
CPIO (5) BSD File Formats Manual CPIO (5)

NAME

cpio — format of cpio archive files

DESCRIPTION

The cpio archive format collects any number of files, directories, and other file system objects (symbolic

links, device nodes, etc.) into a single stream of bytes.

General Format

Each file system object in a cpio archive comprises a header record with basic numeric metadata followed

by the full pathname of the entry and the file data. The header record stores a series of integer values that

generally follow the fields in struct stat. (See stat(2) for details.) The variants differ primarily in how they

store those integers (binary, octal, or hexadecimal). The header is followed by the pathname of the entry (the

length of the pathname is stored in the header) and any file data. The end of the archive is indicated by a spe-

cial record with the pathname “TRAILER!!!”.

PWB format

The PWB binary cpio format is the original format, when cpio was introduced as part of the Programmer’s

Work Bench system, a variant of 6th Edition UNIX. It stores numbers as 2-byte and 4-byte binary values.

Each entry begins with a header in the following format:

struct header_pwb_cpio {

short h_magic;

short h_dev;

short h_ino;

short h_mode;

short h_uid;

short h_gid;

short h_nlink;

short h_majmin;

long h_mtime;

short h_namesize;

long h_filesize;

};

The short fields here are 16-bit integer values, while the long fields are 32 bit integers. Since PWB UNIX,

like the 6th Edition UNIX it was based on, only ran on PDP-11 computers, they are in PDP-endian format,

which has little-endian shorts, and big-endian longs. That is, the long integer whose hexadecimal representa-

tion is 0x12345678 would be stored in four successive bytes as 0x34, 0x12, 0x78, 0x56. The fields are as

follows:

h_magic The integer value octal 070707.

h_dev, h_ino

The device and inode numbers from the disk. These are used by programs that read cpio ar-

chives to determine when two entries refer to the same file. Programs that synthesize cpio ar-

chives should be careful to set these to distinct values for each entry.

h_mode The mode specifies both the regular permissions and the file type, and it also holds a couple of bits

that are irrelevant to the cpio format, because the field is actually a raw copy of the mode field in

the inode representing the file. These are the IALLOC flag, which shows that the inode entry is in

use, and the ILARG flag, which shows that the file it represents is large enough to have indirect

blocks pointers in the inode. The mode is decoded as follows:

BSD December 23, 2011 1



CPIO (5) BSD File Formats Manual CPIO (5)

0100000 IALLOC flag - irrelevant to cpio.

0060000 This masks the file type bits.

0040000 File type value for directories.

0020000 File type value for character special devices.

0060000 File type value for block special devices.

0010000 ILARG flag - irrelevant to cpio.

0004000 SUID bit.

0002000 SGID bit.

0001000 Sticky bit.

0000777 The lower 9 bits specify read/write/execute permissions for world, group, and user fol-

lowing standard POSIX conventions.

h_uid, h_gid

The numeric user id and group id of the owner.

h_nlink The number of links to this file. Directories always have a value of at least two here. Note that

hardlinked files include file data with every copy in the archive.

h_majmin

For block special and character special entries, this field contains the associated device number,

with the major number in the high byte, and the minor number in the low byte. For all other entry

types, it should be set to zero by writers and ignored by readers.

h_mtime Modification time of the file, indicated as the number of seconds since the start of the epoch,

00:00:00 UTC January 1, 1970.

h_namesize

The number of bytes in the pathname that follows the header. This count includes the trailing

NUL byte.

h_filesize

The size of the file. Note that this archive format is limited to 16 megabyte file sizes, because

PWB UNIX, like 6th Edition, only used an unsigned 24 bit integer for the file size internally.

The pathname immediately follows the fixed header. If h_namesize is odd, an additional NUL byte is

added after the pathname. The file data is then appended, again with an additional NUL appended if needed

to get the next header at an even offset.

Hardlinked files are not given special treatment; the full file contents are included with each copy of the file.

New Binary Format

The new binary cpio format showed up when cpio was adopted into late 7th Edition UNIX. It is exactly

like the PWB binary format, described above, except for three changes:

First, UNIX now ran on more than one hardware type, so the endianness of 16 bit integers must be deter-

mined by observing the magic number at the start of the header. The 32 bit integers are still always stored

with the most significant word first, though, so each of those two, in the struct shown above, was stored as an

array of two 16 bit integers, in the traditional order. Those 16 bit integers, like all the others in the struct,

were accessed using a macro that byte swapped them if necessary.

Next, 7th Edition had more file types to store, and the IALLOC and ILARG flag bits were re-purposed to ac-

commodate these. The revised use of the various bits is as follows:

0170000 This masks the file type bits.

0140000 File type value for sockets.

BSD December 23, 2011 2



CPIO (5) BSD File Formats Manual CPIO (5)

0120000 File type value for symbolic links. For symbolic links, the link body is stored as file data.

0100000 File type value for regular files.

0060000 File type value for block special devices.

0040000 File type value for directories.

0020000 File type value for character special devices.

0010000 File type value for named pipes or FIFOs.

0004000 SUID bit.

0002000 SGID bit.

0001000 Sticky bit.

0000777 The lower 9 bits specify read/write/execute permissions for world, group, and user following

standard POSIX conventions.

Finally, the file size field now represents a signed 32 bit integer in the underlying file system, so the maxi-

mum file size has increased to 2 gigabytes.

Note that there is no obvious way to tell which of the two binary formats an archive uses, other than to see

which one makes more sense. The typical error scenario is that a PWB format archive unpacked as if it were

in the new format will create named sockets instead of directories, and then fail to unpack files that should go

in those directories. Running bsdcpio -itv on an unknown archive will make it obvious which it is: if it’s

PWB format, directories will be listed with an ’s’ instead of a ’d’ as the first character of the mode string, and

the larger files will have a ’?’ in that position.

Portable ASCII Format

Version 2 of the Single UNIX Specification (“SUSv2”) standardized an ASCII variant that is portable across

all platforms. It is commonly known as the “old character” format or as the “odc” format. It stores the same

numeric fields as the old binary format, but represents them as 6-character or 11-character octal values.

struct cpio_odc_header {

char c_magic[6];

char c_dev[6];

char c_ino[6];

char c_mode[6];

char c_uid[6];

char c_gid[6];

char c_nlink[6];

char c_rdev[6];

char c_mtime[11];

char c_namesize[6];

char c_filesize[11];

};

The fields are identical to those in the new binary format. The name and file body follow the fixed header.

Unlike the binary formats, there is no additional padding after the pathname or file contents. If the files be-

ing archived are themselves entirely ASCII, then the resulting archive will be entirely ASCII, except for the

NUL byte that terminates the name field.

New ASCII Format

The "new" ASCII format uses 8-byte hexadecimal fields for all numbers and separates device numbers into

separate fields for major and minor numbers.

struct cpio_newc_header {

char c_magic[6];

char c_ino[8];

char c_mode[8];

BSD December 23, 2011 3



CPIO (5) BSD File Formats Manual CPIO (5)

char c_uid[8];

char c_gid[8];

char c_nlink[8];

char c_mtime[8];

char c_filesize[8];

char c_devmajor[8];

char c_devminor[8];

char c_rdevmajor[8];

char c_rdevminor[8];

char c_namesize[8];

char c_check[8];

};

Except as specified below, the fields here match those specified for the new binary format above.

magic The string “070701”.

check This field is always set to zero by writers and ignored by readers. See the next section for more

details.

The pathname is followed by NUL bytes so that the total size of the fixed header plus pathname is a multiple

of four. Likewise, the file data is padded to a multiple of four bytes. Note that this format supports only 4 gi-

gabyte files (unlike the older ASCII format, which supports 8 gigabyte files).

In this format, hardlinked files are handled by setting the filesize to zero for each entry except the first one

that appears in the archive.

New CRC Format

The CRC format is identical to the new ASCII format described in the previous section except that the magic

field is set to “070702” and the check field is set to the sum of all bytes in the file data. This sum is computed

treating all bytes as unsigned values and using unsigned arithmetic. Only the least-significant 32 bits of the

sum are stored.

HP variants

The cpio implementation distributed with HPUX used XXXX but stored device numbers differently XXX.

Other Extensions and Variants

Sun Solaris uses additional file types to store extended file data, including ACLs and extended attributes, as

special entries in cpio archives.

XXX Others? XXX

SEE ALSO

cpio(1), tar(5)

STANDARDS

The cpio utility is no longer a part of POSIX or the Single Unix Standard. It last appeared in Version 2 of

the Single UNIX Specification (“SUSv2”). It has been supplanted in subsequent standards by pax(1). The

portable ASCII format is currently part of the specification for the pax(1) utility.

HISTORY

The original cpio utility was written by Dick Haight while working in AT&T’s Unix Support Group. It ap-

peared in 1977 as part of PWB/UNIX 1.0, the “Programmer’s Work Bench” derived from AT&T UNIX 6th

Edition UNIX that was used internally at AT&T. Both the new binary and old character formats were in use

by 1980, according to the System III source released by SCO under their “Ancient Unix” license. The char-

BSD December 23, 2011 4



CPIO (5) BSD File Formats Manual CPIO (5)

acter format was adopted as part of IEEE Std 1003.1-1988 (“POSIX.1”). XXX when did "newc" appear?

Who invented it? When did HP come out with their variant? When did Sun introduce ACLs and extended

attributes? XXX

BUGS

The “CRC” format is mis-named, as it uses a simple checksum and not a cyclic redundancy check.

The binary formats are limited to 16 bits for user id, group id, device, and inode numbers. They are limited

to 16 megabyte and 2 gigabyte file sizes for the older and newer variants, respectively.

The old ASCII format is limited to 18 bits for the user id, group id, device, and inode numbers. It is limited

to 8 gigabyte file sizes.

The new ASCII format is limited to 4 gigabyte file sizes.

None of the cpio formats store user or group names, which are essential when moving files between systems

with dissimilar user or group numbering.

Especially when writing older cpio variants, it may be necessary to map actual device/inode values to synthe-

sized values that fit the available fields. With very large filesystems, this may be necessary even for the

newer formats.

BSD December 23, 2011 5


