1 <?xml version="1.0" encoding="US-ASCII" ?>
2 <!DOCTYPE rfc SYSTEM "rfc2629.dtd">
4 <?rfc rfcedstyle="yes"?>
5 <?rfc subcompact="no"?>
8 <?rfc sortrefs="yes" ?>
10 <rfc number="5215" category="std">
13 <title abbrev="Vorbis RTP Payload Format">RTP Payload Format for Vorbis Encoded Audio</title>
15 <author initials="L" surname="Barbato" fullname="Luca Barbato">
16 <organization abbrev="Xiph">Xiph.Org Foundation</organization>
18 <email>lu_zero@gentoo.org</email>
19 <uri>http://xiph.org/</uri>
23 <date month="August" year="2008" />
26 <workgroup>AVT Working Group</workgroup>
27 <keyword>I-D</keyword>
29 <keyword>Internet-Draft</keyword>
30 <keyword>Vorbis</keyword>
31 <keyword>RTP</keyword>
33 <keyword>example</keyword>
38 This document describes an RTP payload format for transporting Vorbis encoded
39 audio. It details the RTP encapsulation mechanism for raw Vorbis data and
40 the delivery mechanisms for the decoder probability model (referred to
41 as a codebook), as well as other setup information.
45 Also included within this memo are media type registrations and the details
46 necessary for the use of Vorbis with the Session Description Protocol (SDP).
55 <section anchor="Introduction" title="Introduction">
58 Vorbis is a general purpose perceptual audio codec intended to allow
59 maximum encoder flexibility, thus allowing it to scale competitively
60 over an exceptionally wide range of bit rates. At the high
61 quality/bitrate end of the scale (CD or DAT rate stereo, 16/24 bits), it
62 is in the same league as MPEG-4 AAC.
63 Vorbis is also intended for lower and higher sample rates (from
64 8kHz telephony to 192kHz digital masters) and a range of channel
65 representations (monaural, polyphonic, stereo, quadraphonic, 5.1,
66 ambisonic, or up to 255 discrete channels).
70 Vorbis encoded audio is generally encapsulated within an Ogg format bitstream
71 <xref target="RFC3533"></xref>, which provides framing and synchronization.
72 For the purposes of RTP transport, this layer is unnecessary, and so raw Vorbis
73 packets are used in the payload.
76 <section anchor="Terminology" title="Conformance and Document Conventions">
78 <t>The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14, <xref target="RFC2119"/> and indicate requirement levels for compliant implementations. Requirements apply to all implementations unless otherwise stated.</t>
79 <t>An implementation is a software module that supports one of the media types defined in this document. Software modules may support multiple media types, but conformance is considered individually for each type.</t>
80 <t>Implementations that fail to satisfy one or more "MUST" requirements are considered non-compliant. Implementations that satisfy all "MUST" requirements, but fail to satisfy one or more "SHOULD" requirements, are said to be "conditionally compliant". All other implementations are "unconditionally compliant".</t>
85 <section anchor="Payload Format" title="Payload Format">
88 For RTP-based transport of Vorbis-encoded audio, the standard RTP header is
89 followed by a 4-octet payload header, and then the payload data. The payload
90 headers are used to associate the Vorbis data with its associated decoding
91 codebooks as well as indicate if the following packet contains fragmented
92 Vorbis data and/or the number of whole Vorbis data frames. The payload data
93 contains the raw Vorbis bitstream information. There are 3 types of Vorbis
94 data; an RTP payload MUST contain just one of them at a time.
97 <section anchor="RTP Header" title="RTP Header">
100 The format of the RTP header is specified in <xref target="RFC3550"></xref>
101 and shown in <xref target="RTP Header Figure"/>. This payload format
102 uses the fields of the header in a manner consistent with that specification.
106 <figure anchor="RTP Header Figure" title="RTP Header">
109 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
110 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
111 |V=2|P|X| CC |M| PT | sequence number |
112 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
114 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
115 | synchronization source (SSRC) identifier |
116 +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
117 | contributing source (CSRC) identifiers |
119 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
125 The RTP header begins with an octet of fields (V, P, X, and CC) to support
126 specialized RTP uses (see <xref target="RFC3550"></xref> and
127 <xref target="RFC3551"></xref> for details). For Vorbis RTP, the following
132 Version (V): 2 bits</t>
134 This field identifies the version of RTP. The version used by this
135 specification is two (2).
139 Padding (P): 1 bit</t>
141 Padding MAY be used with this payload format according to Section 5.1 of
142 <xref target="RFC3550"></xref>.
146 Extension (X): 1 bit</t>
148 The Extension bit is used in accordance with <xref target="RFC3550"></xref>.
152 CSRC count (CC): 4 bits</t>
154 The CSRC count is used in accordance with <xref target="RFC3550"></xref>.
158 Marker (M): 1 bit</t>
160 Set to zero. Audio silence suppression is not used. This conforms to Section 4.1
161 of <xref target="VORBIS-SPEC-REF"></xref>.
165 Payload Type (PT): 7 bits</t>
167 An RTP profile for a class of applications is expected to assign a payload type
168 for this format, or a dynamically allocated payload type SHOULD be chosen that
169 designates the payload as Vorbis.
173 Sequence number: 16 bits</t>
175 The sequence number increments by one for each RTP data packet sent, and may be
176 used by the receiver to detect packet loss and to restore the packet sequence. This
177 field is detailed further in <xref target="RFC3550"></xref>.
181 Timestamp: 32 bits</t>
183 A timestamp representing the sampling time of the first sample of the first
184 Vorbis packet in the RTP payload. The clock frequency MUST be set to the sample
185 rate of the encoded audio data and is conveyed out-of-band (e.g., as an SDP parameter).
189 SSRC/CSRC identifiers: </t>
191 These two fields, 32 bits each with one SSRC field and a maximum of 16 CSRC
192 fields, are as defined in <xref target="RFC3550">
198 <section anchor="Payload Header" title="Payload Header">
201 The 4 octets following the RTP Header section are the Payload Header. This
202 header is split into a number of bit fields detailing the format of the
203 following payload data packets.
206 <figure anchor="Payload Header Figure" title="Payload Header">
209 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
210 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
211 | Ident | F |VDT|# pkts.|
212 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
219 This 24-bit field is used to associate the Vorbis data to a decoding
220 Configuration. It is stored as a network byte order integer.
224 Fragment type (F): 2 bits</t>
226 This field is set according to the following list:
228 <vspace blankLines="1" />
230 <t> 0 = Not Fragmented</t>
231 <t> 1 = Start Fragment</t>
232 <t> 2 = Continuation Fragment</t>
233 <t> 3 = End Fragment</t>
237 Vorbis Data Type (VDT): 2 bits</t>
239 This field specifies the kind of Vorbis data stored in this RTP packet. There
240 are currently three different types of Vorbis payloads. Each packet MUST contain only a single type of Vorbis packet (e.g., you must not aggregate configuration and comment packets in the same RTP payload).
243 <vspace blankLines="1" />
245 <t> 0 = Raw Vorbis payload</t>
246 <t> 1 = Vorbis Packed Configuration payload</t>
247 <t> 2 = Legacy Vorbis Comment payload</t>
251 <t> The packets with a VDT of value 3 MUST be ignored.</t>
254 The last 4 bits represent the number of complete packets in this payload. This
255 provides for a maximum number of 15 Vorbis packets in the payload. If the
256 payload contains fragmented data, the number of packets MUST be set to 0.
261 <section anchor="Payload Data" title="Payload Data">
264 Raw Vorbis packets are currently unbounded in length; application profiles will
265 likely define a practical limit. Typical Vorbis packet sizes range from very
266 small (2-3 bytes) to quite large (8-12 kilobytes). The reference implementation
267 <xref target="LIBVORBIS"></xref> typically produces packets less than ~800
268 bytes, except for the setup header packets, which are ~4-12 kilobytes. Within an
269 RTP context, to avoid fragmentation, the Vorbis data packet size SHOULD be kept
270 sufficiently small so that after adding the RTP and payload headers, the
271 complete RTP packet is smaller than the path MTU.
274 <figure anchor="Payload Data Figure" title="Payload Data Header">
277 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
278 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
279 | length | vorbis packet data ..
280 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
285 Each Vorbis payload packet starts with a two octet length header, which is used
286 to represent the size in bytes of the following data payload, and is followed by the
287 raw Vorbis data padded to the nearest byte boundary, as explained by the <xref target="VORBIS-SPEC-REF">Vorbis I Specification</xref>. The length value is stored
288 as a network byte order integer.
292 For payloads that consist of multiple Vorbis packets, the payload data consists
293 of the packet length followed by the packet data for each of the Vorbis packets
298 The Vorbis packet length header is the length of the Vorbis data block only and
299 does not include the length field.
303 The payload packing of the Vorbis data packets MUST follow the guidelines
304 set out in <xref target="RFC3551"></xref>, where the oldest Vorbis packet occurs
305 immediately after the RTP packet header. Subsequent Vorbis packets, if any, MUST
306 follow in temporal order.
310 Audio channel mapping is in accordance with the
311 <xref target="VORBIS-SPEC-REF">Vorbis I Specification</xref>.
316 <section anchor="Example RTP Packet" title="Example RTP Packet">
319 Here is an example RTP payload containing two Vorbis packets.
322 <figure anchor="Example Raw Vorbis Packet" title="Example Raw Vorbis Packet">
325 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
326 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
327 | 2 |0|0| 0 |0| PT | sequence number |
328 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
329 | timestamp (in sample rate units) |
330 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
331 | synchronisation source (SSRC) identifier |
332 +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
333 | contributing source (CSRC) identifiers |
335 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
336 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
337 | Ident | 0 | 0 | 2 pks |
338 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
339 | length | vorbis data ..
340 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
342 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
343 | length | next vorbis packet data ..
344 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
346 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
348 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
353 The payload data section of the RTP packet begins with the 24-bit Ident field
354 followed by the one octet bit field header, which has the number of Vorbis
355 frames set to 2. Each of the Vorbis data frames is prefixed by the two octets
356 length field. The Packet Type and Fragment Type are set to 0. The Configuration
357 that will be used to decode the packets is the one indexed by the ident value.
365 <section anchor="Configuration Headers" title="Configuration Headers">
368 Unlike other mainstream audio codecs, Vorbis has no statically
369 configured probability model. Instead, it packs all entropy decoding
370 configuration, Vector Quantization and Huffman models into a data block
371 that must be transmitted to the decoder with the compressed data.
372 A decoder also requires information detailing the number of audio
373 channels, bitrates, and similar information to configure itself for a
374 particular compressed data stream. These two blocks of information are
375 often referred to collectively as the "codebooks" for a Vorbis stream,
376 and are included as special "header" packets at the start
377 of the compressed data. In addition,
378 the <xref target="VORBIS-SPEC-REF">Vorbis I specification</xref>
379 requires the presence of a comment header packet that gives simple
380 metadata about the stream, but this information is not required for
381 decoding the frame sequence.
385 Thus, these two codebook header packets must be received by the decoder before
386 any audio data can be interpreted. These requirements pose problems in RTP,
387 which is often used over unreliable transports.
391 Since this information must be transmitted reliably and, as the RTP
392 stream may change certain configuration data mid-session, there are
393 different methods for delivering this configuration data to a
394 client, both in-band and out-of-band, which are detailed below.
395 In order to set up an initial state for the client application, the
396 configuration MUST be conveyed via the signalling channel used to set up
397 the session. One example of such signalling is
398 <xref target="RFC4566">SDP</xref> with the
399 <xref target="RFC3264">Offer/Answer Model</xref>.
400 Changes to the configuration MAY be communicated via a re-invite,
401 conveying a new SDP, or sent in-band in the RTP channel.
402 Implementations MUST support an in-band delivery of updated codebooks,
403 and SHOULD support out-of-band codebook update using a new SDP file.
404 The changes may be due to different codebooks as well as
405 different bitrates of the RTP stream.
408 <t>For non-chained streams, the recommended Configuration delivery
409 method is inside the <xref target="Packed Configuration">Packed
410 Configuration</xref> in the SDP as explained the <xref
411 target="Mapping Media Type Parameters into SDP"> Mapping Media Type
412 Parameters into SDP</xref>.
416 The 24-bit Ident field is used to map which Configuration will be used to
417 decode a packet. When the Ident field changes, it indicates that a change in
418 the stream has taken place. The client application MUST have in advance the
419 correct configuration. If the client detects a change in the Ident value and
420 does not have this information, it MUST NOT decode the raw associated Vorbis
421 data until it fetches the correct Configuration.
424 <section anchor="In-band Header Transmission" title="In-band Header Transmission">
427 The <xref target="Packed Configuration">Packed Configuration</xref> Payload is
428 sent in-band with the packet type bits set to match the Vorbis Data Type.
429 Clients MUST be capable of dealing with fragmentation and periodic
430 <xref target="RFC4588">re-transmission of</xref> the configuration headers.
431 The RTP timestamp value MUST reflect the transmission time of the first data packet for which this configuration applies.
434 <section anchor="Packed Configuration" title="Packed Configuration">
437 A Vorbis Packed Configuration is indicated with the Vorbis Data Type field set
438 to 1. Of the three headers defined in the
439 <xref target="VORBIS-SPEC-REF">Vorbis I specification</xref>, the
440 Identification and the Setup MUST be packed as they are, while the Comment
441 header MAY be replaced with a dummy one.</t>
443 The packed configuration stores Xiph codec
444 configurations in a generic way: the first field stores the number of the following packets
445 minus one (count field), the next ones represent the size of the headers
446 (length fields), and the headers immediately follow the list of length fields.
447 The size of the last header is implicit.</t>
449 The count and the length fields are encoded using the following logic: the data
450 is in network byte order; every byte has the most significant bit used
451 as a flag, and the following 7 bits are used to store the value.
452 The first 7 most significant bits are stored in the first byte.
453 If there are remaining bits, the flag bit is set to 1 and the subsequent
454 7 bits are stored in the following byte.
455 If there are remaining bits, set the flag to 1 and the same procedure is
457 The ending byte has the flag bit set to 0. To decode, simply iterate
458 over the bytes until the flag bit is set to 0. For every byte, the data
459 is added to the accumulated value multiplied by 128.</t>
461 The headers are packed in the same order as they are present in Ogg <xref target="VORBIS-SPEC-REF" />:
462 Identification, Comment, Setup.</t>
465 The 2 byte length tag defines the length of the packed headers as the sum of
466 the Configuration, Comment, and Setup lengths.</t>
468 <figure anchor="Packed Configuration Figure" title="Packed Configuration Figure">
471 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
472 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
473 |V=2|P|X| CC |M| PT | xxxx |
474 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
476 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
477 | synchronization source (SSRC) identifier |
478 +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
479 | contributing source (CSRC) identifiers |
481 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
482 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
484 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
485 | length | n. of headers | length1 |
486 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
487 | length2 | Identification ..
488 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
490 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
492 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
494 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
495 .. Identification | Comment ..
496 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
498 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
500 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
502 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
503 .. Comment | Setup ..
504 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
506 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
508 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
512 <t>The Ident field is set with the value that will be used by the Raw Payload
513 Packets to address this Configuration. The Fragment type is set to 0 because the
514 packet bears the full Packed configuration. The number of the packet is set to 1.</t>
518 <section anchor="Out of Band Transmission" title="Out of Band Transmission">
521 The following packet definition MUST be used when Configuration is inside
525 <section anchor="Packed Headers" title="Packed Headers">
528 As mentioned above, the RECOMMENDED delivery vector for Vorbis configuration
529 data is via a retrieval method that can be performed using a reliable transport
530 protocol. As the RTP headers are not required for this method of delivery, the
531 structure of the configuration data is slightly different. The packed header
532 starts with a 32-bit (network-byte ordered) count field, which details
533 the number of packed headers that are contained in the bundle. The
534 following shows the Packed header
535 payload for each chained Vorbis stream.
538 <figure anchor="Packed Headers Overview Figure" title="Packed Headers Overview">
540 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
541 | Number of packed headers |
542 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
543 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
545 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
546 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
548 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
552 <figure anchor="Packed Headers Detail Figure" title="Packed Headers Detail">
555 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
556 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
558 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
559 .. | n. of headers | length1 | length2 ..
560 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
561 .. | Identification Header ..
562 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
563 .................................................................
564 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
565 .. | Comment Header ..
566 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
567 .................................................................
568 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
570 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
572 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
573 .................................................................
574 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
576 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
580 The key difference between the in-band format and this one is that there is no
581 need for the payload header octet. In this figure, the comment has a size bigger
588 <section anchor="Loss of Configuration Headers" title="Loss of Configuration Headers">
591 Unlike the loss of raw Vorbis payload data, loss of a configuration header
592 leads to a situation where it will not be possible to successfully decode the
593 stream. Implementations MAY try to recover from an error by requesting again the
594 missing Configuration or, if the delivery method is in-band, by buffering the
595 payloads waiting for the Configuration needed to decode them.
596 The baseline reaction SHOULD either be reset or end the RTP session.
603 <section anchor="Comment Headers" title="Comment Headers">
606 Vorbis Data Type flag set to 2 indicates that the packet contains
607 the comment metadata, such as artist name, track title, and so on. These
608 metadata messages are not intended to be fully descriptive but rather to offer basic
609 track/song information. Clients MAY ignore it completely. The details on the
610 format of the comments can be found in the <xref target="VORBIS-SPEC-REF">Vorbis I Specification</xref>.
612 <figure anchor="Comment Packet Figure" title="Comment Packet">
615 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
616 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
617 |V=2|P|X| CC |M| PT | xxxx |
618 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
620 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
621 | synchronization source (SSRC) identifier |
622 +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
623 | contributing source (CSRC) identifiers |
625 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
626 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
628 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
629 | length | Comment ..
630 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
632 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
634 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
639 The 2-byte length field is necessary since this packet could be fragmented.
643 <section anchor="Frame Packetization" title="Frame Packetization">
646 Each RTP payload contains either one Vorbis packet fragment or an integer
647 number of complete Vorbis packets (up to a maximum of 15 packets, since the
648 number of packets is defined by a 4-bit value).
652 Any Vorbis data packet that is less than path MTU SHOULD be bundled in the RTP
653 payload with as many Vorbis packets as will fit, up to a maximum of 15, except
654 when such bundling would exceed an application's desired transmission latency.
655 Path MTU is detailed in <xref target="RFC1191"></xref> and <xref target="RFC1981"></xref>.
659 A fragmented packet has a zero in the last four bits of the payload header.
660 The first fragment will set the Fragment type to 1. Each fragment after the
661 first will set the Fragment type to 2 in the payload header. The consecutive
662 fragments MUST be sent without any other payload being sent between the first
663 and the last fragment. The RTP payload containing the last fragment of the
664 Vorbis packet will have the Fragment type set to 3. To maintain the correct
665 sequence for fragmented packet reception, the timestamp field of fragmented
666 packets MUST be the same as the first packet sent, with the sequence number
667 incremented as normal for the subsequent RTP payloads; this will affect the
668 RTCP jitter measurement. The length field shows the fragment length.
671 <section anchor="Example Fragmented Vorbis Packet" title="Example Fragmented Vorbis Packet">
674 Here is an example of a fragmented Vorbis packet split over three RTP payloads.
675 Each of them contains the standard RTP headers as well as the 4-octet Vorbis
679 <figure anchor="Example Fragmented Packet (Packet 1)" title="Example Fragmented Packet (Packet 1)">
684 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
685 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
686 |V=2|P|X| CC |M| PT | 1000 |
687 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
689 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
690 | synchronization source (SSRC) identifier |
691 +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
692 | contributing source (CSRC) identifiers |
694 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
695 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
697 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
698 | length | vorbis data ..
699 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
701 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
706 In this payload, the initial sequence number is 1000 and the timestamp is 12345. The Fragment type is set to 1, the number of packets field is set to 0, and as
707 the payload is raw Vorbis data, the VDT field is set to 0.
710 <figure anchor="Example Fragmented Packet (Packet 2)" title="Example Fragmented Packet (Packet 2)">
715 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
716 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
717 |V=2|P|X| CC |M| PT | 1001 |
718 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
720 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
721 | synchronization source (SSRC) identifier |
722 +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
723 | contributing source (CSRC) identifiers |
725 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
726 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
728 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
729 | length | vorbis data ..
730 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
732 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
737 The Fragment type field is set to 2, and the number of packets field is set to 0.
738 For large Vorbis fragments, there can be several of these types of payloads.
739 The maximum packet size SHOULD be no greater than the path MTU,
740 including all RTP and payload headers. The sequence number has been incremented
741 by one, but the timestamp field remains the same as the initial payload.
744 <figure anchor="Example Fragmented Packet (Packet 3)" title="Example Fragmented Packet (Packet 3)">
749 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
750 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
751 |V=2|P|X| CC |M| PT | 1002 |
752 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
754 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
755 | synchronization source (SSRC) identifier |
756 +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
757 | contributing source (CSRC) identifiers |
759 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
760 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
762 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
763 | length | vorbis data ..
764 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
766 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
771 This is the last Vorbis fragment payload. The Fragment type is set to 3 and the
772 packet count remains set to 0. As in the previous payloads, the timestamp remains
773 set to the first payload timestamp in the sequence and the sequence number has
778 <section anchor="Packet Loss" title="Packet Loss">
781 As there is no error correction within the Vorbis stream, packet loss will
782 result in a loss of signal. Packet loss is more of an issue for fragmented
783 Vorbis packets as the client will have to cope with the handling of the
784 Fragment Type. In case of loss of fragments, the client MUST discard all the
785 remaining Vorbis fragments and decode the incomplete packet. If we use the
786 fragmented Vorbis packet example above and the first RTP payload is lost, the
787 client MUST detect that the next RTP payload has the packet count field set
788 to 0 and the Fragment type 2 and MUST drop it.
789 The next RTP payload, which is the final fragmented packet, MUST be dropped
791 If the missing RTP payload is the last, the two fragments received will be
792 kept and the incomplete Vorbis packet decoded.
796 Loss of any of the Configuration fragment will result in the loss of the full
797 Configuration packet with the result detailed in the <xref target="Loss of Configuration Headers">Loss of Configuration Headers</xref> section.
802 <section anchor="IANA Considerations" title="IANA Considerations">
804 <list style="hanging">
805 <t hangText="Type name:"> audio </t>
807 <t hangText="Subtype name:"> vorbis </t>
809 <t hangText="Required parameters:">
811 <list style="hanging">
812 <t hangText="rate:"> indicates the RTP timestamp clock rate as described in <xref target="RFC3551">RTP Profile for Audio and Video Conferences with Minimal Control</xref>.
815 <t hangText="channels:"> indicates the number of audio channels as described in <xref target="RFC3551">RTP Profile for Audio and Video Conferences with Minimal Control</xref>.
819 <t hangText="configuration:"> the <xref target="RFC4648">base64</xref> representation of the <xref target="Packed Headers">Packed Headers</xref>.
824 <t hangText="Encoding considerations:">
825 <vspace blankLines="1" />
826 This media type is framed and contains binary data.
829 <t hangText="Security considerations:">
830 <vspace blankLines="1" />
831 See Section 10 of RFC 5215.</t>
833 <t hangText="Interoperability considerations:">
834 <vspace blankLines="1" />
837 <t hangText="Published specification:">
838 <vspace blankLines="1" />
840 <vspace blankLines="1" />
841 Ogg Vorbis I specification: Codec setup and packet decode. Available from the Xiph website, http://xiph.org/
845 <t hangText="Applications which use this media type:">
846 <vspace blankLines="1"/>
847 Audio streaming and conferencing tools </t>
849 <t hangText="Additional information:">
850 <vspace blankLines="1" />
853 <t hangText="Person & email address to contact for further information:">
854 <vspace blankLines="1" />
855 Luca Barbato: <lu_zero@gentoo.org><br/>
856 <vspace blankLines="0" />
857 IETF Audio/Video Transport Working Group
861 <t hangText="Intended usage:">
862 <vspace blankLines="1" />
865 <t hangText="Restriction on usage:">
866 <vspace blankLines="1" />
867 This media type depends on RTP framing, hence is only defined for transfer via <xref target="RFC3550">RTP</xref>.</t>
869 <t hangText="Author:">
870 <vspace blankLines="1"/>Luca Barbato</t>
872 <t hangText="Change controller:">
873 <vspace blankLines="1"/>IETF AVT Working Group delegated from the IESG</t>
876 <section anchor="Packed Headers IANA Considerations" title="Packed Headers IANA Considerations">
879 The following IANA considerations refers to the split configuration <xref target="Packed Headers">Packed Headers</xref> used within RFC 5215.
882 <list style="hanging">
883 <t hangText="Type name:"> audio </t>
885 <t hangText="Subtype name:"> vorbis-config </t>
887 <t hangText="Required parameters:">
888 <vspace blankLines="1" />
892 <t hangText="Optional parameters:">
893 <vspace blankLines="1" />
897 <t hangText="Encoding considerations:">
898 <vspace blankLines="1" />
899 This media type contains binary data.
902 <t hangText="Security considerations:">
903 <vspace blankLines="1" />
904 See Section 10 of RFC 5215.
907 <t hangText="Interoperability considerations:">
908 <vspace blankLines="1" />
912 <t hangText="Published specification:">
913 <vspace blankLines="1" />
917 <t hangText="Applications which use this media type:">
918 <vspace blankLines="1" />
919 Vorbis encoded audio, configuration data
922 <t hangText="Additional information:">
923 <vspace blankLines="1" />
927 <t hangText="Person & email address to contact for further information:">
928 <vspace blankLines="1" />
929 Luca Barbato: <lu_zero@gentoo.org>
930 <vspace blankLines="0" />
931 IETF Audio/Video Transport Working Group
934 <t hangText="Intended usage:">
938 <t hangText="Restriction on usage:">
939 <vspace blankLines="1" />
940 This media type doesn't depend on the transport.
943 <t hangText="Author:">
944 <vspace blankLines="1" />
947 <t hangText="Change controller:">
948 <vspace blankLines="1" />
949 IETF AVT Working Group delegated from the IESG</t>
956 <section anchor="SDP related considerations" title="SDP Related Considerations">
958 The following paragraphs define the mapping of the parameters described in the IANA considerations section and their usage in the <xref target="RFC3264">Offer/Answer Model</xref>. In order to be forward compatible, the implementation MUST ignore unknown parameters.
961 <section anchor="Mapping Media Type Parameters into SDP" title="Mapping Media Type Parameters into SDP">
964 The information carried in the Media Type specification has a
965 specific mapping to fields in the <xref target="RFC4566">Session Description
966 Protocol (SDP)</xref>, which is commonly used to describe RTP sessions.
967 When SDP is used to specify sessions, the mapping are as follows:
970 <list style="symbols">
972 <t>The type name ("audio") goes in SDP "m=" as the media name.</t>
974 <t>The subtype name ("vorbis") goes in SDP "a=rtpmap" as the encoding name.</t>
976 <t>The parameter "rate" also goes in "a=rtpmap" as the clock rate.</t>
978 <t>The parameter "channels" also goes in "a=rtpmap" as the channel count.</t>
980 <t>The mandated parameters "configuration" MUST be included in the SDP
981 "a=fmtp" attribute.</t>
986 If the stream comprises chained Vorbis files and all of them are known in
987 advance, the Configuration Packet for each file SHOULD be passed to the client
988 using the configuration attribute.
992 The port value is specified by the server application bound to the address
993 specified in the c= line. The channel count value specified in the rtpmap
994 attribute SHOULD match the current Vorbis stream or should be considered the maximum
995 number of channels to be expected. The timestamp clock rate MUST be a multiple
996 of the sample rate; a different payload number MUST be used if the clock rate
997 changes. The Configuration payload delivers the exact information, thus the
998 SDP information SHOULD be considered a hint.
999 An example is found below.
1002 <section anchor="SDP Example" title="SDP Example">
1003 <t>The following example shows a basic SDP single stream. The first
1004 configuration packet is inside the SDP; other configurations could be
1005 fetched at any time from the URIs provided. The following
1006 <xref target="RFC4648">base64</xref> configuration string is folded in this
1007 example due to RFC line length limitations.</t>
1010 <list style="empty">
1011 <t>c=IN IP4 192.0.2.1</t>
1012 <t>m=audio RTP/AVP 98</t>
1013 <t>a=rtpmap:98 vorbis/44100/2</t>
1014 <t>a=fmtp:98 configuration=AAAAAZ2f4g9NAh4aAXZvcmJpcwA...;</t>
1019 Note that the payload format (encoding) names are commonly shown in uppercase.
1020 Media Type subtypes are commonly shown in lowercase. These names are
1021 case-insensitive in both places. Similarly, parameter names are
1022 case-insensitive both in Media Type types and in the default mapping to the SDP
1023 a=fmtp attribute. The a=fmtp line is a single line, even if it is shown as multiple lines in this document for clarity.
1028 <section anchor="Usage with the SDP Offer/Answer Mode" title="Usage with the SDP Offer/Answer Model">
1031 There are no negotiable parameters. All of them are declarative.
1037 <section anchor="Congestion Control" title="Congestion Control">
1039 The general congestion control considerations for transporting RTP
1040 data apply to Vorbis audio over RTP as well. See the RTP specification
1041 <xref target="RFC3550" /> and any applicable RTP profile (e.g., <xref target="RFC3551" />).
1042 Audio data can be encoded using a range of different bit rates, so
1043 it is possible to adapt network bandwidth by adjusting the encoder
1044 bit rate in real time or by having multiple copies of content encoded
1045 at different bit rates.
1048 <section anchor="Example" title="Example">
1051 The following example shows a common usage pattern that MAY be applied in
1052 such a situation. The main scope of this section is to explain better usage
1053 of the transmission vectors.
1056 <section anchor="Stream Radio" title="Stream Radio">
1058 <t>This is one of the most common situations: there is one single server streaming
1059 content in multicast, and the clients may start a session at a random time. The
1060 content itself could be a mix of a live stream (as the webjockey's voice)
1061 and stored streams (as the music she plays).</t>
1063 <t>In this situation, we don't know in advance how many codebooks we will use.
1064 The clients can join anytime and users expect to start listening to the content
1065 in a short time.</t>
1067 <t>Upon joining, the client will receive the current Configuration necessary to
1068 decode the current stream inside the SDP so that the decoding will start
1069 immediately after.</t>
1071 <t>When the streamed content changes, the new Configuration is sent in-band
1072 before the actual stream, and the Configuration that has to be sent inside
1073 the SDP is updated. Since the in-band method is unreliable, an out-of-band
1074 fallback is provided.</t>
1076 <t>The client may choose to fetch the Configuration from the alternate source
1077 as soon as it discovers a Configuration packet got lost in-band, or use
1078 <xref target="RFC3611">selective retransmission</xref> if the server supports
1081 <t>A server-side optimization would be to keep a hash list of the
1082 Configurations per session, which avoids packing all of them and sending the same
1083 Configuration with different Ident tags.</t>
1085 <t>A client-side optimization would be to keep a tag list of the Configurations
1086 per session and not process configuration packets that are already known.</t>
1091 <section anchor="Security Considerations" title="Security Considerations">
1093 RTP packets using this payload format are subject to the security
1094 considerations discussed in the
1095 <xref target="RFC3550">RTP specification</xref>, the
1096 <xref target="RFC4648">base64 specification</xref>, and the
1097 <xref target="RFC3986">URI Generic syntax specification</xref>.
1098 Among other considerations, this implies that the confidentiality of the
1099 media stream is achieved by using encryption. Because the data compression used
1100 with this payload format is applied end-to-end, encryption may be performed on
1101 the compressed data.
1105 <section title="Copying Conditions">
1106 <t>The authors agree to grant third parties the irrevocable right to copy,
1107 use, and distribute the work, with or without modification, in any medium,
1108 without royalty, provided that, unless separate permission is granted,
1109 redistributed modified works do not contain misleading author, version,
1110 name of work, or endorsement information.</t>
1112 <section anchor="Acknowledgments" title="Acknowledgments">
1115 This document is a continuation of the following documents:
1117 Moffitt, J., "RTP Payload Format for Vorbis Encoded Audio", February 2001.
1119 Kerr, R., "RTP Payload Format for Vorbis Encoded Audio", December 2004.
1121 The Media Type declaration is a continuation of the following
1123 Short, B., "The audio/rtp-vorbis MIME Type", January 2008.
1127 Thanks to the AVT, Vorbis Communities / Xiph.Org Foundation including Steve Casner,
1128 Aaron Colwell, Ross Finlayson, Fluendo, Ramon Garcia, Pascal Hennequin, Ralph
1129 Giles, Tor-Einar Jarnbjo, Colin Law, John Lazzaro, Jack Moffitt, Christopher
1130 Montgomery, Colin Perkins, Barry Short, Mike Smith, Phil Kerr, Michael Sparks,
1131 Magnus Westerlund, David Barrett, Silvia Pfeiffer, Stefan Ehmann, Gianni Ceccarelli and Alessandro Salvatori. Thanks to the LScube Group, in particular Federico
1132 Ridolfo, Francesco Varano, Giampaolo Mancini, Dario Gallucci, and Juan Carlos De Martin.
1141 <references title="Normative References">
1143 <?rfc include="reference.RFC.2119" ?>
1144 <?rfc include="reference.RFC.3550" ?>
1145 <?rfc include="reference.RFC.3551" ?>
1146 <?rfc include="reference.RFC.3986" ?>
1147 <?rfc include="reference.RFC.4566" ?>
1148 <?rfc include="reference.RFC.1191" ?>
1149 <?rfc include="reference.RFC.1981" ?>
1150 <?rfc include="reference.RFC.3264" ?>
1151 <?rfc include="reference.RFC.4648" ?>
1153 <reference anchor="VORBIS-SPEC-REF">
1155 <title>Ogg Vorbis I specification: Codec setup and packet decode. Available from the Xiph website, http://xiph.org/vorbis/doc/Vorbis_I_spec.html</title>
1161 <references title="Informative References">
1163 <?rfc include="reference.RFC.3533" ?>
1165 <reference anchor="LIBVORBIS">
1167 <title>libvorbis: Available from the dedicated website, http://vorbis.com/</title>
1171 <?rfc include="reference.RFC.3611" ?>
1172 <?rfc include="reference.RFC.4588" ?>