);
1993 __isl_give isl_set *isl_set_remove_redundancies(
1994 __isl_take isl_set *set);
1995 __isl_give isl_basic_map *isl_basic_map_remove_redundancies(
1996 __isl_take isl_basic_map *bmap);
1997 __isl_give isl_map *isl_map_remove_redundancies(
1998 __isl_take isl_map *map);
2002 __isl_give isl_basic_set *isl_set_convex_hull(
2003 __isl_take isl_set *set);
2004 __isl_give isl_basic_map *isl_map_convex_hull(
2005 __isl_take isl_map *map);
2007 If the input set or relation has any existentially quantified
2008 variables, then the result of these operations is currently undefined.
2012 __isl_give isl_basic_set *isl_set_simple_hull(
2013 __isl_take isl_set *set);
2014 __isl_give isl_basic_map *isl_map_simple_hull(
2015 __isl_take isl_map *map);
2016 __isl_give isl_union_map *isl_union_map_simple_hull(
2017 __isl_take isl_union_map *umap);
2019 These functions compute a single basic set or relation
2020 that contains the whole input set or relation.
2021 In particular, the output is described by translates
2022 of the constraints describing the basic sets or relations in the input.
2026 (See \autoref{s:simple hull}.)
2032 __isl_give isl_basic_set *isl_basic_set_affine_hull(
2033 __isl_take isl_basic_set *bset);
2034 __isl_give isl_basic_set *isl_set_affine_hull(
2035 __isl_take isl_set *set);
2036 __isl_give isl_union_set *isl_union_set_affine_hull(
2037 __isl_take isl_union_set *uset);
2038 __isl_give isl_basic_map *isl_basic_map_affine_hull(
2039 __isl_take isl_basic_map *bmap);
2040 __isl_give isl_basic_map *isl_map_affine_hull(
2041 __isl_take isl_map *map);
2042 __isl_give isl_union_map *isl_union_map_affine_hull(
2043 __isl_take isl_union_map *umap);
2045 In case of union sets and relations, the affine hull is computed
2048 =item * Polyhedral hull
2050 __isl_give isl_basic_set *isl_set_polyhedral_hull(
2051 __isl_take isl_set *set);
2052 __isl_give isl_basic_map *isl_map_polyhedral_hull(
2053 __isl_take isl_map *map);
2054 __isl_give isl_union_set *isl_union_set_polyhedral_hull(
2055 __isl_take isl_union_set *uset);
2056 __isl_give isl_union_map *isl_union_map_polyhedral_hull(
2057 __isl_take isl_union_map *umap);
2059 These functions compute a single basic set or relation
2060 not involving any existentially quantified variables
2061 that contains the whole input set or relation.
2062 In case of union sets and relations, the polyhedral hull is computed
2067 __isl_give isl_basic_set *isl_basic_set_sample(
2068 __isl_take isl_basic_set *bset);
2069 __isl_give isl_basic_set *isl_set_sample(
2070 __isl_take isl_set *set);
2071 __isl_give isl_basic_map *isl_basic_map_sample(
2072 __isl_take isl_basic_map *bmap);
2073 __isl_give isl_basic_map *isl_map_sample(
2074 __isl_take isl_map *map);
2076 If the input (basic) set or relation is non-empty, then return
2077 a singleton subset of the input. Otherwise, return an empty set.
2079 =item * Optimization
2081 #include <isl/ilp.h>
2082 enum isl_lp_result isl_basic_set_max(
2083 __isl_keep isl_basic_set *bset,
2084 __isl_keep isl_aff *obj, isl_int *opt)
2085 enum isl_lp_result isl_set_min(__isl_keep isl_set *set,
2086 __isl_keep isl_aff *obj, isl_int *opt);
2087 enum isl_lp_result isl_set_max(__isl_keep isl_set *set,
2088 __isl_keep isl_aff *obj, isl_int *opt);
2090 Compute the minimum or maximum of the integer affine expression C<obj>
2091 over the points in C<set>, returning the result in C<opt>.
2092 The return value may be one of C<isl_lp_error>,
2093 C<isl_lp_ok>, C<isl_lp_unbounded> or C<isl_lp_empty>.
2095 =item * Parametric optimization
2097 __isl_give isl_pw_aff *isl_set_dim_min(
2098 __isl_take isl_set *set, int pos);
2099 __isl_give isl_pw_aff *isl_set_dim_max(
2100 __isl_take isl_set *set, int pos);
2101 __isl_give isl_pw_aff *isl_map_dim_max(
2102 __isl_take isl_map *map, int pos);
2104 Compute the minimum or maximum of the given set or output dimension
2105 as a function of the parameters (and input dimensions), but independently
2106 of the other set or output dimensions.
2107 For lexicographic optimization, see L<"Lexicographic Optimization">.
2111 The following functions compute either the set of (rational) coefficient
2112 values of valid constraints for the given set or the set of (rational)
2113 values satisfying the constraints with coefficients from the given set.
2114 Internally, these two sets of functions perform essentially the
2115 same operations, except that the set of coefficients is assumed to
2116 be a cone, while the set of values may be any polyhedron.
2117 The current implementation is based on the Farkas lemma and
2118 Fourier-Motzkin elimination, but this may change or be made optional
2119 in future. In particular, future implementations may use different
2120 dualization algorithms or skip the elimination step.
2122 __isl_give isl_basic_set *isl_basic_set_coefficients(
2123 __isl_take isl_basic_set *bset);
2124 __isl_give isl_basic_set *isl_set_coefficients(
2125 __isl_take isl_set *set);
2126 __isl_give isl_union_set *isl_union_set_coefficients(
2127 __isl_take isl_union_set *bset);
2128 __isl_give isl_basic_set *isl_basic_set_solutions(
2129 __isl_take isl_basic_set *bset);
2130 __isl_give isl_basic_set *isl_set_solutions(
2131 __isl_take isl_set *set);
2132 __isl_give isl_union_set *isl_union_set_solutions(
2133 __isl_take isl_union_set *bset);
2137 __isl_give isl_map *isl_map_fixed_power(
2138 __isl_take isl_map *map, isl_int exp);
2139 __isl_give isl_union_map *isl_union_map_fixed_power(
2140 __isl_take isl_union_map *umap, isl_int exp);
2142 Compute the given power of C<map>, where C<exp> is assumed to be non-zero.
2143 If the exponent C<exp> is negative, then the -C<exp> th power of the inverse
2144 of C<map> is computed.
2146 __isl_give isl_map *isl_map_power(__isl_take isl_map *map,
2148 __isl_give isl_union_map *isl_union_map_power(
2149 __isl_take isl_union_map *umap, int *exact);
2151 Compute a parametric representation for all positive powers I<k> of C<map>.
2152 The result maps I<k> to a nested relation corresponding to the
2153 I<k>th power of C<map>.
2154 The result may be an overapproximation. If the result is known to be exact,
2155 then C<*exact> is set to C<1>.
2157 =item * Transitive closure
2159 __isl_give isl_map *isl_map_transitive_closure(
2160 __isl_take isl_map *map, int *exact);
2161 __isl_give isl_union_map *isl_union_map_transitive_closure(
2162 __isl_take isl_union_map *umap, int *exact);
2164 Compute the transitive closure of C<map>.
2165 The result may be an overapproximation. If the result is known to be exact,
2166 then C<*exact> is set to C<1>.
2168 =item * Reaching path lengths
2170 __isl_give isl_map *isl_map_reaching_path_lengths(
2171 __isl_take isl_map *map, int *exact);
2173 Compute a relation that maps each element in the range of C<map>
2174 to the lengths of all paths composed of edges in C<map> that
2175 end up in the given element.
2176 The result may be an overapproximation. If the result is known to be exact,
2177 then C<*exact> is set to C<1>.
2178 To compute the I<maximal> path length, the resulting relation
2179 should be postprocessed by C<isl_map_lexmax>.
2180 In particular, if the input relation is a dependence relation
2181 (mapping sources to sinks), then the maximal path length corresponds
2182 to the free schedule.
2183 Note, however, that C<isl_map_lexmax> expects the maximum to be
2184 finite, so if the path lengths are unbounded (possibly due to
2185 the overapproximation), then you will get an error message.
2189 __isl_give isl_basic_set *isl_basic_map_wrap(
2190 __isl_take isl_basic_map *bmap);
2191 __isl_give isl_set *isl_map_wrap(
2192 __isl_take isl_map *map);
2193 __isl_give isl_union_set *isl_union_map_wrap(
2194 __isl_take isl_union_map *umap);
2195 __isl_give isl_basic_map *isl_basic_set_unwrap(
2196 __isl_take isl_basic_set *bset);
2197 __isl_give isl_map *isl_set_unwrap(
2198 __isl_take isl_set *set);
2199 __isl_give isl_union_map *isl_union_set_unwrap(
2200 __isl_take isl_union_set *uset);
2204 Remove any internal structure of domain (and range) of the given
2205 set or relation. If there is any such internal structure in the input,
2206 then the name of the space is also removed.
2208 __isl_give isl_basic_set *isl_basic_set_flatten(
2209 __isl_take isl_basic_set *bset);
2210 __isl_give isl_set *isl_set_flatten(
2211 __isl_take isl_set *set);
2212 __isl_give isl_basic_map *isl_basic_map_flatten_domain(
2213 __isl_take isl_basic_map *bmap);
2214 __isl_give isl_basic_map *isl_basic_map_flatten_range(
2215 __isl_take isl_basic_map *bmap);
2216 __isl_give isl_map *isl_map_flatten_range(
2217 __isl_take isl_map *map);
2218 __isl_give isl_map *isl_map_flatten_domain(
2219 __isl_take isl_map *map);
2220 __isl_give isl_basic_map *isl_basic_map_flatten(
2221 __isl_take isl_basic_map *bmap);
2222 __isl_give isl_map *isl_map_flatten(
2223 __isl_take isl_map *map);
2225 __isl_give isl_map *isl_set_flatten_map(
2226 __isl_take isl_set *set);
2228 The function above constructs a relation
2229 that maps the input set to a flattened version of the set.
2233 Lift the input set to a space with extra dimensions corresponding
2234 to the existentially quantified variables in the input.
2235 In particular, the result lives in a wrapped map where the domain
2236 is the original space and the range corresponds to the original
2237 existentially quantified variables.
2239 __isl_give isl_basic_set *isl_basic_set_lift(
2240 __isl_take isl_basic_set *bset);
2241 __isl_give isl_set *isl_set_lift(
2242 __isl_take isl_set *set);
2243 __isl_give isl_union_set *isl_union_set_lift(
2244 __isl_take isl_union_set *uset);
2246 Given a local space that contains the existentially quantified
2247 variables of a set, a basic relation that, when applied to
2248 a basic set, has essentially the same effect as C<isl_basic_set_lift>,
2249 can be constructed using the following function.
2251 #include <isl/local_space.h>
2252 __isl_give isl_basic_map *isl_local_space_lifting(
2253 __isl_take isl_local_space *ls);
2255 =item * Internal Product
2257 __isl_give isl_basic_map *isl_basic_map_zip(
2258 __isl_take isl_basic_map *bmap);
2259 __isl_give isl_map *isl_map_zip(
2260 __isl_take isl_map *map);
2261 __isl_give isl_union_map *isl_union_map_zip(
2262 __isl_take isl_union_map *umap);
2264 Given a relation with nested relations for domain and range,
2265 interchange the range of the domain with the domain of the range.
2267 =item * Aligning parameters
2269 __isl_give isl_set *isl_set_align_params(
2270 __isl_take isl_set *set,
2271 __isl_take isl_space *model);
2272 __isl_give isl_map *isl_map_align_params(
2273 __isl_take isl_map *map,
2274 __isl_take isl_space *model);
2276 Change the order of the parameters of the given set or relation
2277 such that the first parameters match those of C<model>.
2278 This may involve the introduction of extra parameters.
2279 All parameters need to be named.
2281 =item * Dimension manipulation
2283 __isl_give isl_set *isl_set_add_dims(
2284 __isl_take isl_set *set,
2285 enum isl_dim_type type, unsigned n);
2286 __isl_give isl_map *isl_map_add_dims(
2287 __isl_take isl_map *map,
2288 enum isl_dim_type type, unsigned n);
2289 __isl_give isl_set *isl_set_insert_dims(
2290 __isl_take isl_set *set,
2291 enum isl_dim_type type, unsigned pos, unsigned n);
2292 __isl_give isl_map *isl_map_insert_dims(
2293 __isl_take isl_map *map,
2294 enum isl_dim_type type, unsigned pos, unsigned n);
2295 __isl_give isl_basic_set *isl_basic_set_move_dims(
2296 __isl_take isl_basic_set *bset,
2297 enum isl_dim_type dst_type, unsigned dst_pos,
2298 enum isl_dim_type src_type, unsigned src_pos,
2300 __isl_give isl_basic_map *isl_basic_map_move_dims(
2301 __isl_take isl_basic_map *bmap,
2302 enum isl_dim_type dst_type, unsigned dst_pos,
2303 enum isl_dim_type src_type, unsigned src_pos,
2305 __isl_give isl_set *isl_set_move_dims(
2306 __isl_take isl_set *set,
2307 enum isl_dim_type dst_type, unsigned dst_pos,
2308 enum isl_dim_type src_type, unsigned src_pos,
2310 __isl_give isl_map *isl_map_move_dims(
2311 __isl_take isl_map *map,
2312 enum isl_dim_type dst_type, unsigned dst_pos,
2313 enum isl_dim_type src_type, unsigned src_pos,
2316 It is usually not advisable to directly change the (input or output)
2317 space of a set or a relation as this removes the name and the internal
2318 structure of the space. However, the above functions can be useful
2319 to add new parameters, assuming
2320 C<isl_set_align_params> and C<isl_map_align_params>
2325 =head2 Binary Operations
2327 The two arguments of a binary operation not only need to live
2328 in the same C<isl_ctx>, they currently also need to have
2329 the same (number of) parameters.
2331 =head3 Basic Operations
2335 =item * Intersection
2337 __isl_give isl_basic_set *isl_basic_set_intersect_params(
2338 __isl_take isl_basic_set *bset1,
2339 __isl_take isl_basic_set *bset2);
2340 __isl_give isl_basic_set *isl_basic_set_intersect(
2341 __isl_take isl_basic_set *bset1,
2342 __isl_take isl_basic_set *bset2);
2343 __isl_give isl_set *isl_set_intersect_params(
2344 __isl_take isl_set *set,
2345 __isl_take isl_set *params);
2346 __isl_give isl_set *isl_set_intersect(
2347 __isl_take isl_set *set1,
2348 __isl_take isl_set *set2);
2349 __isl_give isl_union_set *isl_union_set_intersect_params(
2350 __isl_take isl_union_set *uset,
2351 __isl_take isl_set *set);
2352 __isl_give isl_union_map *isl_union_map_intersect_params(
2353 __isl_take isl_union_map *umap,
2354 __isl_take isl_set *set);
2355 __isl_give isl_union_set *isl_union_set_intersect(
2356 __isl_take isl_union_set *uset1,
2357 __isl_take isl_union_set *uset2);
2358 __isl_give isl_basic_map *isl_basic_map_intersect_domain(
2359 __isl_take isl_basic_map *bmap,
2360 __isl_take isl_basic_set *bset);
2361 __isl_give isl_basic_map *isl_basic_map_intersect_range(
2362 __isl_take isl_basic_map *bmap,
2363 __isl_take isl_basic_set *bset);
2364 __isl_give isl_basic_map *isl_basic_map_intersect(
2365 __isl_take isl_basic_map *bmap1,
2366 __isl_take isl_basic_map *bmap2);
2367 __isl_give isl_map *isl_map_intersect_params(
2368 __isl_take isl_map *map,
2369 __isl_take isl_set *params);
2370 __isl_give isl_map *isl_map_intersect_domain(
2371 __isl_take isl_map *map,
2372 __isl_take isl_set *set);
2373 __isl_give isl_map *isl_map_intersect_range(
2374 __isl_take isl_map *map,
2375 __isl_take isl_set *set);
2376 __isl_give isl_map *isl_map_intersect(
2377 __isl_take isl_map *map1,
2378 __isl_take isl_map *map2);
2379 __isl_give isl_union_map *isl_union_map_intersect_domain(
2380 __isl_take isl_union_map *umap,
2381 __isl_take isl_union_set *uset);
2382 __isl_give isl_union_map *isl_union_map_intersect_range(
2383 __isl_take isl_union_map *umap,
2384 __isl_take isl_union_set *uset);
2385 __isl_give isl_union_map *isl_union_map_intersect(
2386 __isl_take isl_union_map *umap1,
2387 __isl_take isl_union_map *umap2);
2391 __isl_give isl_set *isl_basic_set_union(
2392 __isl_take isl_basic_set *bset1,
2393 __isl_take isl_basic_set *bset2);
2394 __isl_give isl_map *isl_basic_map_union(
2395 __isl_take isl_basic_map *bmap1,
2396 __isl_take isl_basic_map *bmap2);
2397 __isl_give isl_set *isl_set_union(
2398 __isl_take isl_set *set1,
2399 __isl_take isl_set *set2);
2400 __isl_give isl_map *isl_map_union(
2401 __isl_take isl_map *map1,
2402 __isl_take isl_map *map2);
2403 __isl_give isl_union_set *isl_union_set_union(
2404 __isl_take isl_union_set *uset1,
2405 __isl_take isl_union_set *uset2);
2406 __isl_give isl_union_map *isl_union_map_union(
2407 __isl_take isl_union_map *umap1,
2408 __isl_take isl_union_map *umap2);
2410 =item * Set difference
2412 __isl_give isl_set *isl_set_subtract(
2413 __isl_take isl_set *set1,
2414 __isl_take isl_set *set2);
2415 __isl_give isl_map *isl_map_subtract(
2416 __isl_take isl_map *map1,
2417 __isl_take isl_map *map2);
2418 __isl_give isl_map *isl_map_subtract_domain(
2419 __isl_take isl_map *map,
2420 __isl_take isl_set *dom);
2421 __isl_give isl_map *isl_map_subtract_range(
2422 __isl_take isl_map *map,
2423 __isl_take isl_set *dom);
2424 __isl_give isl_union_set *isl_union_set_subtract(
2425 __isl_take isl_union_set *uset1,
2426 __isl_take isl_union_set *uset2);
2427 __isl_give isl_union_map *isl_union_map_subtract(
2428 __isl_take isl_union_map *umap1,
2429 __isl_take isl_union_map *umap2);
2433 __isl_give isl_basic_set *isl_basic_set_apply(
2434 __isl_take isl_basic_set *bset,
2435 __isl_take isl_basic_map *bmap);
2436 __isl_give isl_set *isl_set_apply(
2437 __isl_take isl_set *set,
2438 __isl_take isl_map *map);
2439 __isl_give isl_union_set *isl_union_set_apply(
2440 __isl_take isl_union_set *uset,
2441 __isl_take isl_union_map *umap);
2442 __isl_give isl_basic_map *isl_basic_map_apply_domain(
2443 __isl_take isl_basic_map *bmap1,
2444 __isl_take isl_basic_map *bmap2);
2445 __isl_give isl_basic_map *isl_basic_map_apply_range(
2446 __isl_take isl_basic_map *bmap1,
2447 __isl_take isl_basic_map *bmap2);
2448 __isl_give isl_map *isl_map_apply_domain(
2449 __isl_take isl_map *map1,
2450 __isl_take isl_map *map2);
2451 __isl_give isl_union_map *isl_union_map_apply_domain(
2452 __isl_take isl_union_map *umap1,
2453 __isl_take isl_union_map *umap2);
2454 __isl_give isl_map *isl_map_apply_range(
2455 __isl_take isl_map *map1,
2456 __isl_take isl_map *map2);
2457 __isl_give isl_union_map *isl_union_map_apply_range(
2458 __isl_take isl_union_map *umap1,
2459 __isl_take isl_union_map *umap2);
2461 =item * Cartesian Product
2463 __isl_give isl_set *isl_set_product(
2464 __isl_take isl_set *set1,
2465 __isl_take isl_set *set2);
2466 __isl_give isl_union_set *isl_union_set_product(
2467 __isl_take isl_union_set *uset1,
2468 __isl_take isl_union_set *uset2);
2469 __isl_give isl_basic_map *isl_basic_map_domain_product(
2470 __isl_take isl_basic_map *bmap1,
2471 __isl_take isl_basic_map *bmap2);
2472 __isl_give isl_basic_map *isl_basic_map_range_product(
2473 __isl_take isl_basic_map *bmap1,
2474 __isl_take isl_basic_map *bmap2);
2475 __isl_give isl_map *isl_map_domain_product(
2476 __isl_take isl_map *map1,
2477 __isl_take isl_map *map2);
2478 __isl_give isl_map *isl_map_range_product(
2479 __isl_take isl_map *map1,
2480 __isl_take isl_map *map2);
2481 __isl_give isl_union_map *isl_union_map_range_product(
2482 __isl_take isl_union_map *umap1,
2483 __isl_take isl_union_map *umap2);
2484 __isl_give isl_map *isl_map_product(
2485 __isl_take isl_map *map1,
2486 __isl_take isl_map *map2);
2487 __isl_give isl_union_map *isl_union_map_product(
2488 __isl_take isl_union_map *umap1,
2489 __isl_take isl_union_map *umap2);
2491 The above functions compute the cross product of the given
2492 sets or relations. The domains and ranges of the results
2493 are wrapped maps between domains and ranges of the inputs.
2494 To obtain a ``flat'' product, use the following functions
2497 __isl_give isl_basic_set *isl_basic_set_flat_product(
2498 __isl_take isl_basic_set *bset1,
2499 __isl_take isl_basic_set *bset2);
2500 __isl_give isl_set *isl_set_flat_product(
2501 __isl_take isl_set *set1,
2502 __isl_take isl_set *set2);
2503 __isl_give isl_basic_map *isl_basic_map_flat_range_product(
2504 __isl_take isl_basic_map *bmap1,
2505 __isl_take isl_basic_map *bmap2);
2506 __isl_give isl_map *isl_map_flat_domain_product(
2507 __isl_take isl_map *map1,
2508 __isl_take isl_map *map2);
2509 __isl_give isl_map *isl_map_flat_range_product(
2510 __isl_take isl_map *map1,
2511 __isl_take isl_map *map2);
2512 __isl_give isl_union_map *isl_union_map_flat_range_product(
2513 __isl_take isl_union_map *umap1,
2514 __isl_take isl_union_map *umap2);
2515 __isl_give isl_basic_map *isl_basic_map_flat_product(
2516 __isl_take isl_basic_map *bmap1,
2517 __isl_take isl_basic_map *bmap2);
2518 __isl_give isl_map *isl_map_flat_product(
2519 __isl_take isl_map *map1,
2520 __isl_take isl_map *map2);
2522 =item * Simplification
2524 __isl_give isl_basic_set *isl_basic_set_gist(
2525 __isl_take isl_basic_set *bset,
2526 __isl_take isl_basic_set *context);
2527 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
2528 __isl_take isl_set *context);
2529 __isl_give isl_set *isl_set_gist_params(
2530 __isl_take isl_set *set,
2531 __isl_take isl_set *context);
2532 __isl_give isl_union_set *isl_union_set_gist(
2533 __isl_take isl_union_set *uset,
2534 __isl_take isl_union_set *context);
2535 __isl_give isl_union_set *isl_union_set_gist_params(
2536 __isl_take isl_union_set *uset,
2537 __isl_take isl_set *set);
2538 __isl_give isl_basic_map *isl_basic_map_gist(
2539 __isl_take isl_basic_map *bmap,
2540 __isl_take isl_basic_map *context);
2541 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
2542 __isl_take isl_map *context);
2543 __isl_give isl_map *isl_map_gist_params(
2544 __isl_take isl_map *map,
2545 __isl_take isl_set *context);
2546 __isl_give isl_map *isl_map_gist_domain(
2547 __isl_take isl_map *map,
2548 __isl_take isl_set *context);
2549 __isl_give isl_map *isl_map_gist_range(
2550 __isl_take isl_map *map,
2551 __isl_take isl_set *context);
2552 __isl_give isl_union_map *isl_union_map_gist(
2553 __isl_take isl_union_map *umap,
2554 __isl_take isl_union_map *context);
2555 __isl_give isl_union_map *isl_union_map_gist_params(
2556 __isl_take isl_union_map *umap,
2557 __isl_take isl_set *set);
2558 __isl_give isl_union_map *isl_union_map_gist_domain(
2559 __isl_take isl_union_map *umap,
2560 __isl_take isl_union_set *uset);
2561 __isl_give isl_union_map *isl_union_map_gist_range(
2562 __isl_take isl_union_map *umap,
2563 __isl_take isl_union_set *uset);
2565 The gist operation returns a set or relation that has the
2566 same intersection with the context as the input set or relation.
2567 Any implicit equality in the intersection is made explicit in the result,
2568 while all inequalities that are redundant with respect to the intersection
2570 In case of union sets and relations, the gist operation is performed
2575 =head3 Lexicographic Optimization
2577 Given a (basic) set C<set> (or C<bset>) and a zero-dimensional domain C<dom>,
2578 the following functions
2579 compute a set that contains the lexicographic minimum or maximum
2580 of the elements in C<set> (or C<bset>) for those values of the parameters
2581 that satisfy C<dom>.
2582 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
2583 that contains the parameter values in C<dom> for which C<set> (or C<bset>)
2585 In other words, the union of the parameter values
2586 for which the result is non-empty and of C<*empty>
2589 __isl_give isl_set *isl_basic_set_partial_lexmin(
2590 __isl_take isl_basic_set *bset,
2591 __isl_take isl_basic_set *dom,
2592 __isl_give isl_set **empty);
2593 __isl_give isl_set *isl_basic_set_partial_lexmax(
2594 __isl_take isl_basic_set *bset,
2595 __isl_take isl_basic_set *dom,
2596 __isl_give isl_set **empty);
2597 __isl_give isl_set *isl_set_partial_lexmin(
2598 __isl_take isl_set *set, __isl_take isl_set *dom,
2599 __isl_give isl_set **empty);
2600 __isl_give isl_set *isl_set_partial_lexmax(
2601 __isl_take isl_set *set, __isl_take isl_set *dom,
2602 __isl_give isl_set **empty);
2604 Given a (basic) set C<set> (or C<bset>), the following functions simply
2605 return a set containing the lexicographic minimum or maximum
2606 of the elements in C<set> (or C<bset>).
2607 In case of union sets, the optimum is computed per space.
2609 __isl_give isl_set *isl_basic_set_lexmin(
2610 __isl_take isl_basic_set *bset);
2611 __isl_give isl_set *isl_basic_set_lexmax(
2612 __isl_take isl_basic_set *bset);
2613 __isl_give isl_set *isl_set_lexmin(
2614 __isl_take isl_set *set);
2615 __isl_give isl_set *isl_set_lexmax(
2616 __isl_take isl_set *set);
2617 __isl_give isl_union_set *isl_union_set_lexmin(
2618 __isl_take isl_union_set *uset);
2619 __isl_give isl_union_set *isl_union_set_lexmax(
2620 __isl_take isl_union_set *uset);
2622 Given a (basic) relation C<map> (or C<bmap>) and a domain C<dom>,
2623 the following functions
2624 compute a relation that maps each element of C<dom>
2625 to the single lexicographic minimum or maximum
2626 of the elements that are associated to that same
2627 element in C<map> (or C<bmap>).
2628 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
2629 that contains the elements in C<dom> that do not map
2630 to any elements in C<map> (or C<bmap>).
2631 In other words, the union of the domain of the result and of C<*empty>
2634 __isl_give isl_map *isl_basic_map_partial_lexmax(
2635 __isl_take isl_basic_map *bmap,
2636 __isl_take isl_basic_set *dom,
2637 __isl_give isl_set **empty);
2638 __isl_give isl_map *isl_basic_map_partial_lexmin(
2639 __isl_take isl_basic_map *bmap,
2640 __isl_take isl_basic_set *dom,
2641 __isl_give isl_set **empty);
2642 __isl_give isl_map *isl_map_partial_lexmax(
2643 __isl_take isl_map *map, __isl_take isl_set *dom,
2644 __isl_give isl_set **empty);
2645 __isl_give isl_map *isl_map_partial_lexmin(
2646 __isl_take isl_map *map, __isl_take isl_set *dom,
2647 __isl_give isl_set **empty);
2649 Given a (basic) map C<map> (or C<bmap>), the following functions simply
2650 return a map mapping each element in the domain of
2651 C<map> (or C<bmap>) to the lexicographic minimum or maximum
2652 of all elements associated to that element.
2653 In case of union relations, the optimum is computed per space.
2655 __isl_give isl_map *isl_basic_map_lexmin(
2656 __isl_take isl_basic_map *bmap);
2657 __isl_give isl_map *isl_basic_map_lexmax(
2658 __isl_take isl_basic_map *bmap);
2659 __isl_give isl_map *isl_map_lexmin(
2660 __isl_take isl_map *map);
2661 __isl_give isl_map *isl_map_lexmax(
2662 __isl_take isl_map *map);
2663 __isl_give isl_union_map *isl_union_map_lexmin(
2664 __isl_take isl_union_map *umap);
2665 __isl_give isl_union_map *isl_union_map_lexmax(
2666 __isl_take isl_union_map *umap);
2668 The following functions return their result in the form of
2669 a piecewise multi-affine expression
2670 (See L<"Piecewise Multiple Quasi Affine Expressions">),
2671 but are otherwise equivalent to the corresponding functions
2672 returning a basic set or relation.
2674 __isl_give isl_pw_multi_aff *
2675 isl_basic_map_lexmin_pw_multi_aff(
2676 __isl_take isl_basic_map *bmap);
2677 __isl_give isl_pw_multi_aff *
2678 isl_basic_set_partial_lexmin_pw_multi_aff(
2679 __isl_take isl_basic_set *bset,
2680 __isl_take isl_basic_set *dom,
2681 __isl_give isl_set **empty);
2682 __isl_give isl_pw_multi_aff *
2683 isl_basic_set_partial_lexmax_pw_multi_aff(
2684 __isl_take isl_basic_set *bset,
2685 __isl_take isl_basic_set *dom,
2686 __isl_give isl_set **empty);
2687 __isl_give isl_pw_multi_aff *
2688 isl_basic_map_partial_lexmin_pw_multi_aff(
2689 __isl_take isl_basic_map *bmap,
2690 __isl_take isl_basic_set *dom,
2691 __isl_give isl_set **empty);
2692 __isl_give isl_pw_multi_aff *
2693 isl_basic_map_partial_lexmax_pw_multi_aff(
2694 __isl_take isl_basic_map *bmap,
2695 __isl_take isl_basic_set *dom,
2696 __isl_give isl_set **empty);
2700 Lists are defined over several element types, including
2701 C<isl_aff>, C<isl_pw_aff>, C<isl_basic_set> and C<isl_set>.
2702 Here we take lists of C<isl_set>s as an example.
2703 Lists can be created, copied and freed using the following functions.
2705 #include <isl/list.h>
2706 __isl_give isl_set_list *isl_set_list_from_set(
2707 __isl_take isl_set *el);
2708 __isl_give isl_set_list *isl_set_list_alloc(
2709 isl_ctx *ctx, int n);
2710 __isl_give isl_set_list *isl_set_list_copy(
2711 __isl_keep isl_set_list *list);
2712 __isl_give isl_set_list *isl_set_list_add(
2713 __isl_take isl_set_list *list,
2714 __isl_take isl_set *el);
2715 __isl_give isl_set_list *isl_set_list_concat(
2716 __isl_take isl_set_list *list1,
2717 __isl_take isl_set_list *list2);
2718 void *isl_set_list_free(__isl_take isl_set_list *list);
2720 C<isl_set_list_alloc> creates an empty list with a capacity for
2721 C<n> elements. C<isl_set_list_from_set> creates a list with a single
2724 Lists can be inspected using the following functions.
2726 #include <isl/list.h>
2727 isl_ctx *isl_set_list_get_ctx(__isl_keep isl_set_list *list);
2728 int isl_set_list_n_set(__isl_keep isl_set_list *list);
2729 __isl_give isl_set *isl_set_list_get_set(
2730 __isl_keep isl_set_list *list, int index);
2731 int isl_set_list_foreach(__isl_keep isl_set_list *list,
2732 int (*fn)(__isl_take isl_set *el, void *user),
2735 Lists can be printed using
2737 #include <isl/list.h>
2738 __isl_give isl_printer *isl_printer_print_set_list(
2739 __isl_take isl_printer *p,
2740 __isl_keep isl_set_list *list);
2744 Vectors can be created, copied and freed using the following functions.
2746 #include <isl/vec.h>
2747 __isl_give isl_vec *isl_vec_alloc(isl_ctx *ctx,
2749 __isl_give isl_vec *isl_vec_copy(__isl_keep isl_vec *vec);
2750 void isl_vec_free(__isl_take isl_vec *vec);
2752 Note that the elements of a newly created vector may have arbitrary values.
2753 The elements can be changed and inspected using the following functions.
2755 isl_ctx *isl_vec_get_ctx(__isl_keep isl_vec *vec);
2756 int isl_vec_size(__isl_keep isl_vec *vec);
2757 int isl_vec_get_element(__isl_keep isl_vec *vec,
2758 int pos, isl_int *v);
2759 __isl_give isl_vec *isl_vec_set_element(
2760 __isl_take isl_vec *vec, int pos, isl_int v);
2761 __isl_give isl_vec *isl_vec_set_element_si(
2762 __isl_take isl_vec *vec, int pos, int v);
2763 __isl_give isl_vec *isl_vec_set(__isl_take isl_vec *vec,
2765 __isl_give isl_vec *isl_vec_set_si(__isl_take isl_vec *vec,
2768 C<isl_vec_get_element> will return a negative value if anything went wrong.
2769 In that case, the value of C<*v> is undefined.
2773 Matrices can be created, copied and freed using the following functions.
2775 #include <isl/mat.h>
2776 __isl_give isl_mat *isl_mat_alloc(isl_ctx *ctx,
2777 unsigned n_row, unsigned n_col);
2778 __isl_give isl_mat *isl_mat_copy(__isl_keep isl_mat *mat);
2779 void isl_mat_free(__isl_take isl_mat *mat);
2781 Note that the elements of a newly created matrix may have arbitrary values.
2782 The elements can be changed and inspected using the following functions.
2784 isl_ctx *isl_mat_get_ctx(__isl_keep isl_mat *mat);
2785 int isl_mat_rows(__isl_keep isl_mat *mat);
2786 int isl_mat_cols(__isl_keep isl_mat *mat);
2787 int isl_mat_get_element(__isl_keep isl_mat *mat,
2788 int row, int col, isl_int *v);
2789 __isl_give isl_mat *isl_mat_set_element(__isl_take isl_mat *mat,
2790 int row, int col, isl_int v);
2791 __isl_give isl_mat *isl_mat_set_element_si(__isl_take isl_mat *mat,
2792 int row, int col, int v);
2794 C<isl_mat_get_element> will return a negative value if anything went wrong.
2795 In that case, the value of C<*v> is undefined.
2797 The following function can be used to compute the (right) inverse
2798 of a matrix, i.e., a matrix such that the product of the original
2799 and the inverse (in that order) is a multiple of the identity matrix.
2800 The input matrix is assumed to be of full row-rank.
2802 __isl_give isl_mat *isl_mat_right_inverse(__isl_take isl_mat *mat);
2804 The following function can be used to compute the (right) kernel
2805 (or null space) of a matrix, i.e., a matrix such that the product of
2806 the original and the kernel (in that order) is the zero matrix.
2808 __isl_give isl_mat *isl_mat_right_kernel(__isl_take isl_mat *mat);
2810 =head2 Piecewise Quasi Affine Expressions
2812 The zero quasi affine expression on a given domain can be created using
2814 __isl_give isl_aff *isl_aff_zero_on_domain(
2815 __isl_take isl_local_space *ls);
2817 Note that the space in which the resulting object lives is a map space
2818 with the given space as domain and a one-dimensional range.
2820 An empty piecewise quasi affine expression (one with no cells)
2821 or a piecewise quasi affine expression with a single cell can
2822 be created using the following functions.
2824 #include <isl/aff.h>
2825 __isl_give isl_pw_aff *isl_pw_aff_empty(
2826 __isl_take isl_space *space);
2827 __isl_give isl_pw_aff *isl_pw_aff_alloc(
2828 __isl_take isl_set *set, __isl_take isl_aff *aff);
2829 __isl_give isl_pw_aff *isl_pw_aff_from_aff(
2830 __isl_take isl_aff *aff);
2832 A piecewise quasi affine expression that is equal to 1 on a set
2833 and 0 outside the set can be created using the following function.
2835 #include <isl/aff.h>
2836 __isl_give isl_pw_aff *isl_set_indicator_function(
2837 __isl_take isl_set *set);
2839 Quasi affine expressions can be copied and freed using
2841 #include <isl/aff.h>
2842 __isl_give isl_aff *isl_aff_copy(__isl_keep isl_aff *aff);
2843 void *isl_aff_free(__isl_take isl_aff *aff);
2845 __isl_give isl_pw_aff *isl_pw_aff_copy(
2846 __isl_keep isl_pw_aff *pwaff);
2847 void *isl_pw_aff_free(__isl_take isl_pw_aff *pwaff);
2849 A (rational) bound on a dimension can be extracted from an C<isl_constraint>
2850 using the following function. The constraint is required to have
2851 a non-zero coefficient for the specified dimension.
2853 #include <isl/constraint.h>
2854 __isl_give isl_aff *isl_constraint_get_bound(
2855 __isl_keep isl_constraint *constraint,
2856 enum isl_dim_type type, int pos);
2858 The entire affine expression of the constraint can also be extracted
2859 using the following function.
2861 #include <isl/constraint.h>
2862 __isl_give isl_aff *isl_constraint_get_aff(
2863 __isl_keep isl_constraint *constraint);
2865 Conversely, an equality constraint equating
2866 the affine expression to zero or an inequality constraint enforcing
2867 the affine expression to be non-negative, can be constructed using
2869 __isl_give isl_constraint *isl_equality_from_aff(
2870 __isl_take isl_aff *aff);
2871 __isl_give isl_constraint *isl_inequality_from_aff(
2872 __isl_take isl_aff *aff);
2874 The expression can be inspected using
2876 #include <isl/aff.h>
2877 isl_ctx *isl_aff_get_ctx(__isl_keep isl_aff *aff);
2878 int isl_aff_dim(__isl_keep isl_aff *aff,
2879 enum isl_dim_type type);
2880 __isl_give isl_local_space *isl_aff_get_domain_local_space(
2881 __isl_keep isl_aff *aff);
2882 __isl_give isl_local_space *isl_aff_get_local_space(
2883 __isl_keep isl_aff *aff);
2884 const char *isl_aff_get_dim_name(__isl_keep isl_aff *aff,
2885 enum isl_dim_type type, unsigned pos);
2886 const char *isl_pw_aff_get_dim_name(
2887 __isl_keep isl_pw_aff *pa,
2888 enum isl_dim_type type, unsigned pos);
2889 int isl_pw_aff_has_dim_id(__isl_keep isl_pw_aff *pa,
2890 enum isl_dim_type type, unsigned pos);
2891 __isl_give isl_id *isl_pw_aff_get_dim_id(
2892 __isl_keep isl_pw_aff *pa,
2893 enum isl_dim_type type, unsigned pos);
2894 int isl_aff_get_constant(__isl_keep isl_aff *aff,
2896 int isl_aff_get_coefficient(__isl_keep isl_aff *aff,
2897 enum isl_dim_type type, int pos, isl_int *v);
2898 int isl_aff_get_denominator(__isl_keep isl_aff *aff,
2900 __isl_give isl_aff *isl_aff_get_div(
2901 __isl_keep isl_aff *aff, int pos);
2903 int isl_pw_aff_n_piece(__isl_keep isl_pw_aff *pwaff);
2904 int isl_pw_aff_foreach_piece(__isl_keep isl_pw_aff *pwaff,
2905 int (*fn)(__isl_take isl_set *set,
2906 __isl_take isl_aff *aff,
2907 void *user), void *user);
2909 int isl_aff_is_cst(__isl_keep isl_aff *aff);
2910 int isl_pw_aff_is_cst(__isl_keep isl_pw_aff *pwaff);
2912 int isl_aff_involves_dims(__isl_keep isl_aff *aff,
2913 enum isl_dim_type type, unsigned first, unsigned n);
2914 int isl_pw_aff_involves_dims(__isl_keep isl_pw_aff *pwaff,
2915 enum isl_dim_type type, unsigned first, unsigned n);
2917 isl_ctx *isl_pw_aff_get_ctx(__isl_keep isl_pw_aff *pwaff);
2918 unsigned isl_pw_aff_dim(__isl_keep isl_pw_aff *pwaff,
2919 enum isl_dim_type type);
2920 int isl_pw_aff_is_empty(__isl_keep isl_pw_aff *pwaff);
2922 It can be modified using
2924 #include <isl/aff.h>
2925 __isl_give isl_pw_aff *isl_pw_aff_set_tuple_id(
2926 __isl_take isl_pw_aff *pwaff,
2927 enum isl_dim_type type, __isl_take isl_id *id);
2928 __isl_give isl_aff *isl_aff_set_dim_name(
2929 __isl_take isl_aff *aff, enum isl_dim_type type,
2930 unsigned pos, const char *s);
2931 __isl_give isl_aff *isl_aff_set_dim_id(
2932 __isl_take isl_aff *aff, enum isl_dim_type type,
2933 unsigned pos, __isl_take isl_id *id);
2934 __isl_give isl_pw_aff *isl_pw_aff_set_dim_id(
2935 __isl_take isl_pw_aff *pma,
2936 enum isl_dim_type type, unsigned pos,
2937 __isl_take isl_id *id);
2938 __isl_give isl_aff *isl_aff_set_constant(
2939 __isl_take isl_aff *aff, isl_int v);
2940 __isl_give isl_aff *isl_aff_set_constant_si(
2941 __isl_take isl_aff *aff, int v);
2942 __isl_give isl_aff *isl_aff_set_coefficient(
2943 __isl_take isl_aff *aff,
2944 enum isl_dim_type type, int pos, isl_int v);
2945 __isl_give isl_aff *isl_aff_set_coefficient_si(
2946 __isl_take isl_aff *aff,
2947 enum isl_dim_type type, int pos, int v);
2948 __isl_give isl_aff *isl_aff_set_denominator(
2949 __isl_take isl_aff *aff, isl_int v);
2951 __isl_give isl_aff *isl_aff_add_constant(
2952 __isl_take isl_aff *aff, isl_int v);
2953 __isl_give isl_aff *isl_aff_add_constant_si(
2954 __isl_take isl_aff *aff, int v);
2955 __isl_give isl_aff *isl_aff_add_coefficient(
2956 __isl_take isl_aff *aff,
2957 enum isl_dim_type type, int pos, isl_int v);
2958 __isl_give isl_aff *isl_aff_add_coefficient_si(
2959 __isl_take isl_aff *aff,
2960 enum isl_dim_type type, int pos, int v);
2962 __isl_give isl_aff *isl_aff_insert_dims(
2963 __isl_take isl_aff *aff,
2964 enum isl_dim_type type, unsigned first, unsigned n);
2965 __isl_give isl_pw_aff *isl_pw_aff_insert_dims(
2966 __isl_take isl_pw_aff *pwaff,
2967 enum isl_dim_type type, unsigned first, unsigned n);
2968 __isl_give isl_aff *isl_aff_add_dims(
2969 __isl_take isl_aff *aff,
2970 enum isl_dim_type type, unsigned n);
2971 __isl_give isl_pw_aff *isl_pw_aff_add_dims(
2972 __isl_take isl_pw_aff *pwaff,
2973 enum isl_dim_type type, unsigned n);
2974 __isl_give isl_aff *isl_aff_drop_dims(
2975 __isl_take isl_aff *aff,
2976 enum isl_dim_type type, unsigned first, unsigned n);
2977 __isl_give isl_pw_aff *isl_pw_aff_drop_dims(
2978 __isl_take isl_pw_aff *pwaff,
2979 enum isl_dim_type type, unsigned first, unsigned n);
2981 Note that the C<set_constant> and C<set_coefficient> functions
2982 set the I<numerator> of the constant or coefficient, while
2983 C<add_constant> and C<add_coefficient> add an integer value to
2984 the possibly rational constant or coefficient.
2986 To check whether an affine expressions is obviously zero
2987 or obviously equal to some other affine expression, use
2989 #include <isl/aff.h>
2990 int isl_aff_plain_is_zero(__isl_keep isl_aff *aff);
2991 int isl_aff_plain_is_equal(__isl_keep isl_aff *aff1,
2992 __isl_keep isl_aff *aff2);
2993 int isl_pw_aff_plain_is_equal(
2994 __isl_keep isl_pw_aff *pwaff1,
2995 __isl_keep isl_pw_aff *pwaff2);
2999 #include <isl/aff.h>
3000 __isl_give isl_aff *isl_aff_add(__isl_take isl_aff *aff1,
3001 __isl_take isl_aff *aff2);
3002 __isl_give isl_pw_aff *isl_pw_aff_add(
3003 __isl_take isl_pw_aff *pwaff1,
3004 __isl_take isl_pw_aff *pwaff2);
3005 __isl_give isl_pw_aff *isl_pw_aff_min(
3006 __isl_take isl_pw_aff *pwaff1,
3007 __isl_take isl_pw_aff *pwaff2);
3008 __isl_give isl_pw_aff *isl_pw_aff_max(
3009 __isl_take isl_pw_aff *pwaff1,
3010 __isl_take isl_pw_aff *pwaff2);
3011 __isl_give isl_aff *isl_aff_sub(__isl_take isl_aff *aff1,
3012 __isl_take isl_aff *aff2);
3013 __isl_give isl_pw_aff *isl_pw_aff_sub(
3014 __isl_take isl_pw_aff *pwaff1,
3015 __isl_take isl_pw_aff *pwaff2);
3016 __isl_give isl_aff *isl_aff_neg(__isl_take isl_aff *aff);
3017 __isl_give isl_pw_aff *isl_pw_aff_neg(
3018 __isl_take isl_pw_aff *pwaff);
3019 __isl_give isl_aff *isl_aff_ceil(__isl_take isl_aff *aff);
3020 __isl_give isl_pw_aff *isl_pw_aff_ceil(
3021 __isl_take isl_pw_aff *pwaff);
3022 __isl_give isl_aff *isl_aff_floor(__isl_take isl_aff *aff);
3023 __isl_give isl_pw_aff *isl_pw_aff_floor(
3024 __isl_take isl_pw_aff *pwaff);
3025 __isl_give isl_aff *isl_aff_mod(__isl_take isl_aff *aff,
3027 __isl_give isl_pw_aff *isl_pw_aff_mod(
3028 __isl_take isl_pw_aff *pwaff, isl_int mod);
3029 __isl_give isl_aff *isl_aff_scale(__isl_take isl_aff *aff,
3031 __isl_give isl_pw_aff *isl_pw_aff_scale(
3032 __isl_take isl_pw_aff *pwaff, isl_int f);
3033 __isl_give isl_aff *isl_aff_scale_down(__isl_take isl_aff *aff,
3035 __isl_give isl_aff *isl_aff_scale_down_ui(
3036 __isl_take isl_aff *aff, unsigned f);
3037 __isl_give isl_pw_aff *isl_pw_aff_scale_down(
3038 __isl_take isl_pw_aff *pwaff, isl_int f);
3040 __isl_give isl_pw_aff *isl_pw_aff_list_min(
3041 __isl_take isl_pw_aff_list *list);
3042 __isl_give isl_pw_aff *isl_pw_aff_list_max(
3043 __isl_take isl_pw_aff_list *list);
3045 __isl_give isl_pw_aff *isl_pw_aff_coalesce(
3046 __isl_take isl_pw_aff *pwqp);
3048 __isl_give isl_aff *isl_aff_align_params(
3049 __isl_take isl_aff *aff,
3050 __isl_take isl_space *model);
3051 __isl_give isl_pw_aff *isl_pw_aff_align_params(
3052 __isl_take isl_pw_aff *pwaff,
3053 __isl_take isl_space *model);
3055 __isl_give isl_aff *isl_aff_project_domain_on_params(
3056 __isl_take isl_aff *aff);
3058 __isl_give isl_aff *isl_aff_gist_params(
3059 __isl_take isl_aff *aff,
3060 __isl_take isl_set *context);
3061 __isl_give isl_aff *isl_aff_gist(__isl_take isl_aff *aff,
3062 __isl_take isl_set *context);
3063 __isl_give isl_pw_aff *isl_pw_aff_gist_params(
3064 __isl_take isl_pw_aff *pwaff,
3065 __isl_take isl_set *context);
3066 __isl_give isl_pw_aff *isl_pw_aff_gist(
3067 __isl_take isl_pw_aff *pwaff,
3068 __isl_take isl_set *context);
3070 __isl_give isl_set *isl_pw_aff_domain(
3071 __isl_take isl_pw_aff *pwaff);
3072 __isl_give isl_pw_aff *isl_pw_aff_intersect_domain(
3073 __isl_take isl_pw_aff *pa,
3074 __isl_take isl_set *set);
3075 __isl_give isl_pw_aff *isl_pw_aff_intersect_params(
3076 __isl_take isl_pw_aff *pa,
3077 __isl_take isl_set *set);
3079 __isl_give isl_aff *isl_aff_mul(__isl_take isl_aff *aff1,
3080 __isl_take isl_aff *aff2);
3081 __isl_give isl_pw_aff *isl_pw_aff_mul(
3082 __isl_take isl_pw_aff *pwaff1,
3083 __isl_take isl_pw_aff *pwaff2);
3085 When multiplying two affine expressions, at least one of the two needs
3088 #include <isl/aff.h>
3089 __isl_give isl_basic_set *isl_aff_le_basic_set(
3090 __isl_take isl_aff *aff1, __isl_take isl_aff *aff2);
3091 __isl_give isl_basic_set *isl_aff_ge_basic_set(
3092 __isl_take isl_aff *aff1, __isl_take isl_aff *aff2);
3093 __isl_give isl_set *isl_pw_aff_eq_set(
3094 __isl_take isl_pw_aff *pwaff1,
3095 __isl_take isl_pw_aff *pwaff2);
3096 __isl_give isl_set *isl_pw_aff_ne_set(
3097 __isl_take isl_pw_aff *pwaff1,
3098 __isl_take isl_pw_aff *pwaff2);
3099 __isl_give isl_set *isl_pw_aff_le_set(
3100 __isl_take isl_pw_aff *pwaff1,
3101 __isl_take isl_pw_aff *pwaff2);
3102 __isl_give isl_set *isl_pw_aff_lt_set(
3103 __isl_take isl_pw_aff *pwaff1,
3104 __isl_take isl_pw_aff *pwaff2);
3105 __isl_give isl_set *isl_pw_aff_ge_set(
3106 __isl_take isl_pw_aff *pwaff1,
3107 __isl_take isl_pw_aff *pwaff2);
3108 __isl_give isl_set *isl_pw_aff_gt_set(
3109 __isl_take isl_pw_aff *pwaff1,
3110 __isl_take isl_pw_aff *pwaff2);
3112 __isl_give isl_set *isl_pw_aff_list_eq_set(
3113 __isl_take isl_pw_aff_list *list1,
3114 __isl_take isl_pw_aff_list *list2);
3115 __isl_give isl_set *isl_pw_aff_list_ne_set(
3116 __isl_take isl_pw_aff_list *list1,
3117 __isl_take isl_pw_aff_list *list2);
3118 __isl_give isl_set *isl_pw_aff_list_le_set(
3119 __isl_take isl_pw_aff_list *list1,
3120 __isl_take isl_pw_aff_list *list2);
3121 __isl_give isl_set *isl_pw_aff_list_lt_set(
3122 __isl_take isl_pw_aff_list *list1,
3123 __isl_take isl_pw_aff_list *list2);
3124 __isl_give isl_set *isl_pw_aff_list_ge_set(
3125 __isl_take isl_pw_aff_list *list1,
3126 __isl_take isl_pw_aff_list *list2);
3127 __isl_give isl_set *isl_pw_aff_list_gt_set(
3128 __isl_take isl_pw_aff_list *list1,
3129 __isl_take isl_pw_aff_list *list2);
3131 The function C<isl_aff_ge_basic_set> returns a basic set
3132 containing those elements in the shared space
3133 of C<aff1> and C<aff2> where C<aff1> is greater than or equal to C<aff2>.
3134 The function C<isl_aff_ge_set> returns a set
3135 containing those elements in the shared domain
3136 of C<pwaff1> and C<pwaff2> where C<pwaff1> is greater than or equal to C<pwaff2>.
3137 The functions operating on C<isl_pw_aff_list> apply the corresponding
3138 C<isl_pw_aff> function to each pair of elements in the two lists.
3140 #include <isl/aff.h>
3141 __isl_give isl_set *isl_pw_aff_nonneg_set(
3142 __isl_take isl_pw_aff *pwaff);
3143 __isl_give isl_set *isl_pw_aff_zero_set(
3144 __isl_take isl_pw_aff *pwaff);
3145 __isl_give isl_set *isl_pw_aff_non_zero_set(
3146 __isl_take isl_pw_aff *pwaff);
3148 The function C<isl_pw_aff_nonneg_set> returns a set
3149 containing those elements in the domain
3150 of C<pwaff> where C<pwaff> is non-negative.
3152 #include <isl/aff.h>
3153 __isl_give isl_pw_aff *isl_pw_aff_cond(
3154 __isl_take isl_pw_aff *cond,
3155 __isl_take isl_pw_aff *pwaff_true,
3156 __isl_take isl_pw_aff *pwaff_false);
3158 The function C<isl_pw_aff_cond> performs a conditional operator
3159 and returns an expression that is equal to C<pwaff_true>
3160 for elements where C<cond> is non-zero and equal to C<pwaff_false> for elements
3161 where C<cond> is zero.
3163 #include <isl/aff.h>
3164 __isl_give isl_pw_aff *isl_pw_aff_union_min(
3165 __isl_take isl_pw_aff *pwaff1,
3166 __isl_take isl_pw_aff *pwaff2);
3167 __isl_give isl_pw_aff *isl_pw_aff_union_max(
3168 __isl_take isl_pw_aff *pwaff1,
3169 __isl_take isl_pw_aff *pwaff2);
3170 __isl_give isl_pw_aff *isl_pw_aff_union_add(
3171 __isl_take isl_pw_aff *pwaff1,
3172 __isl_take isl_pw_aff *pwaff2);
3174 The function C<isl_pw_aff_union_max> computes a piecewise quasi-affine
3175 expression with a domain that is the union of those of C<pwaff1> and
3176 C<pwaff2> and such that on each cell, the quasi-affine expression is
3177 the maximum of those of C<pwaff1> and C<pwaff2>. If only one of
3178 C<pwaff1> or C<pwaff2> is defined on a given cell, then the
3179 associated expression is the defined one.
3181 An expression can be read from input using
3183 #include <isl/aff.h>
3184 __isl_give isl_aff *isl_aff_read_from_str(
3185 isl_ctx *ctx, const char *str);
3186 __isl_give isl_pw_aff *isl_pw_aff_read_from_str(
3187 isl_ctx *ctx, const char *str);
3189 An expression can be printed using
3191 #include <isl/aff.h>
3192 __isl_give isl_printer *isl_printer_print_aff(
3193 __isl_take isl_printer *p, __isl_keep isl_aff *aff);
3195 __isl_give isl_printer *isl_printer_print_pw_aff(
3196 __isl_take isl_printer *p,
3197 __isl_keep isl_pw_aff *pwaff);
3199 =head2 Piecewise Multiple Quasi Affine Expressions
3201 An C<isl_multi_aff> object represents a sequence of
3202 zero or more affine expressions, all defined on the same domain space.
3204 An C<isl_multi_aff> can be constructed from a C<isl_aff_list> using the
3207 #include <isl/aff.h>
3208 __isl_give isl_multi_aff *isl_multi_aff_from_aff_list(
3209 __isl_take isl_space *space,
3210 __isl_take isl_aff_list *list);
3212 An empty piecewise multiple quasi affine expression (one with no cells),
3213 the zero piecewise multiple quasi affine expression (with value zero
3214 for each output dimension) or
3215 a piecewise multiple quasi affine expression with a single cell can
3216 be created using the following functions.
3218 #include <isl/aff.h>
3219 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_empty(
3220 __isl_take isl_space *space);
3221 __isl_give isl_multi_aff *isl_multi_aff_zero(
3222 __isl_take isl_space *space);
3223 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_alloc(
3224 __isl_take isl_set *set,
3225 __isl_take isl_multi_aff *maff);
3227 A piecewise multiple quasi affine expression can also be initialized
3228 from an C<isl_set> or C<isl_map>, provided the C<isl_set> is a singleton
3229 and the C<isl_map> is single-valued.
3231 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_set(
3232 __isl_take isl_set *set);
3233 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_map(
3234 __isl_take isl_map *map);
3236 Multiple quasi affine expressions can be copied and freed using
3238 #include <isl/aff.h>
3239 __isl_give isl_multi_aff *isl_multi_aff_copy(
3240 __isl_keep isl_multi_aff *maff);
3241 void *isl_multi_aff_free(__isl_take isl_multi_aff *maff);
3243 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_copy(
3244 __isl_keep isl_pw_multi_aff *pma);
3245 void *isl_pw_multi_aff_free(
3246 __isl_take isl_pw_multi_aff *pma);
3248 The expression can be inspected using
3250 #include <isl/aff.h>
3251 isl_ctx *isl_multi_aff_get_ctx(
3252 __isl_keep isl_multi_aff *maff);
3253 isl_ctx *isl_pw_multi_aff_get_ctx(
3254 __isl_keep isl_pw_multi_aff *pma);
3255 unsigned isl_multi_aff_dim(__isl_keep isl_multi_aff *maff,
3256 enum isl_dim_type type);
3257 unsigned isl_pw_multi_aff_dim(
3258 __isl_keep isl_pw_multi_aff *pma,
3259 enum isl_dim_type type);
3260 __isl_give isl_aff *isl_multi_aff_get_aff(
3261 __isl_keep isl_multi_aff *multi, int pos);
3262 __isl_give isl_pw_aff *isl_pw_multi_aff_get_pw_aff(
3263 __isl_keep isl_pw_multi_aff *pma, int pos);
3264 const char *isl_pw_multi_aff_get_dim_name(
3265 __isl_keep isl_pw_multi_aff *pma,
3266 enum isl_dim_type type, unsigned pos);
3267 __isl_give isl_id *isl_pw_multi_aff_get_dim_id(
3268 __isl_keep isl_pw_multi_aff *pma,
3269 enum isl_dim_type type, unsigned pos);
3270 const char *isl_multi_aff_get_tuple_name(
3271 __isl_keep isl_multi_aff *multi,
3272 enum isl_dim_type type);
3273 const char *isl_pw_multi_aff_get_tuple_name(
3274 __isl_keep isl_pw_multi_aff *pma,
3275 enum isl_dim_type type);
3276 int isl_pw_multi_aff_has_tuple_id(
3277 __isl_keep isl_pw_multi_aff *pma,
3278 enum isl_dim_type type);
3279 __isl_give isl_id *isl_pw_multi_aff_get_tuple_id(
3280 __isl_keep isl_pw_multi_aff *pma,
3281 enum isl_dim_type type);
3283 int isl_pw_multi_aff_foreach_piece(
3284 __isl_keep isl_pw_multi_aff *pma,
3285 int (*fn)(__isl_take isl_set *set,
3286 __isl_take isl_multi_aff *maff,
3287 void *user), void *user);
3289 It can be modified using
3291 #include <isl/aff.h>
3292 __isl_give isl_multi_aff *isl_multi_aff_set_dim_name(
3293 __isl_take isl_multi_aff *maff,
3294 enum isl_dim_type type, unsigned pos, const char *s);
3295 __isl_give isl_multi_aff *isl_multi_aff_set_tuple_id(
3296 __isl_take isl_multi_aff *maff,
3297 enum isl_dim_type type, __isl_take isl_id *id);
3298 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_set_tuple_id(
3299 __isl_take isl_pw_multi_aff *pma,
3300 enum isl_dim_type type, __isl_take isl_id *id);
3302 __isl_give isl_multi_aff *isl_multi_aff_drop_dims(
3303 __isl_take isl_multi_aff *maff,
3304 enum isl_dim_type type, unsigned first, unsigned n);
3306 To check whether two multiple affine expressions are
3307 obviously equal to each other, use
3309 int isl_multi_aff_plain_is_equal(__isl_keep isl_multi_aff *maff1,
3310 __isl_keep isl_multi_aff *maff2);
3311 int isl_pw_multi_aff_plain_is_equal(
3312 __isl_keep isl_pw_multi_aff *pma1,
3313 __isl_keep isl_pw_multi_aff *pma2);
3317 #include <isl/aff.h>
3318 __isl_give isl_multi_aff *isl_multi_aff_add(
3319 __isl_take isl_multi_aff *maff1,
3320 __isl_take isl_multi_aff *maff2);
3321 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_add(
3322 __isl_take isl_pw_multi_aff *pma1,
3323 __isl_take isl_pw_multi_aff *pma2);
3324 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_add(
3325 __isl_take isl_pw_multi_aff *pma1,
3326 __isl_take isl_pw_multi_aff *pma2);
3327 __isl_give isl_multi_aff *isl_multi_aff_scale(
3328 __isl_take isl_multi_aff *maff,
3330 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_params(
3331 __isl_take isl_pw_multi_aff *pma,
3332 __isl_take isl_set *set);
3333 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_domain(
3334 __isl_take isl_pw_multi_aff *pma,
3335 __isl_take isl_set *set);
3336 __isl_give isl_multi_aff *isl_multi_aff_lift(
3337 __isl_take isl_multi_aff *maff,
3338 __isl_give isl_local_space **ls);
3339 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_coalesce(
3340 __isl_take isl_pw_multi_aff *pma);
3341 __isl_give isl_multi_aff *isl_multi_aff_gist_params(
3342 __isl_take isl_multi_aff *maff,
3343 __isl_take isl_set *context);
3344 __isl_give isl_multi_aff *isl_multi_aff_gist(
3345 __isl_take isl_multi_aff *maff,
3346 __isl_take isl_set *context);
3347 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_gist_params(
3348 __isl_take isl_pw_multi_aff *pma,
3349 __isl_take isl_set *set);
3350 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_gist(
3351 __isl_take isl_pw_multi_aff *pma,
3352 __isl_take isl_set *set);
3353 __isl_give isl_set *isl_pw_multi_aff_domain(
3354 __isl_take isl_pw_multi_aff *pma);
3356 If the C<ls> argument of C<isl_multi_aff_lift> is not C<NULL>,
3357 then it is assigned the local space that lies at the basis of
3358 the lifting applied.
3360 An expression can be read from input using
3362 #include <isl/aff.h>
3363 __isl_give isl_multi_aff *isl_multi_aff_read_from_str(
3364 isl_ctx *ctx, const char *str);
3365 __isl_give isl_pw_multi_aff *isl_pw_multi_aff_read_from_str(
3366 isl_ctx *ctx, const char *str);
3368 An expression can be printed using
3370 #include <isl/aff.h>
3371 __isl_give isl_printer *isl_printer_print_multi_aff(
3372 __isl_take isl_printer *p,
3373 __isl_keep isl_multi_aff *maff);
3374 __isl_give isl_printer *isl_printer_print_pw_multi_aff(
3375 __isl_take isl_printer *p,
3376 __isl_keep isl_pw_multi_aff *pma);
3380 Points are elements of a set. They can be used to construct
3381 simple sets (boxes) or they can be used to represent the
3382 individual elements of a set.
3383 The zero point (the origin) can be created using
3385 __isl_give isl_point *isl_point_zero(__isl_take isl_space *space);
3387 The coordinates of a point can be inspected, set and changed
3390 int isl_point_get_coordinate(__isl_keep isl_point *pnt,
3391 enum isl_dim_type type, int pos, isl_int *v);
3392 __isl_give isl_point *isl_point_set_coordinate(
3393 __isl_take isl_point *pnt,
3394 enum isl_dim_type type, int pos, isl_int v);
3396 __isl_give isl_point *isl_point_add_ui(
3397 __isl_take isl_point *pnt,
3398 enum isl_dim_type type, int pos, unsigned val);
3399 __isl_give isl_point *isl_point_sub_ui(
3400 __isl_take isl_point *pnt,
3401 enum isl_dim_type type, int pos, unsigned val);
3403 Other properties can be obtained using
3405 isl_ctx *isl_point_get_ctx(__isl_keep isl_point *pnt);
3407 Points can be copied or freed using
3409 __isl_give isl_point *isl_point_copy(
3410 __isl_keep isl_point *pnt);
3411 void isl_point_free(__isl_take isl_point *pnt);
3413 A singleton set can be created from a point using
3415 __isl_give isl_basic_set *isl_basic_set_from_point(
3416 __isl_take isl_point *pnt);
3417 __isl_give isl_set *isl_set_from_point(
3418 __isl_take isl_point *pnt);
3420 and a box can be created from two opposite extremal points using
3422 __isl_give isl_basic_set *isl_basic_set_box_from_points(
3423 __isl_take isl_point *pnt1,
3424 __isl_take isl_point *pnt2);
3425 __isl_give isl_set *isl_set_box_from_points(
3426 __isl_take isl_point *pnt1,
3427 __isl_take isl_point *pnt2);
3429 All elements of a B<bounded> (union) set can be enumerated using
3430 the following functions.
3432 int isl_set_foreach_point(__isl_keep isl_set *set,
3433 int (*fn)(__isl_take isl_point *pnt, void *user),
3435 int isl_union_set_foreach_point(__isl_keep isl_union_set *uset,
3436 int (*fn)(__isl_take isl_point *pnt, void *user),
3439 The function C<fn> is called for each integer point in
3440 C<set> with as second argument the last argument of
3441 the C<isl_set_foreach_point> call. The function C<fn>
3442 should return C<0> on success and C<-1> on failure.
3443 In the latter case, C<isl_set_foreach_point> will stop
3444 enumerating and return C<-1> as well.
3445 If the enumeration is performed successfully and to completion,
3446 then C<isl_set_foreach_point> returns C<0>.
3448 To obtain a single point of a (basic) set, use
3450 __isl_give isl_point *isl_basic_set_sample_point(
3451 __isl_take isl_basic_set *bset);
3452 __isl_give isl_point *isl_set_sample_point(
3453 __isl_take isl_set *set);
3455 If C<set> does not contain any (integer) points, then the
3456 resulting point will be ``void'', a property that can be
3459 int isl_point_is_void(__isl_keep isl_point *pnt);
3461 =head2 Piecewise Quasipolynomials
3463 A piecewise quasipolynomial is a particular kind of function that maps
3464 a parametric point to a rational value.
3465 More specifically, a quasipolynomial is a polynomial expression in greatest
3466 integer parts of affine expressions of parameters and variables.
3467 A piecewise quasipolynomial is a subdivision of a given parametric
3468 domain into disjoint cells with a quasipolynomial associated to
3469 each cell. The value of the piecewise quasipolynomial at a given
3470 point is the value of the quasipolynomial associated to the cell
3471 that contains the point. Outside of the union of cells,
3472 the value is assumed to be zero.
3473 For example, the piecewise quasipolynomial
3475 [n] -> { [x] -> ((1 + n) - x) : x <= n and x >= 0 }
3477 maps C<x> to C<1 + n - x> for values of C<x> between C<0> and C<n>.
3478 A given piecewise quasipolynomial has a fixed domain dimension.
3479 Union piecewise quasipolynomials are used to contain piecewise quasipolynomials
3480 defined over different domains.
3481 Piecewise quasipolynomials are mainly used by the C<barvinok>
3482 library for representing the number of elements in a parametric set or map.
3483 For example, the piecewise quasipolynomial above represents
3484 the number of points in the map
3486 [n] -> { [x] -> [y] : x,y >= 0 and 0 <= x + y <= n }
3488 =head3 Input and Output
3490 Piecewise quasipolynomials can be read from input using
3492 __isl_give isl_union_pw_qpolynomial *
3493 isl_union_pw_qpolynomial_read_from_str(
3494 isl_ctx *ctx, const char *str);
3496 Quasipolynomials and piecewise quasipolynomials can be printed
3497 using the following functions.
3499 __isl_give isl_printer *isl_printer_print_qpolynomial(
3500 __isl_take isl_printer *p,
3501 __isl_keep isl_qpolynomial *qp);
3503 __isl_give isl_printer *isl_printer_print_pw_qpolynomial(
3504 __isl_take isl_printer *p,
3505 __isl_keep isl_pw_qpolynomial *pwqp);
3507 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial(
3508 __isl_take isl_printer *p,
3509 __isl_keep isl_union_pw_qpolynomial *upwqp);
3511 The output format of the printer
3512 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
3513 For C<isl_printer_print_union_pw_qpolynomial>, only C<ISL_FORMAT_ISL>
3515 In case of printing in C<ISL_FORMAT_C>, the user may want
3516 to set the names of all dimensions
3518 __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name(
3519 __isl_take isl_qpolynomial *qp,
3520 enum isl_dim_type type, unsigned pos,
3522 __isl_give isl_pw_qpolynomial *
3523 isl_pw_qpolynomial_set_dim_name(
3524 __isl_take isl_pw_qpolynomial *pwqp,
3525 enum isl_dim_type type, unsigned pos,
3528 =head3 Creating New (Piecewise) Quasipolynomials
3530 Some simple quasipolynomials can be created using the following functions.
3531 More complicated quasipolynomials can be created by applying
3532 operations such as addition and multiplication
3533 on the resulting quasipolynomials
3535 __isl_give isl_qpolynomial *isl_qpolynomial_zero_on_domain(
3536 __isl_take isl_space *domain);
3537 __isl_give isl_qpolynomial *isl_qpolynomial_one_on_domain(
3538 __isl_take isl_space *domain);
3539 __isl_give isl_qpolynomial *isl_qpolynomial_infty_on_domain(
3540 __isl_take isl_space *domain);
3541 __isl_give isl_qpolynomial *isl_qpolynomial_neginfty_on_domain(
3542 __isl_take isl_space *domain);
3543 __isl_give isl_qpolynomial *isl_qpolynomial_nan_on_domain(
3544 __isl_take isl_space *domain);
3545 __isl_give isl_qpolynomial *isl_qpolynomial_rat_cst_on_domain(
3546 __isl_take isl_space *domain,
3547 const isl_int n, const isl_int d);
3548 __isl_give isl_qpolynomial *isl_qpolynomial_var_on_domain(
3549 __isl_take isl_space *domain,
3550 enum isl_dim_type type, unsigned pos);
3551 __isl_give isl_qpolynomial *isl_qpolynomial_from_aff(
3552 __isl_take isl_aff *aff);
3554 Note that the space in which a quasipolynomial lives is a map space
3555 with a one-dimensional range. The C<domain> argument in some of
3556 the functions above corresponds to the domain of this map space.
3558 The zero piecewise quasipolynomial or a piecewise quasipolynomial
3559 with a single cell can be created using the following functions.
3560 Multiple of these single cell piecewise quasipolynomials can
3561 be combined to create more complicated piecewise quasipolynomials.
3563 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_zero(
3564 __isl_take isl_space *space);
3565 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_alloc(
3566 __isl_take isl_set *set,
3567 __isl_take isl_qpolynomial *qp);
3568 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_qpolynomial(
3569 __isl_take isl_qpolynomial *qp);
3570 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_pw_aff(
3571 __isl_take isl_pw_aff *pwaff);
3573 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_zero(
3574 __isl_take isl_space *space);
3575 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_from_pw_qpolynomial(
3576 __isl_take isl_pw_qpolynomial *pwqp);
3577 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add_pw_qpolynomial(
3578 __isl_take isl_union_pw_qpolynomial *upwqp,
3579 __isl_take isl_pw_qpolynomial *pwqp);
3581 Quasipolynomials can be copied and freed again using the following
3584 __isl_give isl_qpolynomial *isl_qpolynomial_copy(
3585 __isl_keep isl_qpolynomial *qp);
3586 void *isl_qpolynomial_free(__isl_take isl_qpolynomial *qp);
3588 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_copy(
3589 __isl_keep isl_pw_qpolynomial *pwqp);
3590 void *isl_pw_qpolynomial_free(
3591 __isl_take isl_pw_qpolynomial *pwqp);
3593 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_copy(
3594 __isl_keep isl_union_pw_qpolynomial *upwqp);
3595 void *isl_union_pw_qpolynomial_free(
3596 __isl_take isl_union_pw_qpolynomial *upwqp);
3598 =head3 Inspecting (Piecewise) Quasipolynomials
3600 To iterate over all piecewise quasipolynomials in a union
3601 piecewise quasipolynomial, use the following function
3603 int isl_union_pw_qpolynomial_foreach_pw_qpolynomial(
3604 __isl_keep isl_union_pw_qpolynomial *upwqp,
3605 int (*fn)(__isl_take isl_pw_qpolynomial *pwqp, void *user),
3608 To extract the piecewise quasipolynomial in a given space from a union, use
3610 __isl_give isl_pw_qpolynomial *
3611 isl_union_pw_qpolynomial_extract_pw_qpolynomial(
3612 __isl_keep isl_union_pw_qpolynomial *upwqp,
3613 __isl_take isl_space *space);
3615 To iterate over the cells in a piecewise quasipolynomial,
3616 use either of the following two functions
3618 int isl_pw_qpolynomial_foreach_piece(
3619 __isl_keep isl_pw_qpolynomial *pwqp,
3620 int (*fn)(__isl_take isl_set *set,
3621 __isl_take isl_qpolynomial *qp,
3622 void *user), void *user);
3623 int isl_pw_qpolynomial_foreach_lifted_piece(
3624 __isl_keep isl_pw_qpolynomial *pwqp,
3625 int (*fn)(__isl_take isl_set *set,
3626 __isl_take isl_qpolynomial *qp,
3627 void *user), void *user);
3629 As usual, the function C<fn> should return C<0> on success
3630 and C<-1> on failure. The difference between
3631 C<isl_pw_qpolynomial_foreach_piece> and
3632 C<isl_pw_qpolynomial_foreach_lifted_piece> is that
3633 C<isl_pw_qpolynomial_foreach_lifted_piece> will first
3634 compute unique representations for all existentially quantified
3635 variables and then turn these existentially quantified variables
3636 into extra set variables, adapting the associated quasipolynomial
3637 accordingly. This means that the C<set> passed to C<fn>
3638 will not have any existentially quantified variables, but that
3639 the dimensions of the sets may be different for different
3640 invocations of C<fn>.
3642 To iterate over all terms in a quasipolynomial,
3645 int isl_qpolynomial_foreach_term(
3646 __isl_keep isl_qpolynomial *qp,
3647 int (*fn)(__isl_take isl_term *term,
3648 void *user), void *user);
3650 The terms themselves can be inspected and freed using
3653 unsigned isl_term_dim(__isl_keep isl_term *term,
3654 enum isl_dim_type type);
3655 void isl_term_get_num(__isl_keep isl_term *term,
3657 void isl_term_get_den(__isl_keep isl_term *term,
3659 int isl_term_get_exp(__isl_keep isl_term *term,
3660 enum isl_dim_type type, unsigned pos);
3661 __isl_give isl_aff *isl_term_get_div(
3662 __isl_keep isl_term *term, unsigned pos);
3663 void isl_term_free(__isl_take isl_term *term);
3665 Each term is a product of parameters, set variables and
3666 integer divisions. The function C<isl_term_get_exp>
3667 returns the exponent of a given dimensions in the given term.
3668 The C<isl_int>s in the arguments of C<isl_term_get_num>
3669 and C<isl_term_get_den> need to have been initialized
3670 using C<isl_int_init> before calling these functions.
3672 =head3 Properties of (Piecewise) Quasipolynomials
3674 To check whether a quasipolynomial is actually a constant,
3675 use the following function.
3677 int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp,
3678 isl_int *n, isl_int *d);
3680 If C<qp> is a constant and if C<n> and C<d> are not C<NULL>
3681 then the numerator and denominator of the constant
3682 are returned in C<*n> and C<*d>, respectively.
3684 To check whether two union piecewise quasipolynomials are
3685 obviously equal, use
3687 int isl_union_pw_qpolynomial_plain_is_equal(
3688 __isl_keep isl_union_pw_qpolynomial *upwqp1,
3689 __isl_keep isl_union_pw_qpolynomial *upwqp2);
3691 =head3 Operations on (Piecewise) Quasipolynomials
3693 __isl_give isl_qpolynomial *isl_qpolynomial_scale(
3694 __isl_take isl_qpolynomial *qp, isl_int v);
3695 __isl_give isl_qpolynomial *isl_qpolynomial_neg(
3696 __isl_take isl_qpolynomial *qp);
3697 __isl_give isl_qpolynomial *isl_qpolynomial_add(
3698 __isl_take isl_qpolynomial *qp1,
3699 __isl_take isl_qpolynomial *qp2);
3700 __isl_give isl_qpolynomial *isl_qpolynomial_sub(
3701 __isl_take isl_qpolynomial *qp1,
3702 __isl_take isl_qpolynomial *qp2);
3703 __isl_give isl_qpolynomial *isl_qpolynomial_mul(
3704 __isl_take isl_qpolynomial *qp1,
3705 __isl_take isl_qpolynomial *qp2);
3706 __isl_give isl_qpolynomial *isl_qpolynomial_pow(
3707 __isl_take isl_qpolynomial *qp, unsigned exponent);
3709 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add(
3710 __isl_take isl_pw_qpolynomial *pwqp1,
3711 __isl_take isl_pw_qpolynomial *pwqp2);
3712 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_sub(
3713 __isl_take isl_pw_qpolynomial *pwqp1,
3714 __isl_take isl_pw_qpolynomial *pwqp2);
3715 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_disjoint(
3716 __isl_take isl_pw_qpolynomial *pwqp1,
3717 __isl_take isl_pw_qpolynomial *pwqp2);
3718 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_neg(
3719 __isl_take isl_pw_qpolynomial *pwqp);
3720 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
3721 __isl_take isl_pw_qpolynomial *pwqp1,
3722 __isl_take isl_pw_qpolynomial *pwqp2);
3723 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_pow(
3724 __isl_take isl_pw_qpolynomial *pwqp, unsigned exponent);
3726 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add(
3727 __isl_take isl_union_pw_qpolynomial *upwqp1,
3728 __isl_take isl_union_pw_qpolynomial *upwqp2);
3729 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_sub(
3730 __isl_take isl_union_pw_qpolynomial *upwqp1,
3731 __isl_take isl_union_pw_qpolynomial *upwqp2);
3732 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul(
3733 __isl_take isl_union_pw_qpolynomial *upwqp1,
3734 __isl_take isl_union_pw_qpolynomial *upwqp2);
3736 __isl_give isl_qpolynomial *isl_pw_qpolynomial_eval(
3737 __isl_take isl_pw_qpolynomial *pwqp,
3738 __isl_take isl_point *pnt);
3740 __isl_give isl_qpolynomial *isl_union_pw_qpolynomial_eval(
3741 __isl_take isl_union_pw_qpolynomial *upwqp,
3742 __isl_take isl_point *pnt);
3744 __isl_give isl_set *isl_pw_qpolynomial_domain(
3745 __isl_take isl_pw_qpolynomial *pwqp);
3746 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_intersect_domain(
3747 __isl_take isl_pw_qpolynomial *pwpq,
3748 __isl_take isl_set *set);
3749 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_intersect_params(
3750 __isl_take isl_pw_qpolynomial *pwpq,
3751 __isl_take isl_set *set);
3753 __isl_give isl_union_set *isl_union_pw_qpolynomial_domain(
3754 __isl_take isl_union_pw_qpolynomial *upwqp);
3755 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_intersect_domain(
3756 __isl_take isl_union_pw_qpolynomial *upwpq,
3757 __isl_take isl_union_set *uset);
3758 __isl_give isl_union_pw_qpolynomial *
3759 isl_union_pw_qpolynomial_intersect_params(
3760 __isl_take isl_union_pw_qpolynomial *upwpq,
3761 __isl_take isl_set *set);
3763 __isl_give isl_qpolynomial *isl_qpolynomial_align_params(
3764 __isl_take isl_qpolynomial *qp,
3765 __isl_take isl_space *model);
3767 __isl_give isl_qpolynomial *isl_qpolynomial_project_domain_on_params(
3768 __isl_take isl_qpolynomial *qp);
3769 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_project_domain_on_params(
3770 __isl_take isl_pw_qpolynomial *pwqp);
3772 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_coalesce(
3773 __isl_take isl_union_pw_qpolynomial *upwqp);
3775 __isl_give isl_qpolynomial *isl_qpolynomial_gist_params(
3776 __isl_take isl_qpolynomial *qp,
3777 __isl_take isl_set *context);
3778 __isl_give isl_qpolynomial *isl_qpolynomial_gist(
3779 __isl_take isl_qpolynomial *qp,
3780 __isl_take isl_set *context);
3782 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist_params(
3783 __isl_take isl_pw_qpolynomial *pwqp,
3784 __isl_take isl_set *context);
3785 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist(
3786 __isl_take isl_pw_qpolynomial *pwqp,
3787 __isl_take isl_set *context);
3789 __isl_give isl_union_pw_qpolynomial *
3790 isl_union_pw_qpolynomial_gist_params(
3791 __isl_take isl_union_pw_qpolynomial *upwqp,
3792 __isl_take isl_set *context);
3793 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_gist(
3794 __isl_take isl_union_pw_qpolynomial *upwqp,
3795 __isl_take isl_union_set *context);
3797 The gist operation applies the gist operation to each of
3798 the cells in the domain of the input piecewise quasipolynomial.
3799 The context is also exploited
3800 to simplify the quasipolynomials associated to each cell.
3802 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial(
3803 __isl_take isl_pw_qpolynomial *pwqp, int sign);
3804 __isl_give isl_union_pw_qpolynomial *
3805 isl_union_pw_qpolynomial_to_polynomial(
3806 __isl_take isl_union_pw_qpolynomial *upwqp, int sign);
3808 Approximate each quasipolynomial by a polynomial. If C<sign> is positive,
3809 the polynomial will be an overapproximation. If C<sign> is negative,
3810 it will be an underapproximation. If C<sign> is zero, the approximation
3811 will lie somewhere in between.
3813 =head2 Bounds on Piecewise Quasipolynomials and Piecewise Quasipolynomial Reductions
3815 A piecewise quasipolynomial reduction is a piecewise
3816 reduction (or fold) of quasipolynomials.
3817 In particular, the reduction can be maximum or a minimum.
3818 The objects are mainly used to represent the result of
3819 an upper or lower bound on a quasipolynomial over its domain,
3820 i.e., as the result of the following function.
3822 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_bound(
3823 __isl_take isl_pw_qpolynomial *pwqp,
3824 enum isl_fold type, int *tight);
3826 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_bound(
3827 __isl_take isl_union_pw_qpolynomial *upwqp,
3828 enum isl_fold type, int *tight);
3830 The C<type> argument may be either C<isl_fold_min> or C<isl_fold_max>.
3831 If C<tight> is not C<NULL>, then C<*tight> is set to C<1>
3832 is the returned bound is known be tight, i.e., for each value
3833 of the parameters there is at least
3834 one element in the domain that reaches the bound.
3835 If the domain of C<pwqp> is not wrapping, then the bound is computed
3836 over all elements in that domain and the result has a purely parametric
3837 domain. If the domain of C<pwqp> is wrapping, then the bound is
3838 computed over the range of the wrapped relation. The domain of the
3839 wrapped relation becomes the domain of the result.
3841 A (piecewise) quasipolynomial reduction can be copied or freed using the
3842 following functions.
3844 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_copy(
3845 __isl_keep isl_qpolynomial_fold *fold);
3846 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_copy(
3847 __isl_keep isl_pw_qpolynomial_fold *pwf);
3848 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_copy(
3849 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
3850 void isl_qpolynomial_fold_free(
3851 __isl_take isl_qpolynomial_fold *fold);
3852 void *isl_pw_qpolynomial_fold_free(
3853 __isl_take isl_pw_qpolynomial_fold *pwf);
3854 void *isl_union_pw_qpolynomial_fold_free(
3855 __isl_take isl_union_pw_qpolynomial_fold *upwf);
3857 =head3 Printing Piecewise Quasipolynomial Reductions
3859 Piecewise quasipolynomial reductions can be printed
3860 using the following function.
3862 __isl_give isl_printer *isl_printer_print_pw_qpolynomial_fold(
3863 __isl_take isl_printer *p,
3864 __isl_keep isl_pw_qpolynomial_fold *pwf);
3865 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial_fold(
3866 __isl_take isl_printer *p,
3867 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
3869 For C<isl_printer_print_pw_qpolynomial_fold>,
3870 output format of the printer
3871 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
3872 For C<isl_printer_print_union_pw_qpolynomial_fold>,
3873 output format of the printer
3874 needs to be set to C<ISL_FORMAT_ISL>.
3875 In case of printing in C<ISL_FORMAT_C>, the user may want
3876 to set the names of all dimensions
3878 __isl_give isl_pw_qpolynomial_fold *
3879 isl_pw_qpolynomial_fold_set_dim_name(
3880 __isl_take isl_pw_qpolynomial_fold *pwf,
3881 enum isl_dim_type type, unsigned pos,
3884 =head3 Inspecting (Piecewise) Quasipolynomial Reductions
3886 To iterate over all piecewise quasipolynomial reductions in a union
3887 piecewise quasipolynomial reduction, use the following function
3889 int isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold(
3890 __isl_keep isl_union_pw_qpolynomial_fold *upwf,
3891 int (*fn)(__isl_take isl_pw_qpolynomial_fold *pwf,
3892 void *user), void *user);
3894 To iterate over the cells in a piecewise quasipolynomial reduction,
3895 use either of the following two functions
3897 int isl_pw_qpolynomial_fold_foreach_piece(
3898 __isl_keep isl_pw_qpolynomial_fold *pwf,
3899 int (*fn)(__isl_take isl_set *set,
3900 __isl_take isl_qpolynomial_fold *fold,
3901 void *user), void *user);
3902 int isl_pw_qpolynomial_fold_foreach_lifted_piece(
3903 __isl_keep isl_pw_qpolynomial_fold *pwf,
3904 int (*fn)(__isl_take isl_set *set,
3905 __isl_take isl_qpolynomial_fold *fold,
3906 void *user), void *user);
3908 See L<Inspecting (Piecewise) Quasipolynomials> for an explanation
3909 of the difference between these two functions.
3911 To iterate over all quasipolynomials in a reduction, use
3913 int isl_qpolynomial_fold_foreach_qpolynomial(
3914 __isl_keep isl_qpolynomial_fold *fold,
3915 int (*fn)(__isl_take isl_qpolynomial *qp,
3916 void *user), void *user);
3918 =head3 Properties of Piecewise Quasipolynomial Reductions
3920 To check whether two union piecewise quasipolynomial reductions are
3921 obviously equal, use
3923 int isl_union_pw_qpolynomial_fold_plain_is_equal(
3924 __isl_keep isl_union_pw_qpolynomial_fold *upwf1,
3925 __isl_keep isl_union_pw_qpolynomial_fold *upwf2);
3927 =head3 Operations on Piecewise Quasipolynomial Reductions
3929 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_scale(
3930 __isl_take isl_qpolynomial_fold *fold, isl_int v);
3932 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_add(
3933 __isl_take isl_pw_qpolynomial_fold *pwf1,
3934 __isl_take isl_pw_qpolynomial_fold *pwf2);
3936 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_fold(
3937 __isl_take isl_pw_qpolynomial_fold *pwf1,
3938 __isl_take isl_pw_qpolynomial_fold *pwf2);
3940 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_fold(
3941 __isl_take isl_union_pw_qpolynomial_fold *upwf1,
3942 __isl_take isl_union_pw_qpolynomial_fold *upwf2);
3944 __isl_give isl_qpolynomial *isl_pw_qpolynomial_fold_eval(
3945 __isl_take isl_pw_qpolynomial_fold *pwf,
3946 __isl_take isl_point *pnt);
3948 __isl_give isl_qpolynomial *isl_union_pw_qpolynomial_fold_eval(
3949 __isl_take isl_union_pw_qpolynomial_fold *upwf,
3950 __isl_take isl_point *pnt);
3952 __isl_give isl_pw_qpolynomial_fold *
3953 sl_pw_qpolynomial_fold_intersect_params(
3954 __isl_take isl_pw_qpolynomial_fold *pwf,
3955 __isl_take isl_set *set);
3957 __isl_give isl_union_set *isl_union_pw_qpolynomial_fold_domain(
3958 __isl_take isl_union_pw_qpolynomial_fold *upwf);
3959 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_intersect_domain(
3960 __isl_take isl_union_pw_qpolynomial_fold *upwf,
3961 __isl_take isl_union_set *uset);
3962 __isl_give isl_union_pw_qpolynomial_fold *
3963 isl_union_pw_qpolynomial_fold_intersect_params(
3964 __isl_take isl_union_pw_qpolynomial_fold *upwf,
3965 __isl_take isl_set *set);
3967 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_project_domain_on_params(
3968 __isl_take isl_pw_qpolynomial_fold *pwf);
3970 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_coalesce(
3971 __isl_take isl_pw_qpolynomial_fold *pwf);
3973 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_coalesce(
3974 __isl_take isl_union_pw_qpolynomial_fold *upwf);
3976 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist_params(
3977 __isl_take isl_qpolynomial_fold *fold,
3978 __isl_take isl_set *context);
3979 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist(
3980 __isl_take isl_qpolynomial_fold *fold,
3981 __isl_take isl_set *context);
3983 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_gist(
3984 __isl_take isl_pw_qpolynomial_fold *pwf,
3985 __isl_take isl_set *context);
3986 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_gist_params(
3987 __isl_take isl_pw_qpolynomial_fold *pwf,
3988 __isl_take isl_set *context);
3990 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_gist(
3991 __isl_take isl_union_pw_qpolynomial_fold *upwf,
3992 __isl_take isl_union_set *context);
3993 __isl_give isl_union_pw_qpolynomial_fold *
3994 isl_union_pw_qpolynomial_fold_gist_params(
3995 __isl_take isl_union_pw_qpolynomial_fold *upwf,
3996 __isl_take isl_set *context);
3998 The gist operation applies the gist operation to each of
3999 the cells in the domain of the input piecewise quasipolynomial reduction.
4000 In future, the operation will also exploit the context
4001 to simplify the quasipolynomial reductions associated to each cell.
4003 __isl_give isl_pw_qpolynomial_fold *
4004 isl_set_apply_pw_qpolynomial_fold(
4005 __isl_take isl_set *set,
4006 __isl_take isl_pw_qpolynomial_fold *pwf,
4008 __isl_give isl_pw_qpolynomial_fold *
4009 isl_map_apply_pw_qpolynomial_fold(
4010 __isl_take isl_map *map,
4011 __isl_take isl_pw_qpolynomial_fold *pwf,
4013 __isl_give isl_union_pw_qpolynomial_fold *
4014 isl_union_set_apply_union_pw_qpolynomial_fold(
4015 __isl_take isl_union_set *uset,
4016 __isl_take isl_union_pw_qpolynomial_fold *upwf,
4018 __isl_give isl_union_pw_qpolynomial_fold *
4019 isl_union_map_apply_union_pw_qpolynomial_fold(
4020 __isl_take isl_union_map *umap,
4021 __isl_take isl_union_pw_qpolynomial_fold *upwf,
4024 The functions taking a map
4025 compose the given map with the given piecewise quasipolynomial reduction.
4026 That is, compute a bound (of the same type as C<pwf> or C<upwf> itself)
4027 over all elements in the intersection of the range of the map
4028 and the domain of the piecewise quasipolynomial reduction
4029 as a function of an element in the domain of the map.
4030 The functions taking a set compute a bound over all elements in the
4031 intersection of the set and the domain of the
4032 piecewise quasipolynomial reduction.
4034 =head2 Dependence Analysis
4036 C<isl> contains specialized functionality for performing
4037 array dataflow analysis. That is, given a I<sink> access relation
4038 and a collection of possible I<source> access relations,
4039 C<isl> can compute relations that describe
4040 for each iteration of the sink access, which iteration
4041 of which of the source access relations was the last
4042 to access the same data element before the given iteration
4044 The resulting dependence relations map source iterations
4045 to the corresponding sink iterations.
4046 To compute standard flow dependences, the sink should be
4047 a read, while the sources should be writes.
4048 If any of the source accesses are marked as being I<may>
4049 accesses, then there will be a dependence from the last
4050 I<must> access B<and> from any I<may> access that follows
4051 this last I<must> access.
4052 In particular, if I<all> sources are I<may> accesses,
4053 then memory based dependence analysis is performed.
4054 If, on the other hand, all sources are I<must> accesses,
4055 then value based dependence analysis is performed.
4057 #include <isl/flow.h>
4059 typedef int (*isl_access_level_before)(void *first, void *second);
4061 __isl_give isl_access_info *isl_access_info_alloc(
4062 __isl_take isl_map *sink,
4063 void *sink_user, isl_access_level_before fn,
4065 __isl_give isl_access_info *isl_access_info_add_source(
4066 __isl_take isl_access_info *acc,
4067 __isl_take isl_map *source, int must,
4069 void isl_access_info_free(__isl_take isl_access_info *acc);
4071 __isl_give isl_flow *isl_access_info_compute_flow(
4072 __isl_take isl_access_info *acc);
4074 int isl_flow_foreach(__isl_keep isl_flow *deps,
4075 int (*fn)(__isl_take isl_map *dep, int must,
4076 void *dep_user, void *user),
4078 __isl_give isl_map *isl_flow_get_no_source(
4079 __isl_keep isl_flow *deps, int must);
4080 void isl_flow_free(__isl_take isl_flow *deps);
4082 The function C<isl_access_info_compute_flow> performs the actual
4083 dependence analysis. The other functions are used to construct
4084 the input for this function or to read off the output.
4086 The input is collected in an C<isl_access_info>, which can
4087 be created through a call to C<isl_access_info_alloc>.
4088 The arguments to this functions are the sink access relation
4089 C<sink>, a token C<sink_user> used to identify the sink
4090 access to the user, a callback function for specifying the
4091 relative order of source and sink accesses, and the number
4092 of source access relations that will be added.
4093 The callback function has type C<int (*)(void *first, void *second)>.
4094 The function is called with two user supplied tokens identifying
4095 either a source or the sink and it should return the shared nesting
4096 level and the relative order of the two accesses.
4097 In particular, let I<n> be the number of loops shared by
4098 the two accesses. If C<first> precedes C<second> textually,
4099 then the function should return I<2 * n + 1>; otherwise,
4100 it should return I<2 * n>.
4101 The sources can be added to the C<isl_access_info> by performing
4102 (at most) C<max_source> calls to C<isl_access_info_add_source>.
4103 C<must> indicates whether the source is a I<must> access
4104 or a I<may> access. Note that a multi-valued access relation
4105 should only be marked I<must> if every iteration in the domain
4106 of the relation accesses I<all> elements in its image.
4107 The C<source_user> token is again used to identify
4108 the source access. The range of the source access relation
4109 C<source> should have the same dimension as the range
4110 of the sink access relation.
4111 The C<isl_access_info_free> function should usually not be
4112 called explicitly, because it is called implicitly by
4113 C<isl_access_info_compute_flow>.
4115 The result of the dependence analysis is collected in an
4116 C<isl_flow>. There may be elements of
4117 the sink access for which no preceding source access could be
4118 found or for which all preceding sources are I<may> accesses.
4119 The relations containing these elements can be obtained through
4120 calls to C<isl_flow_get_no_source>, the first with C<must> set
4121 and the second with C<must> unset.
4122 In the case of standard flow dependence analysis,
4123 with the sink a read and the sources I<must> writes,
4124 the first relation corresponds to the reads from uninitialized
4125 array elements and the second relation is empty.
4126 The actual flow dependences can be extracted using
4127 C<isl_flow_foreach>. This function will call the user-specified
4128 callback function C<fn> for each B<non-empty> dependence between
4129 a source and the sink. The callback function is called
4130 with four arguments, the actual flow dependence relation
4131 mapping source iterations to sink iterations, a boolean that
4132 indicates whether it is a I<must> or I<may> dependence, a token
4133 identifying the source and an additional C<void *> with value
4134 equal to the third argument of the C<isl_flow_foreach> call.
4135 A dependence is marked I<must> if it originates from a I<must>
4136 source and if it is not followed by any I<may> sources.
4138 After finishing with an C<isl_flow>, the user should call
4139 C<isl_flow_free> to free all associated memory.
4141 A higher-level interface to dependence analysis is provided
4142 by the following function.
4144 #include <isl/flow.h>
4146 int isl_union_map_compute_flow(__isl_take isl_union_map *sink,
4147 __isl_take isl_union_map *must_source,
4148 __isl_take isl_union_map *may_source,
4149 __isl_take isl_union_map *schedule,
4150 __isl_give isl_union_map **must_dep,
4151 __isl_give isl_union_map **may_dep,
4152 __isl_give isl_union_map **must_no_source,
4153 __isl_give isl_union_map **may_no_source);
4155 The arrays are identified by the tuple names of the ranges
4156 of the accesses. The iteration domains by the tuple names
4157 of the domains of the accesses and of the schedule.
4158 The relative order of the iteration domains is given by the
4159 schedule. The relations returned through C<must_no_source>
4160 and C<may_no_source> are subsets of C<sink>.
4161 Any of C<must_dep>, C<may_dep>, C<must_no_source>
4162 or C<may_no_source> may be C<NULL>, but a C<NULL> value for
4163 any of the other arguments is treated as an error.
4165 =head3 Interaction with Dependence Analysis
4167 During the dependence analysis, we frequently need to perform
4168 the following operation. Given a relation between sink iterations
4169 and potential soure iterations from a particular source domain,
4170 what is the last potential source iteration corresponding to each
4171 sink iteration. It can sometimes be convenient to adjust
4172 the set of potential source iterations before or after each such operation.
4173 The prototypical example is fuzzy array dataflow analysis,
4174 where we need to analyze if, based on data-dependent constraints,
4175 the sink iteration can ever be executed without one or more of
4176 the corresponding potential source iterations being executed.
4177 If so, we can introduce extra parameters and select an unknown
4178 but fixed source iteration from the potential source iterations.
4179 To be able to perform such manipulations, C<isl> provides the following
4182 #include <isl/flow.h>
4184 typedef __isl_give isl_restriction *(*isl_access_restrict)(
4185 __isl_keep isl_map *source_map,
4186 __isl_keep isl_set *sink, void *source_user,
4188 __isl_give isl_access_info *isl_access_info_set_restrict(
4189 __isl_take isl_access_info *acc,
4190 isl_access_restrict fn, void *user);
4192 The function C<isl_access_info_set_restrict> should be called
4193 before calling C<isl_access_info_compute_flow> and registers a callback function
4194 that will be called any time C<isl> is about to compute the last
4195 potential source. The first argument is the (reverse) proto-dependence,
4196 mapping sink iterations to potential source iterations.
4197 The second argument represents the sink iterations for which
4198 we want to compute the last source iteration.
4199 The third argument is the token corresponding to the source
4200 and the final argument is the token passed to C<isl_access_info_set_restrict>.
4201 The callback is expected to return a restriction on either the input or
4202 the output of the operation computing the last potential source.
4203 If the input needs to be restricted then restrictions are needed
4204 for both the source and the sink iterations. The sink iterations
4205 and the potential source iterations will be intersected with these sets.
4206 If the output needs to be restricted then only a restriction on the source
4207 iterations is required.
4208 If any error occurs, the callback should return C<NULL>.
4209 An C<isl_restriction> object can be created and freed using the following
4212 #include <isl/flow.h>
4214 __isl_give isl_restriction *isl_restriction_input(
4215 __isl_take isl_set *source_restr,
4216 __isl_take isl_set *sink_restr);
4217 __isl_give isl_restriction *isl_restriction_output(
4218 __isl_take isl_set *source_restr);
4219 __isl_give isl_restriction *isl_restriction_none(
4220 __isl_keep isl_map *source_map);
4221 __isl_give isl_restriction *isl_restriction_empty(
4222 __isl_keep isl_map *source_map);
4223 void *isl_restriction_free(
4224 __isl_take isl_restriction *restr);
4226 C<isl_restriction_none> and C<isl_restriction_empty> are special
4227 cases of C<isl_restriction_input>. C<isl_restriction_none>
4228 is essentially equivalent to
4230 isl_restriction_input(isl_set_universe(
4231 isl_space_range(isl_map_get_space(source_map))),
4233 isl_space_domain(isl_map_get_space(source_map))));
4235 whereas C<isl_restriction_empty> is essentially equivalent to
4237 isl_restriction_input(isl_set_empty(
4238 isl_space_range(isl_map_get_space(source_map))),
4240 isl_space_domain(isl_map_get_space(source_map))));
4244 B<The functionality described in this section is fairly new
4245 and may be subject to change.>
4247 The following function can be used to compute a schedule
4248 for a union of domains.
4249 By default, the algorithm used to construct the schedule is similar
4250 to that of C<Pluto>.
4251 Alternatively, Feautrier's multi-dimensional scheduling algorithm can
4253 The generated schedule respects all C<validity> dependences.
4254 That is, all dependence distances over these dependences in the
4255 scheduled space are lexicographically positive.
4256 The default algorithm tries to minimize the dependence distances over
4257 C<proximity> dependences.
4258 Moreover, it tries to obtain sequences (bands) of schedule dimensions
4259 for groups of domains where the dependence distances have only
4260 non-negative values.
4261 When using Feautrier's algorithm, the C<proximity> dependence
4262 distances are only minimized during the extension to a
4263 full-dimensional schedule.
4265 #include <isl/schedule.h>
4266 __isl_give isl_schedule *isl_union_set_compute_schedule(
4267 __isl_take isl_union_set *domain,
4268 __isl_take isl_union_map *validity,
4269 __isl_take isl_union_map *proximity);
4270 void *isl_schedule_free(__isl_take isl_schedule *sched);
4272 A mapping from the domains to the scheduled space can be obtained
4273 from an C<isl_schedule> using the following function.
4275 __isl_give isl_union_map *isl_schedule_get_map(
4276 __isl_keep isl_schedule *sched);
4278 A representation of the schedule can be printed using
4280 __isl_give isl_printer *isl_printer_print_schedule(
4281 __isl_take isl_printer *p,
4282 __isl_keep isl_schedule *schedule);
4284 A representation of the schedule as a forest of bands can be obtained
4285 using the following function.
4287 __isl_give isl_band_list *isl_schedule_get_band_forest(
4288 __isl_keep isl_schedule *schedule);
4290 The list can be manipulated as explained in L<"Lists">.
4291 The bands inside the list can be copied and freed using the following
4294 #include <isl/band.h>
4295 __isl_give isl_band *isl_band_copy(
4296 __isl_keep isl_band *band);
4297 void *isl_band_free(__isl_take isl_band *band);
4299 Each band contains zero or more scheduling dimensions.
4300 These are referred to as the members of the band.
4301 The section of the schedule that corresponds to the band is
4302 referred to as the partial schedule of the band.
4303 For those nodes that participate in a band, the outer scheduling
4304 dimensions form the prefix schedule, while the inner scheduling
4305 dimensions form the suffix schedule.
4306 That is, if we take a cut of the band forest, then the union of
4307 the concatenations of the prefix, partial and suffix schedules of
4308 each band in the cut is equal to the entire schedule (modulo
4309 some possible padding at the end with zero scheduling dimensions).
4310 The properties of a band can be inspected using the following functions.
4312 #include <isl/band.h>
4313 isl_ctx *isl_band_get_ctx(__isl_keep isl_band *band);
4315 int isl_band_has_children(__isl_keep isl_band *band);
4316 __isl_give isl_band_list *isl_band_get_children(
4317 __isl_keep isl_band *band);
4319 __isl_give isl_union_map *isl_band_get_prefix_schedule(
4320 __isl_keep isl_band *band);
4321 __isl_give isl_union_map *isl_band_get_partial_schedule(
4322 __isl_keep isl_band *band);
4323 __isl_give isl_union_map *isl_band_get_suffix_schedule(
4324 __isl_keep isl_band *band);
4326 int isl_band_n_member(__isl_keep isl_band *band);
4327 int isl_band_member_is_zero_distance(
4328 __isl_keep isl_band *band, int pos);
4330 Note that a scheduling dimension is considered to be ``zero
4331 distance'' if it does not carry any proximity dependences
4333 That is, if the dependence distances of the proximity
4334 dependences are all zero in that direction (for fixed
4335 iterations of outer bands).
4337 A representation of the band can be printed using
4339 #include <isl/band.h>
4340 __isl_give isl_printer *isl_printer_print_band(
4341 __isl_take isl_printer *p,
4342 __isl_keep isl_band *band);
4346 #include <isl/schedule.h>
4347 int isl_options_set_schedule_max_coefficient(
4348 isl_ctx *ctx, int val);
4349 int isl_options_get_schedule_max_coefficient(
4351 int isl_options_set_schedule_max_constant_term(
4352 isl_ctx *ctx, int val);
4353 int isl_options_get_schedule_max_constant_term(
4355 int isl_options_set_schedule_maximize_band_depth(
4356 isl_ctx *ctx, int val);
4357 int isl_options_get_schedule_maximize_band_depth(
4359 int isl_options_set_schedule_outer_zero_distance(
4360 isl_ctx *ctx, int val);
4361 int isl_options_get_schedule_outer_zero_distance(
4363 int isl_options_set_schedule_split_scaled(
4364 isl_ctx *ctx, int val);
4365 int isl_options_get_schedule_split_scaled(
4367 int isl_options_set_schedule_algorithm(
4368 isl_ctx *ctx, int val);
4369 int isl_options_get_schedule_algorithm(
4375 =item * schedule_max_coefficient
4377 This option enforces that the coefficients for variable and parameter
4378 dimensions in the calculated schedule are not larger than the specified value.
4379 This option can significantly increase the speed of the scheduling calculation
4380 and may also prevent fusing of unrelated dimensions. A value of -1 means that
4381 this option does not introduce bounds on the variable or parameter
4384 =item * schedule_max_constant_term
4386 This option enforces that the constant coefficients in the calculated schedule
4387 are not larger than the maximal constant term. This option can significantly
4388 increase the speed of the scheduling calculation and may also prevent fusing of
4389 unrelated dimensions. A value of -1 means that this option does not introduce
4390 bounds on the constant coefficients.
4392 =item * schedule_maximize_band_depth
4394 If this option is set, we do not split bands at the point
4395 where we detect splitting is necessary. Instead, we
4396 backtrack and split bands as early as possible. This
4397 reduces the number of splits and maximizes the width of
4398 the bands. Wider bands give more possibilities for tiling.
4400 =item * schedule_outer_zero_distance
4402 If this option is set, then we try to construct schedules
4403 where the outermost scheduling dimension in each band
4404 results in a zero dependence distance over the proximity
4407 =item * schedule_split_scaled
4409 If this option is set, then we try to construct schedules in which the
4410 constant term is split off from the linear part if the linear parts of
4411 the scheduling rows for all nodes in the graphs have a common non-trivial
4413 The constant term is then placed in a separate band and the linear
4416 =item * schedule_algorithm
4418 Selects the scheduling algorithm to be used.
4419 Available scheduling algorithms are C<ISL_SCHEDULE_ALGORITHM_ISL>
4420 and C<ISL_SCHEDULE_ALGORITHM_FEAUTRIER>.
4424 =head2 Parametric Vertex Enumeration
4426 The parametric vertex enumeration described in this section
4427 is mainly intended to be used internally and by the C<barvinok>
4430 #include <isl/vertices.h>
4431 __isl_give isl_vertices *isl_basic_set_compute_vertices(
4432 __isl_keep isl_basic_set *bset);
4434 The function C<isl_basic_set_compute_vertices> performs the
4435 actual computation of the parametric vertices and the chamber
4436 decomposition and store the result in an C<isl_vertices> object.
4437 This information can be queried by either iterating over all
4438 the vertices or iterating over all the chambers or cells
4439 and then iterating over all vertices that are active on the chamber.
4441 int isl_vertices_foreach_vertex(
4442 __isl_keep isl_vertices *vertices,
4443 int (*fn)(__isl_take isl_vertex *vertex, void *user),
4446 int isl_vertices_foreach_cell(
4447 __isl_keep isl_vertices *vertices,
4448 int (*fn)(__isl_take isl_cell *cell, void *user),
4450 int isl_cell_foreach_vertex(__isl_keep isl_cell *cell,
4451 int (*fn)(__isl_take isl_vertex *vertex, void *user),
4454 Other operations that can be performed on an C<isl_vertices> object are
4457 isl_ctx *isl_vertices_get_ctx(
4458 __isl_keep isl_vertices *vertices);
4459 int isl_vertices_get_n_vertices(
4460 __isl_keep isl_vertices *vertices);
4461 void isl_vertices_free(__isl_take isl_vertices *vertices);
4463 Vertices can be inspected and destroyed using the following functions.
4465 isl_ctx *isl_vertex_get_ctx(__isl_keep isl_vertex *vertex);
4466 int isl_vertex_get_id(__isl_keep isl_vertex *vertex);
4467 __isl_give isl_basic_set *isl_vertex_get_domain(
4468 __isl_keep isl_vertex *vertex);
4469 __isl_give isl_basic_set *isl_vertex_get_expr(
4470 __isl_keep isl_vertex *vertex);
4471 void isl_vertex_free(__isl_take isl_vertex *vertex);
4473 C<isl_vertex_get_expr> returns a singleton parametric set describing
4474 the vertex, while C<isl_vertex_get_domain> returns the activity domain
4476 Note that C<isl_vertex_get_domain> and C<isl_vertex_get_expr> return
4477 B<rational> basic sets, so they should mainly be used for inspection
4478 and should not be mixed with integer sets.
4480 Chambers can be inspected and destroyed using the following functions.
4482 isl_ctx *isl_cell_get_ctx(__isl_keep isl_cell *cell);
4483 __isl_give isl_basic_set *isl_cell_get_domain(
4484 __isl_keep isl_cell *cell);
4485 void isl_cell_free(__isl_take isl_cell *cell);
4489 Although C<isl> is mainly meant to be used as a library,
4490 it also contains some basic applications that use some
4491 of the functionality of C<isl>.
4492 The input may be specified in either the L<isl format>
4493 or the L<PolyLib format>.
4495 =head2 C<isl_polyhedron_sample>
4497 C<isl_polyhedron_sample> takes a polyhedron as input and prints
4498 an integer element of the polyhedron, if there is any.
4499 The first column in the output is the denominator and is always
4500 equal to 1. If the polyhedron contains no integer points,
4501 then a vector of length zero is printed.
4505 C<isl_pip> takes the same input as the C<example> program
4506 from the C<piplib> distribution, i.e., a set of constraints
4507 on the parameters, a line containing only -1 and finally a set
4508 of constraints on a parametric polyhedron.
4509 The coefficients of the parameters appear in the last columns
4510 (but before the final constant column).
4511 The output is the lexicographic minimum of the parametric polyhedron.
4512 As C<isl> currently does not have its own output format, the output
4513 is just a dump of the internal state.
4515 =head2 C<isl_polyhedron_minimize>
4517 C<isl_polyhedron_minimize> computes the minimum of some linear
4518 or affine objective function over the integer points in a polyhedron.
4519 If an affine objective function
4520 is given, then the constant should appear in the last column.
4522 =head2 C<isl_polytope_scan>
4524 Given a polytope, C<isl_polytope_scan> prints
4525 all integer points in the polytope.