6ce791cd0a6caca3e3a9a2243377f7d6a9535f28
[platform/upstream/opencv.git] / doc / tutorials / calib3d / camera_calibration / camera_calibration.markdown
1 Camera calibration With OpenCV {#tutorial_camera_calibration}
2 ==============================
3
4 Cameras have been around for a long-long time. However, with the introduction of the cheap *pinhole*
5 cameras in the late 20th century, they became a common occurrence in our everyday life.
6 Unfortunately, this cheapness comes with its price: significant distortion. Luckily, these are
7 constants and with a calibration and some remapping we can correct this. Furthermore, with
8 calibration you may also determine the relation between the camera's natural units (pixels) and the
9 real world units (for example millimeters).
10
11 Theory
12 ------
13
14 For the distortion OpenCV takes into account the radial and tangential factors. For the radial
15 factor one uses the following formula:
16
17 \f[x_{distorted} = x( 1 + k_1 r^2 + k_2 r^4 + k_3 r^6) \\
18 y_{distorted} = y( 1 + k_1 r^2 + k_2 r^4 + k_3 r^6)\f]
19
20 So for an undistorted pixel point at \f$(x,y)\f$ coordinates, its position on the distorted image
21 will be \f$(x_{distorted} y_{distorted})\f$. The presence of the radial distortion manifests in form
22 of the "barrel" or "fish-eye" effect.
23
24 Tangential distortion occurs because the image taking lenses are not perfectly parallel to the
25 imaging plane. It can be represented via the formulas:
26
27 \f[x_{distorted} = x + [ 2p_1xy + p_2(r^2+2x^2)] \\
28 y_{distorted} = y + [ p_1(r^2+ 2y^2)+ 2p_2xy]\f]
29
30 So we have five distortion parameters which in OpenCV are presented as one row matrix with 5
31 columns:
32
33 \f[distortion\_coefficients=(k_1 \hspace{10pt} k_2 \hspace{10pt} p_1 \hspace{10pt} p_2 \hspace{10pt} k_3)\f]
34
35 Now for the unit conversion we use the following formula:
36
37 \f[\left [  \begin{matrix}   x \\   y \\  w \end{matrix} \right ] = \left [ \begin{matrix}   f_x & 0 & c_x \\  0 & f_y & c_y \\   0 & 0 & 1 \end{matrix} \right ] \left [ \begin{matrix}  X \\  Y \\   Z \end{matrix} \right ]\f]
38
39 Here the presence of \f$w\f$ is explained by the use of homography coordinate system (and \f$w=Z\f$). The
40 unknown parameters are \f$f_x\f$ and \f$f_y\f$ (camera focal lengths) and \f$(c_x, c_y)\f$ which are the optical
41 centers expressed in pixels coordinates. If for both axes a common focal length is used with a given
42 \f$a\f$ aspect ratio (usually 1), then \f$f_y=f_x*a\f$ and in the upper formula we will have a single focal
43 length \f$f\f$. The matrix containing these four parameters is referred to as the *camera matrix*. While
44 the distortion coefficients are the same regardless of the camera resolutions used, these should be
45 scaled along with the current resolution from the calibrated resolution.
46
47 The process of determining these two matrices is the calibration. Calculation of these parameters is
48 done through basic geometrical equations. The equations used depend on the chosen calibrating
49 objects. Currently OpenCV supports three types of objects for calibration:
50
51 -   Classical black-white chessboard
52 -   Symmetrical circle pattern
53 -   Asymmetrical circle pattern
54
55 Basically, you need to take snapshots of these patterns with your camera and let OpenCV find them.
56 Each found pattern results in a new equation. To solve the equation you need at least a
57 predetermined number of pattern snapshots to form a well-posed equation system. This number is
58 higher for the chessboard pattern and less for the circle ones. For example, in theory the
59 chessboard pattern requires at least two snapshots. However, in practice we have a good amount of
60 noise present in our input images, so for good results you will probably need at least 10 good
61 snapshots of the input pattern in different positions.
62
63 Goal
64 ----
65
66 The sample application will:
67
68 -   Determine the distortion matrix
69 -   Determine the camera matrix
70 -   Take input from Camera, Video and Image file list
71 -   Read configuration from XML/YAML file
72 -   Save the results into XML/YAML file
73 -   Calculate re-projection error
74
75 Source code
76 -----------
77
78 You may also find the source code in the `samples/cpp/tutorial_code/calib3d/camera_calibration/`
79 folder of the OpenCV source library or [download it from here
80 ](https://github.com/opencv/opencv/tree/3.4/samples/cpp/tutorial_code/calib3d/camera_calibration/camera_calibration.cpp). The program has a
81 single argument: the name of its configuration file. If none is given then it will try to open the
82 one named "default.xml". [Here's a sample configuration file
83 ](https://github.com/opencv/opencv/tree/3.4/samples/cpp/tutorial_code/calib3d/camera_calibration/in_VID5.xml) in XML format. In the
84 configuration file you may choose to use camera as an input, a video file or an image list. If you
85 opt for the last one, you will need to create a configuration file where you enumerate the images to
86 use. Here's [an example of this ](https://github.com/opencv/opencv/tree/3.4/samples/cpp/tutorial_code/calib3d/camera_calibration/VID5.xml).
87 The important part to remember is that the images need to be specified using the absolute path or
88 the relative one from your application's working directory. You may find all this in the samples
89 directory mentioned above.
90
91 The application starts up with reading the settings from the configuration file. Although, this is
92 an important part of it, it has nothing to do with the subject of this tutorial: *camera
93 calibration*. Therefore, I've chosen not to post the code for that part here. Technical background
94 on how to do this you can find in the @ref tutorial_file_input_output_with_xml_yml tutorial.
95
96 Explanation
97 -----------
98
99 -#  **Read the settings**
100     @snippet samples/cpp/tutorial_code/calib3d/camera_calibration/camera_calibration.cpp file_read
101
102     For this I've used simple OpenCV class input operation. After reading the file I've an
103     additional post-processing function that checks validity of the input. Only if all inputs are
104     good then *goodInput* variable will be true.
105
106 -#  **Get next input, if it fails or we have enough of them - calibrate**
107
108     After this we have a big
109     loop where we do the following operations: get the next image from the image list, camera or
110     video file. If this fails or we have enough images then we run the calibration process. In case
111     of image we step out of the loop and otherwise the remaining frames will be undistorted (if the
112     option is set) via changing from *DETECTION* mode to the *CALIBRATED* one.
113     @snippet samples/cpp/tutorial_code/calib3d/camera_calibration/camera_calibration.cpp get_input
114     For some cameras we may need to flip the input image. Here we do this too.
115
116 -#  **Find the pattern in the current input**
117
118     The formation of the equations I mentioned above aims
119     to finding major patterns in the input: in case of the chessboard this are corners of the
120     squares and for the circles, well, the circles themselves. The position of these will form the
121     result which will be written into the *pointBuf* vector.
122     @snippet samples/cpp/tutorial_code/calib3d/camera_calibration/camera_calibration.cpp find_pattern
123     Depending on the type of the input pattern you use either the @ref cv::findChessboardCorners or
124     the @ref cv::findCirclesGrid function. For both of them you pass the current image and the size
125     of the board and you'll get the positions of the patterns. Furthermore, they return a boolean
126     variable which states if the pattern was found in the input (we only need to take into account
127     those images where this is true!).
128
129     Then again in case of cameras we only take camera images when an input delay time is passed.
130     This is done in order to allow user moving the chessboard around and getting different images.
131     Similar images result in similar equations, and similar equations at the calibration step will
132     form an ill-posed problem, so the calibration will fail. For square images the positions of the
133     corners are only approximate. We may improve this by calling the @ref cv::cornerSubPix function.
134     It will produce better calibration result. After this we add a valid inputs result to the
135     *imagePoints* vector to collect all of the equations into a single container. Finally, for
136     visualization feedback purposes we will draw the found points on the input image using @ref
137     cv::findChessboardCorners function.
138     @snippet samples/cpp/tutorial_code/calib3d/camera_calibration/camera_calibration.cpp pattern_found
139 -#  **Show state and result to the user, plus command line control of the application**
140
141     This part shows text output on the image.
142     @snippet samples/cpp/tutorial_code/calib3d/camera_calibration/camera_calibration.cpp output_text
143     If we ran calibration and got camera's matrix with the distortion coefficients we may want to
144     correct the image using @ref cv::undistort function:
145     @snippet samples/cpp/tutorial_code/calib3d/camera_calibration/camera_calibration.cpp output_undistorted
146     Then we show the image and wait for an input key and if this is *u* we toggle the distortion removal,
147     if it is *g* we start again the detection process, and finally for the *ESC* key we quit the application:
148     @snippet samples/cpp/tutorial_code/calib3d/camera_calibration/camera_calibration.cpp await_input
149 -#  **Show the distortion removal for the images too**
150
151     When you work with an image list it is not
152     possible to remove the distortion inside the loop. Therefore, you must do this after the loop.
153     Taking advantage of this now I'll expand the @ref cv::undistort function, which is in fact first
154     calls @ref cv::initUndistortRectifyMap to find transformation matrices and then performs
155     transformation using @ref cv::remap function. Because, after successful calibration map
156     calculation needs to be done only once, by using this expanded form you may speed up your
157     application:
158     @snippet samples/cpp/tutorial_code/calib3d/camera_calibration/camera_calibration.cpp show_results
159
160 The calibration and save
161 ------------------------
162
163 Because the calibration needs to be done only once per camera, it makes sense to save it after a
164 successful calibration. This way later on you can just load these values into your program. Due to
165 this we first make the calibration, and if it succeeds we save the result into an OpenCV style XML
166 or YAML file, depending on the extension you give in the configuration file.
167
168 Therefore in the first function we just split up these two processes. Because we want to save many
169 of the calibration variables we'll create these variables here and pass on both of them to the
170 calibration and saving function. Again, I'll not show the saving part as that has little in common
171 with the calibration. Explore the source file in order to find out how and what:
172 @snippet samples/cpp/tutorial_code/calib3d/camera_calibration/camera_calibration.cpp run_and_save
173 We do the calibration with the help of the @ref cv::calibrateCamera function. It has the following
174 parameters:
175
176 -   The object points. This is a vector of *Point3f* vector that for each input image describes how
177     should the pattern look. If we have a planar pattern (like a chessboard) then we can simply set
178     all Z coordinates to zero. This is a collection of the points where these important points are
179     present. Because, we use a single pattern for all the input images we can calculate this just
180     once and multiply it for all the other input views. We calculate the corner points with the
181     *calcBoardCornerPositions* function as:
182     @snippet samples/cpp/tutorial_code/calib3d/camera_calibration/camera_calibration.cpp board_corners
183     And then multiply it as:
184     @code{.cpp}
185     vector<vector<Point3f> > objectPoints(1);
186     calcBoardCornerPositions(s.boardSize, s.squareSize, objectPoints[0], s.calibrationPattern);
187     objectPoints.resize(imagePoints.size(),objectPoints[0]);
188     @endcode
189 -   The image points. This is a vector of *Point2f* vector which for each input image contains
190     coordinates of the important points (corners for chessboard and centers of the circles for the
191     circle pattern). We have already collected this from @ref cv::findChessboardCorners or @ref
192     cv::findCirclesGrid function. We just need to pass it on.
193 -   The size of the image acquired from the camera, video file or the images.
194 -   The camera matrix. If we used the fixed aspect ratio option we need to set \f$f_x\f$:
195     @snippet samples/cpp/tutorial_code/calib3d/camera_calibration/camera_calibration.cpp fixed_aspect
196 -   The distortion coefficient matrix. Initialize with zero.
197     @code{.cpp}
198     distCoeffs = Mat::zeros(8, 1, CV_64F);
199     @endcode
200 -   For all the views the function will calculate rotation and translation vectors which transform
201     the object points (given in the model coordinate space) to the image points (given in the world
202     coordinate space). The 7-th and 8-th parameters are the output vector of matrices containing in
203     the i-th position the rotation and translation vector for the i-th object point to the i-th
204     image point.
205 -   The final argument is the flag. You need to specify here options like fix the aspect ratio for
206     the focal length, assume zero tangential distortion or to fix the principal point.
207 @code{.cpp}
208 double rms = calibrateCamera(objectPoints, imagePoints, imageSize, cameraMatrix,
209                             distCoeffs, rvecs, tvecs, s.flag|CV_CALIB_FIX_K4|CV_CALIB_FIX_K5);
210 @endcode
211 -   The function returns the average re-projection error. This number gives a good estimation of
212     precision of the found parameters. This should be as close to zero as possible. Given the
213     intrinsic, distortion, rotation and translation matrices we may calculate the error for one view
214     by using the @ref cv::projectPoints to first transform the object point to image point. Then we
215     calculate the absolute norm between what we got with our transformation and the corner/circle
216     finding algorithm. To find the average error we calculate the arithmetical mean of the errors
217     calculated for all the calibration images.
218     @snippet samples/cpp/tutorial_code/calib3d/camera_calibration/camera_calibration.cpp compute_errors
219
220 Results
221 -------
222
223 Let there be [this input chessboard pattern ](pattern.png) which has a size of 9 X 6. I've used an
224 AXIS IP camera to create a couple of snapshots of the board and saved it into VID5 directory. I've
225 put this inside the `images/CameraCalibration` folder of my working directory and created the
226 following `VID5.XML` file that describes which images to use:
227 @code{.xml}
228 <?xml version="1.0"?>
229 <opencv_storage>
230 <images>
231 images/CameraCalibration/VID5/xx1.jpg
232 images/CameraCalibration/VID5/xx2.jpg
233 images/CameraCalibration/VID5/xx3.jpg
234 images/CameraCalibration/VID5/xx4.jpg
235 images/CameraCalibration/VID5/xx5.jpg
236 images/CameraCalibration/VID5/xx6.jpg
237 images/CameraCalibration/VID5/xx7.jpg
238 images/CameraCalibration/VID5/xx8.jpg
239 </images>
240 </opencv_storage>
241 @endcode
242 Then passed `images/CameraCalibration/VID5/VID5.XML` as an input in the configuration file. Here's a
243 chessboard pattern found during the runtime of the application:
244
245 ![](images/fileListImage.jpg)
246
247 After applying the distortion removal we get:
248
249 ![](images/fileListImageUnDist.jpg)
250
251 The same works for [this asymmetrical circle pattern ](acircles_pattern.png) by setting the input
252 width to 4 and height to 11. This time I've used a live camera feed by specifying its ID ("1") for
253 the input. Here's, how a detected pattern should look:
254
255 ![](images/asymetricalPattern.jpg)
256
257 In both cases in the specified output XML/YAML file you'll find the camera and distortion
258 coefficients matrices:
259 @code{.xml}
260 <camera_matrix type_id="opencv-matrix">
261 <rows>3</rows>
262 <cols>3</cols>
263 <dt>d</dt>
264 <data>
265  6.5746697944293521e+002 0. 3.1950000000000000e+002 0.
266  6.5746697944293521e+002 2.3950000000000000e+002 0. 0. 1.</data></camera_matrix>
267 <distortion_coefficients type_id="opencv-matrix">
268 <rows>5</rows>
269 <cols>1</cols>
270 <dt>d</dt>
271 <data>
272  -4.1802327176423804e-001 5.0715244063187526e-001 0. 0.
273  -5.7843597214487474e-001</data></distortion_coefficients>
274 @endcode
275 Add these values as constants to your program, call the @ref cv::initUndistortRectifyMap and the
276 @ref cv::remap function to remove distortion and enjoy distortion free inputs for cheap and low
277 quality cameras.
278
279 You may observe a runtime instance of this on the [YouTube
280 here](https://www.youtube.com/watch?v=ViPN810E0SU).
281
282 @youtube{ViPN810E0SU}