7 Network Working Group L. Barbato
8 Request for Comments: 5215 Xiph
9 Category: Standards Track August 2008
12 RTP Payload Format for Vorbis Encoded Audio
16 This document specifies an Internet standards track protocol for the
17 Internet community, and requests discussion and suggestions for
18 improvements. Please refer to the current edition of the "Internet
19 Official Protocol Standards" (STD 1) for the standardization state
20 and status of this protocol. Distribution of this memo is unlimited.
24 This document describes an RTP payload format for transporting Vorbis
25 encoded audio. It details the RTP encapsulation mechanism for raw
26 Vorbis data and the delivery mechanisms for the decoder probability
27 model (referred to as a codebook), as well as other setup
30 Also included within this memo are media type registrations and the
31 details necessary for the use of Vorbis with the Session Description
58 Barbato Standards Track [Page 1]
60 RFC 5215 Vorbis RTP Payload Format August 2008
65 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3
66 1.1. Conformance and Document Conventions . . . . . . . . . . . 3
67 2. Payload Format . . . . . . . . . . . . . . . . . . . . . . . . 3
68 2.1. RTP Header . . . . . . . . . . . . . . . . . . . . . . . . 4
69 2.2. Payload Header . . . . . . . . . . . . . . . . . . . . . . 5
70 2.3. Payload Data . . . . . . . . . . . . . . . . . . . . . . . 6
71 2.4. Example RTP Packet . . . . . . . . . . . . . . . . . . . . 8
72 3. Configuration Headers . . . . . . . . . . . . . . . . . . . . 8
73 3.1. In-band Header Transmission . . . . . . . . . . . . . . . 9
74 3.1.1. Packed Configuration . . . . . . . . . . . . . . . . . 10
75 3.2. Out of Band Transmission . . . . . . . . . . . . . . . . . 12
76 3.2.1. Packed Headers . . . . . . . . . . . . . . . . . . . . 12
77 3.3. Loss of Configuration Headers . . . . . . . . . . . . . . 13
78 4. Comment Headers . . . . . . . . . . . . . . . . . . . . . . . 13
79 5. Frame Packetization . . . . . . . . . . . . . . . . . . . . . 14
80 5.1. Example Fragmented Vorbis Packet . . . . . . . . . . . . . 15
81 5.2. Packet Loss . . . . . . . . . . . . . . . . . . . . . . . 17
82 6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 18
83 6.1. Packed Headers IANA Considerations . . . . . . . . . . . . 19
84 7. SDP Related Considerations . . . . . . . . . . . . . . . . . . 20
85 7.1. Mapping Media Type Parameters into SDP . . . . . . . . . . 20
86 7.1.1. SDP Example . . . . . . . . . . . . . . . . . . . . . 21
87 7.2. Usage with the SDP Offer/Answer Model . . . . . . . . . . 22
88 8. Congestion Control . . . . . . . . . . . . . . . . . . . . . . 22
89 9. Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
90 9.1. Stream Radio . . . . . . . . . . . . . . . . . . . . . . . 22
91 10. Security Considerations . . . . . . . . . . . . . . . . . . . 23
92 11. Copying Conditions . . . . . . . . . . . . . . . . . . . . . . 23
93 12. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 23
94 13. References . . . . . . . . . . . . . . . . . . . . . . . . . . 24
95 13.1. Normative References . . . . . . . . . . . . . . . . . . . 24
96 13.2. Informative References . . . . . . . . . . . . . . . . . . 25
114 Barbato Standards Track [Page 2]
116 RFC 5215 Vorbis RTP Payload Format August 2008
121 Vorbis is a general purpose perceptual audio codec intended to allow
122 maximum encoder flexibility, thus allowing it to scale competitively
123 over an exceptionally wide range of bit rates. At the high quality/
124 bitrate end of the scale (CD or DAT rate stereo, 16/24 bits), it is
125 in the same league as MPEG-4 AAC. Vorbis is also intended for lower
126 and higher sample rates (from 8kHz telephony to 192kHz digital
127 masters) and a range of channel representations (monaural,
128 polyphonic, stereo, quadraphonic, 5.1, ambisonic, or up to 255
131 Vorbis encoded audio is generally encapsulated within an Ogg format
132 bitstream [RFC3533], which provides framing and synchronization. For
133 the purposes of RTP transport, this layer is unnecessary, and so raw
134 Vorbis packets are used in the payload.
136 1.1. Conformance and Document Conventions
138 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
139 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
140 document are to be interpreted as described in BCP 14, [RFC2119] and
141 indicate requirement levels for compliant implementations.
142 Requirements apply to all implementations unless otherwise stated.
144 An implementation is a software module that supports one of the media
145 types defined in this document. Software modules may support
146 multiple media types, but conformance is considered individually for
149 Implementations that fail to satisfy one or more "MUST" requirements
150 are considered non-compliant. Implementations that satisfy all
151 "MUST" requirements, but fail to satisfy one or more "SHOULD"
152 requirements, are said to be "conditionally compliant". All other
153 implementations are "unconditionally compliant".
157 For RTP-based transport of Vorbis-encoded audio, the standard RTP
158 header is followed by a 4-octet payload header, and then the payload
159 data. The payload headers are used to associate the Vorbis data with
160 its associated decoding codebooks as well as indicate if the
161 following packet contains fragmented Vorbis data and/or the number of
162 whole Vorbis data frames. The payload data contains the raw Vorbis
163 bitstream information. There are 3 types of Vorbis data; an RTP
164 payload MUST contain just one of them at a time.
170 Barbato Standards Track [Page 3]
172 RFC 5215 Vorbis RTP Payload Format August 2008
177 The format of the RTP header is specified in [RFC3550] and shown in
178 Figure 1. This payload format uses the fields of the header in a
179 manner consistent with that specification.
182 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
183 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
184 |V=2|P|X| CC |M| PT | sequence number |
185 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
187 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
188 | synchronization source (SSRC) identifier |
189 +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
190 | contributing source (CSRC) identifiers |
192 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
196 The RTP header begins with an octet of fields (V, P, X, and CC) to
197 support specialized RTP uses (see [RFC3550] and [RFC3551] for
198 details). For Vorbis RTP, the following values are used.
202 This field identifies the version of RTP. The version used by this
203 specification is two (2).
207 Padding MAY be used with this payload format according to Section 5.1
212 The Extension bit is used in accordance with [RFC3550].
214 CSRC count (CC): 4 bits
216 The CSRC count is used in accordance with [RFC3550].
220 Set to zero. Audio silence suppression is not used. This conforms
221 to Section 4.1 of [VORBIS-SPEC-REF].
226 Barbato Standards Track [Page 4]
228 RFC 5215 Vorbis RTP Payload Format August 2008
231 Payload Type (PT): 7 bits
233 An RTP profile for a class of applications is expected to assign a
234 payload type for this format, or a dynamically allocated payload type
235 SHOULD be chosen that designates the payload as Vorbis.
237 Sequence number: 16 bits
239 The sequence number increments by one for each RTP data packet sent,
240 and may be used by the receiver to detect packet loss and to restore
241 the packet sequence. This field is detailed further in [RFC3550].
245 A timestamp representing the sampling time of the first sample of the
246 first Vorbis packet in the RTP payload. The clock frequency MUST be
247 set to the sample rate of the encoded audio data and is conveyed out-
248 of-band (e.g., as an SDP parameter).
250 SSRC/CSRC identifiers:
252 These two fields, 32 bits each with one SSRC field and a maximum of
253 16 CSRC fields, are as defined in [RFC3550].
257 The 4 octets following the RTP Header section are the Payload Header.
258 This header is split into a number of bit fields detailing the format
259 of the following payload data packets.
262 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
263 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
264 | Ident | F |VDT|# pkts.|
265 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
267 Figure 2: Payload Header
271 This 24-bit field is used to associate the Vorbis data to a decoding
272 Configuration. It is stored as a network byte order integer.
274 Fragment type (F): 2 bits
282 Barbato Standards Track [Page 5]
284 RFC 5215 Vorbis RTP Payload Format August 2008
287 This field is set according to the following list:
293 2 = Continuation Fragment
297 Vorbis Data Type (VDT): 2 bits
299 This field specifies the kind of Vorbis data stored in this RTP
300 packet. There are currently three different types of Vorbis
301 payloads. Each packet MUST contain only a single type of Vorbis
302 packet (e.g., you must not aggregate configuration and comment
303 packets in the same RTP payload).
305 0 = Raw Vorbis payload
307 1 = Vorbis Packed Configuration payload
309 2 = Legacy Vorbis Comment payload
313 The packets with a VDT of value 3 MUST be ignored.
315 The last 4 bits represent the number of complete packets in this
316 payload. This provides for a maximum number of 15 Vorbis packets in
317 the payload. If the payload contains fragmented data, the number of
318 packets MUST be set to 0.
322 Raw Vorbis packets are currently unbounded in length; application
323 profiles will likely define a practical limit. Typical Vorbis packet
324 sizes range from very small (2-3 bytes) to quite large (8-12
325 kilobytes). The reference implementation [LIBVORBIS] typically
326 produces packets less than ~800 bytes, except for the setup header
327 packets, which are ~4-12 kilobytes. Within an RTP context, to avoid
328 fragmentation, the Vorbis data packet size SHOULD be kept
329 sufficiently small so that after adding the RTP and payload headers,
330 the complete RTP packet is smaller than the path MTU.
338 Barbato Standards Track [Page 6]
340 RFC 5215 Vorbis RTP Payload Format August 2008
344 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
345 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
346 | length | vorbis packet data ..
347 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
349 Figure 3: Payload Data Header
351 Each Vorbis payload packet starts with a two octet length header,
352 which is used to represent the size in bytes of the following data
353 payload, and is followed by the raw Vorbis data padded to the nearest
354 byte boundary, as explained by the Vorbis I Specification
355 [VORBIS-SPEC-REF]. The length value is stored as a network byte
358 For payloads that consist of multiple Vorbis packets, the payload
359 data consists of the packet length followed by the packet data for
360 each of the Vorbis packets in the payload.
362 The Vorbis packet length header is the length of the Vorbis data
363 block only and does not include the length field.
365 The payload packing of the Vorbis data packets MUST follow the
366 guidelines set out in [RFC3551], where the oldest Vorbis packet
367 occurs immediately after the RTP packet header. Subsequent Vorbis
368 packets, if any, MUST follow in temporal order.
370 Audio channel mapping is in accordance with the Vorbis I
371 Specification [VORBIS-SPEC-REF].
394 Barbato Standards Track [Page 7]
396 RFC 5215 Vorbis RTP Payload Format August 2008
399 2.4. Example RTP Packet
401 Here is an example RTP payload containing two Vorbis packets.
404 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
405 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
406 | 2 |0|0| 0 |0| PT | sequence number |
407 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
408 | timestamp (in sample rate units) |
409 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
410 | synchronisation source (SSRC) identifier |
411 +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
412 | contributing source (CSRC) identifiers |
414 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
415 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
416 | Ident | 0 | 0 | 2 pks |
417 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
418 | length | vorbis data ..
419 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
421 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
422 | length | next vorbis packet data ..
423 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
425 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
427 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
429 Figure 4: Example Raw Vorbis Packet
431 The payload data section of the RTP packet begins with the 24-bit
432 Ident field followed by the one octet bit field header, which has the
433 number of Vorbis frames set to 2. Each of the Vorbis data frames is
434 prefixed by the two octets length field. The Packet Type and
435 Fragment Type are set to 0. The Configuration that will be used to
436 decode the packets is the one indexed by the ident value.
438 3. Configuration Headers
440 Unlike other mainstream audio codecs, Vorbis has no statically
441 configured probability model. Instead, it packs all entropy decoding
442 configuration, Vector Quantization and Huffman models into a data
443 block that must be transmitted to the decoder with the compressed
444 data. A decoder also requires information detailing the number of
445 audio channels, bitrates, and similar information to configure itself
446 for a particular compressed data stream. These two blocks of
450 Barbato Standards Track [Page 8]
452 RFC 5215 Vorbis RTP Payload Format August 2008
455 information are often referred to collectively as the "codebooks" for
456 a Vorbis stream, and are included as special "header" packets at the
457 start of the compressed data. In addition, the Vorbis I
458 specification [VORBIS-SPEC-REF] requires the presence of a comment
459 header packet that gives simple metadata about the stream, but this
460 information is not required for decoding the frame sequence.
462 Thus, these two codebook header packets must be received by the
463 decoder before any audio data can be interpreted. These requirements
464 pose problems in RTP, which is often used over unreliable transports.
466 Since this information must be transmitted reliably and, as the RTP
467 stream may change certain configuration data mid-session, there are
468 different methods for delivering this configuration data to a client,
469 both in-band and out-of-band, which are detailed below. In order to
470 set up an initial state for the client application, the configuration
471 MUST be conveyed via the signalling channel used to set up the
472 session. One example of such signalling is SDP [RFC4566] with the
473 Offer/Answer Model [RFC3264]. Changes to the configuration MAY be
474 communicated via a re-invite, conveying a new SDP, or sent in-band in
475 the RTP channel. Implementations MUST support an in-band delivery of
476 updated codebooks, and SHOULD support out-of-band codebook update
477 using a new SDP file. The changes may be due to different codebooks
478 as well as different bitrates of the RTP stream.
480 For non-chained streams, the recommended Configuration delivery
481 method is inside the Packed Configuration (Section 3.1.1) in the SDP
482 as explained the Mapping Media Type Parameters into SDP
485 The 24-bit Ident field is used to map which Configuration will be
486 used to decode a packet. When the Ident field changes, it indicates
487 that a change in the stream has taken place. The client application
488 MUST have in advance the correct configuration. If the client
489 detects a change in the Ident value and does not have this
490 information, it MUST NOT decode the raw associated Vorbis data until
491 it fetches the correct Configuration.
493 3.1. In-band Header Transmission
495 The Packed Configuration (Section 3.1.1) Payload is sent in-band with
496 the packet type bits set to match the Vorbis Data Type. Clients MUST
497 be capable of dealing with fragmentation and periodic re-transmission
498 of [RFC4588] the configuration headers. The RTP timestamp value MUST
499 reflect the transmission time of the first data packet for which this
500 configuration applies.
506 Barbato Standards Track [Page 9]
508 RFC 5215 Vorbis RTP Payload Format August 2008
511 3.1.1. Packed Configuration
513 A Vorbis Packed Configuration is indicated with the Vorbis Data Type
514 field set to 1. Of the three headers defined in the Vorbis I
515 specification [VORBIS-SPEC-REF], the Identification and the Setup
516 MUST be packed as they are, while the Comment header MAY be replaced
519 The packed configuration stores Xiph codec configurations in a
520 generic way: the first field stores the number of the following
521 packets minus one (count field), the next ones represent the size of
522 the headers (length fields), and the headers immediately follow the
523 list of length fields. The size of the last header is implicit.
525 The count and the length fields are encoded using the following
526 logic: the data is in network byte order; every byte has the most
527 significant bit used as a flag, and the following 7 bits are used to
528 store the value. The first 7 most significant bits are stored in the
529 first byte. If there are remaining bits, the flag bit is set to 1
530 and the subsequent 7 bits are stored in the following byte. If there
531 are remaining bits, set the flag to 1 and the same procedure is
532 repeated. The ending byte has the flag bit set to 0. To decode,
533 simply iterate over the bytes until the flag bit is set to 0. For
534 every byte, the data is added to the accumulated value multiplied by
537 The headers are packed in the same order as they are present in Ogg
538 [VORBIS-SPEC-REF]: Identification, Comment, Setup.
540 The 2 byte length tag defines the length of the packed headers as the
541 sum of the Configuration, Comment, and Setup lengths.
562 Barbato Standards Track [Page 10]
564 RFC 5215 Vorbis RTP Payload Format August 2008
568 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
569 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
570 |V=2|P|X| CC |M| PT | xxxx |
571 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
573 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
574 | synchronization source (SSRC) identifier |
575 +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
576 | contributing source (CSRC) identifiers |
578 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
579 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
581 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
582 | length | n. of headers | length1 |
583 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
584 | length2 | Identification ..
585 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
587 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
589 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
591 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
592 .. Identification | Comment ..
593 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
595 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
597 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
599 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
600 .. Comment | Setup ..
601 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
603 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
605 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
607 Figure 5: Packed Configuration Figure
609 The Ident field is set with the value that will be used by the Raw
610 Payload Packets to address this Configuration. The Fragment type is
611 set to 0 because the packet bears the full Packed configuration. The
612 number of the packet is set to 1.
618 Barbato Standards Track [Page 11]
620 RFC 5215 Vorbis RTP Payload Format August 2008
623 3.2. Out of Band Transmission
625 The following packet definition MUST be used when Configuration is
628 3.2.1. Packed Headers
630 As mentioned above, the RECOMMENDED delivery vector for Vorbis
631 configuration data is via a retrieval method that can be performed
632 using a reliable transport protocol. As the RTP headers are not
633 required for this method of delivery, the structure of the
634 configuration data is slightly different. The packed header starts
635 with a 32-bit (network-byte ordered) count field, which details the
636 number of packed headers that are contained in the bundle. The
637 following shows the Packed header payload for each chained Vorbis
640 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
641 | Number of packed headers |
642 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
643 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
645 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
646 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
648 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
650 Figure 6: Packed Headers Overview
674 Barbato Standards Track [Page 12]
676 RFC 5215 Vorbis RTP Payload Format August 2008
680 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
681 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
683 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
684 .. | n. of headers | length1 | length2 ..
685 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
686 .. | Identification Header ..
687 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
688 .................................................................
689 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
690 .. | Comment Header ..
691 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
692 .................................................................
693 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
695 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
697 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
698 .................................................................
699 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
701 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
703 Figure 7: Packed Headers Detail
705 The key difference between the in-band format and this one is that
706 there is no need for the payload header octet. In this figure, the
707 comment has a size bigger than 127 bytes.
709 3.3. Loss of Configuration Headers
711 Unlike the loss of raw Vorbis payload data, loss of a configuration
712 header leads to a situation where it will not be possible to
713 successfully decode the stream. Implementations MAY try to recover
714 from an error by requesting again the missing Configuration or, if
715 the delivery method is in-band, by buffering the payloads waiting for
716 the Configuration needed to decode them. The baseline reaction
717 SHOULD either be reset or end the RTP session.
721 Vorbis Data Type flag set to 2 indicates that the packet contains the
722 comment metadata, such as artist name, track title, and so on. These
723 metadata messages are not intended to be fully descriptive but rather
724 to offer basic track/song information. Clients MAY ignore it
725 completely. The details on the format of the comments can be found
726 in the Vorbis I Specification [VORBIS-SPEC-REF].
730 Barbato Standards Track [Page 13]
732 RFC 5215 Vorbis RTP Payload Format August 2008
736 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
737 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
738 |V=2|P|X| CC |M| PT | xxxx |
739 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
741 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
742 | synchronization source (SSRC) identifier |
743 +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
744 | contributing source (CSRC) identifiers |
746 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
747 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
749 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
750 | length | Comment ..
751 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
753 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
755 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
757 Figure 8: Comment Packet
759 The 2-byte length field is necessary since this packet could be
762 5. Frame Packetization
764 Each RTP payload contains either one Vorbis packet fragment or an
765 integer number of complete Vorbis packets (up to a maximum of 15
766 packets, since the number of packets is defined by a 4-bit value).
768 Any Vorbis data packet that is less than path MTU SHOULD be bundled
769 in the RTP payload with as many Vorbis packets as will fit, up to a
770 maximum of 15, except when such bundling would exceed an
771 application's desired transmission latency. Path MTU is detailed in
772 [RFC1191] and [RFC1981].
774 A fragmented packet has a zero in the last four bits of the payload
775 header. The first fragment will set the Fragment type to 1. Each
776 fragment after the first will set the Fragment type to 2 in the
777 payload header. The consecutive fragments MUST be sent without any
778 other payload being sent between the first and the last fragment.
779 The RTP payload containing the last fragment of the Vorbis packet
780 will have the Fragment type set to 3. To maintain the correct
781 sequence for fragmented packet reception, the timestamp field of
782 fragmented packets MUST be the same as the first packet sent, with
786 Barbato Standards Track [Page 14]
788 RFC 5215 Vorbis RTP Payload Format August 2008
791 the sequence number incremented as normal for the subsequent RTP
792 payloads; this will affect the RTCP jitter measurement. The length
793 field shows the fragment length.
795 5.1. Example Fragmented Vorbis Packet
797 Here is an example of a fragmented Vorbis packet split over three RTP
798 payloads. Each of them contains the standard RTP headers as well as
799 the 4-octet Vorbis headers.
804 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
805 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
806 |V=2|P|X| CC |M| PT | 1000 |
807 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
809 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
810 | synchronization source (SSRC) identifier |
811 +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
812 | contributing source (CSRC) identifiers |
814 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
815 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
817 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
818 | length | vorbis data ..
819 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
821 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
823 Figure 9: Example Fragmented Packet (Packet 1)
825 In this payload, the initial sequence number is 1000 and the
826 timestamp is 12345. The Fragment type is set to 1, the number of
827 packets field is set to 0, and as the payload is raw Vorbis data, the
828 VDT field is set to 0.
842 Barbato Standards Track [Page 15]
844 RFC 5215 Vorbis RTP Payload Format August 2008
850 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
851 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
852 |V=2|P|X| CC |M| PT | 1001 |
853 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
855 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
856 | synchronization source (SSRC) identifier |
857 +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
858 | contributing source (CSRC) identifiers |
860 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
861 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
863 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
864 | length | vorbis data ..
865 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
867 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
869 Figure 10: Example Fragmented Packet (Packet 2)
871 The Fragment type field is set to 2, and the number of packets field
872 is set to 0. For large Vorbis fragments, there can be several of
873 these types of payloads. The maximum packet size SHOULD be no
874 greater than the path MTU, including all RTP and payload headers.
875 The sequence number has been incremented by one, but the timestamp
876 field remains the same as the initial payload.
898 Barbato Standards Track [Page 16]
900 RFC 5215 Vorbis RTP Payload Format August 2008
906 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
907 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
908 |V=2|P|X| CC |M| PT | 1002 |
909 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
911 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
912 | synchronization source (SSRC) identifier |
913 +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
914 | contributing source (CSRC) identifiers |
916 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
917 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
919 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
920 | length | vorbis data ..
921 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
923 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
925 Figure 11: Example Fragmented Packet (Packet 3)
927 This is the last Vorbis fragment payload. The Fragment type is set
928 to 3 and the packet count remains set to 0. As in the previous
929 payloads, the timestamp remains set to the first payload timestamp in
930 the sequence and the sequence number has been incremented.
934 As there is no error correction within the Vorbis stream, packet loss
935 will result in a loss of signal. Packet loss is more of an issue for
936 fragmented Vorbis packets as the client will have to cope with the
937 handling of the Fragment Type. In case of loss of fragments, the
938 client MUST discard all the remaining Vorbis fragments and decode the
939 incomplete packet. If we use the fragmented Vorbis packet example
940 above and the first RTP payload is lost, the client MUST detect that
941 the next RTP payload has the packet count field set to 0 and the
942 Fragment type 2 and MUST drop it. The next RTP payload, which is the
943 final fragmented packet, MUST be dropped in the same manner. If the
944 missing RTP payload is the last, the two fragments received will be
945 kept and the incomplete Vorbis packet decoded.
947 Loss of any of the Configuration fragment will result in the loss of
948 the full Configuration packet with the result detailed in the Loss of
949 Configuration Headers (Section 3.3) section.
954 Barbato Standards Track [Page 17]
956 RFC 5215 Vorbis RTP Payload Format August 2008
959 6. IANA Considerations
967 rate: indicates the RTP timestamp clock rate as described in RTP
968 Profile for Audio and Video Conferences with Minimal Control
971 channels: indicates the number of audio channels as described in
972 RTP Profile for Audio and Video Conferences with Minimal
975 configuration: the base64 [RFC4648] representation of the Packed
976 Headers (Section 3.2.1).
978 Encoding considerations:
980 This media type is framed and contains binary data.
982 Security considerations:
984 See Section 10 of RFC 5215.
986 Interoperability considerations:
990 Published specification:
994 Ogg Vorbis I specification: Codec setup and packet decode.
995 Available from the Xiph website, http://xiph.org/
997 Applications which use this media type:
999 Audio streaming and conferencing tools
1001 Additional information:
1010 Barbato Standards Track [Page 18]
1012 RFC 5215 Vorbis RTP Payload Format August 2008
1015 Person & email address to contact for further information:
1017 Luca Barbato: <lu_zero@gentoo.org>
1018 IETF Audio/Video Transport Working Group
1024 Restriction on usage:
1026 This media type depends on RTP framing, hence is only defined for
1027 transfer via RTP [RFC3550].
1035 IETF AVT Working Group delegated from the IESG
1037 6.1. Packed Headers IANA Considerations
1039 The following IANA considerations refers to the split configuration
1040 Packed Headers (Section 3.2.1) used within RFC 5215.
1044 Subtype name: vorbis-config
1046 Required parameters:
1050 Optional parameters:
1054 Encoding considerations:
1056 This media type contains binary data.
1058 Security considerations:
1060 See Section 10 of RFC 5215.
1066 Barbato Standards Track [Page 19]
1068 RFC 5215 Vorbis RTP Payload Format August 2008
1071 Interoperability considerations:
1075 Published specification:
1079 Applications which use this media type:
1081 Vorbis encoded audio, configuration data
1083 Additional information:
1087 Person & email address to contact for further information:
1089 Luca Barbato: <lu_zero@gentoo.org>
1090 IETF Audio/Video Transport Working Group
1092 Intended usage: COMMON
1094 Restriction on usage:
1096 This media type doesn't depend on the transport.
1104 IETF AVT Working Group delegated from the IESG
1106 7. SDP Related Considerations
1108 The following paragraphs define the mapping of the parameters
1109 described in the IANA considerations section and their usage in the
1110 Offer/Answer Model [RFC3264]. In order to be forward compatible, the
1111 implementation MUST ignore unknown parameters.
1113 7.1. Mapping Media Type Parameters into SDP
1115 The information carried in the Media Type specification has a
1116 specific mapping to fields in the Session Description Protocol (SDP)
1117 [RFC4566], which is commonly used to describe RTP sessions. When SDP
1118 is used to specify sessions, the mapping are as follows:
1122 Barbato Standards Track [Page 20]
1124 RFC 5215 Vorbis RTP Payload Format August 2008
1127 o The type name ("audio") goes in SDP "m=" as the media name.
1129 o The subtype name ("vorbis") goes in SDP "a=rtpmap" as the encoding
1132 o The parameter "rate" also goes in "a=rtpmap" as the clock rate.
1134 o The parameter "channels" also goes in "a=rtpmap" as the channel
1137 o The mandated parameters "configuration" MUST be included in the
1138 SDP "a=fmtp" attribute.
1140 If the stream comprises chained Vorbis files and all of them are
1141 known in advance, the Configuration Packet for each file SHOULD be
1142 passed to the client using the configuration attribute.
1144 The port value is specified by the server application bound to the
1145 address specified in the c= line. The channel count value specified
1146 in the rtpmap attribute SHOULD match the current Vorbis stream or
1147 should be considered the maximum number of channels to be expected.
1148 The timestamp clock rate MUST be a multiple of the sample rate; a
1149 different payload number MUST be used if the clock rate changes. The
1150 Configuration payload delivers the exact information, thus the SDP
1151 information SHOULD be considered a hint. An example is found below.
1155 The following example shows a basic SDP single stream. The first
1156 configuration packet is inside the SDP; other configurations could be
1157 fetched at any time from the URIs provided. The following base64
1158 [RFC4648] configuration string is folded in this example due to RFC
1159 line length limitations.
1165 a=rtpmap:98 vorbis/44100/2
1167 a=fmtp:98 configuration=AAAAAZ2f4g9NAh4aAXZvcmJpcwA...;
1169 Note that the payload format (encoding) names are commonly shown in
1170 uppercase. Media Type subtypes are commonly shown in lowercase.
1171 These names are case-insensitive in both places. Similarly,
1172 parameter names are case-insensitive both in Media Type types and in
1173 the default mapping to the SDP a=fmtp attribute. The a=fmtp line is
1178 Barbato Standards Track [Page 21]
1180 RFC 5215 Vorbis RTP Payload Format August 2008
1183 a single line, even if it is shown as multiple lines in this document
1186 7.2. Usage with the SDP Offer/Answer Model
1188 There are no negotiable parameters. All of them are declarative.
1190 8. Congestion Control
1192 The general congestion control considerations for transporting RTP
1193 data apply to Vorbis audio over RTP as well. See the RTP
1194 specification [RFC3550] and any applicable RTP profile (e.g.,
1195 [RFC3551]). Audio data can be encoded using a range of different bit
1196 rates, so it is possible to adapt network bandwidth by adjusting the
1197 encoder bit rate in real time or by having multiple copies of content
1198 encoded at different bit rates.
1202 The following example shows a common usage pattern that MAY be
1203 applied in such a situation. The main scope of this section is to
1204 explain better usage of the transmission vectors.
1208 This is one of the most common situations: there is one single server
1209 streaming content in multicast, and the clients may start a session
1210 at a random time. The content itself could be a mix of a live stream
1211 (as the webjockey's voice) and stored streams (as the music she
1214 In this situation, we don't know in advance how many codebooks we
1215 will use. The clients can join anytime and users expect to start
1216 listening to the content in a short time.
1218 Upon joining, the client will receive the current Configuration
1219 necessary to decode the current stream inside the SDP so that the
1220 decoding will start immediately after.
1222 When the streamed content changes, the new Configuration is sent in-
1223 band before the actual stream, and the Configuration that has to be
1224 sent inside the SDP is updated. Since the in-band method is
1225 unreliable, an out-of-band fallback is provided.
1227 The client may choose to fetch the Configuration from the alternate
1228 source as soon as it discovers a Configuration packet got lost in-
1229 band, or use selective retransmission [RFC3611] if the server
1230 supports this feature.
1234 Barbato Standards Track [Page 22]
1236 RFC 5215 Vorbis RTP Payload Format August 2008
1239 A server-side optimization would be to keep a hash list of the
1240 Configurations per session, which avoids packing all of them and
1241 sending the same Configuration with different Ident tags.
1243 A client-side optimization would be to keep a tag list of the
1244 Configurations per session and not process configuration packets that
1247 10. Security Considerations
1249 RTP packets using this payload format are subject to the security
1250 considerations discussed in the RTP specification [RFC3550], the
1251 base64 specification [RFC4648], and the URI Generic syntax
1252 specification [RFC3986]. Among other considerations, this implies
1253 that the confidentiality of the media stream is achieved by using
1254 encryption. Because the data compression used with this payload
1255 format is applied end-to-end, encryption may be performed on the
1258 11. Copying Conditions
1260 The authors agree to grant third parties the irrevocable right to
1261 copy, use, and distribute the work, with or without modification, in
1262 any medium, without royalty, provided that, unless separate
1263 permission is granted, redistributed modified works do not contain
1264 misleading author, version, name of work, or endorsement information.
1268 This document is a continuation of the following documents:
1270 Moffitt, J., "RTP Payload Format for Vorbis Encoded Audio", February
1273 Kerr, R., "RTP Payload Format for Vorbis Encoded Audio", December
1276 The Media Type declaration is a continuation of the following
1279 Short, B., "The audio/rtp-vorbis MIME Type", January 2008.
1281 Thanks to the AVT, Vorbis Communities / Xiph.Org Foundation including
1282 Steve Casner, Aaron Colwell, Ross Finlayson, Fluendo, Ramon Garcia,
1283 Pascal Hennequin, Ralph Giles, Tor-Einar Jarnbjo, Colin Law, John
1284 Lazzaro, Jack Moffitt, Christopher Montgomery, Colin Perkins, Barry
1285 Short, Mike Smith, Phil Kerr, Michael Sparks, Magnus Westerlund,
1286 David Barrett, Silvia Pfeiffer, Stefan Ehmann, Gianni Ceccarelli, and
1290 Barbato Standards Track [Page 23]
1292 RFC 5215 Vorbis RTP Payload Format August 2008
1295 Alessandro Salvatori. Thanks to the LScube Group, in particular
1296 Federico Ridolfo, Francesco Varano, Giampaolo Mancini, Dario
1297 Gallucci, and Juan Carlos De Martin.
1301 13.1. Normative References
1303 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery",
1304 RFC 1191, November 1990.
1306 [RFC1981] McCann, J., Deering, S., and J. Mogul, "Path MTU
1307 Discovery for IP version 6", RFC 1981,
1310 [RFC2119] Bradner, S., "Key words for use in RFCs to
1311 Indicate Requirement Levels", BCP 14, RFC 2119,
1314 [RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer
1315 Model with Session Description Protocol (SDP)",
1316 RFC 3264, June 2002.
1318 [RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
1319 Jacobson, "RTP: A Transport Protocol for Real-Time
1320 Applications", STD 64, RFC 3550, July 2003.
1322 [RFC3551] Schulzrinne, H. and S. Casner, "RTP Profile for
1323 Audio and Video Conferences with Minimal Control",
1324 STD 65, RFC 3551, July 2003.
1326 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter,
1327 "Uniform Resource Identifier (URI): Generic
1328 Syntax", STD 66, RFC 3986, January 2005.
1330 [RFC4566] Handley, M., Jacobson, V., and C. Perkins, "SDP:
1331 Session Description Protocol", RFC 4566,
1334 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64
1335 Data Encodings", RFC 4648, October 2006.
1337 [VORBIS-SPEC-REF] "Ogg Vorbis I specification: Codec setup and
1338 packet decode. Available from the Xiph website,
1339 http://xiph.org/vorbis/doc/Vorbis_I_spec.html".
1346 Barbato Standards Track [Page 24]
1348 RFC 5215 Vorbis RTP Payload Format August 2008
1351 13.2. Informative References
1353 [LIBVORBIS] "libvorbis: Available from the dedicated website,
1354 http://vorbis.com/".
1356 [RFC3533] Pfeiffer, S., "The Ogg Encapsulation Format
1357 Version 0", RFC 3533, May 2003.
1359 [RFC3611] Friedman, T., Caceres, R., and A. Clark, "RTP
1360 Control Protocol Extended Reports (RTCP XR)",
1361 RFC 3611, November 2003.
1363 [RFC4588] Rey, J., Leon, D., Miyazaki, A., Varsa, V., and R.
1364 Hakenberg, "RTP Retransmission Payload Format",
1365 RFC 4588, July 2006.
1372 EMail: lu_zero@gentoo.org
1373 URI: http://xiph.org/
1402 Barbato Standards Track [Page 25]
1404 RFC 5215 Vorbis RTP Payload Format August 2008
1407 Full Copyright Statement
1409 Copyright (C) The IETF Trust (2008).
1411 This document is subject to the rights, licenses and restrictions
1412 contained in BCP 78, and except as set forth therein, the authors
1413 retain all their rights.
1415 This document and the information contained herein are provided on an
1416 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
1417 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
1418 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
1419 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
1420 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
1421 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
1423 Intellectual Property
1425 The IETF takes no position regarding the validity or scope of any
1426 Intellectual Property Rights or other rights that might be claimed to
1427 pertain to the implementation or use of the technology described in
1428 this document or the extent to which any license under such rights
1429 might or might not be available; nor does it represent that it has
1430 made any independent effort to identify any such rights. Information
1431 on the procedures with respect to rights in RFC documents can be
1432 found in BCP 78 and BCP 79.
1434 Copies of IPR disclosures made to the IETF Secretariat and any
1435 assurances of licenses to be made available, or the result of an
1436 attempt made to obtain a general license or permission for the use of
1437 such proprietary rights by implementers or users of this
1438 specification can be obtained from the IETF on-line IPR repository at
1439 http://www.ietf.org/ipr.
1441 The IETF invites any interested party to bring to its attention any
1442 copyrights, patents or patent applications, or other proprietary
1443 rights that may cover technology that may be required to implement
1444 this standard. Please address the information to the IETF at
1458 Barbato Standards Track [Page 26]