
ARCHIVE_ENTRY_LINKIFY (3) BSD Library Functions Manual ARCHIVE_ENTRY_LINKIFY (3)

NAME
archive_entry_linkresolver, archive_entry_linkresolver_new,
archive_entry_linkresolver_set_strategy, archive_entry_linkresolver_free,
archive_entry_linkify — hardlink resolver functions

LIBRARY
Streaming Archive Library (libarchive, -larchive)

SYNOPSIS
#include <archive_entry.h>

struct archive_entry_linkresolver ∗
archive_entry_linkresolver_new(void);

void
archive_entry_linkresolver_set_strategy(struct archive_entry_linkresolver ∗ resolver ,

int format );

void
archive_entry_linkresolver_free(struct archive_entry_linkresolver ∗ resolver );

void
archive_entry_linkify(struct archive_entry_linkresolver ∗ resolver ,

struct archive_entry ∗∗ entry , struct archive_entry ∗∗ sparse );

DESCRIPTION
Programs that want to create archives hav eto deal with hardlinks.Hardlinks are handled in different ways
by the archive formats. Thebasic strategies are:

1. Ignorehardlinks and store the body for each reference (old cpio, zip).

2. Storethe body the first time an inode is seen (ustar, pax).

3. Storethe body the last time an inode is seen (new cpio).

Thearchive_entry_linkresolver functions help by providing a unified interface and handling the
complexity behind the scene.

The archive_entry_linkresolver functions assume thatarchive_entry instances have valid
nlinks, inode and device values. Theinode and device value is used to match entries. The nlinks value is
used to determined if all references have been found and if the internal references can be recycled.

Thearchive_entry_linkresolver_new() function allocates a new link resolver. The instance can
be freed usingarchive_entry_linkresolver_free(). All deferred entries are flushed and the
internal storage is freed.

The archive_entry_linkresolver_set_strategy() function selects the optimal hardlink strat-
egy for the given format. Theformat code can be obtained fromarchive_format(3). Thefunction can
be called more than once, but it is recommended to flush all deferred entries first.

The archive_entry_linkify() function is the core ofarchive_entry_linkresolver. The
entry() argument points to thearchive_entry that should be written.Depending on the strategy one
of the following actions is taken:

1. For the simple archive formats∗ entry is left unmodified and∗ sparse is set toNULL.

2. For tar like archive formats,∗ sparse is set toNULL. If ∗ entry is NULL, no action is taken. If the
hardlink count of∗ entry is larger than 1 and the file type is a regular file or symbolic link, the internal
list is searched for a matching inode.If such an inode is found, the link count is decremented and the

BSD February2, 2012 1



ARCHIVE_ENTRY_LINKIFY (3) BSD Library Functions Manual ARCHIVE_ENTRY_LINKIFY (3)

file size of∗ entry is set to 0 to notify that no body should be written.If no such inode is found, a copy
of the entry is added to the internal cache with a link count reduced by one.

3. For new cpio like archive formats a value for∗ entry of NULL is used to flush deferred entries. In that
case∗ entry is set to an arbitrary deferred entry and the entry itself is removed from the internal list.If
the internal list is empty, ∗ entry is set toNULL. In either case,∗ sparse is set toNULL and the function
returns. Ifthe hardlink count of∗ entry is one or the file type is a directory or device, ∗ sparse is set to
NULL and no further action is taken. Otherwise,the internal list is searched for a matching inode.If
such an inode is not found, the entry is added to the internal list, both∗ entry and ∗ sparse are set to
NULL and the function returns.If such an inode is found, the link count is decremented. If it remains
larger than one, the existing entry on the internal list is swapped with∗ entry after retaining the link
count. Theexisting entry is returned in∗ entry. If the link count reached one, the new entry is also
removed from the internal list and returned in∗ sparse. Otherwise∗ sparse is set toNULL.

The general usage is therefore:

1. For each new archive entry, call archive_entry_linkify().

2. Keep in mind that the entries returned may have a size of 0 now.

3. If ∗ entry is notNULL, archive it.

4. If ∗ sparse is notNULL, archive it.

5. After all entries have been written to disk, callarchive_entry_linkify() with ∗ entry set to
NULL and archive the returned entry as long as it is notNULL.

RETURN VALUES
archive_entry_linkresolver_new() returnsNULL onmalloc(3) failures.

SEE ALSO
archive_entry(3)

BSD February2, 2012 2


