3 C<isl> is a thread-safe C library for manipulating
4 sets and relations of integer points bounded by affine constraints.
5 The descriptions of the sets and relations may involve
6 both parameters and existentially quantified variables.
7 All computations are performed in exact integer arithmetic
9 The C<isl> library offers functionality that is similar
10 to that offered by the C<Omega> and C<Omega+> libraries,
11 but the underlying algorithms are in most cases completely different.
13 The library is by no means complete and some fairly basic
14 functionality is still missing.
15 Still, even in its current form, the library has been successfully
16 used as a backend polyhedral library for the polyhedral
17 scanner C<CLooG> and as part of an equivalence checker of
18 static affine programs.
19 For bug reports, feature requests and questions,
20 visit the the discussion group at
21 L<http://groups.google.com/group/isl-development>.
23 =head2 Backward Incompatible Changes
25 =head3 Changes since isl-0.02
29 =item * The old printing functions have been deprecated
30 and replaced by C<isl_printer> functions, see L<Input and Output>.
32 =item * Most functions related to dependence analysis have acquired
33 an extra C<must> argument. To obtain the old behavior, this argument
34 should be given the value 1. See L<Dependence Analysis>.
38 =head3 Changes since isl-0.03
42 =item * The function C<isl_pw_qpolynomial_fold_add> has been
43 renamed to C<isl_pw_qpolynomial_fold_fold>.
44 Similarly, C<isl_union_pw_qpolynomial_fold_add> has been
45 renamed to C<isl_union_pw_qpolynomial_fold_fold>.
49 =head3 Changes since isl-0.04
53 =item * All header files have been renamed from C<isl_header.h>
58 =head3 Changes since isl-0.05
62 =item * The functions C<isl_printer_print_basic_set> and
63 C<isl_printer_print_basic_map> no longer print a newline.
65 =item * The functions C<isl_flow_get_no_source>
66 and C<isl_union_map_compute_flow> now return
67 the accesses for which no source could be found instead of
68 the iterations where those accesses occur.
70 =item * The functions C<isl_basic_map_identity> and
71 C<isl_map_identity> now take the dimension specification
72 of a B<map> as input. An old call
73 C<isl_map_identity(dim)> can be rewritten to
74 C<isl_map_identity(isl_dim_map_from_set(dim))>.
76 =item * The function C<isl_map_power> no longer takes
77 a parameter position as input. Instead, the exponent
78 is now expressed as the domain of the resulting relation.
82 =head3 Changes since isl-0.06
86 =item * The format of C<isl_printer_print_qpolynomial>'s
87 C<ISL_FORMAT_ISL> output has changed.
88 Use C<ISL_FORMAT_C> to obtain the old output.
90 =item * The C<*_fast_*> functions have been renamed to C<*_plain_*>.
91 Some of the old names have been kept for backward compatibility,
92 but they will be removed in the future.
96 =head3 Changes since isl-0.07
100 =item * The function C<isl_pw_aff_max> has been renamed to
101 C<isl_pw_aff_union_max>.
107 The source of C<isl> can be obtained either as a tarball
108 or from the git repository. Both are available from
109 L<http://freshmeat.net/projects/isl/>.
110 The installation process depends on how you obtained
113 =head2 Installation from the git repository
117 =item 1 Clone or update the repository
119 The first time the source is obtained, you need to clone
122 git clone git://repo.or.cz/isl.git
124 To obtain updates, you need to pull in the latest changes
128 =item 2 Generate C<configure>
134 After performing the above steps, continue
135 with the L<Common installation instructions>.
137 =head2 Common installation instructions
141 =item 1 Obtain C<GMP>
143 Building C<isl> requires C<GMP>, including its headers files.
144 Your distribution may not provide these header files by default
145 and you may need to install a package called C<gmp-devel> or something
146 similar. Alternatively, C<GMP> can be built from
147 source, available from L<http://gmplib.org/>.
151 C<isl> uses the standard C<autoconf> C<configure> script.
156 optionally followed by some configure options.
157 A complete list of options can be obtained by running
161 Below we discuss some of the more common options.
163 C<isl> can optionally use C<piplib>, but no
164 C<piplib> functionality is currently used by default.
165 The C<--with-piplib> option can
166 be used to specify which C<piplib>
167 library to use, either an installed version (C<system>),
168 an externally built version (C<build>)
169 or no version (C<no>). The option C<build> is mostly useful
170 in C<configure> scripts of larger projects that bundle both C<isl>
177 Installation prefix for C<isl>
179 =item C<--with-gmp-prefix>
181 Installation prefix for C<GMP> (architecture-independent files).
183 =item C<--with-gmp-exec-prefix>
185 Installation prefix for C<GMP> (architecture-dependent files).
187 =item C<--with-piplib>
189 Which copy of C<piplib> to use, either C<no> (default), C<system> or C<build>.
191 =item C<--with-piplib-prefix>
193 Installation prefix for C<system> C<piplib> (architecture-independent files).
195 =item C<--with-piplib-exec-prefix>
197 Installation prefix for C<system> C<piplib> (architecture-dependent files).
199 =item C<--with-piplib-builddir>
201 Location where C<build> C<piplib> was built.
209 =item 4 Install (optional)
217 =head2 Initialization
219 All manipulations of integer sets and relations occur within
220 the context of an C<isl_ctx>.
221 A given C<isl_ctx> can only be used within a single thread.
222 All arguments of a function are required to have been allocated
223 within the same context.
224 There are currently no functions available for moving an object
225 from one C<isl_ctx> to another C<isl_ctx>. This means that
226 there is currently no way of safely moving an object from one
227 thread to another, unless the whole C<isl_ctx> is moved.
229 An C<isl_ctx> can be allocated using C<isl_ctx_alloc> and
230 freed using C<isl_ctx_free>.
231 All objects allocated within an C<isl_ctx> should be freed
232 before the C<isl_ctx> itself is freed.
234 isl_ctx *isl_ctx_alloc();
235 void isl_ctx_free(isl_ctx *ctx);
239 All operations on integers, mainly the coefficients
240 of the constraints describing the sets and relations,
241 are performed in exact integer arithmetic using C<GMP>.
242 However, to allow future versions of C<isl> to optionally
243 support fixed integer arithmetic, all calls to C<GMP>
244 are wrapped inside C<isl> specific macros.
245 The basic type is C<isl_int> and the operations below
246 are available on this type.
247 The meanings of these operations are essentially the same
248 as their C<GMP> C<mpz_> counterparts.
249 As always with C<GMP> types, C<isl_int>s need to be
250 initialized with C<isl_int_init> before they can be used
251 and they need to be released with C<isl_int_clear>
253 The user should not assume that an C<isl_int> is represented
254 as a C<mpz_t>, but should instead explicitly convert between
255 C<mpz_t>s and C<isl_int>s using C<isl_int_set_gmp> and
256 C<isl_int_get_gmp> whenever a C<mpz_t> is required.
260 =item isl_int_init(i)
262 =item isl_int_clear(i)
264 =item isl_int_set(r,i)
266 =item isl_int_set_si(r,i)
268 =item isl_int_set_gmp(r,g)
270 =item isl_int_get_gmp(i,g)
272 =item isl_int_abs(r,i)
274 =item isl_int_neg(r,i)
276 =item isl_int_swap(i,j)
278 =item isl_int_swap_or_set(i,j)
280 =item isl_int_add_ui(r,i,j)
282 =item isl_int_sub_ui(r,i,j)
284 =item isl_int_add(r,i,j)
286 =item isl_int_sub(r,i,j)
288 =item isl_int_mul(r,i,j)
290 =item isl_int_mul_ui(r,i,j)
292 =item isl_int_addmul(r,i,j)
294 =item isl_int_submul(r,i,j)
296 =item isl_int_gcd(r,i,j)
298 =item isl_int_lcm(r,i,j)
300 =item isl_int_divexact(r,i,j)
302 =item isl_int_cdiv_q(r,i,j)
304 =item isl_int_fdiv_q(r,i,j)
306 =item isl_int_fdiv_r(r,i,j)
308 =item isl_int_fdiv_q_ui(r,i,j)
310 =item isl_int_read(r,s)
312 =item isl_int_print(out,i,width)
316 =item isl_int_cmp(i,j)
318 =item isl_int_cmp_si(i,si)
320 =item isl_int_eq(i,j)
322 =item isl_int_ne(i,j)
324 =item isl_int_lt(i,j)
326 =item isl_int_le(i,j)
328 =item isl_int_gt(i,j)
330 =item isl_int_ge(i,j)
332 =item isl_int_abs_eq(i,j)
334 =item isl_int_abs_ne(i,j)
336 =item isl_int_abs_lt(i,j)
338 =item isl_int_abs_gt(i,j)
340 =item isl_int_abs_ge(i,j)
342 =item isl_int_is_zero(i)
344 =item isl_int_is_one(i)
346 =item isl_int_is_negone(i)
348 =item isl_int_is_pos(i)
350 =item isl_int_is_neg(i)
352 =item isl_int_is_nonpos(i)
354 =item isl_int_is_nonneg(i)
356 =item isl_int_is_divisible_by(i,j)
360 =head2 Sets and Relations
362 C<isl> uses six types of objects for representing sets and relations,
363 C<isl_basic_set>, C<isl_basic_map>, C<isl_set>, C<isl_map>,
364 C<isl_union_set> and C<isl_union_map>.
365 C<isl_basic_set> and C<isl_basic_map> represent sets and relations that
366 can be described as a conjunction of affine constraints, while
367 C<isl_set> and C<isl_map> represent unions of
368 C<isl_basic_set>s and C<isl_basic_map>s, respectively.
369 However, all C<isl_basic_set>s or C<isl_basic_map>s in the union need
370 to have the same dimension. C<isl_union_set>s and C<isl_union_map>s
371 represent unions of C<isl_set>s or C<isl_map>s of I<different> dimensions,
372 where dimensions with different space names
373 (see L<Dimension Specifications>) are considered different as well.
374 The difference between sets and relations (maps) is that sets have
375 one set of variables, while relations have two sets of variables,
376 input variables and output variables.
378 =head2 Memory Management
380 Since a high-level operation on sets and/or relations usually involves
381 several substeps and since the user is usually not interested in
382 the intermediate results, most functions that return a new object
383 will also release all the objects passed as arguments.
384 If the user still wants to use one or more of these arguments
385 after the function call, she should pass along a copy of the
386 object rather than the object itself.
387 The user is then responsible for making sure that the original
388 object gets used somewhere else or is explicitly freed.
390 The arguments and return values of all documented functions are
391 annotated to make clear which arguments are released and which
392 arguments are preserved. In particular, the following annotations
399 C<__isl_give> means that a new object is returned.
400 The user should make sure that the returned pointer is
401 used exactly once as a value for an C<__isl_take> argument.
402 In between, it can be used as a value for as many
403 C<__isl_keep> arguments as the user likes.
404 There is one exception, and that is the case where the
405 pointer returned is C<NULL>. Is this case, the user
406 is free to use it as an C<__isl_take> argument or not.
410 C<__isl_take> means that the object the argument points to
411 is taken over by the function and may no longer be used
412 by the user as an argument to any other function.
413 The pointer value must be one returned by a function
414 returning an C<__isl_give> pointer.
415 If the user passes in a C<NULL> value, then this will
416 be treated as an error in the sense that the function will
417 not perform its usual operation. However, it will still
418 make sure that all the other C<__isl_take> arguments
423 C<__isl_keep> means that the function will only use the object
424 temporarily. After the function has finished, the user
425 can still use it as an argument to other functions.
426 A C<NULL> value will be treated in the same way as
427 a C<NULL> value for an C<__isl_take> argument.
433 Identifiers are used to identify both individual dimensions
434 and tuples of dimensions. They consist of a name and an optional
435 pointer. Identifiers with the same name but different pointer values
436 are considered to be distinct.
437 Identifiers can be constructed, copied, freed, inspected and printed
438 using the following functions.
441 __isl_give isl_id *isl_id_alloc(isl_ctx *ctx,
442 __isl_keep const char *name, void *user);
443 __isl_give isl_id *isl_id_copy(isl_id *id);
444 void *isl_id_free(__isl_take isl_id *id);
446 isl_ctx *isl_id_get_ctx(__isl_keep isl_id *id);
447 void *isl_id_get_user(__isl_keep isl_id *id);
448 __isl_keep const char *isl_id_get_name(__isl_keep isl_id *id);
450 __isl_give isl_printer *isl_printer_print_id(
451 __isl_take isl_printer *p, __isl_keep isl_id *id);
453 Note that C<isl_id_get_name> returns a pointer to some internal
454 data structure, so the result can only be used while the
455 corresponding C<isl_id> is alive.
457 =head2 Dimension Specifications
459 Whenever a new set or relation is created from scratch,
460 its dimension needs to be specified using an C<isl_dim>.
463 __isl_give isl_dim *isl_dim_alloc(isl_ctx *ctx,
464 unsigned nparam, unsigned n_in, unsigned n_out);
465 __isl_give isl_dim *isl_dim_set_alloc(isl_ctx *ctx,
466 unsigned nparam, unsigned dim);
467 __isl_give isl_dim *isl_dim_copy(__isl_keep isl_dim *dim);
468 void isl_dim_free(__isl_take isl_dim *dim);
469 unsigned isl_dim_size(__isl_keep isl_dim *dim,
470 enum isl_dim_type type);
472 The dimension specification used for creating a set
473 needs to be created using C<isl_dim_set_alloc>, while
474 that for creating a relation
475 needs to be created using C<isl_dim_alloc>.
476 C<isl_dim_size> can be used
477 to find out the number of dimensions of each type in
478 a dimension specification, where type may be
479 C<isl_dim_param>, C<isl_dim_in> (only for relations),
480 C<isl_dim_out> (only for relations), C<isl_dim_set>
481 (only for sets) or C<isl_dim_all>.
483 It is often useful to create objects that live in the
484 same space as some other object. This can be accomplished
485 by creating the new objects
486 (see L<Creating New Sets and Relations> or
487 L<Creating New (Piecewise) Quasipolynomials>) based on the dimension
488 specification of the original object.
491 __isl_give isl_dim *isl_basic_set_get_dim(
492 __isl_keep isl_basic_set *bset);
493 __isl_give isl_dim *isl_set_get_dim(__isl_keep isl_set *set);
495 #include <isl/union_set.h>
496 __isl_give isl_dim *isl_union_set_get_dim(
497 __isl_keep isl_union_set *uset);
500 __isl_give isl_dim *isl_basic_map_get_dim(
501 __isl_keep isl_basic_map *bmap);
502 __isl_give isl_dim *isl_map_get_dim(__isl_keep isl_map *map);
504 #include <isl/union_map.h>
505 __isl_give isl_dim *isl_union_map_get_dim(
506 __isl_keep isl_union_map *umap);
508 #include <isl/constraint.h>
509 __isl_give isl_dim *isl_constraint_get_dim(
510 __isl_keep isl_constraint *constraint);
512 #include <isl/polynomial.h>
513 __isl_give isl_dim *isl_qpolynomial_get_dim(
514 __isl_keep isl_qpolynomial *qp);
515 __isl_give isl_dim *isl_qpolynomial_fold_get_dim(
516 __isl_keep isl_qpolynomial_fold *fold);
517 __isl_give isl_dim *isl_pw_qpolynomial_get_dim(
518 __isl_keep isl_pw_qpolynomial *pwqp);
519 __isl_give isl_dim *isl_union_pw_qpolynomial_get_dim(
520 __isl_keep isl_union_pw_qpolynomial *upwqp);
521 __isl_give isl_dim *isl_union_pw_qpolynomial_fold_get_dim(
522 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
525 __isl_give isl_dim *isl_aff_get_dim(
526 __isl_keep isl_aff *aff);
527 __isl_give isl_dim *isl_pw_aff_get_dim(
528 __isl_keep isl_pw_aff *pwaff);
530 #include <isl/point.h>
531 __isl_give isl_dim *isl_point_get_dim(
532 __isl_keep isl_point *pnt);
534 The identifiers or names of the individual dimensions may be set or read off
535 using the following functions.
538 __isl_give isl_dim *isl_dim_set_dim_id(
539 __isl_take isl_dim *dim,
540 enum isl_dim_type type, unsigned pos,
541 __isl_take isl_id *id);
542 __isl_give isl_id *isl_dim_get_dim_id(
543 __isl_keep isl_dim *dim,
544 enum isl_dim_type type, unsigned pos);
545 __isl_give isl_dim *isl_dim_set_name(__isl_take isl_dim *dim,
546 enum isl_dim_type type, unsigned pos,
547 __isl_keep const char *name);
548 __isl_keep const char *isl_dim_get_name(__isl_keep isl_dim *dim,
549 enum isl_dim_type type, unsigned pos);
551 Note that C<isl_dim_get_name> returns a pointer to some internal
552 data structure, so the result can only be used while the
553 corresponding C<isl_dim> is alive.
554 Also note that every function that operates on two sets or relations
555 requires that both arguments have the same parameters. This also
556 means that if one of the arguments has named parameters, then the
557 other needs to have named parameters too and the names need to match.
558 Pairs of C<isl_set>, C<isl_map>, C<isl_union_set> and/or C<isl_union_map>
559 arguments may have different parameters (as long as they are named),
560 in which case the result will have as parameters the union of the parameters of
563 Given the identifier of a dimension (typically a parameter),
564 its position can be obtained from the following function.
567 int isl_dim_find_dim_by_id(__isl_keep isl_dim *dim,
568 enum isl_dim_type type, __isl_keep isl_id *id);
570 The identifiers or names of entire spaces may be set or read off
571 using the following functions.
574 __isl_give isl_dim *isl_dim_set_tuple_id(
575 __isl_take isl_dim *dim,
576 enum isl_dim_type type, __isl_take isl_id *id);
577 __isl_give isl_dim *isl_dim_reset_tuple_id(
578 __isl_take isl_dim *dim, enum isl_dim_type type);
579 __isl_give isl_id *isl_dim_get_tuple_id(
580 __isl_keep isl_dim *dim, enum isl_dim_type type);
581 __isl_give isl_dim *isl_dim_set_tuple_name(
582 __isl_take isl_dim *dim,
583 enum isl_dim_type type, const char *s);
584 const char *isl_dim_get_tuple_name(__isl_keep isl_dim *dim,
585 enum isl_dim_type type);
587 The C<dim> argument needs to be one of C<isl_dim_in>, C<isl_dim_out>
588 or C<isl_dim_set>. As with C<isl_dim_get_name>,
589 the C<isl_dim_get_tuple_name> function returns a pointer to some internal
591 Binary operations require the corresponding spaces of their arguments
592 to have the same name.
594 Spaces can be nested. In particular, the domain of a set or
595 the domain or range of a relation can be a nested relation.
596 The following functions can be used to construct and deconstruct
597 such nested dimension specifications.
600 int isl_dim_is_wrapping(__isl_keep isl_dim *dim);
601 __isl_give isl_dim *isl_dim_wrap(__isl_take isl_dim *dim);
602 __isl_give isl_dim *isl_dim_unwrap(__isl_take isl_dim *dim);
604 The input to C<isl_dim_is_wrapping> and C<isl_dim_unwrap> should
605 be the dimension specification of a set, while that of
606 C<isl_dim_wrap> should be the dimension specification of a relation.
607 Conversely, the output of C<isl_dim_unwrap> is the dimension specification
608 of a relation, while that of C<isl_dim_wrap> is the dimension specification
611 Dimension specifications can be created from other dimension
612 specifications using the following functions.
614 __isl_give isl_dim *isl_dim_domain(__isl_take isl_dim *dim);
615 __isl_give isl_dim *isl_dim_from_domain(__isl_take isl_dim *dim);
616 __isl_give isl_dim *isl_dim_range(__isl_take isl_dim *dim);
617 __isl_give isl_dim *isl_dim_from_range(__isl_take isl_dim *dim);
618 __isl_give isl_dim *isl_dim_reverse(__isl_take isl_dim *dim);
619 __isl_give isl_dim *isl_dim_join(__isl_take isl_dim *left,
620 __isl_take isl_dim *right);
621 __isl_give isl_dim *isl_dim_align_params(
622 __isl_take isl_dim *dim1, __isl_take isl_dim *dim2)
623 __isl_give isl_dim *isl_dim_insert(__isl_take isl_dim *dim,
624 enum isl_dim_type type, unsigned pos, unsigned n);
625 __isl_give isl_dim *isl_dim_add(__isl_take isl_dim *dim,
626 enum isl_dim_type type, unsigned n);
627 __isl_give isl_dim *isl_dim_drop(__isl_take isl_dim *dim,
628 enum isl_dim_type type, unsigned first, unsigned n);
629 __isl_give isl_dim *isl_dim_map_from_set(
630 __isl_take isl_dim *dim);
631 __isl_give isl_dim *isl_dim_zip(__isl_take isl_dim *dim);
633 Note that if dimensions are added or removed from a space, then
634 the name and the internal structure are lost.
638 A local space is essentially a dimension specification with
639 zero or more existentially quantified variables.
640 The local space of a basic set or relation can be obtained
641 using the following functions.
644 __isl_give isl_local_space *isl_basic_set_get_local_space(
645 __isl_keep isl_basic_set *bset);
648 __isl_give isl_local_space *isl_basic_map_get_local_space(
649 __isl_keep isl_basic_map *bmap);
651 A new local space can be created from a dimension specification using
653 #include <isl/local_space.h>
654 __isl_give isl_local_space *isl_local_space_from_dim(
655 __isl_take isl_dim *dim);
657 They can be inspected, copied and freed using the following functions.
659 #include <isl/local_space.h>
660 isl_ctx *isl_local_space_get_ctx(
661 __isl_keep isl_local_space *ls);
662 int isl_local_space_dim(__isl_keep isl_local_space *ls,
663 enum isl_dim_type type);
664 const char *isl_local_space_get_dim_name(
665 __isl_keep isl_local_space *ls,
666 enum isl_dim_type type, unsigned pos);
667 __isl_give isl_local_space *isl_local_space_set_dim_name(
668 __isl_take isl_local_space *ls,
669 enum isl_dim_type type, unsigned pos, const char *s);
670 __isl_give isl_dim *isl_local_space_get_dim(
671 __isl_keep isl_local_space *ls);
672 __isl_give isl_div *isl_local_space_get_div(
673 __isl_keep isl_local_space *ls, int pos);
674 __isl_give isl_local_space *isl_local_space_copy(
675 __isl_keep isl_local_space *ls);
676 void *isl_local_space_free(__isl_take isl_local_space *ls);
678 Two local spaces can be compared using
680 int isl_local_space_is_equal(__isl_keep isl_local_space *ls1,
681 __isl_keep isl_local_space *ls2);
683 Local spaces can be created from other local spaces
684 using the following functions.
686 __isl_give isl_local_space *isl_local_space_from_domain(
687 __isl_take isl_local_space *ls);
688 __isl_give isl_local_space *isl_local_space_add_dims(
689 __isl_take isl_local_space *ls,
690 enum isl_dim_type type, unsigned n);
691 __isl_give isl_local_space *isl_local_space_insert_dims(
692 __isl_take isl_local_space *ls,
693 enum isl_dim_type type, unsigned first, unsigned n);
694 __isl_give isl_local_space *isl_local_space_drop_dims(
695 __isl_take isl_local_space *ls,
696 enum isl_dim_type type, unsigned first, unsigned n);
698 =head2 Input and Output
700 C<isl> supports its own input/output format, which is similar
701 to the C<Omega> format, but also supports the C<PolyLib> format
706 The C<isl> format is similar to that of C<Omega>, but has a different
707 syntax for describing the parameters and allows for the definition
708 of an existentially quantified variable as the integer division
709 of an affine expression.
710 For example, the set of integers C<i> between C<0> and C<n>
711 such that C<i % 10 <= 6> can be described as
713 [n] -> { [i] : exists (a = [i/10] : 0 <= i and i <= n and
716 A set or relation can have several disjuncts, separated
717 by the keyword C<or>. Each disjunct is either a conjunction
718 of constraints or a projection (C<exists>) of a conjunction
719 of constraints. The constraints are separated by the keyword
722 =head3 C<PolyLib> format
724 If the represented set is a union, then the first line
725 contains a single number representing the number of disjuncts.
726 Otherwise, a line containing the number C<1> is optional.
728 Each disjunct is represented by a matrix of constraints.
729 The first line contains two numbers representing
730 the number of rows and columns,
731 where the number of rows is equal to the number of constraints
732 and the number of columns is equal to two plus the number of variables.
733 The following lines contain the actual rows of the constraint matrix.
734 In each row, the first column indicates whether the constraint
735 is an equality (C<0>) or inequality (C<1>). The final column
736 corresponds to the constant term.
738 If the set is parametric, then the coefficients of the parameters
739 appear in the last columns before the constant column.
740 The coefficients of any existentially quantified variables appear
741 between those of the set variables and those of the parameters.
743 =head3 Extended C<PolyLib> format
745 The extended C<PolyLib> format is nearly identical to the
746 C<PolyLib> format. The only difference is that the line
747 containing the number of rows and columns of a constraint matrix
748 also contains four additional numbers:
749 the number of output dimensions, the number of input dimensions,
750 the number of local dimensions (i.e., the number of existentially
751 quantified variables) and the number of parameters.
752 For sets, the number of ``output'' dimensions is equal
753 to the number of set dimensions, while the number of ``input''
759 __isl_give isl_basic_set *isl_basic_set_read_from_file(
760 isl_ctx *ctx, FILE *input, int nparam);
761 __isl_give isl_basic_set *isl_basic_set_read_from_str(
762 isl_ctx *ctx, const char *str, int nparam);
763 __isl_give isl_set *isl_set_read_from_file(isl_ctx *ctx,
764 FILE *input, int nparam);
765 __isl_give isl_set *isl_set_read_from_str(isl_ctx *ctx,
766 const char *str, int nparam);
769 __isl_give isl_basic_map *isl_basic_map_read_from_file(
770 isl_ctx *ctx, FILE *input, int nparam);
771 __isl_give isl_basic_map *isl_basic_map_read_from_str(
772 isl_ctx *ctx, const char *str, int nparam);
773 __isl_give isl_map *isl_map_read_from_file(
774 isl_ctx *ctx, FILE *input, int nparam);
775 __isl_give isl_map *isl_map_read_from_str(isl_ctx *ctx,
776 const char *str, int nparam);
778 #include <isl/union_set.h>
779 __isl_give isl_union_set *isl_union_set_read_from_file(
780 isl_ctx *ctx, FILE *input);
781 __isl_give isl_union_set *isl_union_set_read_from_str(
782 isl_ctx *ctx, const char *str);
784 #include <isl/union_map.h>
785 __isl_give isl_union_map *isl_union_map_read_from_file(
786 isl_ctx *ctx, FILE *input);
787 __isl_give isl_union_map *isl_union_map_read_from_str(
788 isl_ctx *ctx, const char *str);
790 The input format is autodetected and may be either the C<PolyLib> format
791 or the C<isl> format.
792 C<nparam> specifies how many of the final columns in
793 the C<PolyLib> format correspond to parameters.
794 If input is given in the C<isl> format, then the number
795 of parameters needs to be equal to C<nparam>.
796 If C<nparam> is negative, then any number of parameters
797 is accepted in the C<isl> format and zero parameters
798 are assumed in the C<PolyLib> format.
802 Before anything can be printed, an C<isl_printer> needs to
805 __isl_give isl_printer *isl_printer_to_file(isl_ctx *ctx,
807 __isl_give isl_printer *isl_printer_to_str(isl_ctx *ctx);
808 void isl_printer_free(__isl_take isl_printer *printer);
809 __isl_give char *isl_printer_get_str(
810 __isl_keep isl_printer *printer);
812 The behavior of the printer can be modified in various ways
814 __isl_give isl_printer *isl_printer_set_output_format(
815 __isl_take isl_printer *p, int output_format);
816 __isl_give isl_printer *isl_printer_set_indent(
817 __isl_take isl_printer *p, int indent);
818 __isl_give isl_printer *isl_printer_indent(
819 __isl_take isl_printer *p, int indent);
820 __isl_give isl_printer *isl_printer_set_prefix(
821 __isl_take isl_printer *p, const char *prefix);
822 __isl_give isl_printer *isl_printer_set_suffix(
823 __isl_take isl_printer *p, const char *suffix);
825 The C<output_format> may be either C<ISL_FORMAT_ISL>, C<ISL_FORMAT_OMEGA>,
826 C<ISL_FORMAT_POLYLIB>, C<ISL_FORMAT_EXT_POLYLIB> or C<ISL_FORMAT_LATEX>
827 and defaults to C<ISL_FORMAT_ISL>.
828 Each line in the output is indented by C<indent> (set by
829 C<isl_printer_set_indent>) spaces
830 (default: 0), prefixed by C<prefix> and suffixed by C<suffix>.
831 In the C<PolyLib> format output,
832 the coefficients of the existentially quantified variables
833 appear between those of the set variables and those
835 The function C<isl_printer_indent> increases the indentation
836 by the specified amount (which may be negative).
838 To actually print something, use
841 __isl_give isl_printer *isl_printer_print_basic_set(
842 __isl_take isl_printer *printer,
843 __isl_keep isl_basic_set *bset);
844 __isl_give isl_printer *isl_printer_print_set(
845 __isl_take isl_printer *printer,
846 __isl_keep isl_set *set);
849 __isl_give isl_printer *isl_printer_print_basic_map(
850 __isl_take isl_printer *printer,
851 __isl_keep isl_basic_map *bmap);
852 __isl_give isl_printer *isl_printer_print_map(
853 __isl_take isl_printer *printer,
854 __isl_keep isl_map *map);
856 #include <isl/union_set.h>
857 __isl_give isl_printer *isl_printer_print_union_set(
858 __isl_take isl_printer *p,
859 __isl_keep isl_union_set *uset);
861 #include <isl/union_map.h>
862 __isl_give isl_printer *isl_printer_print_union_map(
863 __isl_take isl_printer *p,
864 __isl_keep isl_union_map *umap);
866 When called on a file printer, the following function flushes
867 the file. When called on a string printer, the buffer is cleared.
869 __isl_give isl_printer *isl_printer_flush(
870 __isl_take isl_printer *p);
872 =head2 Creating New Sets and Relations
874 C<isl> has functions for creating some standard sets and relations.
878 =item * Empty sets and relations
880 __isl_give isl_basic_set *isl_basic_set_empty(
881 __isl_take isl_dim *dim);
882 __isl_give isl_basic_map *isl_basic_map_empty(
883 __isl_take isl_dim *dim);
884 __isl_give isl_set *isl_set_empty(
885 __isl_take isl_dim *dim);
886 __isl_give isl_map *isl_map_empty(
887 __isl_take isl_dim *dim);
888 __isl_give isl_union_set *isl_union_set_empty(
889 __isl_take isl_dim *dim);
890 __isl_give isl_union_map *isl_union_map_empty(
891 __isl_take isl_dim *dim);
893 For C<isl_union_set>s and C<isl_union_map>s, the dimensions specification
894 is only used to specify the parameters.
896 =item * Universe sets and relations
898 __isl_give isl_basic_set *isl_basic_set_universe(
899 __isl_take isl_dim *dim);
900 __isl_give isl_basic_map *isl_basic_map_universe(
901 __isl_take isl_dim *dim);
902 __isl_give isl_set *isl_set_universe(
903 __isl_take isl_dim *dim);
904 __isl_give isl_map *isl_map_universe(
905 __isl_take isl_dim *dim);
906 __isl_give isl_union_set *isl_union_set_universe(
907 __isl_take isl_union_set *uset);
908 __isl_give isl_union_map *isl_union_map_universe(
909 __isl_take isl_union_map *umap);
911 The sets and relations constructed by the functions above
912 contain all integer values, while those constructed by the
913 functions below only contain non-negative values.
915 __isl_give isl_basic_set *isl_basic_set_nat_universe(
916 __isl_take isl_dim *dim);
917 __isl_give isl_basic_map *isl_basic_map_nat_universe(
918 __isl_take isl_dim *dim);
919 __isl_give isl_set *isl_set_nat_universe(
920 __isl_take isl_dim *dim);
921 __isl_give isl_map *isl_map_nat_universe(
922 __isl_take isl_dim *dim);
924 =item * Identity relations
926 __isl_give isl_basic_map *isl_basic_map_identity(
927 __isl_take isl_dim *dim);
928 __isl_give isl_map *isl_map_identity(
929 __isl_take isl_dim *dim);
931 The number of input and output dimensions in C<dim> needs
934 =item * Lexicographic order
936 __isl_give isl_map *isl_map_lex_lt(
937 __isl_take isl_dim *set_dim);
938 __isl_give isl_map *isl_map_lex_le(
939 __isl_take isl_dim *set_dim);
940 __isl_give isl_map *isl_map_lex_gt(
941 __isl_take isl_dim *set_dim);
942 __isl_give isl_map *isl_map_lex_ge(
943 __isl_take isl_dim *set_dim);
944 __isl_give isl_map *isl_map_lex_lt_first(
945 __isl_take isl_dim *dim, unsigned n);
946 __isl_give isl_map *isl_map_lex_le_first(
947 __isl_take isl_dim *dim, unsigned n);
948 __isl_give isl_map *isl_map_lex_gt_first(
949 __isl_take isl_dim *dim, unsigned n);
950 __isl_give isl_map *isl_map_lex_ge_first(
951 __isl_take isl_dim *dim, unsigned n);
953 The first four functions take a dimension specification for a B<set>
954 and return relations that express that the elements in the domain
955 are lexicographically less
956 (C<isl_map_lex_lt>), less or equal (C<isl_map_lex_le>),
957 greater (C<isl_map_lex_gt>) or greater or equal (C<isl_map_lex_ge>)
958 than the elements in the range.
959 The last four functions take a dimension specification for a map
960 and return relations that express that the first C<n> dimensions
961 in the domain are lexicographically less
962 (C<isl_map_lex_lt_first>), less or equal (C<isl_map_lex_le_first>),
963 greater (C<isl_map_lex_gt_first>) or greater or equal (C<isl_map_lex_ge_first>)
964 than the first C<n> dimensions in the range.
968 A basic set or relation can be converted to a set or relation
969 using the following functions.
971 __isl_give isl_set *isl_set_from_basic_set(
972 __isl_take isl_basic_set *bset);
973 __isl_give isl_map *isl_map_from_basic_map(
974 __isl_take isl_basic_map *bmap);
976 Sets and relations can be converted to union sets and relations
977 using the following functions.
979 __isl_give isl_union_map *isl_union_map_from_map(
980 __isl_take isl_map *map);
981 __isl_give isl_union_set *isl_union_set_from_set(
982 __isl_take isl_set *set);
984 The inverse conversions below can only be used if the input
985 union set or relation is known to contain elements in exactly one
988 __isl_give isl_set *isl_set_from_union_set(
989 __isl_take isl_union_set *uset);
990 __isl_give isl_map *isl_map_from_union_map(
991 __isl_take isl_union_map *umap);
993 Sets and relations can be copied and freed again using the following
996 __isl_give isl_basic_set *isl_basic_set_copy(
997 __isl_keep isl_basic_set *bset);
998 __isl_give isl_set *isl_set_copy(__isl_keep isl_set *set);
999 __isl_give isl_union_set *isl_union_set_copy(
1000 __isl_keep isl_union_set *uset);
1001 __isl_give isl_basic_map *isl_basic_map_copy(
1002 __isl_keep isl_basic_map *bmap);
1003 __isl_give isl_map *isl_map_copy(__isl_keep isl_map *map);
1004 __isl_give isl_union_map *isl_union_map_copy(
1005 __isl_keep isl_union_map *umap);
1006 void isl_basic_set_free(__isl_take isl_basic_set *bset);
1007 void isl_set_free(__isl_take isl_set *set);
1008 void *isl_union_set_free(__isl_take isl_union_set *uset);
1009 void isl_basic_map_free(__isl_take isl_basic_map *bmap);
1010 void isl_map_free(__isl_take isl_map *map);
1011 void *isl_union_map_free(__isl_take isl_union_map *umap);
1013 Other sets and relations can be constructed by starting
1014 from a universe set or relation, adding equality and/or
1015 inequality constraints and then projecting out the
1016 existentially quantified variables, if any.
1017 Constraints can be constructed, manipulated and
1018 added to (or removed from) (basic) sets and relations
1019 using the following functions.
1021 #include <isl/constraint.h>
1022 __isl_give isl_constraint *isl_equality_alloc(
1023 __isl_take isl_dim *dim);
1024 __isl_give isl_constraint *isl_inequality_alloc(
1025 __isl_take isl_dim *dim);
1026 __isl_give isl_constraint *isl_constraint_set_constant(
1027 __isl_take isl_constraint *constraint, isl_int v);
1028 __isl_give isl_constraint *isl_constraint_set_constant_si(
1029 __isl_take isl_constraint *constraint, int v);
1030 __isl_give isl_constraint *isl_constraint_set_coefficient(
1031 __isl_take isl_constraint *constraint,
1032 enum isl_dim_type type, int pos, isl_int v);
1033 __isl_give isl_constraint *isl_constraint_set_coefficient_si(
1034 __isl_take isl_constraint *constraint,
1035 enum isl_dim_type type, int pos, int v);
1036 __isl_give isl_basic_map *isl_basic_map_add_constraint(
1037 __isl_take isl_basic_map *bmap,
1038 __isl_take isl_constraint *constraint);
1039 __isl_give isl_basic_set *isl_basic_set_add_constraint(
1040 __isl_take isl_basic_set *bset,
1041 __isl_take isl_constraint *constraint);
1042 __isl_give isl_map *isl_map_add_constraint(
1043 __isl_take isl_map *map,
1044 __isl_take isl_constraint *constraint);
1045 __isl_give isl_set *isl_set_add_constraint(
1046 __isl_take isl_set *set,
1047 __isl_take isl_constraint *constraint);
1048 __isl_give isl_basic_set *isl_basic_set_drop_constraint(
1049 __isl_take isl_basic_set *bset,
1050 __isl_take isl_constraint *constraint);
1052 For example, to create a set containing the even integers
1053 between 10 and 42, you would use the following code.
1058 isl_basic_set *bset;
1061 dim = isl_dim_set_alloc(ctx, 0, 2);
1062 bset = isl_basic_set_universe(isl_dim_copy(dim));
1064 c = isl_equality_alloc(isl_dim_copy(dim));
1065 isl_int_set_si(v, -1);
1066 isl_constraint_set_coefficient(c, isl_dim_set, 0, v);
1067 isl_int_set_si(v, 2);
1068 isl_constraint_set_coefficient(c, isl_dim_set, 1, v);
1069 bset = isl_basic_set_add_constraint(bset, c);
1071 c = isl_inequality_alloc(isl_dim_copy(dim));
1072 isl_int_set_si(v, -10);
1073 isl_constraint_set_constant(c, v);
1074 isl_int_set_si(v, 1);
1075 isl_constraint_set_coefficient(c, isl_dim_set, 0, v);
1076 bset = isl_basic_set_add_constraint(bset, c);
1078 c = isl_inequality_alloc(dim);
1079 isl_int_set_si(v, 42);
1080 isl_constraint_set_constant(c, v);
1081 isl_int_set_si(v, -1);
1082 isl_constraint_set_coefficient(c, isl_dim_set, 0, v);
1083 bset = isl_basic_set_add_constraint(bset, c);
1085 bset = isl_basic_set_project_out(bset, isl_dim_set, 1, 1);
1091 isl_basic_set *bset;
1092 bset = isl_basic_set_read_from_str(ctx,
1093 "{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}", -1);
1095 A basic set or relation can also be constructed from two matrices
1096 describing the equalities and the inequalities.
1098 __isl_give isl_basic_set *isl_basic_set_from_constraint_matrices(
1099 __isl_take isl_dim *dim,
1100 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
1101 enum isl_dim_type c1,
1102 enum isl_dim_type c2, enum isl_dim_type c3,
1103 enum isl_dim_type c4);
1104 __isl_give isl_basic_map *isl_basic_map_from_constraint_matrices(
1105 __isl_take isl_dim *dim,
1106 __isl_take isl_mat *eq, __isl_take isl_mat *ineq,
1107 enum isl_dim_type c1,
1108 enum isl_dim_type c2, enum isl_dim_type c3,
1109 enum isl_dim_type c4, enum isl_dim_type c5);
1111 The C<isl_dim_type> arguments indicate the order in which
1112 different kinds of variables appear in the input matrices
1113 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
1114 C<isl_dim_set> and C<isl_dim_div> for sets and
1115 of C<isl_dim_cst>, C<isl_dim_param>,
1116 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div> for relations.
1118 A (basic) relation can also be constructed from a (piecewise) affine expression
1119 or a list of affine expressions (See L<"Piecewise Quasi Affine Expressions">).
1121 __isl_give isl_basic_map *isl_basic_map_from_aff(
1122 __isl_take isl_aff *aff);
1123 __isl_give isl_map *isl_map_from_pw_aff(
1124 __isl_take isl_pw_aff *pwaff);
1125 __isl_give isl_basic_map *isl_basic_map_from_aff_list(
1126 __isl_take isl_dim *domain_dim,
1127 __isl_take isl_aff_list *list);
1129 The C<domain_dim> argument describes the domain of the resulting
1130 basic relation. It is required because the C<list> may consist
1131 of zero affine expressions.
1133 =head2 Inspecting Sets and Relations
1135 Usually, the user should not have to care about the actual constraints
1136 of the sets and maps, but should instead apply the abstract operations
1137 explained in the following sections.
1138 Occasionally, however, it may be required to inspect the individual
1139 coefficients of the constraints. This section explains how to do so.
1140 In these cases, it may also be useful to have C<isl> compute
1141 an explicit representation of the existentially quantified variables.
1143 __isl_give isl_set *isl_set_compute_divs(
1144 __isl_take isl_set *set);
1145 __isl_give isl_map *isl_map_compute_divs(
1146 __isl_take isl_map *map);
1147 __isl_give isl_union_set *isl_union_set_compute_divs(
1148 __isl_take isl_union_set *uset);
1149 __isl_give isl_union_map *isl_union_map_compute_divs(
1150 __isl_take isl_union_map *umap);
1152 This explicit representation defines the existentially quantified
1153 variables as integer divisions of the other variables, possibly
1154 including earlier existentially quantified variables.
1155 An explicitly represented existentially quantified variable therefore
1156 has a unique value when the values of the other variables are known.
1157 If, furthermore, the same existentials, i.e., existentials
1158 with the same explicit representations, should appear in the
1159 same order in each of the disjuncts of a set or map, then the user should call
1160 either of the following functions.
1162 __isl_give isl_set *isl_set_align_divs(
1163 __isl_take isl_set *set);
1164 __isl_give isl_map *isl_map_align_divs(
1165 __isl_take isl_map *map);
1167 Alternatively, the existentially quantified variables can be removed
1168 using the following functions, which compute an overapproximation.
1170 __isl_give isl_basic_set *isl_basic_set_remove_divs(
1171 __isl_take isl_basic_set *bset);
1172 __isl_give isl_basic_map *isl_basic_map_remove_divs(
1173 __isl_take isl_basic_map *bmap);
1174 __isl_give isl_set *isl_set_remove_divs(
1175 __isl_take isl_set *set);
1176 __isl_give isl_map *isl_map_remove_divs(
1177 __isl_take isl_map *map);
1179 To iterate over all the sets or maps in a union set or map, use
1181 int isl_union_set_foreach_set(__isl_keep isl_union_set *uset,
1182 int (*fn)(__isl_take isl_set *set, void *user),
1184 int isl_union_map_foreach_map(__isl_keep isl_union_map *umap,
1185 int (*fn)(__isl_take isl_map *map, void *user),
1188 The number of sets or maps in a union set or map can be obtained
1191 int isl_union_set_n_set(__isl_keep isl_union_set *uset);
1192 int isl_union_map_n_map(__isl_keep isl_union_map *umap);
1194 To extract the set or map from a union with a given dimension
1197 __isl_give isl_set *isl_union_set_extract_set(
1198 __isl_keep isl_union_set *uset,
1199 __isl_take isl_dim *dim);
1200 __isl_give isl_map *isl_union_map_extract_map(
1201 __isl_keep isl_union_map *umap,
1202 __isl_take isl_dim *dim);
1204 To iterate over all the basic sets or maps in a set or map, use
1206 int isl_set_foreach_basic_set(__isl_keep isl_set *set,
1207 int (*fn)(__isl_take isl_basic_set *bset, void *user),
1209 int isl_map_foreach_basic_map(__isl_keep isl_map *map,
1210 int (*fn)(__isl_take isl_basic_map *bmap, void *user),
1213 The callback function C<fn> should return 0 if successful and
1214 -1 if an error occurs. In the latter case, or if any other error
1215 occurs, the above functions will return -1.
1217 It should be noted that C<isl> does not guarantee that
1218 the basic sets or maps passed to C<fn> are disjoint.
1219 If this is required, then the user should call one of
1220 the following functions first.
1222 __isl_give isl_set *isl_set_make_disjoint(
1223 __isl_take isl_set *set);
1224 __isl_give isl_map *isl_map_make_disjoint(
1225 __isl_take isl_map *map);
1227 The number of basic sets in a set can be obtained
1230 int isl_set_n_basic_set(__isl_keep isl_set *set);
1232 To iterate over the constraints of a basic set or map, use
1234 #include <isl/constraint.h>
1236 int isl_basic_map_foreach_constraint(
1237 __isl_keep isl_basic_map *bmap,
1238 int (*fn)(__isl_take isl_constraint *c, void *user),
1240 void *isl_constraint_free(__isl_take isl_constraint *c);
1242 Again, the callback function C<fn> should return 0 if successful and
1243 -1 if an error occurs. In the latter case, or if any other error
1244 occurs, the above functions will return -1.
1245 The constraint C<c> represents either an equality or an inequality.
1246 Use the following function to find out whether a constraint
1247 represents an equality. If not, it represents an inequality.
1249 int isl_constraint_is_equality(
1250 __isl_keep isl_constraint *constraint);
1252 The coefficients of the constraints can be inspected using
1253 the following functions.
1255 void isl_constraint_get_constant(
1256 __isl_keep isl_constraint *constraint, isl_int *v);
1257 void isl_constraint_get_coefficient(
1258 __isl_keep isl_constraint *constraint,
1259 enum isl_dim_type type, int pos, isl_int *v);
1260 int isl_constraint_involves_dims(
1261 __isl_keep isl_constraint *constraint,
1262 enum isl_dim_type type, unsigned first, unsigned n);
1264 The explicit representations of the existentially quantified
1265 variables can be inspected using the following functions.
1266 Note that the user is only allowed to use these functions
1267 if the inspected set or map is the result of a call
1268 to C<isl_set_compute_divs> or C<isl_map_compute_divs>.
1270 __isl_give isl_div *isl_constraint_div(
1271 __isl_keep isl_constraint *constraint, int pos);
1272 isl_ctx *isl_div_get_ctx(__isl_keep isl_div *div);
1273 void isl_div_get_constant(__isl_keep isl_div *div,
1275 void isl_div_get_denominator(__isl_keep isl_div *div,
1277 void isl_div_get_coefficient(__isl_keep isl_div *div,
1278 enum isl_dim_type type, int pos, isl_int *v);
1280 To obtain the constraints of a basic set or map in matrix
1281 form, use the following functions.
1283 __isl_give isl_mat *isl_basic_set_equalities_matrix(
1284 __isl_keep isl_basic_set *bset,
1285 enum isl_dim_type c1, enum isl_dim_type c2,
1286 enum isl_dim_type c3, enum isl_dim_type c4);
1287 __isl_give isl_mat *isl_basic_set_inequalities_matrix(
1288 __isl_keep isl_basic_set *bset,
1289 enum isl_dim_type c1, enum isl_dim_type c2,
1290 enum isl_dim_type c3, enum isl_dim_type c4);
1291 __isl_give isl_mat *isl_basic_map_equalities_matrix(
1292 __isl_keep isl_basic_map *bmap,
1293 enum isl_dim_type c1,
1294 enum isl_dim_type c2, enum isl_dim_type c3,
1295 enum isl_dim_type c4, enum isl_dim_type c5);
1296 __isl_give isl_mat *isl_basic_map_inequalities_matrix(
1297 __isl_keep isl_basic_map *bmap,
1298 enum isl_dim_type c1,
1299 enum isl_dim_type c2, enum isl_dim_type c3,
1300 enum isl_dim_type c4, enum isl_dim_type c5);
1302 The C<isl_dim_type> arguments dictate the order in which
1303 different kinds of variables appear in the resulting matrix
1304 and should be a permutation of C<isl_dim_cst>, C<isl_dim_param>,
1305 C<isl_dim_in>, C<isl_dim_out> and C<isl_dim_div>.
1307 The number of parameters, input, output or set dimensions can
1308 be obtained using the following functions.
1310 unsigned isl_basic_set_dim(__isl_keep isl_basic_set *bset,
1311 enum isl_dim_type type);
1312 unsigned isl_basic_map_dim(__isl_keep isl_basic_map *bmap,
1313 enum isl_dim_type type);
1314 unsigned isl_set_dim(__isl_keep isl_set *set,
1315 enum isl_dim_type type);
1316 unsigned isl_map_dim(__isl_keep isl_map *map,
1317 enum isl_dim_type type);
1319 To check whether the description of a set or relation depends
1320 on one or more given dimensions, it is not necessary to iterate over all
1321 constraints. Instead the following functions can be used.
1323 int isl_basic_set_involves_dims(
1324 __isl_keep isl_basic_set *bset,
1325 enum isl_dim_type type, unsigned first, unsigned n);
1326 int isl_set_involves_dims(__isl_keep isl_set *set,
1327 enum isl_dim_type type, unsigned first, unsigned n);
1328 int isl_basic_map_involves_dims(
1329 __isl_keep isl_basic_map *bmap,
1330 enum isl_dim_type type, unsigned first, unsigned n);
1331 int isl_map_involves_dims(__isl_keep isl_map *map,
1332 enum isl_dim_type type, unsigned first, unsigned n);
1334 Similarly, the following functions can be used to check whether
1335 a given dimension is involved in any lower or upper bound.
1337 int isl_set_dim_has_lower_bound(__isl_keep isl_set *set,
1338 enum isl_dim_type type, unsigned pos);
1339 int isl_set_dim_has_upper_bound(__isl_keep isl_set *set,
1340 enum isl_dim_type type, unsigned pos);
1342 The identifiers or names of the domain and range spaces of a set
1343 or relation can be read off or set using the following functions.
1345 __isl_give isl_set *isl_set_set_tuple_id(
1346 __isl_take isl_set *set, __isl_take isl_id *id);
1347 __isl_give isl_set *isl_set_reset_tuple_id(
1348 __isl_take isl_set *set);
1349 __isl_give isl_id *isl_set_get_tuple_id(
1350 __isl_keep isl_set *set);
1351 __isl_give isl_map *isl_map_set_tuple_id(
1352 __isl_take isl_map *map, enum isl_dim_type type,
1353 __isl_take isl_id *id);
1354 __isl_give isl_map *isl_map_reset_tuple_id(
1355 __isl_take isl_map *map, enum isl_dim_type type);
1356 __isl_give isl_id *isl_map_get_tuple_id(
1357 __isl_keep isl_map *map, enum isl_dim_type type);
1359 const char *isl_basic_set_get_tuple_name(
1360 __isl_keep isl_basic_set *bset);
1361 __isl_give isl_basic_set *isl_basic_set_set_tuple_name(
1362 __isl_take isl_basic_set *set, const char *s);
1363 const char *isl_set_get_tuple_name(
1364 __isl_keep isl_set *set);
1365 const char *isl_basic_map_get_tuple_name(
1366 __isl_keep isl_basic_map *bmap,
1367 enum isl_dim_type type);
1368 const char *isl_map_get_tuple_name(
1369 __isl_keep isl_map *map,
1370 enum isl_dim_type type);
1372 As with C<isl_dim_get_tuple_name>, the value returned points to
1373 an internal data structure.
1374 The identifiers, positions or names of individual dimensions can be
1375 read off using the following functions.
1377 __isl_give isl_set *isl_set_set_dim_id(
1378 __isl_take isl_set *set, enum isl_dim_type type,
1379 unsigned pos, __isl_take isl_id *id);
1380 __isl_give isl_id *isl_set_get_dim_id(
1381 __isl_keep isl_set *set, enum isl_dim_type type,
1383 __isl_give isl_map *isl_map_set_dim_id(
1384 __isl_take isl_map *map, enum isl_dim_type type,
1385 unsigned pos, __isl_take isl_id *id);
1386 __isl_give isl_id *isl_map_get_dim_id(
1387 __isl_keep isl_map *map, enum isl_dim_type type,
1390 int isl_set_find_dim_by_id(__isl_keep isl_set *set,
1391 enum isl_dim_type type, __isl_keep isl_id *id);
1392 int isl_map_find_dim_by_id(__isl_keep isl_map *map,
1393 enum isl_dim_type type, __isl_keep isl_id *id);
1395 const char *isl_constraint_get_dim_name(
1396 __isl_keep isl_constraint *constraint,
1397 enum isl_dim_type type, unsigned pos);
1398 const char *isl_basic_set_get_dim_name(
1399 __isl_keep isl_basic_set *bset,
1400 enum isl_dim_type type, unsigned pos);
1401 const char *isl_set_get_dim_name(
1402 __isl_keep isl_set *set,
1403 enum isl_dim_type type, unsigned pos);
1404 const char *isl_basic_map_get_dim_name(
1405 __isl_keep isl_basic_map *bmap,
1406 enum isl_dim_type type, unsigned pos);
1407 const char *isl_map_get_dim_name(
1408 __isl_keep isl_map *map,
1409 enum isl_dim_type type, unsigned pos);
1411 These functions are mostly useful to obtain the identifiers, positions
1412 or names of the parameters.
1416 =head3 Unary Properties
1422 The following functions test whether the given set or relation
1423 contains any integer points. The ``plain'' variants do not perform
1424 any computations, but simply check if the given set or relation
1425 is already known to be empty.
1427 int isl_basic_set_plain_is_empty(__isl_keep isl_basic_set *bset);
1428 int isl_basic_set_is_empty(__isl_keep isl_basic_set *bset);
1429 int isl_set_plain_is_empty(__isl_keep isl_set *set);
1430 int isl_set_is_empty(__isl_keep isl_set *set);
1431 int isl_union_set_is_empty(__isl_keep isl_union_set *uset);
1432 int isl_basic_map_plain_is_empty(__isl_keep isl_basic_map *bmap);
1433 int isl_basic_map_is_empty(__isl_keep isl_basic_map *bmap);
1434 int isl_map_plain_is_empty(__isl_keep isl_map *map);
1435 int isl_map_is_empty(__isl_keep isl_map *map);
1436 int isl_union_map_is_empty(__isl_keep isl_union_map *umap);
1438 =item * Universality
1440 int isl_basic_set_is_universe(__isl_keep isl_basic_set *bset);
1441 int isl_basic_map_is_universe(__isl_keep isl_basic_map *bmap);
1442 int isl_set_plain_is_universe(__isl_keep isl_set *set);
1444 =item * Single-valuedness
1446 int isl_map_is_single_valued(__isl_keep isl_map *map);
1447 int isl_union_map_is_single_valued(__isl_keep isl_union_map *umap);
1451 int isl_map_plain_is_injective(__isl_keep isl_map *map);
1452 int isl_map_is_injective(__isl_keep isl_map *map);
1453 int isl_union_map_plain_is_injective(
1454 __isl_keep isl_union_map *umap);
1455 int isl_union_map_is_injective(
1456 __isl_keep isl_union_map *umap);
1460 int isl_map_is_bijective(__isl_keep isl_map *map);
1461 int isl_union_map_is_bijective(__isl_keep isl_union_map *umap);
1465 int isl_basic_map_plain_is_fixed(
1466 __isl_keep isl_basic_map *bmap,
1467 enum isl_dim_type type, unsigned pos,
1469 int isl_map_plain_is_fixed(__isl_keep isl_map *map,
1470 enum isl_dim_type type, unsigned pos,
1473 Check if the relation obviously lies on a hyperplane where the given dimension
1474 has a fixed value and if so, return that value in C<*val>.
1478 The following functions check whether the domain of the given
1479 (basic) set is a wrapped relation.
1481 int isl_basic_set_is_wrapping(
1482 __isl_keep isl_basic_set *bset);
1483 int isl_set_is_wrapping(__isl_keep isl_set *set);
1485 =item * Internal Product
1487 int isl_basic_map_can_zip(
1488 __isl_keep isl_basic_map *bmap);
1489 int isl_map_can_zip(__isl_keep isl_map *map);
1491 Check whether the product of domain and range of the given relation
1493 i.e., whether both domain and range are nested relations.
1497 =head3 Binary Properties
1503 int isl_set_plain_is_equal(__isl_keep isl_set *set1,
1504 __isl_keep isl_set *set2);
1505 int isl_set_is_equal(__isl_keep isl_set *set1,
1506 __isl_keep isl_set *set2);
1507 int isl_union_set_is_equal(
1508 __isl_keep isl_union_set *uset1,
1509 __isl_keep isl_union_set *uset2);
1510 int isl_basic_map_is_equal(
1511 __isl_keep isl_basic_map *bmap1,
1512 __isl_keep isl_basic_map *bmap2);
1513 int isl_map_is_equal(__isl_keep isl_map *map1,
1514 __isl_keep isl_map *map2);
1515 int isl_map_plain_is_equal(__isl_keep isl_map *map1,
1516 __isl_keep isl_map *map2);
1517 int isl_union_map_is_equal(
1518 __isl_keep isl_union_map *umap1,
1519 __isl_keep isl_union_map *umap2);
1521 =item * Disjointness
1523 int isl_set_plain_is_disjoint(__isl_keep isl_set *set1,
1524 __isl_keep isl_set *set2);
1528 int isl_set_is_subset(__isl_keep isl_set *set1,
1529 __isl_keep isl_set *set2);
1530 int isl_set_is_strict_subset(
1531 __isl_keep isl_set *set1,
1532 __isl_keep isl_set *set2);
1533 int isl_union_set_is_subset(
1534 __isl_keep isl_union_set *uset1,
1535 __isl_keep isl_union_set *uset2);
1536 int isl_union_set_is_strict_subset(
1537 __isl_keep isl_union_set *uset1,
1538 __isl_keep isl_union_set *uset2);
1539 int isl_basic_map_is_subset(
1540 __isl_keep isl_basic_map *bmap1,
1541 __isl_keep isl_basic_map *bmap2);
1542 int isl_basic_map_is_strict_subset(
1543 __isl_keep isl_basic_map *bmap1,
1544 __isl_keep isl_basic_map *bmap2);
1545 int isl_map_is_subset(
1546 __isl_keep isl_map *map1,
1547 __isl_keep isl_map *map2);
1548 int isl_map_is_strict_subset(
1549 __isl_keep isl_map *map1,
1550 __isl_keep isl_map *map2);
1551 int isl_union_map_is_subset(
1552 __isl_keep isl_union_map *umap1,
1553 __isl_keep isl_union_map *umap2);
1554 int isl_union_map_is_strict_subset(
1555 __isl_keep isl_union_map *umap1,
1556 __isl_keep isl_union_map *umap2);
1560 =head2 Unary Operations
1566 __isl_give isl_set *isl_set_complement(
1567 __isl_take isl_set *set);
1571 __isl_give isl_basic_map *isl_basic_map_reverse(
1572 __isl_take isl_basic_map *bmap);
1573 __isl_give isl_map *isl_map_reverse(
1574 __isl_take isl_map *map);
1575 __isl_give isl_union_map *isl_union_map_reverse(
1576 __isl_take isl_union_map *umap);
1580 __isl_give isl_basic_set *isl_basic_set_project_out(
1581 __isl_take isl_basic_set *bset,
1582 enum isl_dim_type type, unsigned first, unsigned n);
1583 __isl_give isl_basic_map *isl_basic_map_project_out(
1584 __isl_take isl_basic_map *bmap,
1585 enum isl_dim_type type, unsigned first, unsigned n);
1586 __isl_give isl_set *isl_set_project_out(__isl_take isl_set *set,
1587 enum isl_dim_type type, unsigned first, unsigned n);
1588 __isl_give isl_map *isl_map_project_out(__isl_take isl_map *map,
1589 enum isl_dim_type type, unsigned first, unsigned n);
1590 __isl_give isl_basic_set *isl_basic_map_domain(
1591 __isl_take isl_basic_map *bmap);
1592 __isl_give isl_basic_set *isl_basic_map_range(
1593 __isl_take isl_basic_map *bmap);
1594 __isl_give isl_set *isl_map_domain(
1595 __isl_take isl_map *bmap);
1596 __isl_give isl_set *isl_map_range(
1597 __isl_take isl_map *map);
1598 __isl_give isl_union_set *isl_union_map_domain(
1599 __isl_take isl_union_map *umap);
1600 __isl_give isl_union_set *isl_union_map_range(
1601 __isl_take isl_union_map *umap);
1603 __isl_give isl_basic_map *isl_basic_map_domain_map(
1604 __isl_take isl_basic_map *bmap);
1605 __isl_give isl_basic_map *isl_basic_map_range_map(
1606 __isl_take isl_basic_map *bmap);
1607 __isl_give isl_map *isl_map_domain_map(__isl_take isl_map *map);
1608 __isl_give isl_map *isl_map_range_map(__isl_take isl_map *map);
1609 __isl_give isl_union_map *isl_union_map_domain_map(
1610 __isl_take isl_union_map *umap);
1611 __isl_give isl_union_map *isl_union_map_range_map(
1612 __isl_take isl_union_map *umap);
1614 The functions above construct a (basic, regular or union) relation
1615 that maps (a wrapped version of) the input relation to its domain or range.
1619 __isl_give isl_set *isl_set_eliminate(
1620 __isl_take isl_set *set, enum isl_dim_type type,
1621 unsigned first, unsigned n);
1623 Eliminate the coefficients for the given dimensions from the constraints,
1624 without removing the dimensions.
1628 __isl_give isl_basic_set *isl_basic_set_fix(
1629 __isl_take isl_basic_set *bset,
1630 enum isl_dim_type type, unsigned pos,
1632 __isl_give isl_basic_set *isl_basic_set_fix_si(
1633 __isl_take isl_basic_set *bset,
1634 enum isl_dim_type type, unsigned pos, int value);
1635 __isl_give isl_set *isl_set_fix(__isl_take isl_set *set,
1636 enum isl_dim_type type, unsigned pos,
1638 __isl_give isl_set *isl_set_fix_si(__isl_take isl_set *set,
1639 enum isl_dim_type type, unsigned pos, int value);
1640 __isl_give isl_basic_map *isl_basic_map_fix_si(
1641 __isl_take isl_basic_map *bmap,
1642 enum isl_dim_type type, unsigned pos, int value);
1643 __isl_give isl_map *isl_map_fix_si(__isl_take isl_map *map,
1644 enum isl_dim_type type, unsigned pos, int value);
1646 Intersect the set or relation with the hyperplane where the given
1647 dimension has the fixed given value.
1649 __isl_give isl_set *isl_set_equate(__isl_take isl_set *set,
1650 enum isl_dim_type type1, int pos1,
1651 enum isl_dim_type type2, int pos2);
1652 __isl_give isl_map *isl_map_equate(__isl_take isl_map *map,
1653 enum isl_dim_type type1, int pos1,
1654 enum isl_dim_type type2, int pos2);
1656 Intersect the set or relation with the hyperplane where the given
1657 dimensions are equal to each other.
1659 __isl_give isl_map *isl_map_oppose(__isl_take isl_map *map,
1660 enum isl_dim_type type1, int pos1,
1661 enum isl_dim_type type2, int pos2);
1663 Intersect the relation with the hyperplane where the given
1664 dimensions have opposite values.
1668 __isl_give isl_map *isl_set_identity(
1669 __isl_take isl_set *set);
1670 __isl_give isl_union_map *isl_union_set_identity(
1671 __isl_take isl_union_set *uset);
1673 Construct an identity relation on the given (union) set.
1677 __isl_give isl_basic_set *isl_basic_map_deltas(
1678 __isl_take isl_basic_map *bmap);
1679 __isl_give isl_set *isl_map_deltas(__isl_take isl_map *map);
1680 __isl_give isl_union_set *isl_union_map_deltas(
1681 __isl_take isl_union_map *umap);
1683 These functions return a (basic) set containing the differences
1684 between image elements and corresponding domain elements in the input.
1686 __isl_give isl_basic_map *isl_basic_map_deltas_map(
1687 __isl_take isl_basic_map *bmap);
1688 __isl_give isl_map *isl_map_deltas_map(
1689 __isl_take isl_map *map);
1690 __isl_give isl_union_map *isl_union_map_deltas_map(
1691 __isl_take isl_union_map *umap);
1693 The functions above construct a (basic, regular or union) relation
1694 that maps (a wrapped version of) the input relation to its delta set.
1698 Simplify the representation of a set or relation by trying
1699 to combine pairs of basic sets or relations into a single
1700 basic set or relation.
1702 __isl_give isl_set *isl_set_coalesce(__isl_take isl_set *set);
1703 __isl_give isl_map *isl_map_coalesce(__isl_take isl_map *map);
1704 __isl_give isl_union_set *isl_union_set_coalesce(
1705 __isl_take isl_union_set *uset);
1706 __isl_give isl_union_map *isl_union_map_coalesce(
1707 __isl_take isl_union_map *umap);
1709 =item * Detecting equalities
1711 __isl_give isl_basic_set *isl_basic_set_detect_equalities(
1712 __isl_take isl_basic_set *bset);
1713 __isl_give isl_basic_map *isl_basic_map_detect_equalities(
1714 __isl_take isl_basic_map *bmap);
1715 __isl_give isl_set *isl_set_detect_equalities(
1716 __isl_take isl_set *set);
1717 __isl_give isl_map *isl_map_detect_equalities(
1718 __isl_take isl_map *map);
1719 __isl_give isl_union_set *isl_union_set_detect_equalities(
1720 __isl_take isl_union_set *uset);
1721 __isl_give isl_union_map *isl_union_map_detect_equalities(
1722 __isl_take isl_union_map *umap);
1724 Simplify the representation of a set or relation by detecting implicit
1727 =item * Removing redundant constraints
1729 __isl_give isl_basic_set *isl_basic_set_remove_redundancies(
1730 __isl_take isl_basic_set *bset);
1731 __isl_give isl_set *isl_set_remove_redundancies(
1732 __isl_take isl_set *set);
1733 __isl_give isl_basic_map *isl_basic_map_remove_redundancies(
1734 __isl_take isl_basic_map *bmap);
1735 __isl_give isl_map *isl_map_remove_redundancies(
1736 __isl_take isl_map *map);
1740 __isl_give isl_basic_set *isl_set_convex_hull(
1741 __isl_take isl_set *set);
1742 __isl_give isl_basic_map *isl_map_convex_hull(
1743 __isl_take isl_map *map);
1745 If the input set or relation has any existentially quantified
1746 variables, then the result of these operations is currently undefined.
1750 __isl_give isl_basic_set *isl_set_simple_hull(
1751 __isl_take isl_set *set);
1752 __isl_give isl_basic_map *isl_map_simple_hull(
1753 __isl_take isl_map *map);
1754 __isl_give isl_union_map *isl_union_map_simple_hull(
1755 __isl_take isl_union_map *umap);
1757 These functions compute a single basic set or relation
1758 that contains the whole input set or relation.
1759 In particular, the output is described by translates
1760 of the constraints describing the basic sets or relations in the input.
1764 (See \autoref{s:simple hull}.)
1770 __isl_give isl_basic_set *isl_basic_set_affine_hull(
1771 __isl_take isl_basic_set *bset);
1772 __isl_give isl_basic_set *isl_set_affine_hull(
1773 __isl_take isl_set *set);
1774 __isl_give isl_union_set *isl_union_set_affine_hull(
1775 __isl_take isl_union_set *uset);
1776 __isl_give isl_basic_map *isl_basic_map_affine_hull(
1777 __isl_take isl_basic_map *bmap);
1778 __isl_give isl_basic_map *isl_map_affine_hull(
1779 __isl_take isl_map *map);
1780 __isl_give isl_union_map *isl_union_map_affine_hull(
1781 __isl_take isl_union_map *umap);
1783 In case of union sets and relations, the affine hull is computed
1786 =item * Polyhedral hull
1788 __isl_give isl_basic_set *isl_set_polyhedral_hull(
1789 __isl_take isl_set *set);
1790 __isl_give isl_basic_map *isl_map_polyhedral_hull(
1791 __isl_take isl_map *map);
1792 __isl_give isl_union_set *isl_union_set_polyhedral_hull(
1793 __isl_take isl_union_set *uset);
1794 __isl_give isl_union_map *isl_union_map_polyhedral_hull(
1795 __isl_take isl_union_map *umap);
1797 These functions compute a single basic set or relation
1798 not involving any existentially quantified variables
1799 that contains the whole input set or relation.
1800 In case of union sets and relations, the polyhedral hull is computed
1803 =item * Optimization
1805 #include <isl/ilp.h>
1806 enum isl_lp_result isl_basic_set_max(
1807 __isl_keep isl_basic_set *bset,
1808 __isl_keep isl_aff *obj, isl_int *opt)
1809 enum isl_lp_result isl_set_min(__isl_keep isl_set *set,
1810 __isl_keep isl_aff *obj, isl_int *opt);
1811 enum isl_lp_result isl_set_max(__isl_keep isl_set *set,
1812 __isl_keep isl_aff *obj, isl_int *opt);
1814 Compute the minimum or maximum of the integer affine expression C<obj>
1815 over the points in C<set>, returning the result in C<opt>.
1816 The return value may be one of C<isl_lp_error>,
1817 C<isl_lp_ok>, C<isl_lp_unbounded> or C<isl_lp_empty>.
1819 =item * Parametric optimization
1821 __isl_give isl_pw_aff *isl_set_dim_max(
1822 __isl_take isl_set *set, int pos);
1824 Compute the maximum of the given set dimension as a function of the
1825 parameters, but independently of the other set dimensions.
1826 For lexicographic optimization, see L<"Lexicographic Optimization">.
1830 The following functions compute either the set of (rational) coefficient
1831 values of valid constraints for the given set or the set of (rational)
1832 values satisfying the constraints with coefficients from the given set.
1833 Internally, these two sets of functions perform essentially the
1834 same operations, except that the set of coefficients is assumed to
1835 be a cone, while the set of values may be any polyhedron.
1836 The current implementation is based on the Farkas lemma and
1837 Fourier-Motzkin elimination, but this may change or be made optional
1838 in future. In particular, future implementations may use different
1839 dualization algorithms or skip the elimination step.
1841 __isl_give isl_basic_set *isl_basic_set_coefficients(
1842 __isl_take isl_basic_set *bset);
1843 __isl_give isl_basic_set *isl_set_coefficients(
1844 __isl_take isl_set *set);
1845 __isl_give isl_union_set *isl_union_set_coefficients(
1846 __isl_take isl_union_set *bset);
1847 __isl_give isl_basic_set *isl_basic_set_solutions(
1848 __isl_take isl_basic_set *bset);
1849 __isl_give isl_basic_set *isl_set_solutions(
1850 __isl_take isl_set *set);
1851 __isl_give isl_union_set *isl_union_set_solutions(
1852 __isl_take isl_union_set *bset);
1856 __isl_give isl_map *isl_map_power(__isl_take isl_map *map,
1858 __isl_give isl_union_map *isl_union_map_power(
1859 __isl_take isl_union_map *umap, int *exact);
1861 Compute a parametric representation for all positive powers I<k> of C<map>.
1862 The result maps I<k> to a nested relation corresponding to the
1863 I<k>th power of C<map>.
1864 The result may be an overapproximation. If the result is known to be exact,
1865 then C<*exact> is set to C<1>.
1867 =item * Transitive closure
1869 __isl_give isl_map *isl_map_transitive_closure(
1870 __isl_take isl_map *map, int *exact);
1871 __isl_give isl_union_map *isl_union_map_transitive_closure(
1872 __isl_take isl_union_map *umap, int *exact);
1874 Compute the transitive closure of C<map>.
1875 The result may be an overapproximation. If the result is known to be exact,
1876 then C<*exact> is set to C<1>.
1878 =item * Reaching path lengths
1880 __isl_give isl_map *isl_map_reaching_path_lengths(
1881 __isl_take isl_map *map, int *exact);
1883 Compute a relation that maps each element in the range of C<map>
1884 to the lengths of all paths composed of edges in C<map> that
1885 end up in the given element.
1886 The result may be an overapproximation. If the result is known to be exact,
1887 then C<*exact> is set to C<1>.
1888 To compute the I<maximal> path length, the resulting relation
1889 should be postprocessed by C<isl_map_lexmax>.
1890 In particular, if the input relation is a dependence relation
1891 (mapping sources to sinks), then the maximal path length corresponds
1892 to the free schedule.
1893 Note, however, that C<isl_map_lexmax> expects the maximum to be
1894 finite, so if the path lengths are unbounded (possibly due to
1895 the overapproximation), then you will get an error message.
1899 __isl_give isl_basic_set *isl_basic_map_wrap(
1900 __isl_take isl_basic_map *bmap);
1901 __isl_give isl_set *isl_map_wrap(
1902 __isl_take isl_map *map);
1903 __isl_give isl_union_set *isl_union_map_wrap(
1904 __isl_take isl_union_map *umap);
1905 __isl_give isl_basic_map *isl_basic_set_unwrap(
1906 __isl_take isl_basic_set *bset);
1907 __isl_give isl_map *isl_set_unwrap(
1908 __isl_take isl_set *set);
1909 __isl_give isl_union_map *isl_union_set_unwrap(
1910 __isl_take isl_union_set *uset);
1914 Remove any internal structure of domain (and range) of the given
1915 set or relation. If there is any such internal structure in the input,
1916 then the name of the space is also removed.
1918 __isl_give isl_basic_set *isl_basic_set_flatten(
1919 __isl_take isl_basic_set *bset);
1920 __isl_give isl_set *isl_set_flatten(
1921 __isl_take isl_set *set);
1922 __isl_give isl_basic_map *isl_basic_map_flatten_range(
1923 __isl_take isl_basic_map *bmap);
1924 __isl_give isl_map *isl_map_flatten_range(
1925 __isl_take isl_map *map);
1926 __isl_give isl_basic_map *isl_basic_map_flatten(
1927 __isl_take isl_basic_map *bmap);
1928 __isl_give isl_map *isl_map_flatten(
1929 __isl_take isl_map *map);
1931 __isl_give isl_map *isl_set_flatten_map(
1932 __isl_take isl_set *set);
1934 The function above constructs a relation
1935 that maps the input set to a flattened version of the set.
1939 Lift the input set to a space with extra dimensions corresponding
1940 to the existentially quantified variables in the input.
1941 In particular, the result lives in a wrapped map where the domain
1942 is the original space and the range corresponds to the original
1943 existentially quantified variables.
1945 __isl_give isl_basic_set *isl_basic_set_lift(
1946 __isl_take isl_basic_set *bset);
1947 __isl_give isl_set *isl_set_lift(
1948 __isl_take isl_set *set);
1949 __isl_give isl_union_set *isl_union_set_lift(
1950 __isl_take isl_union_set *uset);
1952 =item * Internal Product
1954 __isl_give isl_basic_map *isl_basic_map_zip(
1955 __isl_take isl_basic_map *bmap);
1956 __isl_give isl_map *isl_map_zip(
1957 __isl_take isl_map *map);
1958 __isl_give isl_union_map *isl_union_map_zip(
1959 __isl_take isl_union_map *umap);
1961 Given a relation with nested relations for domain and range,
1962 interchange the range of the domain with the domain of the range.
1964 =item * Aligning parameters
1966 __isl_give isl_set *isl_set_align_params(
1967 __isl_take isl_set *set,
1968 __isl_take isl_dim *model);
1969 __isl_give isl_map *isl_map_align_params(
1970 __isl_take isl_map *map,
1971 __isl_take isl_dim *model);
1973 Change the order of the parameters of the given set or relation
1974 such that the first parameters match those of C<model>.
1975 This may involve the introduction of extra parameters.
1976 All parameters need to be named.
1978 =item * Dimension manipulation
1980 __isl_give isl_set *isl_set_add_dims(
1981 __isl_take isl_set *set,
1982 enum isl_dim_type type, unsigned n);
1983 __isl_give isl_map *isl_map_add_dims(
1984 __isl_take isl_map *map,
1985 enum isl_dim_type type, unsigned n);
1986 __isl_give isl_set *isl_set_insert_dims(
1987 __isl_take isl_set *set,
1988 enum isl_dim_type type, unsigned pos, unsigned n);
1989 __isl_give isl_map *isl_map_insert_dims(
1990 __isl_take isl_map *map,
1991 enum isl_dim_type type, unsigned pos, unsigned n);
1993 It is usually not advisable to directly change the (input or output)
1994 space of a set or a relation as this removes the name and the internal
1995 structure of the space. However, the above functions can be useful
1996 to add new parameters, assuming
1997 C<isl_set_align_params> and C<isl_map_align_params>
2002 =head2 Binary Operations
2004 The two arguments of a binary operation not only need to live
2005 in the same C<isl_ctx>, they currently also need to have
2006 the same (number of) parameters.
2008 =head3 Basic Operations
2012 =item * Intersection
2014 __isl_give isl_basic_set *isl_basic_set_intersect(
2015 __isl_take isl_basic_set *bset1,
2016 __isl_take isl_basic_set *bset2);
2017 __isl_give isl_set *isl_set_intersect_params(
2018 __isl_take isl_set *set,
2019 __isl_take isl_set *params);
2020 __isl_give isl_set *isl_set_intersect(
2021 __isl_take isl_set *set1,
2022 __isl_take isl_set *set2);
2023 __isl_give isl_union_set *isl_union_set_intersect(
2024 __isl_take isl_union_set *uset1,
2025 __isl_take isl_union_set *uset2);
2026 __isl_give isl_basic_map *isl_basic_map_intersect_domain(
2027 __isl_take isl_basic_map *bmap,
2028 __isl_take isl_basic_set *bset);
2029 __isl_give isl_basic_map *isl_basic_map_intersect_range(
2030 __isl_take isl_basic_map *bmap,
2031 __isl_take isl_basic_set *bset);
2032 __isl_give isl_basic_map *isl_basic_map_intersect(
2033 __isl_take isl_basic_map *bmap1,
2034 __isl_take isl_basic_map *bmap2);
2035 __isl_give isl_map *isl_map_intersect_params(
2036 __isl_take isl_map *map,
2037 __isl_take isl_set *params);
2038 __isl_give isl_map *isl_map_intersect_domain(
2039 __isl_take isl_map *map,
2040 __isl_take isl_set *set);
2041 __isl_give isl_map *isl_map_intersect_range(
2042 __isl_take isl_map *map,
2043 __isl_take isl_set *set);
2044 __isl_give isl_map *isl_map_intersect(
2045 __isl_take isl_map *map1,
2046 __isl_take isl_map *map2);
2047 __isl_give isl_union_map *isl_union_map_intersect_domain(
2048 __isl_take isl_union_map *umap,
2049 __isl_take isl_union_set *uset);
2050 __isl_give isl_union_map *isl_union_map_intersect_range(
2051 __isl_take isl_union_map *umap,
2052 __isl_take isl_union_set *uset);
2053 __isl_give isl_union_map *isl_union_map_intersect(
2054 __isl_take isl_union_map *umap1,
2055 __isl_take isl_union_map *umap2);
2059 __isl_give isl_set *isl_basic_set_union(
2060 __isl_take isl_basic_set *bset1,
2061 __isl_take isl_basic_set *bset2);
2062 __isl_give isl_map *isl_basic_map_union(
2063 __isl_take isl_basic_map *bmap1,
2064 __isl_take isl_basic_map *bmap2);
2065 __isl_give isl_set *isl_set_union(
2066 __isl_take isl_set *set1,
2067 __isl_take isl_set *set2);
2068 __isl_give isl_map *isl_map_union(
2069 __isl_take isl_map *map1,
2070 __isl_take isl_map *map2);
2071 __isl_give isl_union_set *isl_union_set_union(
2072 __isl_take isl_union_set *uset1,
2073 __isl_take isl_union_set *uset2);
2074 __isl_give isl_union_map *isl_union_map_union(
2075 __isl_take isl_union_map *umap1,
2076 __isl_take isl_union_map *umap2);
2078 =item * Set difference
2080 __isl_give isl_set *isl_set_subtract(
2081 __isl_take isl_set *set1,
2082 __isl_take isl_set *set2);
2083 __isl_give isl_map *isl_map_subtract(
2084 __isl_take isl_map *map1,
2085 __isl_take isl_map *map2);
2086 __isl_give isl_union_set *isl_union_set_subtract(
2087 __isl_take isl_union_set *uset1,
2088 __isl_take isl_union_set *uset2);
2089 __isl_give isl_union_map *isl_union_map_subtract(
2090 __isl_take isl_union_map *umap1,
2091 __isl_take isl_union_map *umap2);
2095 __isl_give isl_basic_set *isl_basic_set_apply(
2096 __isl_take isl_basic_set *bset,
2097 __isl_take isl_basic_map *bmap);
2098 __isl_give isl_set *isl_set_apply(
2099 __isl_take isl_set *set,
2100 __isl_take isl_map *map);
2101 __isl_give isl_union_set *isl_union_set_apply(
2102 __isl_take isl_union_set *uset,
2103 __isl_take isl_union_map *umap);
2104 __isl_give isl_basic_map *isl_basic_map_apply_domain(
2105 __isl_take isl_basic_map *bmap1,
2106 __isl_take isl_basic_map *bmap2);
2107 __isl_give isl_basic_map *isl_basic_map_apply_range(
2108 __isl_take isl_basic_map *bmap1,
2109 __isl_take isl_basic_map *bmap2);
2110 __isl_give isl_map *isl_map_apply_domain(
2111 __isl_take isl_map *map1,
2112 __isl_take isl_map *map2);
2113 __isl_give isl_union_map *isl_union_map_apply_domain(
2114 __isl_take isl_union_map *umap1,
2115 __isl_take isl_union_map *umap2);
2116 __isl_give isl_map *isl_map_apply_range(
2117 __isl_take isl_map *map1,
2118 __isl_take isl_map *map2);
2119 __isl_give isl_union_map *isl_union_map_apply_range(
2120 __isl_take isl_union_map *umap1,
2121 __isl_take isl_union_map *umap2);
2123 =item * Cartesian Product
2125 __isl_give isl_set *isl_set_product(
2126 __isl_take isl_set *set1,
2127 __isl_take isl_set *set2);
2128 __isl_give isl_union_set *isl_union_set_product(
2129 __isl_take isl_union_set *uset1,
2130 __isl_take isl_union_set *uset2);
2131 __isl_give isl_basic_map *isl_basic_map_range_product(
2132 __isl_take isl_basic_map *bmap1,
2133 __isl_take isl_basic_map *bmap2);
2134 __isl_give isl_map *isl_map_range_product(
2135 __isl_take isl_map *map1,
2136 __isl_take isl_map *map2);
2137 __isl_give isl_union_map *isl_union_map_range_product(
2138 __isl_take isl_union_map *umap1,
2139 __isl_take isl_union_map *umap2);
2140 __isl_give isl_map *isl_map_product(
2141 __isl_take isl_map *map1,
2142 __isl_take isl_map *map2);
2143 __isl_give isl_union_map *isl_union_map_product(
2144 __isl_take isl_union_map *umap1,
2145 __isl_take isl_union_map *umap2);
2147 The above functions compute the cross product of the given
2148 sets or relations. The domains and ranges of the results
2149 are wrapped maps between domains and ranges of the inputs.
2150 To obtain a ``flat'' product, use the following functions
2153 __isl_give isl_basic_set *isl_basic_set_flat_product(
2154 __isl_take isl_basic_set *bset1,
2155 __isl_take isl_basic_set *bset2);
2156 __isl_give isl_set *isl_set_flat_product(
2157 __isl_take isl_set *set1,
2158 __isl_take isl_set *set2);
2159 __isl_give isl_basic_map *isl_basic_map_flat_range_product(
2160 __isl_take isl_basic_map *bmap1,
2161 __isl_take isl_basic_map *bmap2);
2162 __isl_give isl_map *isl_map_flat_range_product(
2163 __isl_take isl_map *map1,
2164 __isl_take isl_map *map2);
2165 __isl_give isl_union_map *isl_union_map_flat_range_product(
2166 __isl_take isl_union_map *umap1,
2167 __isl_take isl_union_map *umap2);
2168 __isl_give isl_basic_map *isl_basic_map_flat_product(
2169 __isl_take isl_basic_map *bmap1,
2170 __isl_take isl_basic_map *bmap2);
2171 __isl_give isl_map *isl_map_flat_product(
2172 __isl_take isl_map *map1,
2173 __isl_take isl_map *map2);
2175 =item * Simplification
2177 __isl_give isl_basic_set *isl_basic_set_gist(
2178 __isl_take isl_basic_set *bset,
2179 __isl_take isl_basic_set *context);
2180 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
2181 __isl_take isl_set *context);
2182 __isl_give isl_union_set *isl_union_set_gist(
2183 __isl_take isl_union_set *uset,
2184 __isl_take isl_union_set *context);
2185 __isl_give isl_basic_map *isl_basic_map_gist(
2186 __isl_take isl_basic_map *bmap,
2187 __isl_take isl_basic_map *context);
2188 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
2189 __isl_take isl_map *context);
2190 __isl_give isl_union_map *isl_union_map_gist(
2191 __isl_take isl_union_map *umap,
2192 __isl_take isl_union_map *context);
2194 The gist operation returns a set or relation that has the
2195 same intersection with the context as the input set or relation.
2196 Any implicit equality in the intersection is made explicit in the result,
2197 while all inequalities that are redundant with respect to the intersection
2199 In case of union sets and relations, the gist operation is performed
2204 =head3 Lexicographic Optimization
2206 Given a (basic) set C<set> (or C<bset>) and a zero-dimensional domain C<dom>,
2207 the following functions
2208 compute a set that contains the lexicographic minimum or maximum
2209 of the elements in C<set> (or C<bset>) for those values of the parameters
2210 that satisfy C<dom>.
2211 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
2212 that contains the parameter values in C<dom> for which C<set> (or C<bset>)
2214 In other words, the union of the parameter values
2215 for which the result is non-empty and of C<*empty>
2218 __isl_give isl_set *isl_basic_set_partial_lexmin(
2219 __isl_take isl_basic_set *bset,
2220 __isl_take isl_basic_set *dom,
2221 __isl_give isl_set **empty);
2222 __isl_give isl_set *isl_basic_set_partial_lexmax(
2223 __isl_take isl_basic_set *bset,
2224 __isl_take isl_basic_set *dom,
2225 __isl_give isl_set **empty);
2226 __isl_give isl_set *isl_set_partial_lexmin(
2227 __isl_take isl_set *set, __isl_take isl_set *dom,
2228 __isl_give isl_set **empty);
2229 __isl_give isl_set *isl_set_partial_lexmax(
2230 __isl_take isl_set *set, __isl_take isl_set *dom,
2231 __isl_give isl_set **empty);
2233 Given a (basic) set C<set> (or C<bset>), the following functions simply
2234 return a set containing the lexicographic minimum or maximum
2235 of the elements in C<set> (or C<bset>).
2236 In case of union sets, the optimum is computed per space.
2238 __isl_give isl_set *isl_basic_set_lexmin(
2239 __isl_take isl_basic_set *bset);
2240 __isl_give isl_set *isl_basic_set_lexmax(
2241 __isl_take isl_basic_set *bset);
2242 __isl_give isl_set *isl_set_lexmin(
2243 __isl_take isl_set *set);
2244 __isl_give isl_set *isl_set_lexmax(
2245 __isl_take isl_set *set);
2246 __isl_give isl_union_set *isl_union_set_lexmin(
2247 __isl_take isl_union_set *uset);
2248 __isl_give isl_union_set *isl_union_set_lexmax(
2249 __isl_take isl_union_set *uset);
2251 Given a (basic) relation C<map> (or C<bmap>) and a domain C<dom>,
2252 the following functions
2253 compute a relation that maps each element of C<dom>
2254 to the single lexicographic minimum or maximum
2255 of the elements that are associated to that same
2256 element in C<map> (or C<bmap>).
2257 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
2258 that contains the elements in C<dom> that do not map
2259 to any elements in C<map> (or C<bmap>).
2260 In other words, the union of the domain of the result and of C<*empty>
2263 __isl_give isl_map *isl_basic_map_partial_lexmax(
2264 __isl_take isl_basic_map *bmap,
2265 __isl_take isl_basic_set *dom,
2266 __isl_give isl_set **empty);
2267 __isl_give isl_map *isl_basic_map_partial_lexmin(
2268 __isl_take isl_basic_map *bmap,
2269 __isl_take isl_basic_set *dom,
2270 __isl_give isl_set **empty);
2271 __isl_give isl_map *isl_map_partial_lexmax(
2272 __isl_take isl_map *map, __isl_take isl_set *dom,
2273 __isl_give isl_set **empty);
2274 __isl_give isl_map *isl_map_partial_lexmin(
2275 __isl_take isl_map *map, __isl_take isl_set *dom,
2276 __isl_give isl_set **empty);
2278 Given a (basic) map C<map> (or C<bmap>), the following functions simply
2279 return a map mapping each element in the domain of
2280 C<map> (or C<bmap>) to the lexicographic minimum or maximum
2281 of all elements associated to that element.
2282 In case of union relations, the optimum is computed per space.
2284 __isl_give isl_map *isl_basic_map_lexmin(
2285 __isl_take isl_basic_map *bmap);
2286 __isl_give isl_map *isl_basic_map_lexmax(
2287 __isl_take isl_basic_map *bmap);
2288 __isl_give isl_map *isl_map_lexmin(
2289 __isl_take isl_map *map);
2290 __isl_give isl_map *isl_map_lexmax(
2291 __isl_take isl_map *map);
2292 __isl_give isl_union_map *isl_union_map_lexmin(
2293 __isl_take isl_union_map *umap);
2294 __isl_give isl_union_map *isl_union_map_lexmax(
2295 __isl_take isl_union_map *umap);
2299 Lists are defined over several element types, including
2300 C<isl_aff>, C<isl_pw_aff>, C<isl_basic_set> and C<isl_set>.
2301 Here we take lists of C<isl_set>s as an example.
2302 Lists can be created, copied and freed using the following functions.
2304 #include <isl/list.h>
2305 __isl_give isl_set_list *isl_set_list_from_set(
2306 __isl_take isl_set *el);
2307 __isl_give isl_set_list *isl_set_list_alloc(
2308 isl_ctx *ctx, int n);
2309 __isl_give isl_set_list *isl_set_list_copy(
2310 __isl_keep isl_set_list *list);
2311 __isl_give isl_set_list *isl_set_list_add(
2312 __isl_take isl_set_list *list,
2313 __isl_take isl_set *el);
2314 __isl_give isl_set_list *isl_set_list_concat(
2315 __isl_take isl_set_list *list1,
2316 __isl_take isl_set_list *list2);
2317 void *isl_set_list_free(__isl_take isl_set_list *list);
2319 C<isl_set_list_alloc> creates an empty list with a capacity for
2320 C<n> elements. C<isl_set_list_from_set> creates a list with a single
2323 Lists can be inspected using the following functions.
2325 #include <isl/list.h>
2326 isl_ctx *isl_set_list_get_ctx(__isl_keep isl_set_list *list);
2327 int isl_set_list_n_set(__isl_keep isl_set_list *list);
2328 __isl_give isl_set *isl_set_list_get_set(
2329 __isl_keep isl_set_list *list, int index);
2330 int isl_set_list_foreach(__isl_keep isl_set_list *list,
2331 int (*fn)(__isl_take isl_set *el, void *user),
2334 Lists can be printed using
2336 #include <isl/list.h>
2337 __isl_give isl_printer *isl_printer_print_set_list(
2338 __isl_take isl_printer *p,
2339 __isl_keep isl_set_list *list);
2343 Matrices can be created, copied and freed using the following functions.
2345 #include <isl/mat.h>
2346 __isl_give isl_mat *isl_mat_alloc(isl_ctx *ctx,
2347 unsigned n_row, unsigned n_col);
2348 __isl_give isl_mat *isl_mat_copy(__isl_keep isl_mat *mat);
2349 void isl_mat_free(__isl_take isl_mat *mat);
2351 Note that the elements of a newly created matrix may have arbitrary values.
2352 The elements can be changed and inspected using the following functions.
2354 isl_ctx *isl_mat_get_ctx(__isl_keep isl_mat *mat);
2355 int isl_mat_rows(__isl_keep isl_mat *mat);
2356 int isl_mat_cols(__isl_keep isl_mat *mat);
2357 int isl_mat_get_element(__isl_keep isl_mat *mat,
2358 int row, int col, isl_int *v);
2359 __isl_give isl_mat *isl_mat_set_element(__isl_take isl_mat *mat,
2360 int row, int col, isl_int v);
2361 __isl_give isl_mat *isl_mat_set_element_si(__isl_take isl_mat *mat,
2362 int row, int col, int v);
2364 C<isl_mat_get_element> will return a negative value if anything went wrong.
2365 In that case, the value of C<*v> is undefined.
2367 The following function can be used to compute the (right) inverse
2368 of a matrix, i.e., a matrix such that the product of the original
2369 and the inverse (in that order) is a multiple of the identity matrix.
2370 The input matrix is assumed to be of full row-rank.
2372 __isl_give isl_mat *isl_mat_right_inverse(__isl_take isl_mat *mat);
2374 The following function can be used to compute the (right) kernel
2375 (or null space) of a matrix, i.e., a matrix such that the product of
2376 the original and the kernel (in that order) is the zero matrix.
2378 __isl_give isl_mat *isl_mat_right_kernel(__isl_take isl_mat *mat);
2380 =head2 Piecewise Quasi Affine Expressions
2382 The zero quasi affine expression can be created using
2384 __isl_give isl_aff *isl_aff_zero(
2385 __isl_take isl_local_space *ls);
2387 A quasi affine expression can also be initialized from an C<isl_div>:
2389 #include <isl/div.h>
2390 __isl_give isl_aff *isl_aff_from_div(__isl_take isl_div *div);
2392 An empty piecewise quasi affine expression (one with no cells)
2393 or a piecewise quasi affine expression with a single cell can
2394 be created using the following functions.
2396 #include <isl/aff.h>
2397 __isl_give isl_pw_aff *isl_pw_aff_empty(
2398 __isl_take isl_dim *dim);
2399 __isl_give isl_pw_aff *isl_pw_aff_alloc(
2400 __isl_take isl_set *set, __isl_take isl_aff *aff);
2401 __isl_give isl_pw_aff *isl_pw_aff_from_aff(
2402 __isl_take isl_aff *aff);
2404 Quasi affine expressions can be copied and freed using
2406 #include <isl/aff.h>
2407 __isl_give isl_aff *isl_aff_copy(__isl_keep isl_aff *aff);
2408 void *isl_aff_free(__isl_take isl_aff *aff);
2410 __isl_give isl_pw_aff *isl_pw_aff_copy(
2411 __isl_keep isl_pw_aff *pwaff);
2412 void *isl_pw_aff_free(__isl_take isl_pw_aff *pwaff);
2414 A (rational) bound on a dimension can be extracted from an C<isl_constraint>
2415 using the following function. The constraint is required to have
2416 a non-zero coefficient for the specified dimension.
2418 #include <isl/constraint.h>
2419 __isl_give isl_aff *isl_constraint_get_bound(
2420 __isl_keep isl_constraint *constraint,
2421 enum isl_dim_type type, int pos);
2423 The entire affine expression of the constraint can also be extracted
2424 using the following function.
2426 #include <isl/constraint.h>
2427 __isl_give isl_aff *isl_constraint_get_aff(
2428 __isl_keep isl_constraint *constraint);
2430 Conversely, an equality constraint equating
2431 the affine expression to zero or an inequality constraint enforcing
2432 the affine expression to be non-negative, can be constructed using
2434 __isl_give isl_constraint *isl_equality_from_aff(
2435 __isl_take isl_aff *aff);
2436 __isl_give isl_constraint *isl_inequality_from_aff(
2437 __isl_take isl_aff *aff);
2439 The expression can be inspected using
2441 #include <isl/aff.h>
2442 isl_ctx *isl_aff_get_ctx(__isl_keep isl_aff *aff);
2443 int isl_aff_dim(__isl_keep isl_aff *aff,
2444 enum isl_dim_type type);
2445 __isl_give isl_local_space *isl_aff_get_local_space(
2446 __isl_keep isl_aff *aff);
2447 const char *isl_aff_get_dim_name(__isl_keep isl_aff *aff,
2448 enum isl_dim_type type, unsigned pos);
2449 int isl_aff_get_constant(__isl_keep isl_aff *aff,
2451 int isl_aff_get_coefficient(__isl_keep isl_aff *aff,
2452 enum isl_dim_type type, int pos, isl_int *v);
2453 int isl_aff_get_denominator(__isl_keep isl_aff *aff,
2455 __isl_give isl_div *isl_aff_get_div(
2456 __isl_keep isl_aff *aff, int pos);
2458 int isl_pw_aff_foreach_piece(__isl_keep isl_pw_aff *pwaff,
2459 int (*fn)(__isl_take isl_set *set,
2460 __isl_take isl_aff *aff,
2461 void *user), void *user);
2463 int isl_aff_is_cst(__isl_keep isl_aff *aff);
2464 int isl_pw_aff_is_cst(__isl_keep isl_pw_aff *pwaff);
2466 int isl_aff_involves_dims(__isl_keep isl_aff *aff,
2467 enum isl_dim_type type, unsigned first, unsigned n);
2468 int isl_pw_aff_involves_dims(__isl_keep isl_pw_aff *pwaff,
2469 enum isl_dim_type type, unsigned first, unsigned n);
2471 isl_ctx *isl_pw_aff_get_ctx(__isl_keep isl_pw_aff *pwaff);
2472 unsigned isl_pw_aff_dim(__isl_keep isl_pw_aff *pwaff,
2473 enum isl_dim_type type);
2474 int isl_pw_aff_is_empty(__isl_keep isl_pw_aff *pwaff);
2476 It can be modified using
2478 #include <isl/aff.h>
2479 __isl_give isl_pw_aff *isl_pw_aff_set_tuple_id(
2480 __isl_take isl_pw_aff *pwaff,
2481 __isl_take isl_id *id);
2482 __isl_give isl_aff *isl_aff_set_dim_name(
2483 __isl_take isl_aff *aff, enum isl_dim_type type,
2484 unsigned pos, const char *s);
2485 __isl_give isl_aff *isl_aff_set_constant(
2486 __isl_take isl_aff *aff, isl_int v);
2487 __isl_give isl_aff *isl_aff_set_constant_si(
2488 __isl_take isl_aff *aff, int v);
2489 __isl_give isl_aff *isl_aff_set_coefficient(
2490 __isl_take isl_aff *aff,
2491 enum isl_dim_type type, int pos, isl_int v);
2492 __isl_give isl_aff *isl_aff_set_coefficient_si(
2493 __isl_take isl_aff *aff,
2494 enum isl_dim_type type, int pos, int v);
2495 __isl_give isl_aff *isl_aff_set_denominator(
2496 __isl_take isl_aff *aff, isl_int v);
2498 __isl_give isl_aff *isl_aff_add_constant(
2499 __isl_take isl_aff *aff, isl_int v);
2500 __isl_give isl_aff *isl_aff_add_constant_si(
2501 __isl_take isl_aff *aff, int v);
2502 __isl_give isl_aff *isl_aff_add_coefficient(
2503 __isl_take isl_aff *aff,
2504 enum isl_dim_type type, int pos, isl_int v);
2505 __isl_give isl_aff *isl_aff_add_coefficient_si(
2506 __isl_take isl_aff *aff,
2507 enum isl_dim_type type, int pos, int v);
2509 __isl_give isl_aff *isl_aff_insert_dims(
2510 __isl_take isl_aff *aff,
2511 enum isl_dim_type type, unsigned first, unsigned n);
2512 __isl_give isl_pw_aff *isl_pw_aff_insert_dims(
2513 __isl_take isl_pw_aff *pwaff,
2514 enum isl_dim_type type, unsigned first, unsigned n);
2515 __isl_give isl_aff *isl_aff_add_dims(
2516 __isl_take isl_aff *aff,
2517 enum isl_dim_type type, unsigned n);
2518 __isl_give isl_pw_aff *isl_pw_aff_add_dims(
2519 __isl_take isl_pw_aff *pwaff,
2520 enum isl_dim_type type, unsigned n);
2521 __isl_give isl_aff *isl_aff_drop_dims(
2522 __isl_take isl_aff *aff,
2523 enum isl_dim_type type, unsigned first, unsigned n);
2524 __isl_give isl_pw_aff *isl_pw_aff_drop_dims(
2525 __isl_take isl_pw_aff *pwaff,
2526 enum isl_dim_type type, unsigned first, unsigned n);
2528 Note that the C<set_constant> and C<set_coefficient> functions
2529 set the I<numerator> of the constant or coefficient, while
2530 C<add_constant> and C<add_coefficient> add an integer value to
2531 the possibly rational constant or coefficient.
2533 To check whether an affine expressions is obviously zero
2534 or obviously equal to some other affine expression, use
2536 #include <isl/aff.h>
2537 int isl_aff_plain_is_zero(__isl_keep isl_aff *aff);
2538 int isl_aff_plain_is_equal(__isl_keep isl_aff *aff1,
2539 __isl_keep isl_aff *aff2);
2543 #include <isl/aff.h>
2544 __isl_give isl_aff *isl_aff_add(__isl_take isl_aff *aff1,
2545 __isl_take isl_aff *aff2);
2546 __isl_give isl_pw_aff *isl_pw_aff_add(
2547 __isl_take isl_pw_aff *pwaff1,
2548 __isl_take isl_pw_aff *pwaff2);
2549 __isl_give isl_pw_aff *isl_pw_aff_min(
2550 __isl_take isl_pw_aff *pwaff1,
2551 __isl_take isl_pw_aff *pwaff2);
2552 __isl_give isl_pw_aff *isl_pw_aff_max(
2553 __isl_take isl_pw_aff *pwaff1,
2554 __isl_take isl_pw_aff *pwaff2);
2555 __isl_give isl_aff *isl_aff_sub(__isl_take isl_aff *aff1,
2556 __isl_take isl_aff *aff2);
2557 __isl_give isl_pw_aff *isl_pw_aff_sub(
2558 __isl_take isl_pw_aff *pwaff1,
2559 __isl_take isl_pw_aff *pwaff2);
2560 __isl_give isl_aff *isl_aff_neg(__isl_take isl_aff *aff);
2561 __isl_give isl_pw_aff *isl_pw_aff_neg(
2562 __isl_take isl_pw_aff *pwaff);
2563 __isl_give isl_aff *isl_aff_ceil(__isl_take isl_aff *aff);
2564 __isl_give isl_pw_aff *isl_pw_aff_ceil(
2565 __isl_take isl_pw_aff *pwaff);
2566 __isl_give isl_aff *isl_aff_floor(__isl_take isl_aff *aff);
2567 __isl_give isl_pw_aff *isl_pw_aff_floor(
2568 __isl_take isl_pw_aff *pwaff);
2569 __isl_give isl_aff *isl_aff_mod(__isl_take isl_aff *aff,
2571 __isl_give isl_pw_aff *isl_pw_aff_mod(
2572 __isl_take isl_pw_aff *pwaff, isl_int mod);
2573 __isl_give isl_aff *isl_aff_scale(__isl_take isl_aff *aff,
2575 __isl_give isl_pw_aff *isl_pw_aff_scale(
2576 __isl_take isl_pw_aff *pwaff, isl_int f);
2577 __isl_give isl_aff *isl_aff_scale_down(__isl_take isl_aff *aff,
2579 __isl_give isl_aff *isl_aff_scale_down_ui(
2580 __isl_take isl_aff *aff, unsigned f);
2581 __isl_give isl_pw_aff *isl_pw_aff_scale_down(
2582 __isl_take isl_pw_aff *pwaff, isl_int f);
2584 __isl_give isl_pw_aff *isl_pw_aff_list_min(
2585 __isl_take isl_pw_aff_list *list);
2586 __isl_give isl_pw_aff *isl_pw_aff_list_max(
2587 __isl_take isl_pw_aff_list *list);
2589 __isl_give isl_pw_aff *isl_pw_aff_coalesce(
2590 __isl_take isl_pw_aff *pwqp);
2592 __isl_give isl_pw_aff *isl_pw_aff_align_params(
2593 __isl_take isl_pw_aff *pwaff,
2594 __isl_take isl_dim *model);
2596 __isl_give isl_aff *isl_aff_gist(__isl_take isl_aff *aff,
2597 __isl_take isl_set *context);
2598 __isl_give isl_pw_aff *isl_pw_aff_gist(
2599 __isl_take isl_pw_aff *pwaff,
2600 __isl_take isl_set *context);
2602 __isl_give isl_set *isl_pw_aff_domain(
2603 __isl_take isl_pw_aff *pwaff);
2605 __isl_give isl_aff *isl_aff_mul(__isl_take isl_aff *aff1,
2606 __isl_take isl_aff *aff2);
2607 __isl_give isl_pw_aff *isl_pw_aff_mul(
2608 __isl_take isl_pw_aff *pwaff1,
2609 __isl_take isl_pw_aff *pwaff2);
2611 When multiplying two affine expressions, at least one of the two needs
2614 #include <isl/aff.h>
2615 __isl_give isl_basic_set *isl_aff_ge_basic_set(
2616 __isl_take isl_aff *aff1, __isl_take isl_aff *aff2);
2617 __isl_give isl_set *isl_pw_aff_eq_set(
2618 __isl_take isl_pw_aff *pwaff1,
2619 __isl_take isl_pw_aff *pwaff2);
2620 __isl_give isl_set *isl_pw_aff_ne_set(
2621 __isl_take isl_pw_aff *pwaff1,
2622 __isl_take isl_pw_aff *pwaff2);
2623 __isl_give isl_set *isl_pw_aff_le_set(
2624 __isl_take isl_pw_aff *pwaff1,
2625 __isl_take isl_pw_aff *pwaff2);
2626 __isl_give isl_set *isl_pw_aff_lt_set(
2627 __isl_take isl_pw_aff *pwaff1,
2628 __isl_take isl_pw_aff *pwaff2);
2629 __isl_give isl_set *isl_pw_aff_ge_set(
2630 __isl_take isl_pw_aff *pwaff1,
2631 __isl_take isl_pw_aff *pwaff2);
2632 __isl_give isl_set *isl_pw_aff_gt_set(
2633 __isl_take isl_pw_aff *pwaff1,
2634 __isl_take isl_pw_aff *pwaff2);
2636 __isl_give isl_set *isl_pw_aff_list_eq_set(
2637 __isl_take isl_pw_aff_list *list1,
2638 __isl_take isl_pw_aff_list *list2);
2639 __isl_give isl_set *isl_pw_aff_list_ne_set(
2640 __isl_take isl_pw_aff_list *list1,
2641 __isl_take isl_pw_aff_list *list2);
2642 __isl_give isl_set *isl_pw_aff_list_le_set(
2643 __isl_take isl_pw_aff_list *list1,
2644 __isl_take isl_pw_aff_list *list2);
2645 __isl_give isl_set *isl_pw_aff_list_lt_set(
2646 __isl_take isl_pw_aff_list *list1,
2647 __isl_take isl_pw_aff_list *list2);
2648 __isl_give isl_set *isl_pw_aff_list_ge_set(
2649 __isl_take isl_pw_aff_list *list1,
2650 __isl_take isl_pw_aff_list *list2);
2651 __isl_give isl_set *isl_pw_aff_list_gt_set(
2652 __isl_take isl_pw_aff_list *list1,
2653 __isl_take isl_pw_aff_list *list2);
2655 The function C<isl_aff_ge_basic_set> returns a basic set
2656 containing those elements in the shared space
2657 of C<aff1> and C<aff2> where C<aff1> is greater than or equal to C<aff2>.
2658 The function C<isl_aff_ge_set> returns a set
2659 containing those elements in the shared domain
2660 of C<pwaff1> and C<pwaff2> where C<pwaff1> is greater than or equal to C<pwaff2>.
2661 The functions operating on C<isl_pw_aff_list> apply the corresponding
2662 C<isl_pw_aff> function to each pair of elements in the two lists.
2664 #include <isl/aff.h>
2665 __isl_give isl_set *isl_pw_aff_nonneg_set(
2666 __isl_take isl_pw_aff *pwaff);
2667 __isl_give isl_set *isl_pw_aff_zero_set(
2668 __isl_take isl_pw_aff *pwaff);
2669 __isl_give isl_set *isl_pw_aff_non_zero_set(
2670 __isl_take isl_pw_aff *pwaff);
2672 The function C<isl_pw_aff_nonneg_set> returns a set
2673 containing those elements in the domain
2674 of C<pwaff> where C<pwaff> is non-negative.
2676 #include <isl/aff.h>
2677 __isl_give isl_pw_aff *isl_pw_aff_cond(
2678 __isl_take isl_set *cond,
2679 __isl_take isl_pw_aff *pwaff_true,
2680 __isl_take isl_pw_aff *pwaff_false);
2682 The function C<isl_pw_aff_cond> performs a conditional operator
2683 and returns an expression that is equal to C<pwaff_true>
2684 for elements in C<cond> and equal to C<pwaff_false> for elements
2687 #include <isl/aff.h>
2688 __isl_give isl_pw_aff *isl_pw_aff_union_max(
2689 __isl_take isl_pw_aff *pwaff1,
2690 __isl_take isl_pw_aff *pwaff2);
2692 The function C<isl_pw_aff_union_max> computes a piecewise quasi-affine
2693 expression with a domain that is the union of those of C<pwaff1> and
2694 C<pwaff2> and such that on each cell, the quasi-affine expression is
2695 the maximum of those of C<pwaff1> and C<pwaff2>. If only one of
2696 C<pwaff1> or C<pwaff2> is defined on a given cell, then the
2697 associated expression is the defined one.
2699 An expression can be printed using
2701 #include <isl/aff.h>
2702 __isl_give isl_printer *isl_printer_print_aff(
2703 __isl_take isl_printer *p, __isl_keep isl_aff *aff);
2705 __isl_give isl_printer *isl_printer_print_pw_aff(
2706 __isl_take isl_printer *p,
2707 __isl_keep isl_pw_aff *pwaff);
2711 Points are elements of a set. They can be used to construct
2712 simple sets (boxes) or they can be used to represent the
2713 individual elements of a set.
2714 The zero point (the origin) can be created using
2716 __isl_give isl_point *isl_point_zero(__isl_take isl_dim *dim);
2718 The coordinates of a point can be inspected, set and changed
2721 void isl_point_get_coordinate(__isl_keep isl_point *pnt,
2722 enum isl_dim_type type, int pos, isl_int *v);
2723 __isl_give isl_point *isl_point_set_coordinate(
2724 __isl_take isl_point *pnt,
2725 enum isl_dim_type type, int pos, isl_int v);
2727 __isl_give isl_point *isl_point_add_ui(
2728 __isl_take isl_point *pnt,
2729 enum isl_dim_type type, int pos, unsigned val);
2730 __isl_give isl_point *isl_point_sub_ui(
2731 __isl_take isl_point *pnt,
2732 enum isl_dim_type type, int pos, unsigned val);
2734 Other properties can be obtained using
2736 isl_ctx *isl_point_get_ctx(__isl_keep isl_point *pnt);
2738 Points can be copied or freed using
2740 __isl_give isl_point *isl_point_copy(
2741 __isl_keep isl_point *pnt);
2742 void isl_point_free(__isl_take isl_point *pnt);
2744 A singleton set can be created from a point using
2746 __isl_give isl_basic_set *isl_basic_set_from_point(
2747 __isl_take isl_point *pnt);
2748 __isl_give isl_set *isl_set_from_point(
2749 __isl_take isl_point *pnt);
2751 and a box can be created from two opposite extremal points using
2753 __isl_give isl_basic_set *isl_basic_set_box_from_points(
2754 __isl_take isl_point *pnt1,
2755 __isl_take isl_point *pnt2);
2756 __isl_give isl_set *isl_set_box_from_points(
2757 __isl_take isl_point *pnt1,
2758 __isl_take isl_point *pnt2);
2760 All elements of a B<bounded> (union) set can be enumerated using
2761 the following functions.
2763 int isl_set_foreach_point(__isl_keep isl_set *set,
2764 int (*fn)(__isl_take isl_point *pnt, void *user),
2766 int isl_union_set_foreach_point(__isl_keep isl_union_set *uset,
2767 int (*fn)(__isl_take isl_point *pnt, void *user),
2770 The function C<fn> is called for each integer point in
2771 C<set> with as second argument the last argument of
2772 the C<isl_set_foreach_point> call. The function C<fn>
2773 should return C<0> on success and C<-1> on failure.
2774 In the latter case, C<isl_set_foreach_point> will stop
2775 enumerating and return C<-1> as well.
2776 If the enumeration is performed successfully and to completion,
2777 then C<isl_set_foreach_point> returns C<0>.
2779 To obtain a single point of a (basic) set, use
2781 __isl_give isl_point *isl_basic_set_sample_point(
2782 __isl_take isl_basic_set *bset);
2783 __isl_give isl_point *isl_set_sample_point(
2784 __isl_take isl_set *set);
2786 If C<set> does not contain any (integer) points, then the
2787 resulting point will be ``void'', a property that can be
2790 int isl_point_is_void(__isl_keep isl_point *pnt);
2792 =head2 Piecewise Quasipolynomials
2794 A piecewise quasipolynomial is a particular kind of function that maps
2795 a parametric point to a rational value.
2796 More specifically, a quasipolynomial is a polynomial expression in greatest
2797 integer parts of affine expressions of parameters and variables.
2798 A piecewise quasipolynomial is a subdivision of a given parametric
2799 domain into disjoint cells with a quasipolynomial associated to
2800 each cell. The value of the piecewise quasipolynomial at a given
2801 point is the value of the quasipolynomial associated to the cell
2802 that contains the point. Outside of the union of cells,
2803 the value is assumed to be zero.
2804 For example, the piecewise quasipolynomial
2806 [n] -> { [x] -> ((1 + n) - x) : x <= n and x >= 0 }
2808 maps C<x> to C<1 + n - x> for values of C<x> between C<0> and C<n>.
2809 A given piecewise quasipolynomial has a fixed domain dimension.
2810 Union piecewise quasipolynomials are used to contain piecewise quasipolynomials
2811 defined over different domains.
2812 Piecewise quasipolynomials are mainly used by the C<barvinok>
2813 library for representing the number of elements in a parametric set or map.
2814 For example, the piecewise quasipolynomial above represents
2815 the number of points in the map
2817 [n] -> { [x] -> [y] : x,y >= 0 and 0 <= x + y <= n }
2819 =head3 Printing (Piecewise) Quasipolynomials
2821 Quasipolynomials and piecewise quasipolynomials can be printed
2822 using the following functions.
2824 __isl_give isl_printer *isl_printer_print_qpolynomial(
2825 __isl_take isl_printer *p,
2826 __isl_keep isl_qpolynomial *qp);
2828 __isl_give isl_printer *isl_printer_print_pw_qpolynomial(
2829 __isl_take isl_printer *p,
2830 __isl_keep isl_pw_qpolynomial *pwqp);
2832 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial(
2833 __isl_take isl_printer *p,
2834 __isl_keep isl_union_pw_qpolynomial *upwqp);
2836 The output format of the printer
2837 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
2838 For C<isl_printer_print_union_pw_qpolynomial>, only C<ISL_FORMAT_ISL>
2840 In case of printing in C<ISL_FORMAT_C>, the user may want
2841 to set the names of all dimensions
2843 __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name(
2844 __isl_take isl_qpolynomial *qp,
2845 enum isl_dim_type type, unsigned pos,
2847 __isl_give isl_pw_qpolynomial *
2848 isl_pw_qpolynomial_set_dim_name(
2849 __isl_take isl_pw_qpolynomial *pwqp,
2850 enum isl_dim_type type, unsigned pos,
2853 =head3 Creating New (Piecewise) Quasipolynomials
2855 Some simple quasipolynomials can be created using the following functions.
2856 More complicated quasipolynomials can be created by applying
2857 operations such as addition and multiplication
2858 on the resulting quasipolynomials
2860 __isl_give isl_qpolynomial *isl_qpolynomial_zero(
2861 __isl_take isl_dim *dim);
2862 __isl_give isl_qpolynomial *isl_qpolynomial_one(
2863 __isl_take isl_dim *dim);
2864 __isl_give isl_qpolynomial *isl_qpolynomial_infty(
2865 __isl_take isl_dim *dim);
2866 __isl_give isl_qpolynomial *isl_qpolynomial_neginfty(
2867 __isl_take isl_dim *dim);
2868 __isl_give isl_qpolynomial *isl_qpolynomial_nan(
2869 __isl_take isl_dim *dim);
2870 __isl_give isl_qpolynomial *isl_qpolynomial_rat_cst(
2871 __isl_take isl_dim *dim,
2872 const isl_int n, const isl_int d);
2873 __isl_give isl_qpolynomial *isl_qpolynomial_div(
2874 __isl_take isl_div *div);
2875 __isl_give isl_qpolynomial *isl_qpolynomial_var(
2876 __isl_take isl_dim *dim,
2877 enum isl_dim_type type, unsigned pos);
2878 __isl_give isl_qpolynomial *isl_qpolynomial_from_aff(
2879 __isl_take isl_aff *aff);
2881 The zero piecewise quasipolynomial or a piecewise quasipolynomial
2882 with a single cell can be created using the following functions.
2883 Multiple of these single cell piecewise quasipolynomials can
2884 be combined to create more complicated piecewise quasipolynomials.
2886 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_zero(
2887 __isl_take isl_dim *dim);
2888 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_alloc(
2889 __isl_take isl_set *set,
2890 __isl_take isl_qpolynomial *qp);
2891 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_qpolynomial(
2892 __isl_take isl_qpolynomial *qp);
2893 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_pw_aff(
2894 __isl_take isl_pw_aff *pwaff);
2896 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_zero(
2897 __isl_take isl_dim *dim);
2898 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_from_pw_qpolynomial(
2899 __isl_take isl_pw_qpolynomial *pwqp);
2900 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add_pw_qpolynomial(
2901 __isl_take isl_union_pw_qpolynomial *upwqp,
2902 __isl_take isl_pw_qpolynomial *pwqp);
2904 Quasipolynomials can be copied and freed again using the following
2907 __isl_give isl_qpolynomial *isl_qpolynomial_copy(
2908 __isl_keep isl_qpolynomial *qp);
2909 void isl_qpolynomial_free(__isl_take isl_qpolynomial *qp);
2911 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_copy(
2912 __isl_keep isl_pw_qpolynomial *pwqp);
2913 void *isl_pw_qpolynomial_free(
2914 __isl_take isl_pw_qpolynomial *pwqp);
2916 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_copy(
2917 __isl_keep isl_union_pw_qpolynomial *upwqp);
2918 void isl_union_pw_qpolynomial_free(
2919 __isl_take isl_union_pw_qpolynomial *upwqp);
2921 =head3 Inspecting (Piecewise) Quasipolynomials
2923 To iterate over all piecewise quasipolynomials in a union
2924 piecewise quasipolynomial, use the following function
2926 int isl_union_pw_qpolynomial_foreach_pw_qpolynomial(
2927 __isl_keep isl_union_pw_qpolynomial *upwqp,
2928 int (*fn)(__isl_take isl_pw_qpolynomial *pwqp, void *user),
2931 To extract the piecewise quasipolynomial from a union with a given dimension
2934 __isl_give isl_pw_qpolynomial *
2935 isl_union_pw_qpolynomial_extract_pw_qpolynomial(
2936 __isl_keep isl_union_pw_qpolynomial *upwqp,
2937 __isl_take isl_dim *dim);
2939 To iterate over the cells in a piecewise quasipolynomial,
2940 use either of the following two functions
2942 int isl_pw_qpolynomial_foreach_piece(
2943 __isl_keep isl_pw_qpolynomial *pwqp,
2944 int (*fn)(__isl_take isl_set *set,
2945 __isl_take isl_qpolynomial *qp,
2946 void *user), void *user);
2947 int isl_pw_qpolynomial_foreach_lifted_piece(
2948 __isl_keep isl_pw_qpolynomial *pwqp,
2949 int (*fn)(__isl_take isl_set *set,
2950 __isl_take isl_qpolynomial *qp,
2951 void *user), void *user);
2953 As usual, the function C<fn> should return C<0> on success
2954 and C<-1> on failure. The difference between
2955 C<isl_pw_qpolynomial_foreach_piece> and
2956 C<isl_pw_qpolynomial_foreach_lifted_piece> is that
2957 C<isl_pw_qpolynomial_foreach_lifted_piece> will first
2958 compute unique representations for all existentially quantified
2959 variables and then turn these existentially quantified variables
2960 into extra set variables, adapting the associated quasipolynomial
2961 accordingly. This means that the C<set> passed to C<fn>
2962 will not have any existentially quantified variables, but that
2963 the dimensions of the sets may be different for different
2964 invocations of C<fn>.
2966 To iterate over all terms in a quasipolynomial,
2969 int isl_qpolynomial_foreach_term(
2970 __isl_keep isl_qpolynomial *qp,
2971 int (*fn)(__isl_take isl_term *term,
2972 void *user), void *user);
2974 The terms themselves can be inspected and freed using
2977 unsigned isl_term_dim(__isl_keep isl_term *term,
2978 enum isl_dim_type type);
2979 void isl_term_get_num(__isl_keep isl_term *term,
2981 void isl_term_get_den(__isl_keep isl_term *term,
2983 int isl_term_get_exp(__isl_keep isl_term *term,
2984 enum isl_dim_type type, unsigned pos);
2985 __isl_give isl_div *isl_term_get_div(
2986 __isl_keep isl_term *term, unsigned pos);
2987 void isl_term_free(__isl_take isl_term *term);
2989 Each term is a product of parameters, set variables and
2990 integer divisions. The function C<isl_term_get_exp>
2991 returns the exponent of a given dimensions in the given term.
2992 The C<isl_int>s in the arguments of C<isl_term_get_num>
2993 and C<isl_term_get_den> need to have been initialized
2994 using C<isl_int_init> before calling these functions.
2996 =head3 Properties of (Piecewise) Quasipolynomials
2998 To check whether a quasipolynomial is actually a constant,
2999 use the following function.
3001 int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp,
3002 isl_int *n, isl_int *d);
3004 If C<qp> is a constant and if C<n> and C<d> are not C<NULL>
3005 then the numerator and denominator of the constant
3006 are returned in C<*n> and C<*d>, respectively.
3008 =head3 Operations on (Piecewise) Quasipolynomials
3010 __isl_give isl_qpolynomial *isl_qpolynomial_scale(
3011 __isl_take isl_qpolynomial *qp, isl_int v);
3012 __isl_give isl_qpolynomial *isl_qpolynomial_neg(
3013 __isl_take isl_qpolynomial *qp);
3014 __isl_give isl_qpolynomial *isl_qpolynomial_add(
3015 __isl_take isl_qpolynomial *qp1,
3016 __isl_take isl_qpolynomial *qp2);
3017 __isl_give isl_qpolynomial *isl_qpolynomial_sub(
3018 __isl_take isl_qpolynomial *qp1,
3019 __isl_take isl_qpolynomial *qp2);
3020 __isl_give isl_qpolynomial *isl_qpolynomial_mul(
3021 __isl_take isl_qpolynomial *qp1,
3022 __isl_take isl_qpolynomial *qp2);
3023 __isl_give isl_qpolynomial *isl_qpolynomial_pow(
3024 __isl_take isl_qpolynomial *qp, unsigned exponent);
3026 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add(
3027 __isl_take isl_pw_qpolynomial *pwqp1,
3028 __isl_take isl_pw_qpolynomial *pwqp2);
3029 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_sub(
3030 __isl_take isl_pw_qpolynomial *pwqp1,
3031 __isl_take isl_pw_qpolynomial *pwqp2);
3032 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_disjoint(
3033 __isl_take isl_pw_qpolynomial *pwqp1,
3034 __isl_take isl_pw_qpolynomial *pwqp2);
3035 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_neg(
3036 __isl_take isl_pw_qpolynomial *pwqp);
3037 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
3038 __isl_take isl_pw_qpolynomial *pwqp1,
3039 __isl_take isl_pw_qpolynomial *pwqp2);
3040 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_pow(
3041 __isl_take isl_pw_qpolynomial *pwqp, unsigned exponent);
3043 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add(
3044 __isl_take isl_union_pw_qpolynomial *upwqp1,
3045 __isl_take isl_union_pw_qpolynomial *upwqp2);
3046 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_sub(
3047 __isl_take isl_union_pw_qpolynomial *upwqp1,
3048 __isl_take isl_union_pw_qpolynomial *upwqp2);
3049 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul(
3050 __isl_take isl_union_pw_qpolynomial *upwqp1,
3051 __isl_take isl_union_pw_qpolynomial *upwqp2);
3053 __isl_give isl_qpolynomial *isl_pw_qpolynomial_eval(
3054 __isl_take isl_pw_qpolynomial *pwqp,
3055 __isl_take isl_point *pnt);
3057 __isl_give isl_qpolynomial *isl_union_pw_qpolynomial_eval(
3058 __isl_take isl_union_pw_qpolynomial *upwqp,
3059 __isl_take isl_point *pnt);
3061 __isl_give isl_set *isl_pw_qpolynomial_domain(
3062 __isl_take isl_pw_qpolynomial *pwqp);
3063 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_intersect_domain(
3064 __isl_take isl_pw_qpolynomial *pwpq,
3065 __isl_take isl_set *set);
3067 __isl_give isl_union_set *isl_union_pw_qpolynomial_domain(
3068 __isl_take isl_union_pw_qpolynomial *upwqp);
3069 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_intersect_domain(
3070 __isl_take isl_union_pw_qpolynomial *upwpq,
3071 __isl_take isl_union_set *uset);
3073 __isl_give isl_qpolynomial *isl_qpolynomial_align_params(
3074 __isl_take isl_qpolynomial *qp,
3075 __isl_take isl_dim *model);
3077 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_coalesce(
3078 __isl_take isl_union_pw_qpolynomial *upwqp);
3080 __isl_give isl_qpolynomial *isl_qpolynomial_gist(
3081 __isl_take isl_qpolynomial *qp,
3082 __isl_take isl_set *context);
3084 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist(
3085 __isl_take isl_pw_qpolynomial *pwqp,
3086 __isl_take isl_set *context);
3088 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_gist(
3089 __isl_take isl_union_pw_qpolynomial *upwqp,
3090 __isl_take isl_union_set *context);
3092 The gist operation applies the gist operation to each of
3093 the cells in the domain of the input piecewise quasipolynomial.
3094 The context is also exploited
3095 to simplify the quasipolynomials associated to each cell.
3097 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial(
3098 __isl_take isl_pw_qpolynomial *pwqp, int sign);
3099 __isl_give isl_union_pw_qpolynomial *
3100 isl_union_pw_qpolynomial_to_polynomial(
3101 __isl_take isl_union_pw_qpolynomial *upwqp, int sign);
3103 Approximate each quasipolynomial by a polynomial. If C<sign> is positive,
3104 the polynomial will be an overapproximation. If C<sign> is negative,
3105 it will be an underapproximation. If C<sign> is zero, the approximation
3106 will lie somewhere in between.
3108 =head2 Bounds on Piecewise Quasipolynomials and Piecewise Quasipolynomial Reductions
3110 A piecewise quasipolynomial reduction is a piecewise
3111 reduction (or fold) of quasipolynomials.
3112 In particular, the reduction can be maximum or a minimum.
3113 The objects are mainly used to represent the result of
3114 an upper or lower bound on a quasipolynomial over its domain,
3115 i.e., as the result of the following function.
3117 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_bound(
3118 __isl_take isl_pw_qpolynomial *pwqp,
3119 enum isl_fold type, int *tight);
3121 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_bound(
3122 __isl_take isl_union_pw_qpolynomial *upwqp,
3123 enum isl_fold type, int *tight);
3125 The C<type> argument may be either C<isl_fold_min> or C<isl_fold_max>.
3126 If C<tight> is not C<NULL>, then C<*tight> is set to C<1>
3127 is the returned bound is known be tight, i.e., for each value
3128 of the parameters there is at least
3129 one element in the domain that reaches the bound.
3130 If the domain of C<pwqp> is not wrapping, then the bound is computed
3131 over all elements in that domain and the result has a purely parametric
3132 domain. If the domain of C<pwqp> is wrapping, then the bound is
3133 computed over the range of the wrapped relation. The domain of the
3134 wrapped relation becomes the domain of the result.
3136 A (piecewise) quasipolynomial reduction can be copied or freed using the
3137 following functions.
3139 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_copy(
3140 __isl_keep isl_qpolynomial_fold *fold);
3141 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_copy(
3142 __isl_keep isl_pw_qpolynomial_fold *pwf);
3143 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_copy(
3144 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
3145 void isl_qpolynomial_fold_free(
3146 __isl_take isl_qpolynomial_fold *fold);
3147 void *isl_pw_qpolynomial_fold_free(
3148 __isl_take isl_pw_qpolynomial_fold *pwf);
3149 void isl_union_pw_qpolynomial_fold_free(
3150 __isl_take isl_union_pw_qpolynomial_fold *upwf);
3152 =head3 Printing Piecewise Quasipolynomial Reductions
3154 Piecewise quasipolynomial reductions can be printed
3155 using the following function.
3157 __isl_give isl_printer *isl_printer_print_pw_qpolynomial_fold(
3158 __isl_take isl_printer *p,
3159 __isl_keep isl_pw_qpolynomial_fold *pwf);
3160 __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial_fold(
3161 __isl_take isl_printer *p,
3162 __isl_keep isl_union_pw_qpolynomial_fold *upwf);
3164 For C<isl_printer_print_pw_qpolynomial_fold>,
3165 output format of the printer
3166 needs to be set to either C<ISL_FORMAT_ISL> or C<ISL_FORMAT_C>.
3167 For C<isl_printer_print_union_pw_qpolynomial_fold>,
3168 output format of the printer
3169 needs to be set to C<ISL_FORMAT_ISL>.
3170 In case of printing in C<ISL_FORMAT_C>, the user may want
3171 to set the names of all dimensions
3173 __isl_give isl_pw_qpolynomial_fold *
3174 isl_pw_qpolynomial_fold_set_dim_name(
3175 __isl_take isl_pw_qpolynomial_fold *pwf,
3176 enum isl_dim_type type, unsigned pos,
3179 =head3 Inspecting (Piecewise) Quasipolynomial Reductions
3181 To iterate over all piecewise quasipolynomial reductions in a union
3182 piecewise quasipolynomial reduction, use the following function
3184 int isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold(
3185 __isl_keep isl_union_pw_qpolynomial_fold *upwf,
3186 int (*fn)(__isl_take isl_pw_qpolynomial_fold *pwf,
3187 void *user), void *user);
3189 To iterate over the cells in a piecewise quasipolynomial reduction,
3190 use either of the following two functions
3192 int isl_pw_qpolynomial_fold_foreach_piece(
3193 __isl_keep isl_pw_qpolynomial_fold *pwf,
3194 int (*fn)(__isl_take isl_set *set,
3195 __isl_take isl_qpolynomial_fold *fold,
3196 void *user), void *user);
3197 int isl_pw_qpolynomial_fold_foreach_lifted_piece(
3198 __isl_keep isl_pw_qpolynomial_fold *pwf,
3199 int (*fn)(__isl_take isl_set *set,
3200 __isl_take isl_qpolynomial_fold *fold,
3201 void *user), void *user);
3203 See L<Inspecting (Piecewise) Quasipolynomials> for an explanation
3204 of the difference between these two functions.
3206 To iterate over all quasipolynomials in a reduction, use
3208 int isl_qpolynomial_fold_foreach_qpolynomial(
3209 __isl_keep isl_qpolynomial_fold *fold,
3210 int (*fn)(__isl_take isl_qpolynomial *qp,
3211 void *user), void *user);
3213 =head3 Operations on Piecewise Quasipolynomial Reductions
3215 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_scale(
3216 __isl_take isl_qpolynomial_fold *fold, isl_int v);
3218 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_add(
3219 __isl_take isl_pw_qpolynomial_fold *pwf1,
3220 __isl_take isl_pw_qpolynomial_fold *pwf2);
3222 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_fold(
3223 __isl_take isl_pw_qpolynomial_fold *pwf1,
3224 __isl_take isl_pw_qpolynomial_fold *pwf2);
3226 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_fold(
3227 __isl_take isl_union_pw_qpolynomial_fold *upwf1,
3228 __isl_take isl_union_pw_qpolynomial_fold *upwf2);
3230 __isl_give isl_qpolynomial *isl_pw_qpolynomial_fold_eval(
3231 __isl_take isl_pw_qpolynomial_fold *pwf,
3232 __isl_take isl_point *pnt);
3234 __isl_give isl_qpolynomial *isl_union_pw_qpolynomial_fold_eval(
3235 __isl_take isl_union_pw_qpolynomial_fold *upwf,
3236 __isl_take isl_point *pnt);
3238 __isl_give isl_union_set *isl_union_pw_qpolynomial_fold_domain(
3239 __isl_take isl_union_pw_qpolynomial_fold *upwf);
3240 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_intersect_domain(
3241 __isl_take isl_union_pw_qpolynomial_fold *upwf,
3242 __isl_take isl_union_set *uset);
3244 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_coalesce(
3245 __isl_take isl_pw_qpolynomial_fold *pwf);
3247 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_coalesce(
3248 __isl_take isl_union_pw_qpolynomial_fold *upwf);
3250 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_gist(
3251 __isl_take isl_pw_qpolynomial_fold *pwf,
3252 __isl_take isl_set *context);
3254 __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_gist(
3255 __isl_take isl_union_pw_qpolynomial_fold *upwf,
3256 __isl_take isl_union_set *context);
3258 The gist operation applies the gist operation to each of
3259 the cells in the domain of the input piecewise quasipolynomial reduction.
3260 In future, the operation will also exploit the context
3261 to simplify the quasipolynomial reductions associated to each cell.
3263 __isl_give isl_pw_qpolynomial_fold *
3264 isl_set_apply_pw_qpolynomial_fold(
3265 __isl_take isl_set *set,
3266 __isl_take isl_pw_qpolynomial_fold *pwf,
3268 __isl_give isl_pw_qpolynomial_fold *
3269 isl_map_apply_pw_qpolynomial_fold(
3270 __isl_take isl_map *map,
3271 __isl_take isl_pw_qpolynomial_fold *pwf,
3273 __isl_give isl_union_pw_qpolynomial_fold *
3274 isl_union_set_apply_union_pw_qpolynomial_fold(
3275 __isl_take isl_union_set *uset,
3276 __isl_take isl_union_pw_qpolynomial_fold *upwf,
3278 __isl_give isl_union_pw_qpolynomial_fold *
3279 isl_union_map_apply_union_pw_qpolynomial_fold(
3280 __isl_take isl_union_map *umap,
3281 __isl_take isl_union_pw_qpolynomial_fold *upwf,
3284 The functions taking a map
3285 compose the given map with the given piecewise quasipolynomial reduction.
3286 That is, compute a bound (of the same type as C<pwf> or C<upwf> itself)
3287 over all elements in the intersection of the range of the map
3288 and the domain of the piecewise quasipolynomial reduction
3289 as a function of an element in the domain of the map.
3290 The functions taking a set compute a bound over all elements in the
3291 intersection of the set and the domain of the
3292 piecewise quasipolynomial reduction.
3294 =head2 Dependence Analysis
3296 C<isl> contains specialized functionality for performing
3297 array dataflow analysis. That is, given a I<sink> access relation
3298 and a collection of possible I<source> access relations,
3299 C<isl> can compute relations that describe
3300 for each iteration of the sink access, which iteration
3301 of which of the source access relations was the last
3302 to access the same data element before the given iteration
3304 To compute standard flow dependences, the sink should be
3305 a read, while the sources should be writes.
3306 If any of the source accesses are marked as being I<may>
3307 accesses, then there will be a dependence to the last
3308 I<must> access B<and> to any I<may> access that follows
3309 this last I<must> access.
3310 In particular, if I<all> sources are I<may> accesses,
3311 then memory based dependence analysis is performed.
3312 If, on the other hand, all sources are I<must> accesses,
3313 then value based dependence analysis is performed.
3315 #include <isl/flow.h>
3317 typedef int (*isl_access_level_before)(void *first, void *second);
3319 __isl_give isl_access_info *isl_access_info_alloc(
3320 __isl_take isl_map *sink,
3321 void *sink_user, isl_access_level_before fn,
3323 __isl_give isl_access_info *isl_access_info_add_source(
3324 __isl_take isl_access_info *acc,
3325 __isl_take isl_map *source, int must,
3327 void isl_access_info_free(__isl_take isl_access_info *acc);
3329 __isl_give isl_flow *isl_access_info_compute_flow(
3330 __isl_take isl_access_info *acc);
3332 int isl_flow_foreach(__isl_keep isl_flow *deps,
3333 int (*fn)(__isl_take isl_map *dep, int must,
3334 void *dep_user, void *user),
3336 __isl_give isl_map *isl_flow_get_no_source(
3337 __isl_keep isl_flow *deps, int must);
3338 void isl_flow_free(__isl_take isl_flow *deps);
3340 The function C<isl_access_info_compute_flow> performs the actual
3341 dependence analysis. The other functions are used to construct
3342 the input for this function or to read off the output.
3344 The input is collected in an C<isl_access_info>, which can
3345 be created through a call to C<isl_access_info_alloc>.
3346 The arguments to this functions are the sink access relation
3347 C<sink>, a token C<sink_user> used to identify the sink
3348 access to the user, a callback function for specifying the
3349 relative order of source and sink accesses, and the number
3350 of source access relations that will be added.
3351 The callback function has type C<int (*)(void *first, void *second)>.
3352 The function is called with two user supplied tokens identifying
3353 either a source or the sink and it should return the shared nesting
3354 level and the relative order of the two accesses.
3355 In particular, let I<n> be the number of loops shared by
3356 the two accesses. If C<first> precedes C<second> textually,
3357 then the function should return I<2 * n + 1>; otherwise,
3358 it should return I<2 * n>.
3359 The sources can be added to the C<isl_access_info> by performing
3360 (at most) C<max_source> calls to C<isl_access_info_add_source>.
3361 C<must> indicates whether the source is a I<must> access
3362 or a I<may> access. Note that a multi-valued access relation
3363 should only be marked I<must> if every iteration in the domain
3364 of the relation accesses I<all> elements in its image.
3365 The C<source_user> token is again used to identify
3366 the source access. The range of the source access relation
3367 C<source> should have the same dimension as the range
3368 of the sink access relation.
3369 The C<isl_access_info_free> function should usually not be
3370 called explicitly, because it is called implicitly by
3371 C<isl_access_info_compute_flow>.
3373 The result of the dependence analysis is collected in an
3374 C<isl_flow>. There may be elements of
3375 the sink access for which no preceding source access could be
3376 found or for which all preceding sources are I<may> accesses.
3377 The relations containing these elements can be obtained through
3378 calls to C<isl_flow_get_no_source>, the first with C<must> set
3379 and the second with C<must> unset.
3380 In the case of standard flow dependence analysis,
3381 with the sink a read and the sources I<must> writes,
3382 the first relation corresponds to the reads from uninitialized
3383 array elements and the second relation is empty.
3384 The actual flow dependences can be extracted using
3385 C<isl_flow_foreach>. This function will call the user-specified
3386 callback function C<fn> for each B<non-empty> dependence between
3387 a source and the sink. The callback function is called
3388 with four arguments, the actual flow dependence relation
3389 mapping source iterations to sink iterations, a boolean that
3390 indicates whether it is a I<must> or I<may> dependence, a token
3391 identifying the source and an additional C<void *> with value
3392 equal to the third argument of the C<isl_flow_foreach> call.
3393 A dependence is marked I<must> if it originates from a I<must>
3394 source and if it is not followed by any I<may> sources.
3396 After finishing with an C<isl_flow>, the user should call
3397 C<isl_flow_free> to free all associated memory.
3399 A higher-level interface to dependence analysis is provided
3400 by the following function.
3402 #include <isl/flow.h>
3404 int isl_union_map_compute_flow(__isl_take isl_union_map *sink,
3405 __isl_take isl_union_map *must_source,
3406 __isl_take isl_union_map *may_source,
3407 __isl_take isl_union_map *schedule,
3408 __isl_give isl_union_map **must_dep,
3409 __isl_give isl_union_map **may_dep,
3410 __isl_give isl_union_map **must_no_source,
3411 __isl_give isl_union_map **may_no_source);
3413 The arrays are identified by the tuple names of the ranges
3414 of the accesses. The iteration domains by the tuple names
3415 of the domains of the accesses and of the schedule.
3416 The relative order of the iteration domains is given by the
3417 schedule. The relations returned through C<must_no_source>
3418 and C<may_no_source> are subsets of C<sink>.
3419 Any of C<must_dep>, C<may_dep>, C<must_no_source>
3420 or C<may_no_source> may be C<NULL>, but a C<NULL> value for
3421 any of the other arguments is treated as an error.
3425 B<The functionality described in this section is fairly new
3426 and may be subject to change.>
3428 The following function can be used to compute a schedule
3429 for a union of domains. The generated schedule respects
3430 all C<validity> dependences. That is, all dependence distances
3431 over these dependences in the scheduled space are lexicographically
3432 positive. The generated schedule schedule also tries to minimize
3433 the dependence distances over C<proximity> dependences.
3434 Moreover, it tries to obtain sequences (bands) of schedule dimensions
3435 for groups of domains where the dependence distances have only
3436 non-negative values.
3437 The algorithm used to construct the schedule is similar to that
3440 #include <isl/schedule.h>
3441 __isl_give isl_schedule *isl_union_set_compute_schedule(
3442 __isl_take isl_union_set *domain,
3443 __isl_take isl_union_map *validity,
3444 __isl_take isl_union_map *proximity);
3445 void *isl_schedule_free(__isl_take isl_schedule *sched);
3447 A mapping from the domains to the scheduled space can be obtained
3448 from an C<isl_schedule> using the following function.
3450 __isl_give isl_union_map *isl_schedule_get_map(
3451 __isl_keep isl_schedule *sched);
3453 A representation of the schedule can be printed using
3455 __isl_give isl_printer *isl_printer_print_schedule(
3456 __isl_take isl_printer *p,
3457 __isl_keep isl_schedule *schedule);
3459 A representation of the schedule as a forest of bands can be obtained
3460 using the following function.
3462 __isl_give isl_band_list *isl_schedule_get_band_forest(
3463 __isl_keep isl_schedule *schedule);
3465 The list can be manipulated as explained in L<"Lists">.
3466 The bands inside the list can be copied and freed using the following
3469 #include <isl/band.h>
3470 __isl_give isl_band *isl_band_copy(
3471 __isl_keep isl_band *band);
3472 void *isl_band_free(__isl_take isl_band *band);
3474 Each band contains zero or more scheduling dimensions.
3475 These are referred to as the members of the band.
3476 The section of the schedule that corresponds to the band is
3477 referred to as the partial schedule of the band.
3478 For those nodes that participate in a band, the outer scheduling
3479 dimensions form the prefix schedule, while the inner scheduling
3480 dimensions form the suffix schedule.
3481 That is, if we take a cut of the band forest, then the union of
3482 the concatenations of the prefix, partial and suffix schedules of
3483 each band in the cut is equal to the entire schedule (modulo
3484 some possible padding at the end with zero scheduling dimensions).
3485 The properties of a band can be inspected using the following functions.
3487 #include <isl/band.h>
3488 isl_ctx *isl_band_get_ctx(__isl_keep isl_band *band);
3490 int isl_band_has_children(__isl_keep isl_band *band);
3491 __isl_give isl_band_list *isl_band_get_children(
3492 __isl_keep isl_band *band);
3494 __isl_give isl_union_map *isl_band_get_prefix_schedule(
3495 __isl_keep isl_band *band);
3496 __isl_give isl_union_map *isl_band_get_partial_schedule(
3497 __isl_keep isl_band *band);
3498 __isl_give isl_union_map *isl_band_get_suffix_schedule(
3499 __isl_keep isl_band *band);
3501 int isl_band_n_member(__isl_keep isl_band *band);
3502 int isl_band_member_is_zero_distance(
3503 __isl_keep isl_band *band, int pos);
3505 Note that a scheduling dimension is considered to be ``zero
3506 distance'' if it does not carry any proximity dependences
3508 That is, if the dependence distances of the proximity
3509 dependences are all zero in that direction (for fixed
3510 iterations of outer bands).
3512 A representation of the band can be printed using
3514 #include <isl/band.h>
3515 __isl_give isl_printer *isl_printer_print_band(
3516 __isl_take isl_printer *p,
3517 __isl_keep isl_band *band);
3519 =head2 Parametric Vertex Enumeration
3521 The parametric vertex enumeration described in this section
3522 is mainly intended to be used internally and by the C<barvinok>
3525 #include <isl/vertices.h>
3526 __isl_give isl_vertices *isl_basic_set_compute_vertices(
3527 __isl_keep isl_basic_set *bset);
3529 The function C<isl_basic_set_compute_vertices> performs the
3530 actual computation of the parametric vertices and the chamber
3531 decomposition and store the result in an C<isl_vertices> object.
3532 This information can be queried by either iterating over all
3533 the vertices or iterating over all the chambers or cells
3534 and then iterating over all vertices that are active on the chamber.
3536 int isl_vertices_foreach_vertex(
3537 __isl_keep isl_vertices *vertices,
3538 int (*fn)(__isl_take isl_vertex *vertex, void *user),
3541 int isl_vertices_foreach_cell(
3542 __isl_keep isl_vertices *vertices,
3543 int (*fn)(__isl_take isl_cell *cell, void *user),
3545 int isl_cell_foreach_vertex(__isl_keep isl_cell *cell,
3546 int (*fn)(__isl_take isl_vertex *vertex, void *user),
3549 Other operations that can be performed on an C<isl_vertices> object are
3552 isl_ctx *isl_vertices_get_ctx(
3553 __isl_keep isl_vertices *vertices);
3554 int isl_vertices_get_n_vertices(
3555 __isl_keep isl_vertices *vertices);
3556 void isl_vertices_free(__isl_take isl_vertices *vertices);
3558 Vertices can be inspected and destroyed using the following functions.
3560 isl_ctx *isl_vertex_get_ctx(__isl_keep isl_vertex *vertex);
3561 int isl_vertex_get_id(__isl_keep isl_vertex *vertex);
3562 __isl_give isl_basic_set *isl_vertex_get_domain(
3563 __isl_keep isl_vertex *vertex);
3564 __isl_give isl_basic_set *isl_vertex_get_expr(
3565 __isl_keep isl_vertex *vertex);
3566 void isl_vertex_free(__isl_take isl_vertex *vertex);
3568 C<isl_vertex_get_expr> returns a singleton parametric set describing
3569 the vertex, while C<isl_vertex_get_domain> returns the activity domain
3571 Note that C<isl_vertex_get_domain> and C<isl_vertex_get_expr> return
3572 B<rational> basic sets, so they should mainly be used for inspection
3573 and should not be mixed with integer sets.
3575 Chambers can be inspected and destroyed using the following functions.
3577 isl_ctx *isl_cell_get_ctx(__isl_keep isl_cell *cell);
3578 __isl_give isl_basic_set *isl_cell_get_domain(
3579 __isl_keep isl_cell *cell);
3580 void isl_cell_free(__isl_take isl_cell *cell);
3584 Although C<isl> is mainly meant to be used as a library,
3585 it also contains some basic applications that use some
3586 of the functionality of C<isl>.
3587 The input may be specified in either the L<isl format>
3588 or the L<PolyLib format>.
3590 =head2 C<isl_polyhedron_sample>
3592 C<isl_polyhedron_sample> takes a polyhedron as input and prints
3593 an integer element of the polyhedron, if there is any.
3594 The first column in the output is the denominator and is always
3595 equal to 1. If the polyhedron contains no integer points,
3596 then a vector of length zero is printed.
3600 C<isl_pip> takes the same input as the C<example> program
3601 from the C<piplib> distribution, i.e., a set of constraints
3602 on the parameters, a line containing only -1 and finally a set
3603 of constraints on a parametric polyhedron.
3604 The coefficients of the parameters appear in the last columns
3605 (but before the final constant column).
3606 The output is the lexicographic minimum of the parametric polyhedron.
3607 As C<isl> currently does not have its own output format, the output
3608 is just a dump of the internal state.
3610 =head2 C<isl_polyhedron_minimize>
3612 C<isl_polyhedron_minimize> computes the minimum of some linear
3613 or affine objective function over the integer points in a polyhedron.
3614 If an affine objective function
3615 is given, then the constant should appear in the last column.
3617 =head2 C<isl_polytope_scan>
3619 Given a polytope, C<isl_polytope_scan> prints
3620 all integer points in the polytope.