
Kerberos Administration Guide
Release 1.15.2

MIT

CONTENTS

1 Installation guide 1
1.1 Contents . 1
1.2 Additional references . 10

2 Configuration Files 11
2.1 Contents . 11

3 Realm configuration decisions 39
3.1 Realm name . 39
3.2 Mapping hostnames onto Kerberos realms . 39
3.3 Ports for the KDC and admin services . 40
3.4 Slave KDCs . 40
3.5 Hostnames for KDCs . 40
3.6 KDC Discovery . 41
3.7 Database propagation . 42

4 Database administration 43
4.1 kadmin options . 43
4.2 Date Format . 44
4.3 Principals . 44
4.4 Policies . 50
4.5 Privileges . 53
4.6 Operations on the Kerberos database . 53
4.7 Operations on the LDAP database . 57
4.8 Cross-realm authentication . 62
4.9 Changing the krbtgt key . 63
4.10 Incremental database propagation . 64

5 Account lockout 67
5.1 Configuring account lockout . 67
5.2 Testing account lockout . 67
5.3 Account lockout principal state . 68
5.4 KDC replication and account lockout . 68
5.5 KDC performance and account lockout . 68
5.6 KDC setup and account lockout . 69

6 Configuring Kerberos with OpenLDAP back-end 71

7 Application servers 75
7.1 Keytabs . 75
7.2 Clock Skew . 76

i

7.3 Getting DNS information correct . 77
7.4 Configuring your firewall to work with Kerberos V5 . 77

8 Host configuration 79
8.1 Default realm . 79
8.2 Login authorization . 79
8.3 Plugin module configuration . 80

9 Backups of secure hosts 83
9.1 Backing up the Kerberos database . 83

10 PKINIT configuration 85
10.1 Creating certificates . 85
10.2 Configuring the KDC . 87
10.3 Configuring the clients . 88
10.4 Anonymous PKINIT . 88

11 OTP Preauthentication 91
11.1 Defining token types . 91
11.2 The default token type . 91
11.3 Token instance configuration . 92
11.4 Other considerations . 92

12 Principal names and DNS 93
12.1 Service principal names . 93
12.2 Service principal canonicalization . 93
12.3 Reverse DNS mismatches . 94
12.4 Overriding application behavior . 94
12.5 Provisioning keytabs . 94
12.6 Specific application advice . 94

13 Encryption types 95
13.1 Enctypes in requests . 95
13.2 Session key selection . 95
13.3 Choosing enctypes for a service . 96
13.4 Configuration variables . 96
13.5 Enctype compatibility . 96

14 HTTPS proxy configuration 97
14.1 Configuring the clients . 97

15 Authentication indicators 99

16 Administration programs 101
16.1 kadmin . 101
16.2 kadmind . 112
16.3 kdb5_util . 113
16.4 kdb5_ldap_util . 119
16.5 krb5kdc . 124
16.6 kprop . 125
16.7 kpropd . 126
16.8 kproplog . 127
16.9 ktutil . 128
16.10 k5srvutil . 130
16.11 sserver . 131

ii

17 MIT Kerberos defaults 133
17.1 General defaults . 134
17.2 Slave KDC propagation defaults . 135
17.3 Default paths for Unix-like systems . 135

18 Environment variables 137

19 Troubleshooting 139
19.1 Trace logging . 139
19.2 List of errors . 139

20 Advanced topics 141
20.1 LDAP backend on Ubuntu 10.4 (lucid) . 141
20.2 Retiring DES . 143

21 Various links 149
21.1 Whitepapers . 149
21.2 Tutorials . 149
21.3 Troubleshooting . 149

Index 151

iii

iv

CHAPTER

ONE

INSTALLATION GUIDE

1.1 Contents

1.1.1 Installing KDCs

When setting up Kerberos in a production environment, it is best to have multiple slave KDCs alongside with a master
KDC to ensure the continued availability of the Kerberized services. Each KDC contains a copy of the Kerberos
database. The master KDC contains the writable copy of the realm database, which it replicates to the slave KDCs
at regular intervals. All database changes (such as password changes) are made on the master KDC. Slave KDCs
provide Kerberos ticket-granting services, but not database administration, when the master KDC is unavailable. MIT
recommends that you install all of your KDCs to be able to function as either the master or one of the slaves. This
will enable you to easily switch your master KDC with one of the slaves if necessary (see Switching master and slave
KDCs). This installation procedure is based on that recommendation.

Warning:
• The Kerberos system relies on the availability of correct time information. Ensure that the master and all

slave KDCs have properly synchronized clocks.
• It is best to install and run KDCs on secured and dedicated hardware with limited access. If your KDC is

also a file server, FTP server, Web server, or even just a client machine, someone who obtained root access
through a security hole in any of those areas could potentially gain access to the Kerberos database.

Install and configure the master KDC

Install Kerberos either from the OS-provided packages or from the source (See do_build).

Note: For the purpose of this document we will use the following names:

kerberos.mit.edu - master KDC
kerberos-1.mit.edu - slave KDC
ATHENA.MIT.EDU - realm name
.k5.ATHENA.MIT.EDU - stash file
admin/admin - admin principal

See MIT Kerberos defaults for the default names and locations of the relevant to this topic files. Adjust the names and
paths to your system environment.

1

Kerberos Administration Guide, Release 1.15.2

Edit KDC configuration files

Modify the configuration files, krb5.conf and kdc.conf , to reflect the correct information (such as domain-realm map-
pings and Kerberos servers names) for your realm. (See MIT Kerberos defaults for the recommended default locations
for these files).

Most of the tags in the configuration have default values that will work well for most sites. There are some tags in the
krb5.conf file whose values must be specified, and this section will explain those.

If the locations for these configuration files differs from the default ones, set KRB5_CONFIG and
KRB5_KDC_PROFILE environment variables to point to the krb5.conf and kdc.conf respectively. For example:

export KRB5_CONFIG=/yourdir/krb5.conf
export KRB5_KDC_PROFILE=/yourdir/kdc.conf

krb5.conf

If you are not using DNS TXT records (see Mapping hostnames onto Kerberos realms), you must specify the de-
fault_realm in the [libdefaults] section. If you are not using DNS URI or SRV records (see Hostnames for KDCs
and KDC Discovery), you must include the kdc tag for each realm in the [realms] section. To communicate with the
kadmin server in each realm, the admin_server tag must be set in the [realms] section.

An example krb5.conf file:

[libdefaults]
default_realm = ATHENA.MIT.EDU

[realms]
ATHENA.MIT.EDU = {

kdc = kerberos.mit.edu
kdc = kerberos-1.mit.edu
admin_server = kerberos.mit.edu

}

kdc.conf

The kdc.conf file can be used to control the listening ports of the KDC and kadmind, as well as realm-specific defaults,
the database type and location, and logging.

An example kdc.conf file:

[kdcdefaults]
kdc_listen = 88
kdc_tcp_listen = 88

[realms]
ATHENA.MIT.EDU = {

kadmind_port = 749
max_life = 12h 0m 0s
max_renewable_life = 7d 0h 0m 0s
master_key_type = aes256-cts
supported_enctypes = aes256-cts:normal aes128-cts:normal
If the default location does not suit your setup,
explicitly configure the following values:
database_name = /var/krb5kdc/principal
key_stash_file = /var/krb5kdc/.k5.ATHENA.MIT.EDU
acl_file = /var/krb5kdc/kadm5.acl

2 Chapter 1. Installation guide

Kerberos Administration Guide, Release 1.15.2

}

[logging]
By default, the KDC and kadmind will log output using
syslog. You can instead send log output to files like this:
kdc = FILE:/var/log/krb5kdc.log
admin_server = FILE:/var/log/kadmin.log
default = FILE:/var/log/krb5lib.log

Replace ATHENA.MIT.EDU and kerberos.mit.edu with the name of your Kerberos realm and server respec-
tively.

Note: You have to have write permission on the target directories (these directories must exist) used by
database_name, key_stash_file, and acl_file.

Create the KDC database

You will use the kdb5_util command on the master KDC to create the Kerberos database and the optional
stash_definition.

Note: If you choose not to install a stash file, the KDC will prompt you for the master key each time it starts up. This
means that the KDC will not be able to start automatically, such as after a system reboot.

kdb5_util will prompt you for the master password for the Kerberos database. This password can be any string. A
good password is one you can remember, but that no one else can guess. Examples of bad passwords are words that
can be found in a dictionary, any common or popular name, especially a famous person (or cartoon character), your
username in any form (e.g., forward, backward, repeated twice, etc.), and any of the sample passwords that appear in
this manual. One example of a password which might be good if it did not appear in this manual is “MITiys4K5!”,
which represents the sentence “MIT is your source for Kerberos 5!” (It’s the first letter of each word, substituting the
numeral “4” for the word “for”, and includes the punctuation mark at the end.)

The following is an example of how to create a Kerberos database and stash file on the master KDC, using the kdb5_util
command. Replace ATHENA.MIT.EDU with the name of your Kerberos realm:

shell% kdb5_util create -r ATHENA.MIT.EDU -s

Initializing database ’/usr/local/var/krb5kdc/principal’ for realm ’ATHENA.MIT.EDU’,
master key name ’K/M@ATHENA.MIT.EDU’
You will be prompted for the database Master Password.
It is important that you NOT FORGET this password.
Enter KDC database master key: <= Type the master password.
Re-enter KDC database master key to verify: <= Type it again.
shell%

This will create five files in LOCALSTATEDIR/krb5kdc (or at the locations specified in kdc.conf):

• two Kerberos database files, principal, and principal.ok

• the Kerberos administrative database file, principal.kadm5

• the administrative database lock file, principal.kadm5.lock

• the stash file, in this example .k5.ATHENA.MIT.EDU. If you do not want a stash file, run the above command
without the -s option.

For more information on administrating Kerberos database see Operations on the Kerberos database.

1.1. Contents 3

Kerberos Administration Guide, Release 1.15.2

Add administrators to the ACL file

Next, you need create an Access Control List (ACL) file and put the Kerberos principal of at least one of the admin-
istrators into it. This file is used by the kadmind daemon to control which principals may view and make privileged
modifications to the Kerberos database files. The ACL filename is determined by the acl_file variable in kdc.conf ; the
default is LOCALSTATEDIR/krb5kdc/kadm5.acl.

For more information on Kerberos ACL file see kadm5.acl.

Add administrators to the Kerberos database

Next you need to add administrative principals (i.e., principals who are allowed to administer Kerberos database)
to the Kerberos database. You must add at least one principal now to allow communication between the Kerberos
administration daemon kadmind and the kadmin program over the network for further administration. To do this, use
the kadmin.local utility on the master KDC. kadmin.local is designed to be run on the master KDC host without using
Kerberos authentication to an admin server; instead, it must have read and write access to the Kerberos database on
the local filesystem.

The administrative principals you create should be the ones you added to the ACL file (see Add administrators to the
ACL file).

In the following example, the administrative principal admin/admin is created:

shell% kadmin.local

kadmin.local: addprinc admin/admin@ATHENA.MIT.EDU

WARNING: no policy specified for "admin/admin@ATHENA.MIT.EDU";
assigning "default".
Enter password for principal admin/admin@ATHENA.MIT.EDU: <= Enter a password.
Re-enter password for principal admin/admin@ATHENA.MIT.EDU: <= Type it again.
Principal "admin/admin@ATHENA.MIT.EDU" created.
kadmin.local:

Start the Kerberos daemons on the master KDC

At this point, you are ready to start the Kerberos KDC (krb5kdc) and administrative daemons on the Master KDC. To
do so, type:

shell% krb5kdc
shell% kadmind

Each server daemon will fork and run in the background.

Note: Assuming you want these daemons to start up automatically at boot time, you can add them to the KDC’s
/etc/rc or /etc/inittab file. You need to have a stash_definition in order to do this.

You can verify that they started properly by checking for their startup messages in the logging locations you defined
in krb5.conf (see [logging]). For example:

shell% tail /var/log/krb5kdc.log
Dec 02 12:35:47 beeblebrox krb5kdc[3187](info): commencing operation
shell% tail /var/log/kadmin.log
Dec 02 12:35:52 beeblebrox kadmind[3189](info): starting

Any errors the daemons encounter while starting will also be listed in the logging output.

4 Chapter 1. Installation guide

Kerberos Administration Guide, Release 1.15.2

As an additional verification, check if kinit(1) succeeds against the principals that you have created on the previous
step (Add administrators to the Kerberos database). Run:

shell% kinit admin/admin@ATHENA.MIT.EDU

Install the slave KDCs

You are now ready to start configuring the slave KDCs.

Note: Assuming you are setting the KDCs up so that you can easily switch the master KDC with one of the slaves,
you should perform each of these steps on the master KDC as well as the slave KDCs, unless these instructions specify
otherwise.

Create host keytabs for slave KDCs

Each KDC needs a host key in the Kerberos database. These keys are used for mutual authentication when propa-
gating the database dump file from the master KDC to the secondary KDC servers.

On the master KDC, connect to administrative interface and create the host principal for each of the KDCs’ host
services. For example, if the master KDC were called kerberos.mit.edu, and you had a slave KDC named
kerberos-1.mit.edu, you would type the following:

shell% kadmin
kadmin: addprinc -randkey host/kerberos.mit.edu
NOTICE: no policy specified for "host/kerberos.mit.edu@ATHENA.MIT.EDU"; assigning "default"
Principal "host/kerberos.mit.edu@ATHENA.MIT.EDU" created.

kadmin: addprinc -randkey host/kerberos-1.mit.edu
NOTICE: no policy specified for "host/kerberos-1.mit.edu@ATHENA.MIT.EDU"; assigning "default"
Principal "host/kerberos-1.mit.edu@ATHENA.MIT.EDU" created.

It is not strictly necessary to have the master KDC server in the Kerberos database, but it can be handy if you want to
be able to swap the master KDC with one of the slaves.

Next, extract host random keys for all participating KDCs and store them in each host’s default keytab file. Ideally,
you should extract each keytab locally on its own KDC. If this is not feasible, you should use an encrypted session
to send them across the network. To extract a keytab directly on a slave KDC called kerberos-1.mit.edu, you
would execute the following command:

kadmin: ktadd host/kerberos-1.mit.edu
Entry for principal host/kerberos-1.mit.edu with kvno 2, encryption

type aes256-cts-hmac-sha1-96 added to keytab FILE:/etc/krb5.keytab.
Entry for principal host/kerberos-1.mit.edu with kvno 2, encryption

type aes128-cts-hmac-sha1-96 added to keytab FILE:/etc/krb5.keytab.
Entry for principal host/kerberos-1.mit.edu with kvno 2, encryption

type des3-cbc-sha1 added to keytab FILE:/etc/krb5.keytab.
Entry for principal host/kerberos-1.mit.edu with kvno 2, encryption

type arcfour-hmac added to keytab FILE:/etc/krb5.keytab.

If you are instead extracting a keytab for the slave KDC called kerberos-1.mit.edu on the master KDC, you
should use a dedicated temporary keytab file for that machine’s keytab:

kadmin: ktadd -k /tmp/kerberos-1.keytab host/kerberos-1.mit.edu
Entry for principal host/kerberos-1.mit.edu with kvno 2, encryption

type aes256-cts-hmac-sha1-96 added to keytab FILE:/etc/krb5.keytab.

1.1. Contents 5

Kerberos Administration Guide, Release 1.15.2

Entry for principal host/kerberos-1.mit.edu with kvno 2, encryption
type aes128-cts-hmac-sha1-96 added to keytab FILE:/etc/krb5.keytab.

The file /tmp/kerberos-1.keytab can then be installed as /etc/krb5.keytab on the host
kerberos-1.mit.edu.

Configure slave KDCs

Database propagation copies the contents of the master’s database, but does not propagate configuration files, stash
files, or the kadm5 ACL file. The following files must be copied by hand to each slave (see MIT Kerberos defaults for
the default locations for these files):

• krb5.conf

• kdc.conf

• kadm5.acl

• master key stash file

Move the copied files into their appropriate directories, exactly as on the master KDC. kadm5.acl is only needed to
allow a slave to swap with the master KDC.

The database is propagated from the master KDC to the slave KDCs via the kpropd daemon. You must explicitly
specify the principals which are allowed to provide Kerberos dump updates on the slave machine with a new database.
Create a file named kpropd.acl in the KDC state directory containing the host principals for each of the KDCs:

host/kerberos.mit.edu@ATHENA.MIT.EDU
host/kerberos-1.mit.edu@ATHENA.MIT.EDU

Note: If you expect that the master and slave KDCs will be switched at some point of time, list the host principals
from all participating KDC servers in kpropd.acl files on all of the KDCs. Otherwise, you only need to list the master
KDC’s host principal in the kpropd.acl files of the slave KDCs.

Then, add the following line to /etc/inetd.conf on each KDC (adjust the path to kpropd):

krb5_prop stream tcp nowait root /usr/local/sbin/kpropd kpropd

You also need to add the following line to /etc/services on each KDC, if it is not already present (assuming that
the default port is used):

krb5_prop 754/tcp # Kerberos slave propagation

Restart inetd daemon.

Alternatively, start kpropd as a stand-alone daemon. This is required when incremental propagation is enabled.

Now that the slave KDC is able to accept database propagation, you’ll need to propagate the database from the master
server.

NOTE: Do not start the slave KDC yet; you still do not have a copy of the master’s database.

Propagate the database to each slave KDC

First, create a dump file of the database on the master KDC, as follows:

shell% kdb5_util dump /usr/local/var/krb5kdc/slave_datatrans

6 Chapter 1. Installation guide

Kerberos Administration Guide, Release 1.15.2

Then, manually propagate the database to each slave KDC, as in the following example:

shell% kprop -f /usr/local/var/krb5kdc/slave_datatrans kerberos-1.mit.edu

Database propagation to kerberos-1.mit.edu: SUCCEEDED

You will need a script to dump and propagate the database. The following is an example of a Bourne shell script that
will do this.

Note: Remember that you need to replace /usr/local/var/krb5kdcwith the name of the KDC state directory.

#!/bin/sh

kdclist = "kerberos-1.mit.edu kerberos-2.mit.edu"

kdb5_util dump /usr/local/var/krb5kdc/slave_datatrans

for kdc in $kdclist
do

kprop -f /usr/local/var/krb5kdc/slave_datatrans $kdc
done

You will need to set up a cron job to run this script at the intervals you decided on earlier (see Database propagation).

Now that the slave KDC has a copy of the Kerberos database, you can start the krb5kdc daemon:

shell% krb5kdc

As with the master KDC, you will probably want to add this command to the KDCs’ /etc/rc or /etc/inittab
files, so they will start the krb5kdc daemon automatically at boot time.

Propagation failed? You may encounter the following error messages. For a more detailed discussion on possible
causes and solutions click on the error link to be redirected to Troubleshooting section.

1. kprop: No route to host while connecting to server

2. kprop: Connection refused while connecting to server

3. kprop: Server rejected authentication (during sendauth exchange) while authenticating to server

Add Kerberos principals to the database

Once your KDCs are set up and running, you are ready to use kadmin to load principals for your users, hosts, and other
services into the Kerberos database. This procedure is described fully in Adding, modifying and deleting principals.

You may occasionally want to use one of your slave KDCs as the master. This might happen if you are upgrading the
master KDC, or if your master KDC has a disk crash. See the following section for the instructions.

Switching master and slave KDCs

You may occasionally want to use one of your slave KDCs as the master. This might happen if you are upgrading the
master KDC, or if your master KDC has a disk crash.

Assuming you have configured all of your KDCs to be able to function as either the master KDC or a slave KDC (as
this document recommends), all you need to do to make the changeover is:

If the master KDC is still running, do the following on the old master KDC:

1.1. Contents 7

Kerberos Administration Guide, Release 1.15.2

1. Kill the kadmind process.

2. Disable the cron job that propagates the database.

3. Run your database propagation script manually, to ensure that the slaves all have the latest copy of the database
(see Propagate the database to each slave KDC).

On the new master KDC:

1. Start the kadmind daemon (see Start the Kerberos daemons on the master KDC).

2. Set up the cron job to propagate the database (see Propagate the database to each slave KDC).

3. Switch the CNAMEs of the old and new master KDCs. If you can’t do this, you’ll need to change the krb5.conf
file on every client machine in your Kerberos realm.

Incremental database propagation

If you expect your Kerberos database to become large, you may wish to set up incremental propagation to slave KDCs.
See Incremental database propagation for details.

1.1.2 Installing and configuring UNIX client machines

The Kerberized client programs include kinit(1), klist(1), kdestroy(1), and kpasswd(1). All of these programs are in
the directory BINDIR.

You can often integrate Kerberos with the login system on client machines, typically through the use of PAM. The
details vary by operating system, and should be covered in your operating system’s documentation. If you do this, you
will need to make sure your users know to use their Kerberos passwords when they log in.

You will also need to educate your users to use the ticket management programs kinit, klist, and kdestroy. If you do
not have Kerberos password changing integrated into the native password program (again, typically through PAM),
you will need to educate users to use kpasswd in place of its non-Kerberos counterparts passwd.

Client machine configuration files

Each machine running Kerberos should have a krb5.conf file. At a minimum, it should define a default_realm setting
in [libdefaults]. If you are not using DNS SRV records (Hostnames for KDCs) or URI records (KDC Discovery), it
must also contain a [realms] section containing information for your realm’s KDCs.

Consider setting rdns to false in order to reduce your dependence on precisely correct DNS information for service
hostnames. Turning this flag off means that service hostnames will be canonicalized through forward name resolution
(which adds your domain name to unqualified hostnames, and resolves CNAME records in DNS), but not through
reverse address lookup. The default value of this flag is true for historical reasons only.

If you anticipate users frequently logging into remote hosts (e.g., using ssh) using forwardable credentials, consider
setting forwardable to true so that users obtain forwardable tickets by default. Otherwise users will need to use
kinit -f to get forwardable tickets.

Consider adjusting the ticket_lifetime setting to match the likely length of sessions for your users. For instance, if
most of your users will be logging in for an eight-hour workday, you could set the default to ten hours so that tickets
obtained in the morning expire shortly after the end of the workday. Users can still manually request longer tickets
when necessary, up to the maximum allowed by each user’s principal record on the KDC.

If a client host may access services in different realms, it may be useful to define a [domain_realm] mapping so that
clients know which hosts belong to which realms. However, if your clients and KDC are running release 1.7 or later,
it is also reasonable to leave this section out on client machines and just define it in the KDC’s krb5.conf.

8 Chapter 1. Installation guide

Kerberos Administration Guide, Release 1.15.2

1.1.3 UNIX Application Servers

An application server is a host that provides one or more services over the network. Application servers can be “secure”
or “insecure.” A “secure” host is set up to require authentication from every client connecting to it. An “insecure” host
will still provide Kerberos authentication, but will also allow unauthenticated clients to connect.

If you have Kerberos V5 installed on all of your client machines, MIT recommends that you make your hosts secure,
to take advantage of the security that Kerberos authentication affords. However, if you have some clients that do not
have Kerberos V5 installed, you can run an insecure server, and still take advantage of Kerberos V5’s single sign-on
capability.

The keytab file

All Kerberos server machines need a keytab file to authenticate to the KDC. By default on UNIX-like systems this file
is named DEFKTNAME. The keytab file is an local copy of the host’s key. The keytab file is a potential point of entry
for a break-in, and if compromised, would allow unrestricted access to its host. The keytab file should be readable only
by root, and should exist only on the machine’s local disk. The file should not be part of any backup of the machine,
unless access to the backup data is secured as tightly as access to the machine’s root password.

In order to generate a keytab for a host, the host must have a principal in the Kerberos database. The procedure for
adding hosts to the database is described fully in Adding, modifying and deleting principals. (See Create host keytabs
for slave KDCs for a brief description.) The keytab is generated by running kadmin and issuing the ktadd command.

For example, to generate a keytab file to allow the host trillium.mit.edu to authenticate for the services host,
ftp, and pop, the administrator joeadmin would issue the command (on trillium.mit.edu):

trillium% kadmin
kadmin5: ktadd host/trillium.mit.edu ftp/trillium.mit.edu

pop/trillium.mit.edu
kadmin: Entry for principal host/trillium.mit.edu@ATHENA.MIT.EDU with

kvno 3, encryption type DES-CBC-CRC added to keytab
FILE:/etc/krb5.keytab.

kadmin: Entry for principal ftp/trillium.mit.edu@ATHENA.MIT.EDU with
kvno 3, encryption type DES-CBC-CRC added to keytab
FILE:/etc/krb5.keytab.

kadmin: Entry for principal pop/trillium.mit.edu@ATHENA.MIT.EDU with
kvno 3, encryption type DES-CBC-CRC added to keytab
FILE:/etc/krb5.keytab.

kadmin5: quit
trillium%

If you generate the keytab file on another host, you need to get a copy of the keytab file onto the destination host
(trillium, in the above example) without sending it unencrypted over the network.

Some advice about secure hosts

Kerberos V5 can protect your host from certain types of break-ins, but it is possible to install Kerberos V5 and still
leave your host vulnerable to attack. Obviously an installation guide is not the place to try to include an exhaustive list
of countermeasures for every possible attack, but it is worth noting some of the larger holes and how to close them.

We recommend that backups of secure machines exclude the keytab file (DEFKTNAME). If this is not possible, the
backups should at least be done locally, rather than over a network, and the backup tapes should be physically secured.

The keytab file and any programs run by root, including the Kerberos V5 binaries, should be kept on local disk. The
keytab file should be readable only by root.

1.1. Contents 9

Kerberos Administration Guide, Release 1.15.2

1.2 Additional references

1. Debian: Setting up MIT Kerberos 5

2. Solaris: Configuring the Kerberos Service

10 Chapter 1. Installation guide

http://techpubs.spinlocksolutions.com/dklar/kerberos.html
http://download.oracle.com/docs/cd/E19253-01/816-4557/6maosrjv2/index.html

CHAPTER

TWO

CONFIGURATION FILES

Kerberos uses configuration files to allow administrators to specify settings on a per-machine basis. krb5.conf applies
to all applications using the Kerboros library, on clients and servers. For KDC-specific applications, additional settings
can be specified in kdc.conf ; the two files are merged into a configuration profile used by applications accessing the
KDC database directly. kadm5.acl is also only used on the KDC, it controls permissions for modifying the KDC
database.

2.1 Contents

2.1.1 krb5.conf

The krb5.conf file contains Kerberos configuration information, including the locations of KDCs and admin servers
for the Kerberos realms of interest, defaults for the current realm and for Kerberos applications, and mappings of
hostnames onto Kerberos realms. Normally, you should install your krb5.conf file in the directory /etc. You can
override the default location by setting the environment variable KRB5_CONFIG. Multiple colon-separated filenames
may be specified in KRB5_CONFIG; all files which are present will be read. Starting in release 1.14, directory names
can also be specified in KRB5_CONFIG; all files within the directory whose names consist solely of alphanumeric
characters, dashes, or underscores will be read.

Structure

The krb5.conf file is set up in the style of a Windows INI file. Sections are headed by the section name, in square
brackets. Each section may contain zero or more relations, of the form:

foo = bar

or:

fubar = {
foo = bar
baz = quux

}

Placing a ‘*’ at the end of a line indicates that this is the final value for the tag. This means that neither the remainder
of this configuration file nor any other configuration file will be checked for any other values for this tag.

For example, if you have the following lines:

foo = bar*
foo = baz

11

Kerberos Administration Guide, Release 1.15.2

then the second value of foo (baz) would never be read.

The krb5.conf file can include other files using either of the following directives at the beginning of a line:

include FILENAME
includedir DIRNAME

FILENAME or DIRNAME should be an absolute path. The named file or directory must exist and be readable. Includ-
ing a directory includes all files within the directory whose names consist solely of alphanumeric characters, dashes,
or underscores. Starting in release 1.15, files with names ending in ”.conf” are also included, unless the name begins
with ”.”. Included profile files are syntactically independent of their parents, so each included file must begin with a
section header.

The krb5.conf file can specify that configuration should be obtained from a loadable module, rather than the file itself,
using the following directive at the beginning of a line before any section headers:

module MODULEPATH:RESIDUAL

MODULEPATH may be relative to the library path of the krb5 installation, or it may be an absolute path. RESIDUAL
is provided to the module at initialization time. If krb5.conf uses a module directive, kdc.conf should also use one if it
exists.

Sections

The krb5.conf file may contain the following sections:

[libdefaults] Settings used by the Kerberos V5 library
[realms] Realm-specific contact information and settings
[domain_realm] Maps server hostnames to Kerberos realms
[capaths] Authentication paths for non-hierarchical cross-realm
[appdefaults] Settings used by some Kerberos V5 applications
[plugins] Controls plugin module registration

Additionally, krb5.conf may include any of the relations described in kdc.conf , but it is not a recommended practice.

[libdefaults]

The libdefaults section may contain any of the following relations:

allow_weak_crypto If this flag is set to false, then weak encryption types (as noted in Encryption types in kdc.conf)
will be filtered out of the lists default_tgs_enctypes, default_tkt_enctypes, and permitted_enctypes. The
default value for this tag is false, which may cause authentication failures in existing Kerberos infrastructures that
do not support strong crypto. Users in affected environments should set this tag to true until their infrastructure
adopts stronger ciphers.

ap_req_checksum_type An integer which specifies the type of AP-REQ checksum to use in authenticators. This
variable should be unset so the appropriate checksum for the encryption key in use will be used. This can be set
if backward compatibility requires a specific checksum type. See the kdc_req_checksum_type configuration
option for the possible values and their meanings.

canonicalize If this flag is set to true, initial ticket requests to the KDC will request canonicalization of the client
principal name, and answers with different client principals than the requested principal will be accepted. The
default value is false.

ccache_type This parameter determines the format of credential cache types created by kinit(1) or other programs.
The default value is 4, which represents the most current format. Smaller values can be used for compatibility
with very old implementations of Kerberos which interact with credential caches on the same host.

12 Chapter 2. Configuration Files

Kerberos Administration Guide, Release 1.15.2

clockskew Sets the maximum allowable amount of clockskew in seconds that the library will tolerate before assuming
that a Kerberos message is invalid. The default value is 300 seconds, or five minutes.

The clockskew setting is also used when evaluating ticket start and expiration times. For example, tickets that
have reached their expiration time can still be used (and renewed if they are renewable tickets) if they have been
expired for a shorter duration than the clockskew setting.

default_ccache_name This relation specifies the name of the default credential cache. The default is DEFCCNAME.
This relation is subject to parameter expansion (see below). New in release 1.11.

default_client_keytab_name This relation specifies the name of the default keytab for obtaining client credentials.
The default is DEFCKTNAME. This relation is subject to parameter expansion (see below). New in release 1.11.

default_keytab_name This relation specifies the default keytab name to be used by application servers such as sshd.
The default is DEFKTNAME. This relation is subject to parameter expansion (see below).

default_realm Identifies the default Kerberos realm for the client. Set its value to your Kerberos realm. If this value
is not set, then a realm must be specified with every Kerberos principal when invoking programs such as kinit(1).

default_tgs_enctypes Identifies the supported list of session key encryption types that the client should re-
quest when making a TGS-REQ, in order of preference from highest to lowest. The list may be de-
limited with commas or whitespace. See Encryption types in kdc.conf for a list of the accepted values
for this tag. The default value is aes256-cts-hmac-sha1-96 aes128-cts-hmac-sha1-96
aes128-cts-hmac-sha256-128 aes256-cts-hmac-sha384-192 des3-cbc-sha1
arcfour-hmac-md5 camellia256-cts-cmac camellia128-cts-cmac des-cbc-crc
des-cbc-md5 des-cbc-md4, but single-DES encryption types will be implicitly removed from this list if
the value of allow_weak_crypto is false.

Do not set this unless required for specific backward compatibility purposes; stale values of this setting can
prevent clients from taking advantage of new stronger enctypes when the libraries are upgraded.

default_tkt_enctypes Identifies the supported list of session key encryption types that the
client should request when making an AS-REQ, in order of preference from high-
est to lowest. The format is the same as for default_tgs_enctypes. The default
value for this tag is aes256-cts-hmac-sha1-96 aes128-cts-hmac-sha1-96
aes128-cts-hmac-sha256-128 aes256-cts-hmac-sha384-192 des3-cbc-sha1
arcfour-hmac-md5 camellia256-cts-cmac camellia128-cts-cmac des-cbc-crc
des-cbc-md5 des-cbc-md4, but single-DES encryption types will be implicitly removed from this list if
the value of allow_weak_crypto is false.

Do not set this unless required for specific backward compatibility purposes; stale values of this setting can
prevent clients from taking advantage of new stronger enctypes when the libraries are upgraded.

dns_canonicalize_hostname Indicate whether name lookups will be used to canonicalize hostnames for use in ser-
vice principal names. Setting this flag to false can improve security by reducing reliance on DNS, but means
that short hostnames will not be canonicalized to fully-qualified hostnames. The default value is true.

dns_lookup_kdc Indicate whether DNS SRV records should be used to locate the KDCs and other servers for a realm,
if they are not listed in the krb5.conf information for the realm. (Note that the admin_server entry must be in
the krb5.conf realm information in order to contact kadmind, because the DNS implementation for kadmin is
incomplete.)

Enabling this option does open up a type of denial-of-service attack, if someone spoofs the DNS records and
redirects you to another server. However, it’s no worse than a denial of service, because that fake KDC will
be unable to decode anything you send it (besides the initial ticket request, which has no encrypted data), and
anything the fake KDC sends will not be trusted without verification using some secret that it won’t know.

dns_uri_lookup Indicate whether DNS URI records should be used to locate the KDCs and other servers for a realm,
if they are not listed in the krb5.conf information for the realm. SRV records are used as a fallback if no URI
records were found. The default value is true. New in release 1.15.

2.1. Contents 13

Kerberos Administration Guide, Release 1.15.2

err_fmt This relation allows for custom error message formatting. If a value is set, error messages will be formatted
by substituting a normal error message for %M and an error code for %C in the value.

extra_addresses This allows a computer to use multiple local addresses, in order to allow Kerberos to work in a net-
work that uses NATs while still using address-restricted tickets. The addresses should be in a comma-separated
list. This option has no effect if noaddresses is true.

forwardable If this flag is true, initial tickets will be forwardable by default, if allowed by the KDC. The default value
is false.

ignore_acceptor_hostname When accepting GSSAPI or krb5 security contexts for host-based service principals,
ignore any hostname passed by the calling application, and allow clients to authenticate to any service principal
in the keytab matching the service name and realm name (if given). This option can improve the administrative
flexibility of server applications on multihomed hosts, but could compromise the security of virtual hosting
environments. The default value is false. New in release 1.10.

k5login_authoritative If this flag is true, principals must be listed in a local user’s k5login file to be granted login
access, if a .k5login(5) file exists. If this flag is false, a principal may still be granted login access through other
mechanisms even if a k5login file exists but does not list the principal. The default value is true.

k5login_directory If set, the library will look for a local user’s k5login file within the named directory, with a filename
corresponding to the local username. If not set, the library will look for k5login files in the user’s home directory,
with the filename .k5login. For security reasons, .k5login files must be owned by the local user or by root.

kcm_mach_service On OS X only, determines the name of the bootstrap service used to contact the KCM daemon
for the KCM credential cache type. If the value is -, Mach RPC will not be used to contact the KCM daemon.
The default value is org.h5l.kcm.

kcm_socket Determines the path to the Unix domain socket used to access the KCM daemon for the KCM credential
cache type. If the value is -, Unix domain sockets will not be used to contact the KCM daemon. The default
value is /var/run/.heim_org.h5l.kcm-socket.

kdc_default_options Default KDC options (Xored for multiple values) when requesting initial tickets. By default it
is set to 0x00000010 (KDC_OPT_RENEWABLE_OK).

kdc_timesync Accepted values for this relation are 1 or 0. If it is nonzero, client machines will compute the difference
between their time and the time returned by the KDC in the timestamps in the tickets and use this value to correct
for an inaccurate system clock when requesting service tickets or authenticating to services. This corrective
factor is only used by the Kerberos library; it is not used to change the system clock. The default value is 1.

kdc_req_checksum_type An integer which specifies the type of checksum to use for the KDC requests, for compat-
ibility with very old KDC implementations. This value is only used for DES keys; other keys use the preferred
checksum type for those keys.

The possible values and their meanings are as follows.

1 CRC32
2 RSA MD4
3 RSA MD4 DES
4 DES CBC
7 RSA MD5
8 RSA MD5 DES
9 NIST SHA
12 HMAC SHA1 DES3
-138 Microsoft MD5 HMAC checksum type

noaddresses If this flag is true, requests for initial tickets will not be made with address restrictions set, allowing the
tickets to be used across NATs. The default value is true.

permitted_enctypes Identifies all encryption types that are permitted for use in session key encryption.
The default value for this tag is aes256-cts-hmac-sha1-96 aes128-cts-hmac-sha1-96

14 Chapter 2. Configuration Files

Kerberos Administration Guide, Release 1.15.2

aes128-cts-hmac-sha256-128 aes256-cts-hmac-sha384-192 des3-cbc-sha1
arcfour-hmac-md5 camellia256-cts-cmac camellia128-cts-cmac des-cbc-crc
des-cbc-md5 des-cbc-md4, but single-DES encryption types will be implicitly removed from this list if
the value of allow_weak_crypto is false.

plugin_base_dir If set, determines the base directory where krb5 plugins are located. The default value is the
krb5/plugins subdirectory of the krb5 library directory.

preferred_preauth_types This allows you to set the preferred preauthentication types which the client will attempt
before others which may be advertised by a KDC. The default value for this setting is “17, 16, 15, 14”, which
forces libkrb5 to attempt to use PKINIT if it is supported.

proxiable If this flag is true, initial tickets will be proxiable by default, if allowed by the KDC. The default value is
false.

rdns If this flag is true, reverse name lookup will be used in addition to forward name lookup to canonicalizing
hostnames for use in service principal names. If dns_canonicalize_hostname is set to false, this flag has no
effect. The default value is true.

realm_try_domains Indicate whether a host’s domain components should be used to determine the Kerberos realm
of the host. The value of this variable is an integer: -1 means not to search, 0 means to try the host’s domain
itself, 1 means to also try the domain’s immediate parent, and so forth. The library’s usual mechanism for
locating Kerberos realms is used to determine whether a domain is a valid realm, which may involve consulting
DNS if dns_lookup_kdc is set. The default is not to search domain components.

renew_lifetime (duration string.) Sets the default renewable lifetime for initial ticket requests. The default value is 0.

safe_checksum_type An integer which specifies the type of checksum to use for the KRB-SAFE requests. By default
it is set to 8 (RSA MD5 DES). For compatibility with applications linked against DCE version 1.1 or earlier
Kerberos libraries, use a value of 3 to use the RSA MD4 DES instead. This field is ignored when its value is
incompatible with the session key type. See the kdc_req_checksum_type configuration option for the possible
values and their meanings.

ticket_lifetime (duration string.) Sets the default lifetime for initial ticket requests. The default value is 1 day.

udp_preference_limit When sending a message to the KDC, the library will try using TCP before UDP if the size of
the message is above udp_preference_limit. If the message is smaller than udp_preference_limit, then UDP
will be tried before TCP. Regardless of the size, both protocols will be tried if the first attempt fails.

verify_ap_req_nofail If this flag is true, then an attempt to verify initial credentials will fail if the client machine
does not have a keytab. The default value is false.

[realms]

Each tag in the [realms] section of the file is the name of a Kerberos realm. The value of the tag is a subsection with
relations that define the properties of that particular realm. For each realm, the following tags may be specified in the
realm’s subsection:

admin_server Identifies the host where the administration server is running. Typically, this is the master Kerberos
server. This tag must be given a value in order to communicate with the kadmind server for the realm.

auth_to_local This tag allows you to set a general rule for mapping principal names to local user names. It will be
used if there is not an explicit mapping for the principal name that is being translated. The possible values are:

RULE:exp The local name will be formulated from exp.

The format for exp is [n:string](regexp)s/pattern/replacement/g. The integer n indicates how many compo-
nents the target principal should have. If this matches, then a string will be formed from string, substituting
the realm of the principal for $0 and the n‘th component of the principal for $n (e.g., if the principal was
johndoe/admin then [2:$2$1foo] would result in the string adminjohndoefoo). If this string

2.1. Contents 15

Kerberos Administration Guide, Release 1.15.2

matches regexp, then the s//[g] substitution command will be run over the string. The optional g will
cause the substitution to be global over the string, instead of replacing only the first match in the string.

DEFAULT The principal name will be used as the local user name. If the principal has more than one compo-
nent or is not in the default realm, this rule is not applicable and the conversion will fail.

For example:

[realms]
ATHENA.MIT.EDU = {

auth_to_local = RULE:[2:$1](johndoe)s/^.*$/guest/
auth_to_local = RULE:[2:$1;$2](^.*;admin$)s/;admin$//
auth_to_local = RULE:[2:$2](^.*;root)s/^.*$/root/
auto_to_local = DEFAULT

}

would result in any principal without root or admin as the second component to be translated with the default
rule. A principal with a second component of admin will become its first component. root will be used as
the local name for any principal with a second component of root. The exception to these two rules are any
principals johndoe/*, which will always get the local name guest.

auth_to_local_names This subsection allows you to set explicit mappings from principal names to local user names.
The tag is the mapping name, and the value is the corresponding local user name.

default_domain This tag specifies the domain used to expand hostnames when translating Kerberos 4
service principals to Kerberos 5 principals (for example, when converting rcmd.hostname to
host/hostname.domain).

http_anchors When KDCs and kpasswd servers are accessed through HTTPS proxies, this tag can be used to specify
the location of the CA certificate which should be trusted to issue the certificate for a proxy server. If left
unspecified, the system-wide default set of CA certificates is used.

The syntax for values is similar to that of values for the pkinit_anchors tag:

FILE: filename

filename is assumed to be the name of an OpenSSL-style ca-bundle file.

DIR: dirname

dirname is assumed to be an directory which contains CA certificates. All files in the directory will be examined;
if they contain certificates (in PEM format), they will be used.

ENV: envvar

envvar specifies the name of an environment variable which has been set to a value conforming to one of the
previous values. For example, ENV:X509_PROXY_CA, where environment variable X509_PROXY_CA has
been set to FILE:/tmp/my_proxy.pem.

kdc The name or address of a host running a KDC for that realm. An optional port number, separated from the
hostname by a colon, may be included. If the name or address contains colons (for example, if it is an IPv6
address), enclose it in square brackets to distinguish the colon from a port separator. For your computer to be
able to communicate with the KDC for each realm, this tag must be given a value in each realm subsection in
the configuration file, or there must be DNS SRV records specifying the KDCs.

kpasswd_server Points to the server where all the password changes are performed. If there is no such entry, the port
464 on the admin_server host will be tried.

master_kdc Identifies the master KDC(s). Currently, this tag is used in only one case: If an attempt to get credentials
fails because of an invalid password, the client software will attempt to contact the master KDC, in case the
user’s password has just been changed, and the updated database has not been propagated to the slave servers
yet.

16 Chapter 2. Configuration Files

Kerberos Administration Guide, Release 1.15.2

v4_instance_convert This subsection allows the administrator to configure exceptions to the default_domain map-
ping rule. It contains V4 instances (the tag name) which should be translated to some specific hostname (the tag
value) as the second component in a Kerberos V5 principal name.

v4_realm This relation is used by the krb524 library routines when converting a V5 principal name to a V4 principal
name. It is used when the V4 realm name and the V5 realm name are not the same, but still share the same
principal names and passwords. The tag value is the Kerberos V4 realm name.

[domain_realm]

The [domain_realm] section provides a translation from a domain name or hostname to a Kerberos realm name. The
tag name can be a host name or domain name, where domain names are indicated by a prefix of a period (.). The
value of the relation is the Kerberos realm name for that particular host or domain. A host name relation implicitly
provides the corresponding domain name relation, unless an explicit domain name relation is provided. The Kerberos
realm may be identified either in the realms section or using DNS SRV records. Host names and domain names should
be in lower case. For example:

[domain_realm]
crash.mit.edu = TEST.ATHENA.MIT.EDU
.dev.mit.edu = TEST.ATHENA.MIT.EDU
mit.edu = ATHENA.MIT.EDU

maps the host with the name crash.mit.edu into the TEST.ATHENA.MIT.EDU realm. The second entry maps
all hosts under the domain dev.mit.edu into the TEST.ATHENA.MIT.EDU realm, but not the host with the name
dev.mit.edu. That host is matched by the third entry, which maps the host mit.edu and all hosts under the
domain mit.edu that do not match a preceding rule into the realm ATHENA.MIT.EDU.

If no translation entry applies to a hostname used for a service principal for a service ticket request, the library will
try to get a referral to the appropriate realm from the client realm’s KDC. If that does not succeed, the host’s realm
is considered to be the hostname’s domain portion converted to uppercase, unless the realm_try_domains setting in
[libdefaults] causes a different parent domain to be used.

[capaths]

In order to perform direct (non-hierarchical) cross-realm authentication, configuration is needed to determine the
authentication paths between realms.

A client will use this section to find the authentication path between its realm and the realm of the server. The server
will use this section to verify the authentication path used by the client, by checking the transited field of the received
ticket.

There is a tag for each participating client realm, and each tag has subtags for each of the server realms. The value
of the subtags is an intermediate realm which may participate in the cross-realm authentication. The subtags may be
repeated if there is more then one intermediate realm. A value of ”.” means that the two realms share keys directly,
and no intermediate realms should be allowed to participate.

Only those entries which will be needed on the client or the server need to be present. A client needs a tag for its local
realm with subtags for all the realms of servers it will need to authenticate to. A server needs a tag for each realm of
the clients it will serve, with a subtag of the server realm.

For example, ANL.GOV, PNL.GOV, and NERSC.GOV all wish to use the ES.NET realm as an intermediate realm.
ANL has a sub realm of TEST.ANL.GOVwhich will authenticate with NERSC.GOV but not PNL.GOV. The [capaths]
section for ANL.GOV systems would look like this:

[capaths]
ANL.GOV = {

2.1. Contents 17

Kerberos Administration Guide, Release 1.15.2

TEST.ANL.GOV = .
PNL.GOV = ES.NET
NERSC.GOV = ES.NET
ES.NET = .

}
TEST.ANL.GOV = {

ANL.GOV = .
}
PNL.GOV = {

ANL.GOV = ES.NET
}
NERSC.GOV = {

ANL.GOV = ES.NET
}
ES.NET = {

ANL.GOV = .
}

The [capaths] section of the configuration file used on NERSC.GOV systems would look like this:

[capaths]
NERSC.GOV = {

ANL.GOV = ES.NET
TEST.ANL.GOV = ES.NET
TEST.ANL.GOV = ANL.GOV
PNL.GOV = ES.NET
ES.NET = .

}
ANL.GOV = {

NERSC.GOV = ES.NET
}
PNL.GOV = {

NERSC.GOV = ES.NET
}
ES.NET = {

NERSC.GOV = .
}
TEST.ANL.GOV = {

NERSC.GOV = ANL.GOV
NERSC.GOV = ES.NET

}

When a subtag is used more than once within a tag, clients will use the order of values to determine the path. The
order of values is not important to servers.

[appdefaults]

Each tag in the [appdefaults] section names a Kerberos V5 application or an option that is used by some Kerberos V5
application[s]. The value of the tag defines the default behaviors for that application.

For example:

[appdefaults]
telnet = {

ATHENA.MIT.EDU = {
option1 = false

}
}

18 Chapter 2. Configuration Files

Kerberos Administration Guide, Release 1.15.2

telnet = {
option1 = true
option2 = true

}
ATHENA.MIT.EDU = {

option2 = false
}
option2 = true

The above four ways of specifying the value of an option are shown in order of decreasing precedence. In this example,
if telnet is running in the realm EXAMPLE.COM, it should, by default, have option1 and option2 set to true. However,
a telnet program in the realm ATHENA.MIT.EDU should have option1 set to false and option2 set to true. Any
other programs in ATHENA.MIT.EDU should have option2 set to false by default. Any programs running in other
realms should have option2 set to true.

The list of specifiable options for each application may be found in that application’s man pages. The application
defaults specified here are overridden by those specified in the realms section.

[plugins]

• pwqual interface

• kadm5_hook interface

• clpreauth and kdcpreauth interfaces

Tags in the [plugins] section can be used to register dynamic plugin modules and to turn modules on and off. Not
every krb5 pluggable interface uses the [plugins] section; the ones that do are documented here.

New in release 1.9.

Each pluggable interface corresponds to a subsection of [plugins]. All subsections support the same tags:

disable This tag may have multiple values. If there are values for this tag, then the named modules will be disabled
for the pluggable interface.

enable_only This tag may have multiple values. If there are values for this tag, then only the named modules will be
enabled for the pluggable interface.

module This tag may have multiple values. Each value is a string of the form modulename:pathname, which
causes the shared object located at pathname to be registered as a dynamic module named modulename for the
pluggable interface. If pathname is not an absolute path, it will be treated as relative to the plugin_base_dir
value from [libdefaults].

For pluggable interfaces where module order matters, modules registered with a module tag normally come first, in
the order they are registered, followed by built-in modules in the order they are documented below. If enable_only
tags are used, then the order of those tags overrides the normal module order.

The following subsections are currently supported within the [plugins] section:

ccselect interface The ccselect subsection controls modules for credential cache selection within a cache collection.
In addition to any registered dynamic modules, the following built-in modules exist (and may be disabled with the
disable tag):

k5identity Uses a .k5identity file in the user’s home directory to select a client principal

realm Uses the service realm to guess an appropriate cache from the collection

2.1. Contents 19

Kerberos Administration Guide, Release 1.15.2

pwqual interface The pwqual subsection controls modules for the password quality interface, which is used to reject
weak passwords when passwords are changed. The following built-in modules exist for this interface:

dict Checks against the realm dictionary file

empty Rejects empty passwords

hesiod Checks against user information stored in Hesiod (only if Kerberos was built with Hesiod support)

princ Checks against components of the principal name

kadm5_hook interface The kadm5_hook interface provides plugins with information on principal creation, modifi-
cation, password changes and deletion. This interface can be used to write a plugin to synchronize MIT Kerberos with
another database such as Active Directory. No plugins are built in for this interface.

clpreauth and kdcpreauth interfaces The clpreauth and kdcpreauth interfaces allow plugin modules to provide
client and KDC preauthentication mechanisms. The following built-in modules exist for these interfaces:

pkinit This module implements the PKINIT preauthentication mechanism.

encrypted_challenge This module implements the encrypted challenge FAST factor.

encrypted_timestamp This module implements the encrypted timestamp mechanism.

hostrealm interface The hostrealm section (introduced in release 1.12) controls modules for the host-to-realm in-
terface, which affects the local mapping of hostnames to realm names and the choice of default realm. The following
built-in modules exist for this interface:

profile This module consults the [domain_realm] section of the profile for authoritative host-to-realm mappings, and
the default_realm variable for the default realm.

dns This module looks for DNS records for fallback host-to-realm mappings and the default realm. It only operates
if the dns_lookup_realm variable is set to true.

domain This module applies heuristics for fallback host-to-realm mappings. It implements the realm_try_domains
variable, and uses the uppercased parent domain of the hostname if that does not produce a result.

localauth interface The localauth section (introduced in release 1.12) controls modules for the local authorization
interface, which affects the relationship between Kerberos principals and local system accounts. The following built-in
modules exist for this interface:

default This module implements the DEFAULT type for auth_to_local values.

rule This module implements the RULE type for auth_to_local values.

names This module looks for an auth_to_local_names mapping for the principal name.

auth_to_local This module processes auth_to_local values in the default realm’s section, and applies the default
method if no auth_to_local values exist.

k5login This module authorizes a principal to a local account according to the account’s .k5login(5) file.

an2ln This module authorizes a principal to a local account if the principal name maps to the local account name.

20 Chapter 2. Configuration Files

Kerberos Administration Guide, Release 1.15.2

PKINIT options

Note: The following are PKINIT-specific options. These values may be specified in [libdefaults] as global defaults, or
within a realm-specific subsection of [libdefaults], or may be specified as realm-specific values in the [realms] section.
A realm-specific value overrides, not adds to, a generic [libdefaults] specification. The search order is:

1. realm-specific subsection of [libdefaults]:

[libdefaults]
EXAMPLE.COM = {

pkinit_anchors = FILE:/usr/local/example.com.crt
}

2. realm-specific value in the [realms] section:

[realms]
OTHERREALM.ORG = {

pkinit_anchors = FILE:/usr/local/otherrealm.org.crt
}

3. generic value in the [libdefaults] section:

[libdefaults]
pkinit_anchors = DIR:/usr/local/generic_trusted_cas/

Specifying PKINIT identity information

The syntax for specifying Public Key identity, trust, and revocation information for PKINIT is as follows:

FILE:filename[,keyfilename] This option has context-specific behavior.

In pkinit_identity or pkinit_identities, filename specifies the name of a PEM-format file containing the user’s
certificate. If keyfilename is not specified, the user’s private key is expected to be in filename as well. Otherwise,
keyfilename is the name of the file containing the private key.

In pkinit_anchors or pkinit_pool, filename is assumed to be the name of an OpenSSL-style ca-bundle file.

DIR:dirname This option has context-specific behavior.

In pkinit_identity or pkinit_identities, dirname specifies a directory with files named *.crt and *.key
where the first part of the file name is the same for matching pairs of certificate and private key files. When a
file with a name ending with .crt is found, a matching file ending with .key is assumed to contain the private
key. If no such file is found, then the certificate in the .crt is not used.

In pkinit_anchors or pkinit_pool, dirname is assumed to be an OpenSSL-style hashed CA directory where
each CA cert is stored in a file named hash-of-ca-cert.#. This infrastructure is encouraged, but all files
in the directory will be examined and if they contain certificates (in PEM format), they will be used.

In pkinit_revoke, dirname is assumed to be an OpenSSL-style hashed CA directory where each revocation
list is stored in a file named hash-of-ca-cert.r#. This infrastructure is encouraged, but all files in the
directory will be examined and if they contain a revocation list (in PEM format), they will be used.

PKCS12:filename filename is the name of a PKCS #12 format file, containing the user’s certificate and private key.

PKCS11:[module_name=]modname[:slotid=slot-id][:token=token-label][:certid=cert-id][:certlabel=cert-label]
All keyword/values are optional. modname specifies the location of a library implementing PKCS #11. If
a value is encountered with no keyword, it is assumed to be the modname. If no module-name is specified,
the default is opensc-pkcs11.so. slotid= and/or token= may be specified to force the use of a
particular smard card reader or token if there is more than one available. certid= and/or certlabel=

2.1. Contents 21

Kerberos Administration Guide, Release 1.15.2

may be specified to force the selection of a particular certificate on the device. See the pkinit_cert_match
configuration option for more ways to select a particular certificate to use for PKINIT.

ENV:envvar envvar specifies the name of an environment variable which has been set to a value conforming to one of
the previous values. For example, ENV:X509_PROXY, where environment variable X509_PROXY has been
set to FILE:/tmp/my_proxy.pem.

PKINIT krb5.conf options

pkinit_anchors Specifies the location of trusted anchor (root) certificates which the client trusts to sign KDC certifi-
cates. This option may be specified multiple times. These values from the config file are not used if the user
specifies X509_anchors on the command line.

pkinit_cert_match Specifies matching rules that the client certificate must match before it is used to attempt PKINIT
authentication. If a user has multiple certificates available (on a smart card, or via other media), there must be
exactly one certificate chosen before attempting PKINIT authentication. This option may be specified multiple
times. All the available certificates are checked against each rule in order until there is a match of exactly one
certificate.

The Subject and Issuer comparison strings are the RFC 2253 string representations from the certificate Subject
DN and Issuer DN values.

The syntax of the matching rules is:

[relation-operator]component-rule ...

where:

relation-operator can be either &&, meaning all component rules must match, or ||, meaning only one com-
ponent rule must match. The default is &&.

component-rule can be one of the following. Note that there is no punctuation or whitespace between compo-
nent rules.

<SUBJECT>regular-expression
<ISSUER>regular-expression
<SAN>regular-expression
<EKU>extended-key-usage-list
<KU>key-usage-list

extended-key-usage-list is a comma-separated list of required Extended Key Usage values. All values in
the list must be present in the certificate. Extended Key Usage values can be:

• pkinit

• msScLogin

• clientAuth

• emailProtection

key-usage-list is a comma-separated list of required Key Usage values. All values in the list must be present
in the certificate. Key Usage values can be:

• digitalSignature

• keyEncipherment

Examples:

22 Chapter 2. Configuration Files

http://tools.ietf.org/html/rfc2253.html

Kerberos Administration Guide, Release 1.15.2

pkinit_cert_match = ||<SUBJECT>.*DoE.*<SAN>.*@EXAMPLE.COM
pkinit_cert_match = &&<EKU>msScLogin,clientAuth<ISSUER>.*DoE.*
pkinit_cert_match = <EKU>msScLogin,clientAuth<KU>digitalSignature

pkinit_eku_checking This option specifies what Extended Key Usage value the KDC certificate presented to the
client must contain. (Note that if the KDC certificate has the pkinit SubjectAlternativeName encoded as the
Kerberos TGS name, EKU checking is not necessary since the issuing CA has certified this as a KDC certificate.)
The values recognized in the krb5.conf file are:

kpKDC This is the default value and specifies that the KDC must have the id-pkinit-KPKdc EKU as defined in
RFC 4556.

kpServerAuth If kpServerAuth is specified, a KDC certificate with the id-kp-serverAuth EKU will be ac-
cepted. This key usage value is used in most commercially issued server certificates.

none If none is specified, then the KDC certificate will not be checked to verify it has an acceptable EKU. The
use of this option is not recommended.

pkinit_dh_min_bits Specifies the size of the Diffie-Hellman key the client will attempt to use. The acceptable values
are 1024, 2048, and 4096. The default is 2048.

pkinit_identities Specifies the location(s) to be used to find the user’s X.509 identity information. This option may be
specified multiple times. Each value is attempted in order until identity information is found and authentication
is attempted. Note that these values are not used if the user specifies X509_user_identity on the command line.

pkinit_kdc_hostname The presense of this option indicates that the client is willing to accept a KDC certificate with
a dNSName SAN (Subject Alternative Name) rather than requiring the id-pkinit-san as defined in RFC 4556.
This option may be specified multiple times. Its value should contain the acceptable hostname for the KDC (as
contained in its certificate).

pkinit_pool Specifies the location of intermediate certificates which may be used by the client to complete the trust
chain between a KDC certificate and a trusted anchor. This option may be specified multiple times.

pkinit_require_crl_checking The default certificate verification process will always check the available revocation
information to see if a certificate has been revoked. If a match is found for the certificate in a CRL, verification
fails. If the certificate being verified is not listed in a CRL, or there is no CRL present for its issuing CA, and
pkinit_require_crl_checking is false, then verification succeeds.

However, if pkinit_require_crl_checking is true and there is no CRL information available for the issuing CA,
then verification fails.

pkinit_require_crl_checking should be set to true if the policy is such that up-to-date CRLs must be present
for every CA.

pkinit_revoke Specifies the location of Certificate Revocation List (CRL) information to be used by the client when
verifying the validity of the KDC certificate presented. This option may be specified multiple times.

Parameter expansion

Starting with release 1.11, several variables, such as default_keytab_name, allow parameters to be expanded. Valid
parameters are:

2.1. Contents 23

http://tools.ietf.org/html/rfc4556.html
http://tools.ietf.org/html/rfc4556.html

Kerberos Administration Guide, Release 1.15.2

%{TEMP} Temporary directory
%{uid} Unix real UID or Windows SID
%{euid} Unix effective user ID or Windows SID
%{USERID} Same as %{uid}
%{null} Empty string
%{LIBDIR} Installation library directory
%{BINDIR} Installation binary directory
%{SBINDIR} Installation admin binary directory
%{username} (Unix) Username of effective user ID
%{APPDATA} (Windows) Roaming application data for current user
%{COMMON_APPDATA} (Windows) Application data for all users
%{LOCAL_APPDATA} (Windows) Local application data for current user
%{SYSTEM} (Windows) Windows system folder
%{WINDOWS} (Windows) Windows folder
%{USERCONFIG} (Windows) Per-user MIT krb5 config file directory
%{COMMONCONFIG} (Windows) Common MIT krb5 config file directory

Sample krb5.conf file

Here is an example of a generic krb5.conf file:

[libdefaults]
default_realm = ATHENA.MIT.EDU
dns_lookup_kdc = true
dns_lookup_realm = false

[realms]
ATHENA.MIT.EDU = {

kdc = kerberos.mit.edu
kdc = kerberos-1.mit.edu
kdc = kerberos-2.mit.edu
admin_server = kerberos.mit.edu
master_kdc = kerberos.mit.edu

}
EXAMPLE.COM = {

kdc = kerberos.example.com
kdc = kerberos-1.example.com
admin_server = kerberos.example.com

}

[domain_realm]
mit.edu = ATHENA.MIT.EDU

[capaths]
ATHENA.MIT.EDU = {

EXAMPLE.COM = .
}
EXAMPLE.COM = {

ATHENA.MIT.EDU = .
}

FILES

/etc/krb5.conf

24 Chapter 2. Configuration Files

Kerberos Administration Guide, Release 1.15.2

SEE ALSO

syslog(3)

2.1.2 kdc.conf

The kdc.conf file supplements krb5.conf for programs which are typically only used on a KDC, such as the krb5kdc
and kadmind daemons and the kdb5_util program. Relations documented here may also be specified in krb5.conf; for
the KDC programs mentioned, krb5.conf and kdc.conf will be merged into a single configuration profile.

Normally, the kdc.conf file is found in the KDC state directory, LOCALSTATEDIR/krb5kdc. You can override the
default location by setting the environment variable KRB5_KDC_PROFILE.

Please note that you need to restart the KDC daemon for any configuration changes to take effect.

Structure

The kdc.conf file is set up in the same format as the krb5.conf file.

Sections

The kdc.conf file may contain the following sections:

[kdcdefaults] Default values for KDC behavior
[realms] Realm-specific database configuration and settings
[dbdefaults] Default database settings
[dbmodules] Per-database settings
[logging] Controls how Kerberos daemons perform logging

[kdcdefaults]

With two exceptions, relations in the [kdcdefaults] section specify default values for realm variables, to be used if
the [realms] subsection does not contain a relation for the tag. See the [realms] section for the definitions of these
relations.

• host_based_services

• kdc_listen

• kdc_ports

• kdc_tcp_listen

• kdc_tcp_ports

• no_host_referral

• restrict_anonymous_to_tgt

kdc_max_dgram_reply_size Specifies the maximum packet size that can be sent over UDP. The default value is
4096 bytes.

kdc_tcp_listen_backlog (Integer.) Set the size of the listen queue length for the KDC daemon. The value may be
limited by OS settings. The default value is 5.

2.1. Contents 25

Kerberos Administration Guide, Release 1.15.2

[realms]

Each tag in the [realms] section is the name of a Kerberos realm. The value of the tag is a subsection where the
relations define KDC parameters for that particular realm. The following example shows how to define one parameter
for the ATHENA.MIT.EDU realm:

[realms]
ATHENA.MIT.EDU = {

max_renewable_life = 7d 0h 0m 0s
}

The following tags may be specified in a [realms] subsection:

acl_file (String.) Location of the access control list file that kadmind uses to determine which princi-
pals are allowed which permissions on the Kerberos database. The default value is LOCALSTATE-
DIR/krb5kdc/kadm5.acl. For more information on Kerberos ACL file see kadm5.acl.

database_module (String.) This relation indicates the name of the configuration section under [dbmodules] for
database-specific parameters used by the loadable database library. The default value is the realm name. If this
configuration section does not exist, default values will be used for all database parameters.

database_name (String, deprecated.) This relation specifies the location of the Kerberos database for this realm, if
the DB2 module is being used and the [dbmodules] configuration section does not specify a database name. The
default value is LOCALSTATEDIR/krb5kdc/principal.

default_principal_expiration (abstime string.) Specifies the default expiration date of principals created in this
realm. The default value is 0, which means no expiration date.

default_principal_flags (Flag string.) Specifies the default attributes of principals created in this realm. The format
for this string is a comma-separated list of flags, with ‘+’ before each flag that should be enabled and ‘-‘ before
each flag that should be disabled. The postdateable, forwardable, tgt-based, renewable, proxiable, dup-skey,
allow-tickets, and service flags default to enabled.

There are a number of possible flags:

allow-tickets Enabling this flag means that the KDC will issue tickets for this principal. Disabling this flag
essentially deactivates the principal within this realm.

dup-skey Enabling this flag allows the principal to obtain a session key for another user, permitting user-to-user
authentication for this principal.

forwardable Enabling this flag allows the principal to obtain forwardable tickets.

hwauth If this flag is enabled, then the principal is required to preauthenticate using a hardware device before
receiving any tickets.

no-auth-data-required Enabling this flag prevents PAC or AD-SIGNEDPATH data from being added to ser-
vice tickets for the principal.

ok-as-delegate If this flag is enabled, it hints the client that credentials can and should be delegated when
authenticating to the service.

ok-to-auth-as-delegate Enabling this flag allows the principal to use S4USelf tickets.

postdateable Enabling this flag allows the principal to obtain postdateable tickets.

preauth If this flag is enabled on a client principal, then that principal is required to preauthenticate to the KDC
before receiving any tickets. On a service principal, enabling this flag means that service tickets for this
principal will only be issued to clients with a TGT that has the preauthenticated bit set.

proxiable Enabling this flag allows the principal to obtain proxy tickets.

pwchange Enabling this flag forces a password change for this principal.

26 Chapter 2. Configuration Files

Kerberos Administration Guide, Release 1.15.2

pwservice If this flag is enabled, it marks this principal as a password change service. This should only be
used in special cases, for example, if a user’s password has expired, then the user has to get tickets for
that principal without going through the normal password authentication in order to be able to change the
password.

renewable Enabling this flag allows the principal to obtain renewable tickets.

service Enabling this flag allows the the KDC to issue service tickets for this principal.

tgt-based Enabling this flag allows a principal to obtain tickets based on a ticket-granting-ticket, rather than
repeating the authentication process that was used to obtain the TGT.

dict_file (String.) Location of the dictionary file containing strings that are not allowed as passwords. The file should
contain one string per line, with no additional whitespace. If none is specified or if there is no policy assigned
to the principal, no dictionary checks of passwords will be performed.

host_based_services (Whitespace- or comma-separated list.) Lists services which will get host-based referral pro-
cessing even if the server principal is not marked as host-based by the client.

iprop_enable (Boolean value.) Specifies whether incremental database propagation is enabled. The default value is
false.

iprop_master_ulogsize (Integer.) Specifies the maximum number of log entries to be retained for incremental prop-
agation. The default value is 1000. Prior to release 1.11, the maximum value was 2500.

iprop_slave_poll (Delta time string.) Specifies how often the slave KDC polls for new updates from the master. The
default value is 2m (that is, two minutes).

iprop_listen (Whitespace- or comma-separated list.) Specifies the iprop RPC listening addresses and/or ports for
the kadmind daemon. Each entry may be an interface address, a port number, or an address and port number
separated by a colon. If the address contains colons, enclose it in square brackets. If no address is specified,
the wildcard address is used. If kadmind fails to bind to any of the specified addresses, it will fail to start. The
default (when iprop_enable is true) is to bind to the wildcard address at the port specified in iprop_port. New
in release 1.15.

iprop_port (Port number.) Specifies the port number to be used for incremental propagation. When iprop_enable is
true, this relation is required in the slave configuration file, and this relation or iprop_listen is required in the
master configuration file, as there is no default port number. Port numbers specified in iprop_listen entries will
override this port number for the kadmind daemon.

iprop_resync_timeout (Delta time string.) Specifies the amount of time to wait for a full propagation to complete.
This is optional in configuration files, and is used by slave KDCs only. The default value is 5 minutes (5m).
New in release 1.11.

iprop_logfile (File name.) Specifies where the update log file for the realm database is to be stored. The default is to
use the database_name entry from the realms section of the krb5 config file, with .ulog appended. (NOTE:
If database_name isn’t specified in the realms section, perhaps because the LDAP database back end is being
used, or the file name is specified in the [dbmodules] section, then the hard-coded default for database_name
is used. Determination of the iprop_logfile default value will not use values from the [dbmodules] section.)

kadmind_listen (Whitespace- or comma-separated list.) Specifies the kadmin RPC listening addresses and/or ports
for the kadmind daemon. Each entry may be an interface address, a port number, or an address and port number
separated by a colon. If the address contains colons, enclose it in square brackets. If no address is specified,
the wildcard address is used. If kadmind fails to bind to any of the specified addresses, it will fail to start. The
default is to bind to the wildcard address at the port specified in kadmind_port, or the standard kadmin port
(749). New in release 1.15.

kadmind_port (Port number.) Specifies the port on which the kadmind daemon is to listen for this realm. Port
numbers specified in kadmind_listen entries will override this port number. The assigned port for kadmind is
749, which is used by default.

2.1. Contents 27

Kerberos Administration Guide, Release 1.15.2

key_stash_file (String.) Specifies the location where the master key has been stored (via kdb5_util stash). The default
is LOCALSTATEDIR/krb5kdc/.k5.REALM, where REALM is the Kerberos realm.

kdc_listen (Whitespace- or comma-separated list.) Specifies the UDP listening addresses and/or ports for the krb5kdc
daemon. Each entry may be an interface address, a port number, or an address and port number separated by
a colon. If the address contains colons, enclose it in square brackets. If no address is specified, the wildcard
address is used. If no port is specified, the standard port (88) is used. If the KDC daemon fails to bind to any of
the specified addresses, it will fail to start. The default is to bind to the wildcard address on the standard port.
New in release 1.15.

kdc_ports (Whitespace- or comma-separated list, deprecated.) Prior to release 1.15, this relation lists the ports for the
krb5kdc daemon to listen on for UDP requests. In release 1.15 and later, it has the same meaning as kdc_listen
if that relation is not defined.

kdc_tcp_listen (Whitespace- or comma-separated list.) Specifies the TCP listening addresses and/or ports for the
krb5kdc daemon. Each entry may be an interface address, a port number, or an address and port number
separated by a colon. If the address contains colons, enclose it in square brackets. If no address is specified, the
wildcard address is used. If no port is specified, the standard port (88) is used. To disable listening on TCP, set
this relation to the empty string with kdc_tcp_listen = "". If the KDC daemon fails to bind to any of
the specified addresses, it will fail to start. The default is to bind to the wildcard address on the standard port.
New in release 1.15.

kdc_tcp_ports (Whitespace- or comma-separated list, deprecated.) Prior to release 1.15, this relation lists the ports
for the krb5kdc daemon to listen on for UDP requests. In release 1.15 and later, it has the same meaning as
kdc_tcp_listen if that relation is not defined.

kpasswd_listen (Comma-separated list.) Specifies the kpasswd listening addresses and/or ports for the kadmind
daemon. Each entry may be an interface address, a port number, or an address and port number separated by
a colon. If the address contains colons, enclose it in square brackets. If no address is specified, the wildcard
address is used. If kadmind fails to bind to any of the specified addresses, it will fail to start. The default is to
bind to the wildcard address at the port specified in kpasswd_port, or the standard kpasswd port (464). New in
release 1.15.

kpasswd_port (Port number.) Specifies the port on which the kadmind daemon is to listen for password change
requests for this realm. Port numbers specified in kpasswd_listen entries will override this port number. The
assigned port for password change requests is 464, which is used by default.

master_key_name (String.) Specifies the name of the principal associated with the master key. The default is K/M.

master_key_type (Key type string.) Specifies the master key’s key type. The default value for this is
aes256-cts-hmac-sha1-96. For a list of all possible values, see Encryption types.

max_life (duration string.) Specifies the maximum time period for which a ticket may be valid in this realm. The
default value is 24 hours.

max_renewable_life (duration string.) Specifies the maximum time period during which a valid ticket may be re-
newed in this realm. The default value is 0.

no_host_referral (Whitespace- or comma-separated list.) Lists services to block from getting host-based refer-
ral processing, even if the client marks the server principal as host-based or the service is also listed in
host_based_services. no_host_referral = * will disable referral processing altogether.

des_crc_session_supported (Boolean value). If set to true, the KDC will assume that service principals support
des-cbc-crc for session key enctype negotiation purposes. If allow_weak_crypto in [libdefaults] is false, or if
des-cbc-crc is not a permitted enctype, then this variable has no effect. Defaults to true. New in release 1.11.

reject_bad_transit (Boolean value.) If set to true, the KDC will check the list of transited realms for cross-realm
tickets against the transit path computed from the realm names and the capaths section of its krb5.conf file; if
the path in the ticket to be issued contains any realms not in the computed path, the ticket will not be issued, and

28 Chapter 2. Configuration Files

Kerberos Administration Guide, Release 1.15.2

an error will be returned to the client instead. If this value is set to false, such tickets will be issued anyways,
and it will be left up to the application server to validate the realm transit path.

If the disable-transited-check flag is set in the incoming request, this check is not performed at all. Having the
reject_bad_transit option will cause such ticket requests to be rejected always.

This transit path checking and config file option currently apply only to TGS requests.

The default value is true.

restrict_anonymous_to_tgt (Boolean value.) If set to true, the KDC will reject ticket requests from anonymous
principals to service principals other than the realm’s ticket-granting service. This option allows anonymous
PKINIT to be enabled for use as FAST armor tickets without allowing anonymous authentication to services.
The default value is false. New in release 1.9.

supported_enctypes (List of key:salt strings.) Specifies the default key/salt combinations of principals for
this realm. Any principals created through kadmin will have keys of these types. The default
value for this tag is aes256-cts-hmac-sha1-96:normal aes128-cts-hmac-sha1-96:normal
des3-cbc-sha1:normal arcfour-hmac-md5:normal. For lists of possible values, see Keysalt lists.

[dbdefaults]

The [dbdefaults] section specifies default values for some database parameters, to be used if the [dbmodules] subsec-
tion does not contain a relation for the tag. See the [dbmodules] section for the definitions of these relations.

• ldap_kerberos_container_dn

• ldap_kdc_dn

• ldap_kdc_sasl_authcid

• ldap_kdc_sasl_authzid

• ldap_kdc_sasl_mech

• ldap_kdc_sasl_realm

• ldap_kadmind_dn

• ldap_kadmind_sasl_authcid

• ldap_kadmind_sasl_authzid

• ldap_kadmind_sasl_mech

• ldap_kadmind_sasl_realm

• ldap_service_password_file

• ldap_servers

• ldap_conns_per_server

[dbmodules]

The [dbmodules] section contains parameters used by the KDC database library and database modules. Each tag in
the [dbmodules] section is the name of a Kerberos realm or a section name specified by a realm’s database_module
parameter. The following example shows how to define one database parameter for the ATHENA.MIT.EDU realm:

2.1. Contents 29

Kerberos Administration Guide, Release 1.15.2

[dbmodules]
ATHENA.MIT.EDU = {

disable_last_success = true
}

The following tags may be specified in a [dbmodules] subsection:

database_name This DB2-specific tag indicates the location of the database in the filesystem. The default is LOCAL-
STATEDIR/krb5kdc/principal.

db_library This tag indicates the name of the loadable database module. The value should be db2 for the DB2
module and kldap for the LDAP module.

disable_last_success If set to true, suppresses KDC updates to the “Last successful authentication” field of principal
entries requiring preauthentication. Setting this flag may improve performance. (Principal entries which do not
require preauthentication never update the “Last successful authentication” field.). First introduced in release
1.9.

disable_lockout If set to true, suppresses KDC updates to the “Last failed authentication” and “Failed password
attempts” fields of principal entries requiring preauthentication. Setting this flag may improve performance, but
also disables account lockout. First introduced in release 1.9.

ldap_conns_per_server This LDAP-specific tag indicates the number of connections to be maintained per LDAP
server.

ldap_kdc_dn and ldap_kadmind_dn These LDAP-specific tags indicate the default DN for binding to the LDAP
server. The krb5kdc daemon uses ldap_kdc_dn, while the kadmind daemon and other administrative programs
use ldap_kadmind_dn. The kadmind DN must have the rights to read and write the Kerberos data in the LDAP
database. The KDC DN must have the same rights, unless disable_lockout and disable_last_success are true,
in which case it only needs to have rights to read the Kerberos data. These tags are ignored if a SASL mechanism
is set with ldap_kdc_sasl_mech or ldap_kadmind_sasl_mech.

ldap_kdc_sasl_mech and ldap_kadmind_sasl_mech These LDAP-specific tags specify the SASL mechanism
(such as EXTERNAL) to use when binding to the LDAP server. New in release 1.13.

ldap_kdc_sasl_authcid and ldap_kadmind_sasl_authcid These LDAP-specific tags specify the SASL authentica-
tion identity to use when binding to the LDAP server. Not all SASL mechanisms require an authentication
identity. If the SASL mechanism requires a secret (such as the password for DIGEST-MD5), these tags also
determine the name within the ldap_service_password_file where the secret is stashed. New in release 1.13.

ldap_kdc_sasl_authzid and ldap_kadmind_sasl_authzid These LDAP-specific tags specify the SASL authoriza-
tion identity to use when binding to the LDAP server. In most circumstances they do not need to be specified.
New in release 1.13.

ldap_kdc_sasl_realm and ldap_kadmind_sasl_realm These LDAP-specific tags specify the SASL realm to use
when binding to the LDAP server. In most circumstances they do not need to be set. New in release 1.13.

ldap_kerberos_container_dn This LDAP-specific tag indicates the DN of the container object where the realm ob-
jects will be located.

ldap_servers This LDAP-specific tag indicates the list of LDAP servers that the Kerberos servers can connect to. The
list of LDAP servers is whitespace-separated. The LDAP server is specified by a LDAP URI. It is recommended
to use ldapi: or ldaps: URLs to connect to the LDAP server.

ldap_service_password_file This LDAP-specific tag indicates the file containing the stashed passwords (created
by kdb5_ldap_util stashsrvpw) for the ldap_kdc_dn and ldap_kadmind_dn objects, or for the
ldap_kdc_sasl_authcid or ldap_kadmind_sasl_authcid names for SASL authentication. This file must be
kept secure.

unlockiter If set to true, this DB2-specific tag causes iteration operations to release the database lock while pro-
cessing each principal. Setting this flag to true can prevent extended blocking of KDC or kadmin operations

30 Chapter 2. Configuration Files

Kerberos Administration Guide, Release 1.15.2

when dumps of large databases are in progress. First introduced in release 1.13.

The following tag may be specified directly in the [dbmodules] section to control where database modules are loaded
from:

db_module_dir This tag controls where the plugin system looks for database modules. The value should be an
absolute path.

[logging]

The [logging] section indicates how krb5kdc and kadmind perform logging. It may contain the following relations:

admin_server Specifies how kadmind performs logging.

kdc Specifies how krb5kdc performs logging.

default Specifies how either daemon performs logging in the absence of relations specific to the daemon.

debug (Boolean value.) Specifies whether debugging messages are included in log outputs other than SYSLOG.
Debugging messages are always included in the system log output because syslog performs its own priority
filtering. The default value is false. New in release 1.15.

Logging specifications may have the following forms:

FILE=filename or FILE:filename This value causes the daemon’s logging messages to go to the filename. If the =
form is used, the file is overwritten. If the : form is used, the file is appended to.

STDERR This value causes the daemon’s logging messages to go to its standard error stream.

CONSOLE This value causes the daemon’s logging messages to go to the console, if the system supports it.

DEVICE=<devicename> This causes the daemon’s logging messages to go to the specified device.

SYSLOG[:severity[:facility]] This causes the daemon’s logging messages to go to the system log.

The severity argument specifies the default severity of system log messages. This may be any of the following
severities supported by the syslog(3) call, minus the LOG_ prefix: EMERG, ALERT, CRIT, ERR, WARN-
ING, NOTICE, INFO, and DEBUG.

The facility argument specifies the facility under which the messages are logged. This may be any of the
following facilities supported by the syslog(3) call minus the LOG_ prefix: KERN, USER, MAIL, DAEMON,
AUTH, LPR, NEWS, UUCP, CRON, and LOCAL0 through LOCAL7.

If no severity is specified, the default is ERR. If no facility is specified, the default is AUTH.

In the following example, the logging messages from the KDC will go to the console and to the system log under
the facility LOG_DAEMON with default severity of LOG_INFO; and the logging messages from the administrative
server will be appended to the file /var/adm/kadmin.log and sent to the device /dev/tty04.

[logging]
kdc = CONSOLE
kdc = SYSLOG:INFO:DAEMON
admin_server = FILE:/var/adm/kadmin.log
admin_server = DEVICE=/dev/tty04

[otp]

Each subsection of [otp] is the name of an OTP token type. The tags within the subsection define the configuration
required to forward a One Time Password request to a RADIUS server.

For each token type, the following tags may be specified:

2.1. Contents 31

Kerberos Administration Guide, Release 1.15.2

server This is the server to send the RADIUS request to. It can be a hostname with optional port, an ip address with op-
tional port, or a Unix domain socket address. The default is LOCALSTATEDIR/krb5kdc/<name>.socket.

secret This tag indicates a filename (which may be relative to LOCALSTATEDIR/krb5kdc) containing the secret
used to encrypt the RADIUS packets. The secret should appear in the first line of the file by itself; leading and
trailing whitespace on the line will be removed. If the value of server is a Unix domain socket address, this tag
is optional, and an empty secret will be used if it is not specified. Otherwise, this tag is required.

timeout An integer which specifies the time in seconds during which the KDC should attempt to contact the RADIUS
server. This tag is the total time across all retries and should be less than the time which an OTP value remains
valid for. The default is 5 seconds.

retries This tag specifies the number of retries to make to the RADIUS server. The default is 3 retries (4 tries).

strip_realm If this tag is true, the principal without the realm will be passed to the RADIUS server. Otherwise, the
realm will be included. The default value is true.

indicator This tag specifies an authentication indicator to be included in the ticket if this token type is used to authen-
ticate. This option may be specified multiple times. (New in release 1.14.)

In the following example, requests are sent to a remote server via UDP:

[otp]
MyRemoteTokenType = {

server = radius.mydomain.com:1812
secret = SEmfiajf42$
timeout = 15
retries = 5
strip_realm = true

}

An implicit default token type named DEFAULT is defined for when the per-principal configuration does not specify
a token type. Its configuration is shown below. You may override this token type to something applicable for your
situation:

[otp]
DEFAULT = {

strip_realm = false
}

PKINIT options

Note: The following are pkinit-specific options. These values may be specified in [kdcdefaults] as global defaults,
or within a realm-specific subsection of [realms]. Also note that a realm-specific value over-rides, does not add to, a
generic [kdcdefaults] specification. The search order is:

1. realm-specific subsection of [realms]:

[realms]
EXAMPLE.COM = {

pkinit_anchors = FILE:/usr/local/example.com.crt
}

2. generic value in the [kdcdefaults] section:

[kdcdefaults]
pkinit_anchors = DIR:/usr/local/generic_trusted_cas/

For information about the syntax of some of these options, see Specifying PKINIT identity information in krb5.conf .

32 Chapter 2. Configuration Files

Kerberos Administration Guide, Release 1.15.2

pkinit_anchors Specifies the location of trusted anchor (root) certificates which the KDC trusts to sign client certifi-
cates. This option is required if pkinit is to be supported by the KDC. This option may be specified multiple
times.

pkinit_dh_min_bits Specifies the minimum number of bits the KDC is willing to accept for a client’s Diffie-Hellman
key. The default is 2048.

pkinit_allow_upn Specifies that the KDC is willing to accept client certificates with the Microsoft UserPrincipal-
Name (UPN) Subject Alternative Name (SAN). This means the KDC accepts the binding of the UPN in the
certificate to the Kerberos principal name. The default value is false.

Without this option, the KDC will only accept certificates with the id-pkinit-san as defined in RFC 4556. There
is currently no option to disable SAN checking in the KDC.

pkinit_eku_checking This option specifies what Extended Key Usage (EKU) values the KDC is willing to accept in
client certificates. The values recognized in the kdc.conf file are:

kpClientAuth This is the default value and specifies that client certificates must have the id-pkinit-
KPClientAuth EKU as defined in RFC 4556.

scLogin If scLogin is specified, client certificates with the Microsoft Smart Card Login EKU (id-ms-kp-sc-
logon) will be accepted.

none If none is specified, then client certificates will not be checked to verify they have an acceptable EKU.
The use of this option is not recommended.

pkinit_identity Specifies the location of the KDC’s X.509 identity information. This option is required if pkinit is to
be supported by the KDC.

pkinit_indicator Specifies an authentication indicator to include in the ticket if pkinit is used to authenticate. This
option may be specified multiple times. (New in release 1.14.)

pkinit_kdc_ocsp Specifies the location of the KDC’s OCSP.

pkinit_pool Specifies the location of intermediate certificates which may be used by the KDC to complete the trust
chain between a client’s certificate and a trusted anchor. This option may be specified multiple times.

pkinit_revoke Specifies the location of Certificate Revocation List (CRL) information to be used by the KDC when
verifying the validity of client certificates. This option may be specified multiple times.

pkinit_require_crl_checking The default certificate verification process will always check the available revocation
information to see if a certificate has been revoked. If a match is found for the certificate in a CRL, verification
fails. If the certificate being verified is not listed in a CRL, or there is no CRL present for its issuing CA, and
pkinit_require_crl_checking is false, then verification succeeds.

However, if pkinit_require_crl_checking is true and there is no CRL information available for the issuing CA,
then verification fails.

pkinit_require_crl_checking should be set to true if the policy is such that up-to-date CRLs must be present
for every CA.

Encryption types

Any tag in the configuration files which requires a list of encryption types can be set to some combination of the
following strings. Encryption types marked as “weak” are available for compatibility but not recommended for use.

2.1. Contents 33

http://tools.ietf.org/html/rfc4556.html
http://tools.ietf.org/html/rfc4556.html

Kerberos Administration Guide, Release 1.15.2

des-cbc-crc DES cbc mode with CRC-32 (weak)
des-cbc-md4 DES cbc mode with RSA-MD4 (weak)
des-cbc-md5 DES cbc mode with RSA-MD5 (weak)
des-cbc-raw DES cbc mode raw (weak)
des3-cbc-raw Triple DES cbc mode raw (weak)
des3-cbc-sha1 des3-hmac-sha1
des3-cbc-sha1-kd

Triple DES cbc mode with HMAC/sha1

des-hmac-sha1 DES with HMAC/sha1 (weak)
aes256-cts-hmac-sha1-96
aes256-cts aes256-sha1

AES-256 CTS mode with 96-bit SHA-1 HMAC

aes128-cts-hmac-sha1-96
aes128-cts aes128-sha1

AES-128 CTS mode with 96-bit SHA-1 HMAC

aes256-cts-hmac-sha384-192
aes256-sha2

AES-256 CTS mode with 192-bit SHA-384 HMAC

aes128-cts-hmac-sha256-128
aes128-sha2

AES-128 CTS mode with 128-bit SHA-256 HMAC

arcfour-hmac rc4-hmac
arcfour-hmac-md5

RC4 with HMAC/MD5

arcfour-hmac-exp rc4-hmac-exp
arcfour-hmac-md5-exp

Exportable RC4 with HMAC/MD5 (weak)

camellia256-cts-cmac
camellia256-cts

Camellia-256 CTS mode with CMAC

camellia128-cts-cmac
camellia128-cts

Camellia-128 CTS mode with CMAC

des The DES family: des-cbc-crc, des-cbc-md5, and des-cbc-md4 (weak)
des3 The triple DES family: des3-cbc-sha1
aes The AES family: aes256-cts-hmac-sha1-96, aes128-cts-hmac-sha1-96,

aes256-cts-hmac-sha384-192, and aes128-cts-hmac-sha256-128
rc4 The RC4 family: arcfour-hmac
camellia The Camellia family: camellia256-cts-cmac and camellia128-cts-cmac

The string DEFAULT can be used to refer to the default set of types for the variable in question. Types or families
can be removed from the current list by prefixing them with a minus sign (“-”). Types or families can be prefixed with
a plus sign (“+”) for symmetry; it has the same meaning as just listing the type or family. For example, “DEFAULT
-des” would be the default set of encryption types with DES types removed, and “des3 DEFAULT” would be the
default set of encryption types with triple DES types moved to the front.

While aes128-cts and aes256-cts are supported for all Kerberos operations, they are not supported by very old versions
of our GSSAPI implementation (krb5-1.3.1 and earlier). Services running versions of krb5 without AES support must
not be given keys of these encryption types in the KDC database.

The aes128-sha2 and aes256-sha2 encryption types are new in release 1.15. Services running versions of krb5 without
support for these newer encryption types must not be given keys of these encryption types in the KDC database.

Keysalt lists

Kerberos keys for users are usually derived from passwords. Kerberos commands and configuration parameters that
affect generation of keys take lists of enctype-salttype (“keysalt”) pairs, known as keysalt lists. Each keysalt pair is an
enctype name followed by a salttype name, in the format enc:salt. Individual keysalt list members are separated by
comma (”,”) characters or space characters. For example:

kadmin -e aes256-cts:normal,aes128-cts:normal

would start up kadmin so that by default it would generate password-derived keys for the aes256-cts and aes128-cts
encryption types, using a normal salt.

34 Chapter 2. Configuration Files

Kerberos Administration Guide, Release 1.15.2

To ensure that people who happen to pick the same password do not have the same key, Kerberos 5 incorporates more
information into the key using something called a salt. The supported salt types are as follows:

normal default for Kerberos Version 5
v4 the only type used by Kerberos Version 4 (no salt)
norealm same as the default, without using realm information
onlyrealm uses only realm information as the salt
afs3 AFS version 3, only used for compatibility with Kerberos 4 in AFS
special generate a random salt

Sample kdc.conf File

Here’s an example of a kdc.conf file:

[kdcdefaults]
kdc_listen = 88
kdc_tcp_listen = 88

[realms]
ATHENA.MIT.EDU = {

kadmind_port = 749
max_life = 12h 0m 0s
max_renewable_life = 7d 0h 0m 0s
master_key_type = aes256-cts-hmac-sha1-96
supported_enctypes = aes256-cts-hmac-sha1-96:normal aes128-cts-hmac-sha1-96:normal
database_module = openldap_ldapconf

}

[logging]
kdc = FILE:/usr/local/var/krb5kdc/kdc.log
admin_server = FILE:/usr/local/var/krb5kdc/kadmin.log

[dbdefaults]
ldap_kerberos_container_dn = cn=krbcontainer,dc=mit,dc=edu

[dbmodules]
openldap_ldapconf = {

db_library = kldap
disable_last_success = true
ldap_kdc_dn = "cn=krbadmin,dc=mit,dc=edu"

this object needs to have read rights on
the realm container and principal subtrees

ldap_kadmind_dn = "cn=krbadmin,dc=mit,dc=edu"
this object needs to have read and write rights on
the realm container and principal subtrees

ldap_service_password_file = /etc/kerberos/service.keyfile
ldap_servers = ldaps://kerberos.mit.edu
ldap_conns_per_server = 5

}

FILES

LOCALSTATEDIR/krb5kdc/kdc.conf

2.1. Contents 35

Kerberos Administration Guide, Release 1.15.2

SEE ALSO

krb5.conf , krb5kdc, kadm5.acl

2.1.3 kadm5.acl

DESCRIPTION

The Kerberos kadmind daemon uses an Access Control List (ACL) file to manage access rights to the Kerberos
database. For operations that affect principals, the ACL file also controls which principals can operate on which other
principals.

The default location of the Kerberos ACL file is LOCALSTATEDIR/krb5kdc/kadm5.acl unless this is overridden
by the acl_file variable in kdc.conf .

SYNTAX

Empty lines and lines starting with the sharp sign (#) are ignored. Lines containing ACL entries have the format:

principal permissions [target_principal [restrictions]]

Note: Line order in the ACL file is important. The first matching entry will control access for an actor principal on a
target principal.

principal (Partially or fully qualified Kerberos principal name.) Specifies the principal whose permissions are to be
set.

Each component of the name may be wildcarded using the * character.

permissions Specifies what operations may or may not be performed by a principal matching a particular entry. This
is a string of one or more of the following list of characters or their upper-case counterparts. If the character is
upper-case, then the operation is disallowed. If the character is lower-case, then the operation is permitted.

a [Dis]allows the addition of principals or policies
c [Dis]allows the changing of passwords for principals
d [Dis]allows the deletion of principals or policies
e [Dis]allows the extraction of principal keys
i [Dis]allows inquiries about principals or policies
l [Dis]allows the listing of all principals or policies
m [Dis]allows the modification of principals or policies
p [Dis]allows the propagation of the principal database (used in Incremental database propagation)
s [Dis]allows the explicit setting of the key for a principal
x Short for admcilsp. All privileges (except e)
* Same as x.

Note: The extract privilege is not included in the wildcard privilege; it must be explicitly assigned. This privilege
allows the user to extract keys from the database, and must be handled with great care to avoid disclosure of important
keys like those of the kadmin/* or krbtgt/* principals. The lockdown_keys principal attribute can be used to prevent
key extraction from specific principals regardless of the granted privilege.

target_principal (Optional. Partially or fully qualified Kerberos principal name.) Specifies the principal on which
permissions may be applied. Each component of the name may be wildcarded using the * character.

target_principal can also include back-references to principal, in which *number matches the corresponding
wildcard in principal.

36 Chapter 2. Configuration Files

Kerberos Administration Guide, Release 1.15.2

restrictions (Optional) A string of flags. Allowed restrictions are:

{+|-}flagname flag is forced to the indicated value. The permissible flags are the same as those for
the default_principal_flags variable in kdc.conf .

-clearpolicy policy is forced to be empty.

-policy pol policy is forced to be pol.

-{expire, pwexpire, maxlife, maxrenewlife} time (getdate string) associated value will be forced to
MIN(time, requested value).

The above flags act as restrictions on any add or modify operation which is allowed due to that ACL line.

Warning: If the kadmind ACL file is modified, the kadmind daemon needs to be restarted for changes to take
effect.

EXAMPLE

Here is an example of a kadm5.acl file:

*/admin@ATHENA.MIT.EDU * # line 1
joeadmin@ATHENA.MIT.EDU ADMCIL # line 2
joeadmin/*@ATHENA.MIT.EDU i */root@ATHENA.MIT.EDU # line 3

*/root@ATHENA.MIT.EDU ci *1@ATHENA.MIT.EDU # line 4

*/root@ATHENA.MIT.EDU l * # line 5
sms@ATHENA.MIT.EDU x * -maxlife 9h -postdateable # line 6

(line 1) Any principal in the ATHENA.MIT.EDU realm with an admin instance has all administrative privileges
except extracting keys.

(lines 1-3) The user joeadmin has all permissions except extracting keys with his admin instance,
joeadmin/admin@ATHENA.MIT.EDU (matches line 1). He has no permissions at all with his null instance,
joeadmin@ATHENA.MIT.EDU (matches line 2). His root and other non-admin, non-null instances (e.g., extra
or dbadmin) have inquire permissions with any principal that has the instance root (matches line 3).

(line 4) Any root principal in ATHENA.MIT.EDU can inquire or change the password of their null instance, but not
any other null instance. (Here, *1 denotes a back-reference to the component matching the first wildcard in the actor
principal.)

(line 5) Any root principal in ATHENA.MIT.EDU can generate the list of principals in the database, and the list of
policies in the database. This line is separate from line 4, because list permission can only be granted globally, not to
specific target principals.

(line 6) Finally, the Service Management System principal sms@ATHENA.MIT.EDU has all permissions except
extracting keys, but any principal that it creates or modifies will not be able to get postdateable tickets or tickets
with a life of longer than 9 hours.

SEE ALSO

kdc.conf , kadmind

2.1. Contents 37

Kerberos Administration Guide, Release 1.15.2

38 Chapter 2. Configuration Files

CHAPTER

THREE

REALM CONFIGURATION DECISIONS

Before installing Kerberos V5, it is necessary to consider the following issues:

• The name of your Kerberos realm (or the name of each realm, if you need more than one).

• How you will assign your hostnames to Kerberos realms.

• Which ports your KDC and and kadmind services will use, if they will not be using the default ports.

• How many slave KDCs you need and where they should be located.

• The hostnames of your master and slave KDCs.

• How frequently you will propagate the database from the master KDC to the slave KDCs.

3.1 Realm name

Although your Kerberos realm can be any ASCII string, convention is to make it the same as your domain name, in
upper-case letters.

For example, hosts in the domain example.com would be in the Kerberos realm:

EXAMPLE.COM

If you need multiple Kerberos realms, MIT recommends that you use descriptive names which end with your domain
name, such as:

BOSTON.EXAMPLE.COM
HOUSTON.EXAMPLE.COM

3.2 Mapping hostnames onto Kerberos realms

Mapping hostnames onto Kerberos realms is done in one of three ways.

The first mechanism works through a set of rules in the [domain_realm] section of krb5.conf . You can specify
mappings for an entire domain or on a per-hostname basis. Typically you would do this by specifying the mappings
for a given domain or subdomain and listing the exceptions.

The second mechanism is to use KDC host-based service referrals. With this method, the KDC’s krb5.conf has a full
[domain_realm] mapping for hosts, but the clients do not, or have mappings for only a subset of the hosts they might
contact. When a client needs to contact a server host for which it has no mapping, it will ask the client realm’s KDC
for the service ticket, and will receive a referral to the appropriate service realm.

39

Kerberos Administration Guide, Release 1.15.2

To use referrals, clients must be running MIT krb5 1.6 or later, and the KDC must be running MIT krb5 1.7 or later.
The host_based_services and no_host_referral variables in the [realms] section of kdc.conf can be used to fine-tune
referral behavior on the KDC.

It is also possible for clients to use DNS TXT records, if dns_lookup_realm is enabled in krb5.conf . Such
lookups are disabled by default because DNS is an insecure protocol and security holes could result if DNS
records are spoofed. If enabled, the client will try to look up a TXT record formed by prepending the prefix
_kerberos to the hostname in question. If that record is not found, the client will attempt a lookup by prepend-
ing _kerberos to the host’s domain name, then its parent domain, up to the top-level domain. For the hostname
boston.engineering.example.com, the names looked up would be:

_kerberos.boston.engineering.example.com
_kerberos.engineering.example.com
_kerberos.example.com
_kerberos.com

The value of the first TXT record found is taken as the realm name.

Even if you do not choose to use this mechanism within your site, you may wish to set it up anyway, for use when
interacting with other sites.

3.3 Ports for the KDC and admin services

The default ports used by Kerberos are port 88 for the KDC and port 749 for the admin server. You can, however,
choose to run on other ports, as long as they are specified in each host’s krb5.conf files or in DNS SRV records, and
the kdc.conf file on each KDC. For a more thorough treatment of port numbers used by the Kerberos V5 programs,
refer to the Configuring your firewall to work with Kerberos V5.

3.4 Slave KDCs

Slave KDCs provide an additional source of Kerberos ticket-granting services in the event of inaccessibility of the
master KDC. The number of slave KDCs you need and the decision of where to place them, both physically and
logically, depends on the specifics of your network.

Kerberos authentication requires that each client be able to contact a KDC. Therefore, you need to anticipate any likely
reason a KDC might be unavailable and have a slave KDC to take up the slack.

Some considerations include:

• Have at least one slave KDC as a backup, for when the master KDC is down, is being upgraded, or is otherwise
unavailable.

• If your network is split such that a network outage is likely to cause a network partition (some segment or
segments of the network to become cut off or isolated from other segments), have a slave KDC accessible to
each segment.

• If possible, have at least one slave KDC in a different building from the master, in case of power outages, fires,
or other localized disasters.

3.5 Hostnames for KDCs

MIT recommends that your KDCs have a predefined set of CNAME records (DNS hostname aliases), such as
kerberos for the master KDC and kerberos-1, kerberos-2, ... for the slave KDCs. This way, if you need to

40 Chapter 3. Realm configuration decisions

Kerberos Administration Guide, Release 1.15.2

swap a machine, you only need to change a DNS entry, rather than having to change hostnames.

As of MIT krb5 1.4, clients can locate a realm’s KDCs through DNS using SRV records (RFC 2782), assuming the
Kerberos realm name is also a DNS domain name. These records indicate the hostname and port number to contact
for that service, optionally with weighting and prioritization. The domain name used in the SRV record name is the
realm name. Several different Kerberos-related service names are used:

_kerberos._udp This is for contacting any KDC by UDP. This entry will be used the most often. Normally you
should list port 88 on each of your KDCs.

_kerberos._tcp This is for contacting any KDC by TCP. The MIT KDC by default will not listen on any TCP ports,
so unless you’ve changed the configuration or you’re running another KDC implementation, you should leave
this unspecified. If you do enable TCP support, normally you should use port 88.

_kerberos-master._udp This entry should refer to those KDCs, if any, that will immediately see password changes
to the Kerberos database. If a user is logging in and the password appears to be incorrect, the client will retry
with the master KDC before failing with an “incorrect password” error given.

If you have only one KDC, or for whatever reason there is no accessible KDC that would get database changes
faster than the others, you do not need to define this entry.

_kerberos-adm._tcp This should list port 749 on your master KDC. Support for it is not complete at this time,
but it will eventually be used by the kadmin program and related utilities. For now, you will also need the
admin_server variable in krb5.conf .

_kpasswd._udp This should list port 464 on your master KDC. It is used when a user changes her password. If this
entry is not defined but a _kerberos-adm._tcp entry is defined, the client will use the _kerberos-adm._tcp entry
with the port number changed to 749.

The DNS SRV specification requires that the hostnames listed be the canonical names, not aliases. So, for example,
you might include the following records in your (BIND-style) zone file:

$ORIGIN foobar.com.
_kerberos TXT "FOOBAR.COM"
kerberos CNAME daisy
kerberos-1 CNAME use-the-force-luke
kerberos-2 CNAME bunny-rabbit
_kerberos._udp SRV 0 0 88 daisy

SRV 0 0 88 use-the-force-luke
SRV 0 0 88 bunny-rabbit

_kerberos-master._udp SRV 0 0 88 daisy
_kerberos-adm._tcp SRV 0 0 749 daisy
_kpasswd._udp SRV 0 0 464 daisy

Clients can also be configured with the explicit location of services using the kdc, master_kdc, admin_server, and
kpasswd_server variables in the [realms] section of krb5.conf . Even if some clients will be configured with explicit
server locations, providing SRV records will still benefit unconfigured clients, and be useful for other sites.

3.6 KDC Discovery

As of MIT krb5 1.15, clients can also locate KDCs in DNS through URI records (RFC 7553). Limitations with the
SRV record format may result in extra DNS queries in situations where a client must failover to other transport types,
or find a master server. The URI record can convey more information about a realm’s KDCs with a single query.

The client performs a query for the following URI records:

• _kerberos.REALM for fiding KDCs.

• _kerberos-adm.REALM for finding kadmin services.

3.6. KDC Discovery 41

http://tools.ietf.org/html/rfc2782.html
http://tools.ietf.org/html/rfc7553.html

Kerberos Administration Guide, Release 1.15.2

• _kpasswd.REALM for finding password services.

The URI record includes a priority, weight, and a URI string that consists of case-insensitive colon separated fields, in
the form scheme:[flags]:transport:residual.

• scheme defines the registered URI type. It should always be krb5srv.

• flags contains zero or more flag characters. Currently the only valid flag is m, which indicates that the record is
for a master server.

• transport defines the transport type of the residual URL or address. Accepted values are tcp, udp, or kkdcp
for the MS-KKDCP type.

• residual contains the hostname, IP address, or URL to be contacted using the specified transport, with an op-
tional port extension. The MS-KKDCP transport type uses a HTTPS URL, and can include a port and/or path
extension.

An example of URI records in a zone file:

_kerberos.EXAMPLE.COM URI 10 1 krb5srv:m:tcp:kdc1.example.com
URI 20 1 krb5srv:m:udp:kdc2.example.com:89
URI 40 1 krb5srv::udp:10.10.0.23
URI 30 1 krb5srv::kkdcp:https://proxy:89/auth

URI lookups are enabled by default, and can be disabled by setting dns_uri_lookup in the [libdefaults] section of
krb5.conf to False. When enabled, URI lookups take precedence over SRV lookups, falling back to SRV lookups if
no URI records are found.

3.7 Database propagation

The Kerberos database resides on the master KDC, and must be propagated regularly (usually by a cron job) to the
slave KDCs. In deciding how frequently the propagation should happen, you will need to balance the amount of time
the propagation takes against the maximum reasonable amount of time a user should have to wait for a password
change to take effect.

If the propagation time is longer than this maximum reasonable time (e.g., you have a particularly large database, you
have a lot of slaves, or you experience frequent network delays), you may wish to cut down on your propagation delay
by performing the propagation in parallel. To do this, have the master KDC propagate the database to one set of slaves,
and then have each of these slaves propagate the database to additional slaves.

See also Incremental database propagation

42 Chapter 3. Realm configuration decisions

CHAPTER

FOUR

DATABASE ADMINISTRATION

A Kerberos database contains all of a realm’s Kerberos principals, their passwords, and other administrative informa-
tion about each principal. For the most part, you will use the kdb5_util program to manipulate the Kerberos database as
a whole, and the kadmin program to make changes to the entries in the database. (One notable exception is that users
will use the kpasswd(1) program to change their own passwords.) The kadmin program has its own command-line
interface, to which you type the database administrating commands.

kdb5_util provides a means to create, delete, load, or dump a Kerberos database. It also contains commands to roll
over the database master key, and to stash a copy of the key so that the kadmind and krb5kdc daemons can use the
database without manual input.

kadmin provides for the maintenance of Kerberos principals, password policies, and service key tables (keytabs).
Normally it operates as a network client using Kerberos authentication to communicate with kadmind, but there is
also a variant, named kadmin.local, which directly accesses the Kerberos database on the local filesystem (or through
LDAP). kadmin.local is necessary to set up enough of the database to be able to use the remote version.

kadmin can authenticate to the admin server using the service principal kadmin/HOST (where HOST is the hostname
of the admin server) or kadmin/admin. If the credentials cache contains a ticket for either service principal and the
-c ccache option is specified, that ticket is used to authenticate to KADM5. Otherwise, the -p and -k options are used
to specify the client Kerberos principal name used to authenticate. Once kadmin has determined the principal name,
it requests a kadmin/admin Kerberos service ticket from the KDC, and uses that service ticket to authenticate to
KADM5.

See kadmin for the available kadmin and kadmin.local commands and options.

4.1 kadmin options

You can invoke kadmin or kadmin.local with any of the following options:

kadmin [-O|-N] [-r realm] [-p principal] [-q query] [[-c cache_name]|[-k [-t keytab]]|-n] [-w password] [-s ad-
min_server[:port]] [command args...]

kadmin.local [-r realm] [-p principal] [-q query] [-d dbname] [-e enc:salt ...] [-m] [-x db_args] [command args...]

OPTIONS

-r realm Use realm as the default database realm.

-p principal Use principal to authenticate. Otherwise, kadmin will append /admin to the primary principal name of
the default ccache, the value of the USER environment variable, or the username as obtained with getpwuid, in
order of preference.

-k Use a keytab to decrypt the KDC response instead of prompting for a password. In this case, the default principal
will be host/hostname. If there is no keytab specified with the -t option, then the default keytab will be
used.

43

Kerberos Administration Guide, Release 1.15.2

-t keytab Use keytab to decrypt the KDC response. This can only be used with the -k option.

-n Requests anonymous processing. Two types of anonymous principals are supported. For fully anonymous Ker-
beros, configure PKINIT on the KDC and configure pkinit_anchors in the client’s krb5.conf . Then use the
-n option with a principal of the form @REALM (an empty principal name followed by the at-sign and a realm
name). If permitted by the KDC, an anonymous ticket will be returned. A second form of anonymous tickets is
supported; these realm-exposed tickets hide the identity of the client but not the client’s realm. For this mode,
use kinit -n with a normal principal name. If supported by the KDC, the principal (but not realm) will be
replaced by the anonymous principal. As of release 1.8, the MIT Kerberos KDC only supports fully anonymous
operation.

-c credentials_cache Use credentials_cache as the credentials cache. The cache should contain a service ticket
for the kadmin/ADMINHOST (where ADMINHOST is the fully-qualified hostname of the admin server) or
kadmin/admin service; it can be acquired with the kinit(1) program. If this option is not specified, kadmin
requests a new service ticket from the KDC, and stores it in its own temporary ccache.

-w password Use password instead of prompting for one. Use this option with care, as it may expose the password to
other users on the system via the process list.

-q query Perform the specified query and then exit.

-d dbname Specifies the name of the KDC database. This option does not apply to the LDAP database module.

-s admin_server[:port] Specifies the admin server which kadmin should contact.

-m If using kadmin.local, prompt for the database master password instead of reading it from a stash file.

-e “enc:salt ...” Sets the keysalt list to be used for any new keys created. See Keysalt lists in kdc.conf for a list of
possible values.

-O Force use of old AUTH_GSSAPI authentication flavor.

-N Prevent fallback to AUTH_GSSAPI authentication flavor.

-x db_args Specifies the database specific arguments. See the next section for supported options.

4.2 Date Format

For the supported date-time formats see getdate section in datetime.

4.3 Principals

Each entry in the Kerberos database contains a Kerberos principal and the attributes and policies associated with that
principal.

4.3.1 Adding, modifying and deleting principals

To add a principal to the database, use the kadmin add_principal command.

To modify attributes of a principal, use the kadmin modify_principal command.

To delete a principal, use the kadmin delete_principal command.

44 Chapter 4. Database administration

Kerberos Administration Guide, Release 1.15.2

4.3.2 add_principal

add_principal [options] newprinc

Creates the principal newprinc, prompting twice for a password. If no password policy is specified with the -policy
option, and the policy named default is assigned to the principal if it exists. However, creating a policy named
default will not automatically assign this policy to previously existing principals. This policy assignment can be
suppressed with the -clearpolicy option.

This command requires the add privilege.

Aliases: addprinc, ank

Options:

-expire expdate (getdate string) The expiration date of the principal.

-pwexpire pwexpdate (getdate string) The password expiration date.

-maxlife maxlife (duration or getdate string) The maximum ticket life for the principal.

-maxrenewlife maxrenewlife (duration or getdate string) The maximum renewable life of tickets for the principal.

-kvno kvno The initial key version number.

-policy policy The password policy used by this principal. If not specified, the policy default is used if it exists
(unless -clearpolicy is specified).

-clearpolicy Prevents any policy from being assigned when -policy is not specified.

{-|+}allow_postdated -allow_postdated prohibits this principal from obtaining postdated tickets. +allow_postdated
clears this flag.

{-|+}allow_forwardable -allow_forwardable prohibits this principal from obtaining forwardable tickets. +al-
low_forwardable clears this flag.

{-|+}allow_renewable -allow_renewable prohibits this principal from obtaining renewable tickets. +al-
low_renewable clears this flag.

{-|+}allow_proxiable -allow_proxiable prohibits this principal from obtaining proxiable tickets. +allow_proxiable
clears this flag.

{-|+}allow_dup_skey -allow_dup_skey disables user-to-user authentication for this principal by prohibiting this prin-
cipal from obtaining a session key for another user. +allow_dup_skey clears this flag.

{-|+}requires_preauth +requires_preauth requires this principal to preauthenticate before being allowed to kinit.
-requires_preauth clears this flag. When +requires_preauth is set on a service principal, the KDC will only
issue service tickets for that service principal if the client’s initial authentication was performed using preau-
thentication.

{-|+}requires_hwauth +requires_hwauth requires this principal to preauthenticate using a hardware device before
being allowed to kinit. -requires_hwauth clears this flag. When +requires_hwauth is set on a service prin-
cipal, the KDC will only issue service tickets for that service principal if the client’s initial authentication was
performed using a hardware device to preauthenticate.

{-|+}ok_as_delegate +ok_as_delegate sets the okay as delegate flag on tickets issued with this principal as the
service. Clients may use this flag as a hint that credentials should be delegated when authenticating to the
service. -ok_as_delegate clears this flag.

{-|+}allow_svr -allow_svr prohibits the issuance of service tickets for this principal. +allow_svr clears this flag.

{-|+}allow_tgs_req -allow_tgs_req specifies that a Ticket-Granting Service (TGS) request for a service ticket for this
principal is not permitted. +allow_tgs_req clears this flag.

{-|+}allow_tix -allow_tix forbids the issuance of any tickets for this principal. +allow_tix clears this flag.

4.3. Principals 45

Kerberos Administration Guide, Release 1.15.2

{-|+}needchange +needchange forces a password change on the next initial authentication to this principal. -
needchange clears this flag.

{-|+}password_changing_service +password_changing_service marks this principal as a password change service
principal.

{-|+}ok_to_auth_as_delegate +ok_to_auth_as_delegate allows this principal to acquire forwardable tickets to itself
from arbitrary users, for use with constrained delegation.

{-|+}no_auth_data_required +no_auth_data_required prevents PAC or AD-SIGNEDPATH data from being added
to service tickets for the principal.

{-|+}lockdown_keys +lockdown_keys prevents keys for this principal from leaving the KDC via kadmind. The
chpass and extract operations are denied for a principal with this attribute. The chrand operation is allowed,
but will not return the new keys. The delete and rename operations are also denied if this attribute is set,
in order to prevent a malicious administrator from replacing principals like krbtgt/* or kadmin/* with new
principals without the attribute. This attribute can be set via the network protocol, but can only be removed
using kadmin.local.

-randkey Sets the key of the principal to a random value.

-nokey Causes the principal to be created with no key. New in release 1.12.

-pw password Sets the password of the principal to the specified string and does not prompt for a password. Note:
using this option in a shell script may expose the password to other users on the system via the process list.

-e enc:salt,... Uses the specified keysalt list for setting the keys of the principal. See Keysalt lists in kdc.conf for a list
of possible values.

-x db_princ_args Indicates database-specific options. The options for the LDAP database module are:

-x dn=dn Specifies the LDAP object that will contain the Kerberos principal being created.

-x linkdn=dn Specifies the LDAP object to which the newly created Kerberos principal object will point.

-x containerdn=container_dn Specifies the container object under which the Kerberos principal is to be cre-
ated.

-x tktpolicy=policy Associates a ticket policy to the Kerberos principal.

Note:
• The containerdn and linkdn options cannot be specified with the dn option.

• If the dn or containerdn options are not specified while adding the principal, the principals are created
under the principal container configured in the realm or the realm container.

• dn and containerdn should be within the subtrees or principal container configured in the realm.

Example:

kadmin: addprinc jennifer
WARNING: no policy specified for "jennifer@ATHENA.MIT.EDU";
defaulting to no policy.
Enter password for principal jennifer@ATHENA.MIT.EDU:
Re-enter password for principal jennifer@ATHENA.MIT.EDU:
Principal "jennifer@ATHENA.MIT.EDU" created.
kadmin:

4.3.3 modify_principal

modify_principal [options] principal

46 Chapter 4. Database administration

Kerberos Administration Guide, Release 1.15.2

Modifies the specified principal, changing the fields as specified. The options to add_principal also apply to this
command, except for the -randkey, -pw, and -e options. In addition, the option -clearpolicy will clear the current
policy of a principal.

This command requires the modify privilege.

Alias: modprinc

Options (in addition to the addprinc options):

-unlock Unlocks a locked principal (one which has received too many failed authentication attempts without enough
time between them according to its password policy) so that it can successfully authenticate.

4.3.4 delete_principal

delete_principal [-force] principal

Deletes the specified principal from the database. This command prompts for deletion, unless the -force option is
given.

This command requires the delete privilege.

Alias: delprinc

Examples

If you want to create a principal which is contained by a LDAP object, all you need to do is:

kadmin: addprinc -x dn=cn=jennifer,dc=example,dc=com jennifer
WARNING: no policy specified for "jennifer@ATHENA.MIT.EDU";
defaulting to no policy.
Enter password for principal jennifer@ATHENA.MIT.EDU: <= Type the password.
Re-enter password for principal jennifer@ATHENA.MIT.EDU: <=Type it again.
Principal "jennifer@ATHENA.MIT.EDU" created.
kadmin:

If you want to create a principal under a specific LDAP container and link to an existing LDAP object, all you need to
do is:

kadmin: addprinc -x containerdn=dc=example,dc=com -x linkdn=cn=david,dc=example,dc=com david
WARNING: no policy specified for "david@ATHENA.MIT.EDU";
defaulting to no policy.
Enter password for principal david@ATHENA.MIT.EDU: <= Type the password.
Re-enter password for principal david@ATHENA.MIT.EDU: <=Type it again.
Principal "david@ATHENA.MIT.EDU" created.
kadmin:

If you want to associate a ticket policy to a principal, all you need to do is:

kadmin: modprinc -x tktpolicy=userpolicy david
Principal "david@ATHENA.MIT.EDU" modified.
kadmin:

If, on the other hand, you want to set up an account that expires on January 1, 2000, that uses a policy called “stduser”,
with a temporary password (which you want the user to change immediately), you would type the following:

kadmin: addprinc david -expire "1/1/2000 12:01am EST" -policy stduser +needchange
Enter password for principal david@ATHENA.MIT.EDU: <= Type the password.
Re-enter password for principal
david@ATHENA.MIT.EDU: <= Type it again.

4.3. Principals 47

Kerberos Administration Guide, Release 1.15.2

Principal "david@ATHENA.MIT.EDU" created.
kadmin:

If you want to delete a principal:

kadmin: delprinc jennifer
Are you sure you want to delete the principal
"jennifer@ATHENA.MIT.EDU"? (yes/no): yes
Principal "jennifer@ATHENA.MIT.EDU" deleted.
Make sure that you have removed this principal from
all ACLs before reusing.
kadmin:

4.3.5 Retrieving information about a principal

To retrieve a listing of the attributes and/or policies associated with a principal, use the kadmin get_principal com-
mand.

To generate a listing of principals, use the kadmin list_principals command.

4.3.6 get_principal

get_principal [-terse] principal

Gets the attributes of principal. With the -terse option, outputs fields as quoted tab-separated strings.

This command requires the inquire privilege, or that the principal running the the program to be the same as the one
being listed.

Alias: getprinc

Examples:

kadmin: getprinc tlyu/admin
Principal: tlyu/admin@BLEEP.COM
Expiration date: [never]
Last password change: Mon Aug 12 14:16:47 EDT 1996
Password expiration date: [none]
Maximum ticket life: 0 days 10:00:00
Maximum renewable life: 7 days 00:00:00
Last modified: Mon Aug 12 14:16:47 EDT 1996 (bjaspan/admin@BLEEP.COM)
Last successful authentication: [never]
Last failed authentication: [never]
Failed password attempts: 0
Number of keys: 2
Key: vno 1, des-cbc-crc
Key: vno 1, des-cbc-crc:v4
Attributes:
Policy: [none]

kadmin: getprinc -terse systest
systest@BLEEP.COM 3 86400 604800 1
785926535 753241234 785900000
tlyu/admin@BLEEP.COM 786100034 0 0
kadmin:

48 Chapter 4. Database administration

Kerberos Administration Guide, Release 1.15.2

4.3.7 list_principals

list_principals [expression]

Retrieves all or some principal names. expression is a shell-style glob expression that can contain the wild-card
characters ?, *, and []. All principal names matching the expression are printed. If no expression is provided, all
principal names are printed. If the expression does not contain an @ character, an @ character followed by the local
realm is appended to the expression.

This command requires the list privilege.

Alias: listprincs, get_principals, get_princs

Example:

kadmin: listprincs test*
test3@SECURE-TEST.OV.COM
test2@SECURE-TEST.OV.COM
test1@SECURE-TEST.OV.COM
testuser@SECURE-TEST.OV.COM
kadmin:

4.3.8 Changing passwords

To change a principal’s password use the kadmin change_password command.

4.3.9 change_password

change_password [options] principal

Changes the password of principal. Prompts for a new password if neither -randkey or -pw is specified.

This command requires the changepw privilege, or that the principal running the program is the same as the principal
being changed.

Alias: cpw

The following options are available:

-randkey Sets the key of the principal to a random value.

-pw password Set the password to the specified string. Using this option in a script may expose the password to other
users on the system via the process list.

-e enc:salt,... Uses the specified keysalt list for setting the keys of the principal. See Keysalt lists in kdc.conf for a list
of possible values.

-keepold Keeps the existing keys in the database. This flag is usually not necessary except perhaps for krbtgt
principals.

Example:

kadmin: cpw systest
Enter password for principal systest@BLEEP.COM:
Re-enter password for principal systest@BLEEP.COM:
Password for systest@BLEEP.COM changed.
kadmin:

4.3. Principals 49

Kerberos Administration Guide, Release 1.15.2

Note: Password changes through kadmin are subject to the same password policies as would apply to password
changes through kpasswd(1).

4.4 Policies

A policy is a set of rules governing passwords. Policies can dictate minimum and maximum password lifetimes,
minimum number of characters and character classes a password must contain, and the number of old passwords kept
in the database.

4.4.1 Adding, modifying and deleting policies

To add a new policy, use the kadmin add_policy command.

To modify attributes of a principal, use the kadmin modify_policy command.

To delete a policy, use the kadmin delete_policy command.

4.4.2 add_policy

add_policy [options] policy

Adds a password policy named policy to the database.

This command requires the add privilege.

Alias: addpol

The following options are available:

-maxlife time (duration or getdate string) Sets the maximum lifetime of a password.

-minlife time (duration or getdate string) Sets the minimum lifetime of a password.

-minlength length Sets the minimum length of a password.

-minclasses number Sets the minimum number of character classes required in a password. The five character classes
are lower case, upper case, numbers, punctuation, and whitespace/unprintable characters.

-history number Sets the number of past keys kept for a principal. This option is not supported with the LDAP KDC
database module.

-maxfailure maxnumber Sets the number of authentication failures before the principal is locked. Authentication
failures are only tracked for principals which require preauthentication. The counter of failed attempts resets to
0 after a successful attempt to authenticate. A maxnumber value of 0 (the default) disables lockout.

-failurecountinterval failuretime (duration or getdate string) Sets the allowable time between authentication fail-
ures. If an authentication failure happens after failuretime has elapsed since the previous failure, the number of
authentication failures is reset to 1. A failuretime value of 0 (the default) means forever.

-lockoutduration lockouttime (duration or getdate string) Sets the duration for which the principal is locked from
authenticating if too many authentication failures occur without the specified failure count interval elapsing.
A duration of 0 (the default) means the principal remains locked out until it is administratively unlocked with
modprinc -unlock.

50 Chapter 4. Database administration

Kerberos Administration Guide, Release 1.15.2

-allowedkeysalts Specifies the key/salt tuples supported for long-term keys when setting or changing a principal’s
password/keys. See Keysalt lists in kdc.conf for a list of the accepted values, but note that key/salt tuples must
be separated with commas (‘,’) only. To clear the allowed key/salt policy use a value of ‘-‘.

Example:

kadmin: add_policy -maxlife "2 days" -minlength 5 guests
kadmin:

4.4.3 modify_policy

modify_policy [options] policy

Modifies the password policy named policy. Options are as described for add_policy.

This command requires the modify privilege.

Alias: modpol

4.4.4 delete_policy

delete_policy [-force] policy

Deletes the password policy named policy. Prompts for confirmation before deletion. The command will fail if the
policy is in use by any principals.

This command requires the delete privilege.

Alias: delpol

Example:

kadmin: del_policy guests
Are you sure you want to delete the policy "guests"?
(yes/no): yes
kadmin:

Note: You must cancel the policy from all principals before deleting it. The delete_policy command will fail if the
policy is in use by any principals.

4.4.5 Retrieving policies

To retrieve a policy, use the kadmin get_policy command.

You can retrieve the list of policies with the kadmin list_policies command.

4.4.6 get_policy

get_policy [-terse] policy

Displays the values of the password policy named policy. With the -terse flag, outputs the fields as quoted strings
separated by tabs.

This command requires the inquire privilege.

Alias: getpol

4.4. Policies 51

Kerberos Administration Guide, Release 1.15.2

Examples:

kadmin: get_policy admin
Policy: admin
Maximum password life: 180 days 00:00:00
Minimum password life: 00:00:00
Minimum password length: 6
Minimum number of password character classes: 2
Number of old keys kept: 5
Reference count: 17

kadmin: get_policy -terse admin
admin 15552000 0 6 2 5 17
kadmin:

The “Reference count” is the number of principals using that policy. With the LDAP KDC database module, the
reference count field is not meaningful.

4.4.7 list_policies

list_policies [expression]

Retrieves all or some policy names. expression is a shell-style glob expression that can contain the wild-card characters
?, *, and []. All policy names matching the expression are printed. If no expression is provided, all existing policy
names are printed.

This command requires the list privilege.

Aliases: listpols, get_policies, getpols.

Examples:

kadmin: listpols
test-pol
dict-only
once-a-min
test-pol-nopw

kadmin: listpols t*
test-pol
test-pol-nopw
kadmin:

4.4.8 Policies and principals

Policies can be applied to principals as they are created by using the -policy flag to add_principal. Existing principals
can be modified by using the -policy or -clearpolicy flag to modify_principal.

4.4.9 Updating the history key

If a policy specifies a number of old keys kept of two or more, the stored old keys are encrypted in a history key, which
is found in the key data of the kadmin/history principal.

Currently there is no support for proper rollover of the history key, but you can change the history key (for example,
to use a better encryption type) at the cost of invalidating currently stored old keys. To change the history key, run:

52 Chapter 4. Database administration

Kerberos Administration Guide, Release 1.15.2

kadmin: change_password -randkey kadmin/history

This command will fail if you specify the -keepold flag. Only one new history key will be created, even if you specify
multiple key/salt combinations.

In the future, we plan to migrate towards encrypting old keys in the master key instead of the history key, and imple-
menting proper rollover support for stored old keys.

4.5 Privileges

Administrative privileges for the Kerberos database are stored in the file kadm5.acl.

Note: A common use of an admin instance is so you can grant separate permissions (such as administrator access to
the Kerberos database) to a separate Kerberos principal. For example, the user joeadmin might have a principal for
his administrative use, called joeadmin/admin. This way, joeadmin would obtain joeadmin/admin tickets
only when he actually needs to use those permissions.

4.6 Operations on the Kerberos database

The kdb5_util command is the primary tool for administrating the Kerberos database.

kdb5_util [-r realm] [-d dbname] [-k mkeytype] [-M mkeyname] [-kv mkeyVNO] [-sf stashfilename] [-m] command
[command_options]

OPTIONS

-r realm specifies the Kerberos realm of the database.

-d dbname specifies the name under which the principal database is stored; by default the database is that listed in
kdc.conf . The password policy database and lock files are also derived from this value.

-k mkeytype specifies the key type of the master key in the database. The default is given by the master_key_type
variable in kdc.conf .

-kv mkeyVNO Specifies the version number of the master key in the database; the default is 1. Note that 0 is not
allowed.

-M mkeyname principal name for the master key in the database. If not specified, the name is determined by the
master_key_name variable in kdc.conf .

-m specifies that the master database password should be read from the keyboard rather than fetched from a file on
disk.

-sf stash_file specifies the stash filename of the master database password. If not specified, the filename is determined
by the key_stash_file variable in kdc.conf .

-P password specifies the master database password. Using this option may expose the password to other users on the
system via the process list.

4.6.1 Dumping a Kerberos database to a file

To dump a Kerberos database into a file, use the kdb5_util dump command on one of the KDCs.

dump [-b7|-ov|-r13] [-verbose] [-mkey_convert] [-new_mkey_file mkey_file] [-rev] [-recurse] [file-
name [principals...]]

4.5. Privileges 53

Kerberos Administration Guide, Release 1.15.2

Dumps the current Kerberos and KADM5 database into an ASCII file. By default, the database is dumped in current
format, “kdb5_util load_dump version 7”. If filename is not specified, or is the string “-”, the dump is sent to standard
output. Options:

-b7 causes the dump to be in the Kerberos 5 Beta 7 format (“kdb5_util load_dump version 4”). This was the dump
format produced on releases prior to 1.2.2.

-ov causes the dump to be in “ovsec_adm_export” format.

-r13 causes the dump to be in the Kerberos 5 1.3 format (“kdb5_util load_dump version 5”). This was the dump
format produced on releases prior to 1.8.

-r18 causes the dump to be in the Kerberos 5 1.8 format (“kdb5_util load_dump version 6”). This was the dump
format produced on releases prior to 1.11.

-verbose causes the name of each principal and policy to be printed as it is dumped.

-mkey_convert prompts for a new master key. This new master key will be used to re-encrypt principal key data in
the dumpfile. The principal keys themselves will not be changed.

-new_mkey_file mkey_file the filename of a stash file. The master key in this stash file will be used to re-encrypt the
key data in the dumpfile. The key data in the database will not be changed.

-rev dumps in reverse order. This may recover principals that do not dump normally, in cases where database corrup-
tion has occurred.

-recurse causes the dump to walk the database recursively (btree only). This may recover principals that do not dump
normally, in cases where database corruption has occurred. In cases of such corruption, this option will probably
retrieve more principals than the -rev option will.

Changed in version 1.15: Release 1.15 restored the functionality of the -recurse option.

Changed in version 1.5: The -recurse option ceased working until release 1.15, doing a normal dump instead of
a recursive traversal.

Examples

shell% kdb5_util dump dumpfile
shell%

shell% kbd5_util dump -verbose dumpfile
kadmin/admin@ATHENA.MIT.EDU
krbtgt/ATHENA.MIT.EDU@ATHENA.MIT.EDU
kadmin/history@ATHENA.MIT.EDU
K/M@ATHENA.MIT.EDU
kadmin/changepw@ATHENA.MIT.EDU
shell%

If you specify which principals to dump, you must use the full principal, as in the following example:

shell% kdb5_util dump -verbose dumpfile K/M@ATHENA.MIT.EDU kadmin/admin@ATHENA.MIT.EDU
kadmin/admin@ATHENA.MIT.EDU
K/M@ATHENA.MIT.EDU
shell%

Otherwise, the principals will not match those in the database and will not be dumped:

shell% kdb5_util dump -verbose dumpfile K/M kadmin/admin
shell%

If you do not specify a dump file, kdb5_util will dump the database to the standard output.

54 Chapter 4. Database administration

Kerberos Administration Guide, Release 1.15.2

4.6.2 Restoring a Kerberos database from a dump file

To restore a Kerberos database dump from a file, use the kdb5_util load command on one of the KDCs.

load [-b7|-ov|-r13] [-hash] [-verbose] [-update] filename [dbname]

Loads a database dump from the named file into the named database. If no option is given to determine the format
of the dump file, the format is detected automatically and handled as appropriate. Unless the -update option is given,
load creates a new database containing only the data in the dump file, overwriting the contents of any previously
existing database. Note that when using the LDAP KDC database module, the -update flag is required.

Options:

-b7 requires the database to be in the Kerberos 5 Beta 7 format (“kdb5_util load_dump version 4”). This was the
dump format produced on releases prior to 1.2.2.

-ov requires the database to be in “ovsec_adm_import” format. Must be used with the -update option.

-r13 requires the database to be in Kerberos 5 1.3 format (“kdb5_util load_dump version 5”). This was the dump
format produced on releases prior to 1.8.

-r18 requires the database to be in Kerberos 5 1.8 format (“kdb5_util load_dump version 6”). This was the dump
format produced on releases prior to 1.11.

-hash requires the database to be stored as a hash. If this option is not specified, the database will be stored as a
btree. This option is not recommended, as databases stored in hash format are known to corrupt data and lose
principals.

-verbose causes the name of each principal and policy to be printed as it is dumped.

-update records from the dump file are added to or updated in the existing database. Otherwise, a new database is
created containing only what is in the dump file and the old one destroyed upon successful completion.

If specified, dbname overrides the value specified on the command line or the default.

Examples

To load a single principal, either replacing or updating the database:

shell% kdb5_util load dumpfile principal
shell%

shell% kdb5_util load -update dumpfile principal
shell%

Note: If the database file exists, and the -update flag was not given, kdb5_util will overwrite the existing database.

Using kdb5_util to upgrade a master KDC from krb5 1.1.x:

shell% kdb5_util dump old-kdb-dump
shell% kdb5_util dump -ov old-kdb-dump.ov

[Create a new KDC installation, using the old stash file/master password]
shell% kdb5_util load old-kdb-dump
shell% kdb5_util load -update old-kdb-dump.ov

The use of old-kdb-dump.ov for an extra dump and load is necessary to preserve per-principal policy information,
which is not included in the default dump format of krb5 1.1.x.

Note: Using kdb5_util to dump and reload the principal database is only necessary when upgrading from versions of
krb5 prior to 1.2.0—newer versions will use the existing database as-is.

4.6. Operations on the Kerberos database 55

Kerberos Administration Guide, Release 1.15.2

4.6.3 Creating a stash file

A stash file allows a KDC to authenticate itself to the database utilities, such as kadmind, krb5kdc, and kdb5_util.

To create a stash file, use the kdb5_util stash command.

stash [-f keyfile]

Stores the master principal’s keys in a stash file. The -f argument can be used to override the keyfile specified in
kdc.conf .

Example

shell% kdb5_util stash kdb5_util: Cannot find/read stored master key while reading master key kdb5_util:
Warning: proceeding without master key Enter KDC database master key: <= Type the KDC database
master password. shell%

If you do not specify a stash file, kdb5_util will stash the key in the file specified in your kdc.conf file.

4.6.4 Creating and destroying a Kerberos database

If you need to create a new Kerberos database, use the kdb5_util create command.

create [-s]

Creates a new database. If the -s option is specified, the stash file is also created. This command fails if the database
already exists. If the command is successful, the database is opened just as if it had already existed when the program
was first run.

If you need to destroy the current Kerberos database, use the kdb5_util destroy command.

destroy [-f]

Destroys the database, first overwriting the disk sectors and then unlinking the files, after prompting the user for
confirmation. With the -f argument, does not prompt the user.

Examples

shell% kdb5_util -r ATHENA.MIT.EDU create -s
Loading random data
Initializing database ’/usr/local/var/krb5kdc/principal’ for realm ’ATHENA.MIT.EDU’,
master key name ’K/M@ATHENA.MIT.EDU’
You will be prompted for the database Master Password.
It is important that you NOT FORGET this password.
Enter KDC database master key: <= Type the master password.
Re-enter KDC database master key to verify: <= Type it again.
shell%

shell% kdb5_util -r ATHENA.MIT.EDU destroy
Deleting KDC database stored in ’/usr/local/var/krb5kdc/principal’, are you sure?
(type ’yes’ to confirm)? <= yes
OK, deleting database ’/usr/local/var/krb5kdc/principal’...

** Database ’/usr/local/var/krb5kdc/principal’ destroyed.
shell%

56 Chapter 4. Database administration

Kerberos Administration Guide, Release 1.15.2

4.6.5 Updating the master key

Starting with release 1.7, kdb5_util allows the master key to be changed using a rollover process, with minimal loss of
availability. To roll over the master key, follow these steps:

1. On the master KDC, run kdb5_util list_mkeys to view the current master key version number (KVNO).
If you have never rolled over the master key before, this will likely be version 1:

$ kdb5_util list_mkeys
Master keys for Principal: K/M@KRBTEST.COM
KVNO: 1, Enctype: des-cbc-crc, Active on: Wed Dec 31 19:00:00 EST 1969 *

2. On the master KDC, run kdb5_util use_mkey 1 to ensure that a master key activation list is present in
the database. This step is unnecessary in release 1.11.4 or later, or if the database was initially created with
release 1.7 or later.

3. On the master KDC, run kdb5_util add_mkey -s to create a new master key and write it to the stash file.
Enter a secure password when prompted. If this is the first time you are changing the master key, the new key
will have version 2. The new master key will not be used until you make it active.

4. Propagate the database to all slave KDCs, either manually or by waiting until the next scheduled propagation.
If you do not have any slave KDCs, you can skip this and the next step.

5. On each slave KDC, run kdb5_util list_mkeys to verify that the new master key is present, and then
kdb5_util stash to write the new master key to the slave KDC’s stash file.

6. On the master KDC, run kdb5_util use_mkey 2 to begin using the new master key. Replace 2 with the
version of the new master key, as appropriate. You can optionally specify a date for the new master key to
become active; by default, it will become active immediately. Prior to release 1.12, kadmind must be restarted
for this change to take full effect.

7. On the master KDC, run kdb5_util update_princ_encryption. This command will iterate over
the database and re-encrypt all keys in the new master key. If the database is large and uses DB2, the master
KDC will become unavailable while this command runs, but clients should fail over to slave KDCs (if any are
present) during this time period. In release 1.13 and later, you can instead run kdb5_util -x unlockiter
update_princ_encryption to use unlocked iteration; this variant will take longer, but will keep the
database available to the KDC and kadmind while it runs.

8. On the master KDC, run kdb5_util purge_mkeys to clean up the old master key.

4.7 Operations on the LDAP database

The kdb5_ldap_util is the primary tool for administrating the Kerberos LDAP database. It allows an administrator to
manage realms, Kerberos services (KDC and Admin Server) and ticket policies.

kdb5_ldap_util [-D user_dn [-w passwd]] [-H ldapuri] command [command_options]

OPTIONS

-D user_dn Specifies the Distinguished Name (DN) of the user who has sufficient rights to perform the operation on
the LDAP server.

-w passwd Specifies the password of user_dn. This option is not recommended.

-H ldapuri Specifies the URI of the LDAP server. It is recommended to use ldapi:// or ldaps:// to connect to
the LDAP server.

4.7. Operations on the LDAP database 57

Kerberos Administration Guide, Release 1.15.2

4.7.1 Creating a Kerberos realm

If you need to create a new realm, use the kdb5_ldap_util create command as follows.

create [-subtrees subtree_dn_list] [-sscope search_scope] [-containerref container_reference_dn]
[-k mkeytype] [-kv mkeyVNO] [-m|-P password|-sf stashfilename] [-s] [-r realm] [-maxtktlife
max_ticket_life] [-maxrenewlife max_renewable_ticket_life] [ticket_flags]

Creates realm in directory. Options:

-subtrees subtree_dn_list Specifies the list of subtrees containing the principals of a realm. The list contains the DNs
of the subtree objects separated by colon (:).

-sscope search_scope Specifies the scope for searching the principals under the subtree. The possible values are 1 or
one (one level), 2 or sub (subtrees).

-containerref container_reference_dn Specifies the DN of the container object in which the principals of a realm
will be created. If the container reference is not configured for a realm, the principals will be created in the
realm container.

-k mkeytype Specifies the key type of the master key in the database. The default is given by the master_key_type
variable in kdc.conf .

-kv mkeyVNO Specifies the version number of the master key in the database; the default is 1. Note that 0 is not
allowed.

-m Specifies that the master database password should be read from the TTY rather than fetched from a file on the
disk.

-P password Specifies the master database password. This option is not recommended.

-r realm Specifies the Kerberos realm of the database.

-sf stashfilename Specifies the stash file of the master database password.

-s Specifies that the stash file is to be created.

-maxtktlife max_ticket_life (getdate string) Specifies maximum ticket life for principals in this realm.

-maxrenewlife max_renewable_ticket_life (getdate string) Specifies maximum renewable life of tickets for princi-
pals in this realm.

ticket_flags Specifies global ticket flags for the realm. Allowable flags are documented in the description of the
add_principal command in kadmin.

Example:

kdb5_ldap_util -D cn=admin,o=org -H ldaps://ldap-server1.mit.edu
create -subtrees o=org -sscope SUB -r ATHENA.MIT.EDU

Password for "cn=admin,o=org":
Initializing database for realm ’ATHENA.MIT.EDU’
You will be prompted for the database Master Password.
It is important that you NOT FORGET this password.
Enter KDC database master key:
Re-enter KDC database master key to verify:

4.7.2 Modifying a Kerberos realm

If you need to modify a realm, use the kdb5_ldap_util modify command as follows.

modify [-subtrees subtree_dn_list] [-sscope search_scope] [-containerref container_reference_dn] [-r
realm] [-maxtktlife max_ticket_life] [-maxrenewlife max_renewable_ticket_life] [ticket_flags]

58 Chapter 4. Database administration

Kerberos Administration Guide, Release 1.15.2

Modifies the attributes of a realm. Options:

-subtrees subtree_dn_list Specifies the list of subtrees containing the principals of a realm. The list contains the DNs
of the subtree objects separated by colon (:). This list replaces the existing list.

-sscope search_scope Specifies the scope for searching the principals under the subtrees. The possible values are 1
or one (one level), 2 or sub (subtrees).

-containerref container_reference_dn Specifies the DN of the container object in which the principals of a realm
will be created.

-r realm Specifies the Kerberos realm of the database.

-maxtktlife max_ticket_life (getdate string) Specifies maximum ticket life for principals in this realm.

-maxrenewlife max_renewable_ticket_life (getdate string) Specifies maximum renewable life of tickets for princi-
pals in this realm.

ticket_flags Specifies global ticket flags for the realm. Allowable flags are documented in the description of the
add_principal command in kadmin.

Example:

shell% kdb5_ldap_util -D cn=admin,o=org -H
ldaps://ldap-server1.mit.edu modify +requires_preauth -r
ATHENA.MIT.EDU

Password for "cn=admin,o=org":
shell%

4.7.3 Destroying a Kerberos realm

If you need to destroy a Kerberos realm, use the kdb5_ldap_util destroy command as follows.

destroy [-f] [-r realm]

Destroys an existing realm. Options:

-f If specified, will not prompt the user for confirmation.

-r realm Specifies the Kerberos realm of the database.

Example:

shell% kdb5_ldap_util -D cn=admin,o=org -H
ldaps://ldap-server1.mit.edu destroy -r ATHENA.MIT.EDU

Password for "cn=admin,o=org":
Deleting KDC database of ’ATHENA.MIT.EDU’, are you sure?
(type ’yes’ to confirm)? yes
OK, deleting database of ’ATHENA.MIT.EDU’...
shell%

4.7.4 Retrieving information about a Kerberos realm

If you need to display the attributes of a realm, use the kdb5_ldap_util view command as follows.

view [-r realm]

Displays the attributes of a realm. Options:

-r realm Specifies the Kerberos realm of the database.

Example:

4.7. Operations on the LDAP database 59

Kerberos Administration Guide, Release 1.15.2

kdb5_ldap_util -D cn=admin,o=org -H ldaps://ldap-server1.mit.edu
view -r ATHENA.MIT.EDU

Password for "cn=admin,o=org":
Realm Name: ATHENA.MIT.EDU
Subtree: ou=users,o=org
Subtree: ou=servers,o=org
SearchScope: ONE
Maximum ticket life: 0 days 01:00:00
Maximum renewable life: 0 days 10:00:00
Ticket flags: DISALLOW_FORWARDABLE REQUIRES_PWCHANGE

4.7.5 Listing available Kerberos realms

If you need to display the list of the realms, use the kdb5_ldap_util list command as follows.

list

Lists the name of realms.

Example:

shell% kdb5_ldap_util -D cn=admin,o=org -H
ldaps://ldap-server1.mit.edu list

Password for "cn=admin,o=org":
ATHENA.MIT.EDU
OPENLDAP.MIT.EDU
MEDIA-LAB.MIT.EDU
shell%

4.7.6 Stashing service object’s password

The kdb5_ldap_util stashsrvpw command allows an administrator to store the password of service object in a file.
The KDC and Administration server uses this password to authenticate to the LDAP server.

stashsrvpw [-f filename] name

Allows an administrator to store the password for service object in a file so that KDC and Administration server can
use it to authenticate to the LDAP server. Options:

-f filename Specifies the complete path of the service password file. By default,
/usr/local/var/service_passwd is used.

name Specifies the name of the object whose password is to be stored. If krb5kdc or kadmind are configured for simple
binding, this should be the distinguished name it will use as given by the ldap_kdc_dn or ldap_kadmind_dn
variable in kdc.conf . If the KDC or kadmind is configured for SASL binding, this should be the authentication
name it will use as given by the ldap_kdc_sasl_authcid or ldap_kadmind_sasl_authcid variable.

Example:

kdb5_ldap_util stashsrvpw -f /home/andrew/conf_keyfile
cn=service-kdc,o=org

Password for "cn=service-kdc,o=org":
Re-enter password for "cn=service-kdc,o=org":

60 Chapter 4. Database administration

Kerberos Administration Guide, Release 1.15.2

4.7.7 Ticket Policy operations

Creating a Ticket Policy

To create a new ticket policy in directory , use the kdb5_ldap_util create_policy command. Ticket policy objects are
created under the realm container.

create_policy [-r realm] [-maxtktlife max_ticket_life] [-maxrenewlife max_renewable_ticket_life]
[ticket_flags] policy_name

Creates a ticket policy in the directory. Options:

-r realm Specifies the Kerberos realm of the database.

-maxtktlife max_ticket_life (getdate string) Specifies maximum ticket life for principals.

-maxrenewlife max_renewable_ticket_life (getdate string) Specifies maximum renewable life of tickets for princi-
pals.

ticket_flags Specifies the ticket flags. If this option is not specified, by default, no restriction will be set by the policy.
Allowable flags are documented in the description of the add_principal command in kadmin.

policy_name Specifies the name of the ticket policy.

Example:

kdb5_ldap_util -D cn=admin,o=org -H ldaps://ldap-server1.mit.edu
create_policy -r ATHENA.MIT.EDU -maxtktlife "1 day"
-maxrenewlife "1 week" -allow_postdated +needchange
-allow_forwardable tktpolicy

Password for "cn=admin,o=org":

Modifying a Ticket Policy

To modify a ticket policy in directory, use the kdb5_ldap_util modify_policy command.

modify_policy [-r realm] [-maxtktlife max_ticket_life] [-maxrenewlife max_renewable_ticket_life]
[ticket_flags] policy_name

Modifies the attributes of a ticket policy. Options are same as for create_policy.

Example:

kdb5_ldap_util -D cn=admin,o=org -H
ldaps://ldap-server1.mit.edu modify_policy -r ATHENA.MIT.EDU
-maxtktlife "60 minutes" -maxrenewlife "10 hours"
+allow_postdated -requires_preauth tktpolicy

Password for "cn=admin,o=org":

Retrieving Information About a Ticket Policy

To display the attributes of a ticket policy, use the kdb5_ldap_util view_policy command.

view_policy [-r realm] policy_name

Displays the attributes of a ticket policy. Options:

policy_name Specifies the name of the ticket policy.

Example:

4.7. Operations on the LDAP database 61

Kerberos Administration Guide, Release 1.15.2

kdb5_ldap_util -D cn=admin,o=org -H ldaps://ldap-server1.mit.edu
view_policy -r ATHENA.MIT.EDU tktpolicy

Password for "cn=admin,o=org":
Ticket policy: tktpolicy
Maximum ticket life: 0 days 01:00:00
Maximum renewable life: 0 days 10:00:00
Ticket flags: DISALLOW_FORWARDABLE REQUIRES_PWCHANGE

Destroying a Ticket Policy

To destroy an existing ticket policy, use the kdb5_ldap_util destroy_policy command.

destroy_policy [-r realm] [-force] policy_name

Destroys an existing ticket policy. Options:

-r realm Specifies the Kerberos realm of the database.

-force Forces the deletion of the policy object. If not specified, the user will be prompted for confirmation before
deleting the policy.

policy_name Specifies the name of the ticket policy.

Example:

kdb5_ldap_util -D cn=admin,o=org -H ldaps://ldap-server1.mit.edu
destroy_policy -r ATHENA.MIT.EDU tktpolicy

Password for "cn=admin,o=org":
This will delete the policy object ’tktpolicy’, are you sure?
(type ’yes’ to confirm)? yes

** policy object ’tktpolicy’ deleted.

Listing available Ticket Policies

To list the name of ticket policies in a realm, use the kdb5_ldap_util list_policy command.

list_policy [-r realm]

Lists the ticket policies in realm if specified or in the default realm. Options:

-r realm Specifies the Kerberos realm of the database.

Example:

kdb5_ldap_util -D cn=admin,o=org -H ldaps://ldap-server1.mit.edu
list_policy -r ATHENA.MIT.EDU

Password for "cn=admin,o=org":
tktpolicy
tmppolicy
userpolicy

4.8 Cross-realm authentication

In order for a KDC in one realm to authenticate Kerberos users in a different realm, it must share a key with the KDC in
the other realm. In both databases, there must be krbtgt service principals for both realms. For example, if you need to
do cross-realm authentication between the realms ATHENA.MIT.EDU and EXAMPLE.COM, you would need to add
the principals krbtgt/EXAMPLE.COM@ATHENA.MIT.EDU and krbtgt/ATHENA.MIT.EDU@EXAMPLE.COM

62 Chapter 4. Database administration

Kerberos Administration Guide, Release 1.15.2

to both databases. These principals must all have the same passwords, key version numbers, and encryption types; this
may require explicitly setting the key version number with the -kvno option.

In the ATHENA.MIT.EDU and EXAMPLE.COM cross-realm case, the administrators would run the following com-
mands on the KDCs in both realms:

shell%: kadmin.local -e "aes256-cts:normal"
kadmin: addprinc -requires_preauth krbtgt/ATHENA.MIT.EDU@EXAMPLE.COM
Enter password for principal krbtgt/ATHENA.MIT.EDU@EXAMPLE.COM:
Re-enter password for principal krbtgt/ATHENA.MIT.EDU@EXAMPLE.COM:
kadmin: addprinc -requires_preauth krbtgt/EXAMPLE.COM@ATHENA.MIT.EDU
Enter password for principal krbtgt/EXAMPLE.COM@ATHENA.MIT.EDU:
Enter password for principal krbtgt/EXAMPLE.COM@ATHENA.MIT.EDU:
kadmin:

Note: Even if most principals in a realm are generally created with the requires_preauth flag enabled, this flag is
not desirable on cross-realm authentication keys because doing so makes it impossible to disable preauthentication on
a service-by-service basis. Disabling it as in the example above is recommended.

Note: It is very important that these principals have good passwords. MIT recommends that TGT principal passwords
be at least 26 characters of random ASCII text.

4.9 Changing the krbtgt key

A Kerberos Ticket Granting Ticket (TGT) is a service ticket for the principal krbtgt/REALM. The key for this
principal is created when the Kerberos database is initialized and need not be changed. However, it will only have the
encryption types supported by the KDC at the time of the initial database creation. To allow use of newer encryption
types for the TGT, this key has to be changed.

Changing this key using the normal kadmin change_password command would invalidate any previously issued
TGTs. Therefore, when changing this key, normally one should use the -keepold flag to change_password to retain
the previous key in the database as well as the new key. For example:

kadmin: change_password -randkey -keepold krbtgt/ATHENA.MIT.EDU@ATHENA.MIT.EDU

Warning: After issuing this command, the old key is still valid and is still vulnerable to (for instance) brute force
attacks. To completely retire an old key or encryption type, run the kadmin purgekeys command to delete keys
with older kvnos, ideally first making sure that all tickets issued with the old keys have expired.

Only the first krbtgt key of the newest key version is used to encrypt ticket-granting tickets. However, the set of
encryption types present in the krbtgt keys is used by default to determine the session key types supported by the krbtgt
service (see Session key selection). Because non-MIT Kerberos clients sometimes send a limited set of encryption
types when making AS requests, it can be important to for the krbtgt service to support multiple encryption types.
This can be accomplished by giving the krbtgt principal multiple keys, which is usually as simple as not specifying
any -e option when changing the krbtgt key, or by setting the session_enctypes string attribute on the krbtgt principal
(see set_string).

Due to a bug in releases 1.8 through 1.13, renewed and forwarded tickets may not work if the original ticket was
obtained prior to a krbtgt key change and the modified ticket is obtained afterwards. Upgrading the KDC to release
1.14 or later will correct this bug.

4.9. Changing the krbtgt key 63

Kerberos Administration Guide, Release 1.15.2

4.10 Incremental database propagation

4.10.1 Overview

At some very large sites, dumping and transmitting the database can take more time than is desirable for changes to
propagate from the master KDC to the slave KDCs. The incremental propagation support added in the 1.7 release is
intended to address this.

With incremental propagation enabled, all programs on the master KDC that change the database also write informa-
tion about the changes to an “update log” file, maintained as a circular buffer of a certain size. A process on each
slave KDC connects to a service on the master KDC (currently implemented in the kadmind server) and periodically
requests the changes that have been made since the last check. By default, this check is done every two minutes. If the
database has just been modified in the previous several seconds (currently the threshold is hard-coded at 10 seconds),
the slave will not retrieve updates, but instead will pause and try again soon after. This reduces the likelihood that
incremental update queries will cause delays for an administrator trying to make a bunch of changes to the database at
the same time.

Incremental propagation uses the following entries in the per-realm data in the KDC config file (See kdc.conf):

iprop_enable boolean If true, then incremental propagation is enabled, and (as noted below) normal kprop
propagation is disabled. The default is false.

iprop_master_ulogsizeinte-
ger

Indicates the number of entries that should be retained in the update log. The default is
1000; the maximum number is 2500.

iprop_slave_polltime
inter-
val

Indicates how often the slave should poll the master KDC for changes to the database.
The default is two minutes.

iprop_port inte-
ger

Specifies the port number to be used for incremental propagation. This is required in
both master and slave configuration files.

iprop_resync_timeoutinte-
ger

Specifies the number of seconds to wait for a full propagation to complete. This is
optional on slave configurations. Defaults to 300 seconds (5 minutes).

iprop_logfile file
name

Specifies where the update log file for the realm database is to be stored. The default is to
use the database_name entry from the realms section of the config file kdc.conf , with
.ulog appended. (NOTE: If database_name isn’t specified in the realms section, perhaps
because the LDAP database back end is being used, or the file name is specified in the
dbmodules section, then the hard-coded default for database_name is used.
Determination of the iprop_logfile default value will not use values from the dbmodules
section.)

Both master and slave sides must have a principal named kiprop/hostname (where hostname is the lowercase,
fully-qualified, canonical name for the host) registered in the Kerberos database, and have keys for that principal stored
in the default keytab file (DEFKTNAME). In release 1.13, the kiprop/hostname principal is created automatically
for the master KDC, but it must still be created for slave KDCs.

On the master KDC side, the kiprop/hostname principal must be listed in the kadmind ACL file kadm5.acl, and
given the p privilege (see Privileges).

On the slave KDC side, kpropd should be run. When incremental propagation is enabled, it will connect to the kadmind
on the master KDC and start requesting updates.

The normal kprop mechanism is disabled by the incremental propagation support. However, if the slave has been
unable to fetch changes from the master KDC for too long (network problems, perhaps), the log on the master may
wrap around and overwrite some of the updates that the slave has not yet retrieved. In this case, the slave will instruct
the master KDC to dump the current database out to a file and invoke a one-time kprop propagation, with special
options to also convey the point in the update log at which the slave should resume fetching incremental updates.
Thus, all the keytab and ACL setup previously described for kprop propagation is still needed.

64 Chapter 4. Database administration

Kerberos Administration Guide, Release 1.15.2

If an environment has a large number of slaves, it may be desirable to arrange them in a hierarchy instead of having the
master serve updates to every slave. To do this, run kadmind -proponly on each intermediate slave, and kpropd
-A upstreamhostname on downstream slaves to direct each one to the appropriate upstream slave.

There are several known restrictions in the current implementation:

• The incremental update protocol does not transport changes to policy objects. Any policy changes on the master
will result in full resyncs to all slaves.

• The slave’s KDB module must support locking; it cannot be using the LDAP KDB module.

• The master and slave must be able to initiate TCP connections in both directions, without an intervening NAT.

4.10.2 Sun/MIT incremental propagation differences

Sun donated the original code for supporting incremental database propagation to MIT. Some changes have been made
in the MIT source tree that will be visible to administrators. (These notes are based on Sun’s patches. Changes to
Sun’s implementation since then may not be reflected here.)

The Sun config file support looks for sunw_dbprop_enable, sunw_dbprop_master_ulogsize, and
sunw_dbprop_slave_poll.

The incremental propagation service is implemented as an ONC RPC service. In the Sun implementation, the service
is registered with rpcbind (also known as portmapper) and the client looks up the port number to contact. In the MIT
implementation, where interaction with some modern versions of rpcbind doesn’t always work well, the port number
must be specified in the config file on both the master and slave sides.

The Sun implementation hard-codes pathnames in /var/krb5 for the update log and the per-slave kprop dump files.
In the MIT implementation, the pathname for the update log is specified in the config file, and the per-slave dump files
are stored in LOCALSTATEDIR/krb5kdc/slave_datatrans_hostname.

4.10. Incremental database propagation 65

Kerberos Administration Guide, Release 1.15.2

66 Chapter 4. Database administration

CHAPTER

FIVE

ACCOUNT LOCKOUT

As of release 1.8, the KDC can be configured to lock out principals after a number of failed authentication attempts
within a period of time. Account lockout can make it more difficult to attack a principal’s password by brute force, but
also makes it easy for an attacker to deny access to a principal.

5.1 Configuring account lockout

Account lockout only works for principals with the +requires_preauth flag set. Without this flag, the KDC cannot
know whether or not a client successfully decrypted the ticket it issued. It is also important to set the -allow_svr flag
on a principal to protect its password from an off-line dictionary attack through a TGS request. You can set these flags
on a principal with kadmin as follows:

kadmin: modprinc +requires_preauth -allow_svr PRINCNAME

Account lockout parameters are configured via policy objects. There may be an existing policy associated with user
principals (such as the “default” policy), or you may need to create a new one and associate it with each user principal.

The policy parameters related to account lockout are:

• maxfailure: the number of failed attempts before the principal is locked out

• failurecountinterval: the allowable interval between failed attempts

• lockoutduration: the amount of time a principal is locked out for

Here is an example of setting these parameters on a new policy and associating it with a principal:

kadmin: addpol -maxfailure 10 -failurecountinterval 180
-lockoutduration 60 lockout_policy

kadmin: modprinc -policy lockout_policy PRINCNAME

5.2 Testing account lockout

To test that account lockout is working, try authenticating as the principal (hopefully not one that might be in use)
multiple times with the wrong password. For instance, if maxfailure is set to 2, you might see:

$ kinit user
Password for user@KRBTEST.COM:
kinit: Password incorrect while getting initial credentials
$ kinit user
Password for user@KRBTEST.COM:
kinit: Password incorrect while getting initial credentials

67

Kerberos Administration Guide, Release 1.15.2

$ kinit user
kinit: Client’s credentials have been revoked while getting initial credentials

5.3 Account lockout principal state

A principal entry keeps three pieces of state related to account lockout:

• The time of last successful authentication

• The time of last failed authentication

• A counter of failed attempts

The time of last successful authentication is not actually needed for the account lockout system to function, but may
be of administrative interest. These fields can be observed with the getprinc kadmin command. For example:

kadmin: getprinc user
Principal: user@KRBTEST.COM
...
Last successful authentication: [never]
Last failed authentication: Mon Dec 03 12:30:33 EST 2012
Failed password attempts: 2
...

A principal which has been locked out can be administratively unlocked with the -unlock option to the modprinc
kadmin command:

kadmin: modprinc -unlock PRINCNAME

This command will reset the number of failed attempts to 0.

5.4 KDC replication and account lockout

The account lockout state of a principal is not replicated by either traditional kprop or incremental propagation. Be-
cause of this, the number of attempts an attacker can make within a time period is multiplied by the number of KDCs.
For instance, if the maxfailure parameter on a policy is 10 and there are four KDCs in the environment (a master and
three slaves), an attacker could make as many as 40 attempts before the principal is locked out on all four KDCs.

An administrative unlock is propagated from the master to the slave KDCs during the next propagation. Propagation
of an administrative unlock will cause the counter of failed attempts on each slave to reset to 1 on the next failure.

If a KDC environment uses a replication strategy other than kprop or incremental propagation, such as the LDAP
KDB module with multi-master LDAP replication, then account lockout state may be replicated between KDCs and
the concerns of this section may not apply.

5.5 KDC performance and account lockout

In order to fully track account lockout state, the KDC must write to the the database on each successful and failed
authentication. Writing to the database is generally more expensive than reading from it, so these writes may have
a significant impact on KDC performance. As of release 1.9, it is possible to turn off account lockout state tracking
in order to improve performance, by setting the disable_last_success and disable_lockout variables in the database
module subsection of kdc.conf . For example:

68 Chapter 5. Account lockout

Kerberos Administration Guide, Release 1.15.2

[dbmodules]
DB = {

disable_last_success = true
disable_lockout = true

}

Of the two variables, setting disable_last_success will usually have the largest positive impact on performance, and
will still allow account lockout policies to operate. However, it will make it impossible to observe the last successful
authentication time with kadmin.

5.6 KDC setup and account lockout

To update the account lockout state on principals, the KDC must be able to write to the principal database. For the
DB2 module, no special setup is required. For the LDAP module, the KDC DN must be granted write access to the
principal objects. If the KDC DN has only read access, account lockout will not function.

5.6. KDC setup and account lockout 69

Kerberos Administration Guide, Release 1.15.2

70 Chapter 5. Account lockout

CHAPTER

SIX

CONFIGURING KERBEROS WITH OPENLDAP BACK-END

1. Set up SSL on the OpenLDAP server and client to ensure secure communication when the KDC service and
LDAP server are on different machines. ldapi:// can be used if the LDAP server and KDC service are
running on the same machine.

(a) Setting up SSL on the OpenLDAP server:

(a) Get a CA certificate using OpenSSL tools

(b) Configure OpenLDAP server for using SSL/TLS

For the latter, you need to specify the location of CA certificate location in slapd.conf file.

Refer to the following link for more information: http://www.openldap.org/doc/admin23/tls.html

(a) Setting up SSL on OpenLDAP client:

i. For the KDC and Admin Server, you need to do the client-side configuration in ldap.conf. For exam-
ple:

TLS_CACERT /etc/openldap/certs/cacert.pem

2. Include the Kerberos schema file (kerberos.schema) in the configuration file (slapd.conf) on the LDAP Server,
by providing the location where it is stored:

include /etc/openldap/schema/kerberos.schema

3. Choose DNs for the krb5kdc and kadmind servers to bind to the LDAP server, and create them if neces-
sary. These DNs will be specified with the ldap_kdc_dn and ldap_kadmind_dn directives in kdc.conf ; their
passwords can be stashed with “kdb5_ldap_util stashsrvpw” and the resulting file specified with the
ldap_service_password_file directive.

4. Choose a DN for the global Kerberos container entry (but do not create the entry at this time). This DN will be
specified with the ldap_kerberos_container_dn directive in kdc.conf . Realm container entries will be created
underneath this DN. Principal entries may exist either underneath the realm container (the default) or in separate
trees referenced from the realm container.

5. Configure the LDAP server ACLs to enable the KDC and kadmin server DNs to read and write the Kerberos
data. If disable_last_success and disable_lockout are both set to true in the [dbmodules] subsection for the
realm, then the KDC DN only requires read access to the Kerberos data.

Sample access control information:

access to dn.base=""
by * read

access to dn.base="cn=Subschema"
by * read

71

http://www.openldap.org/doc/admin23/tls.html

Kerberos Administration Guide, Release 1.15.2

access to attrs=userPassword,userPKCS12
by self write
by * auth

access to attrs=shadowLastChange
by self write
by * read

Providing access to realm container
access to dn.subtree= "cn=EXAMPLE.COM,cn=krbcontainer,dc=example,dc=com"

by dn.exact="cn=kdc-service,dc=example,dc=com" write
by dn.exact="cn=adm-service,dc=example,dc=com" write
by * none

Providing access to principals, if not underneath realm container
access to dn.subtree= "ou=users,dc=example,dc=com"

by dn.exact="cn=kdc-service,dc=example,dc=com" write
by dn.exact="cn=adm-service,dc=example,dc=com" write
by * none

access to *
by * read

If the locations of the container and principals or the DNs of the service objects for a realm are changed then
this information should be updated.

6. Start the LDAP server as follows:

slapd -h "ldapi:/// ldaps:///"

7. Modify the kdc.conf file to include LDAP specific items listed below:

realms
database_module

dbmodules
db_library
db_module_dir
ldap_kdc_dn
ldap_kadmind_dn
ldap_service_password_file
ldap_servers
ldap_conns_per_server

8. Create the realm using kdb5_ldap_util (see Creating a Kerberos realm):

kdb5_ldap_util -D cn=admin,dc=example,dc=com create -subtrees ou=users,dc=example,dc=com -r EXAMPLE.COM -s

Use the -subtrees option if the principals are to exist in a separate subtree from the realm container. Before
executing the command, make sure that the subtree mentioned above (ou=users,dc=example,dc=com)
exists. If the principals will exist underneath the realm container, omit the -subtrees option and do not worry
about creating the principal subtree.

For more information, refer to the section Operations on the LDAP database.

The realm object is created under the ldap_kerberos_container_dn specified in the configuration file. This
operation will also create the Kerberos container, if not present already. This will be used to store information
related to all realms.

72 Chapter 6. Configuring Kerberos with OpenLDAP back-end

Kerberos Administration Guide, Release 1.15.2

9. Stash the password of the service object used by the KDC and Administration service to bind to the LDAP
server using the kdb5_ldap_util stashsrvpw command (see Stashing service object’s password). The object DN
should be the same as ldap_kdc_dn and ldap_kadmind_dn values specified in the kdc.conf file:

kdb5_ldap_util -D cn=admin,dc=example,dc=com stashsrvpw -f /etc/kerberos/service.keyfile cn=krbadmin,dc=example,dc=com

10. Add krbPrincipalName to the indexes in slapd.conf to speed up the access.

With the LDAP back end it is possible to provide aliases for principal entries. Currently we provide no mechanism
provided for creating aliases, so it must be done by direct manipulation of the LDAP entries.

An entry with aliases contains multiple values of the krbPrincipalName attribute. Since LDAP attribute values are not
ordered, it is necessary to specify which principal name is canonical, by using the krbCanonicalName attribute. There-
fore, to create aliases for an entry, first set the krbCanonicalName attribute of the entry to the canonical principal name
(which should be identical to the pre-existing krbPrincipalName value), and then add additional krbPrincipalName
attributes for the aliases.

Principal aliases are only returned by the KDC when the client requests canonicalization. Canonicalization is nor-
mally requested for service principals; for client principals, an explicit flag is often required (e.g., kinit -C) and
canonicalization is only performed for initial ticket requests.

See also:

LDAP backend on Ubuntu 10.4 (lucid)

73

Kerberos Administration Guide, Release 1.15.2

74 Chapter 6. Configuring Kerberos with OpenLDAP back-end

CHAPTER

SEVEN

APPLICATION SERVERS

If you need to install the Kerberos V5 programs on an application server, please refer to the Kerberos V5 Installation
Guide. Once you have installed the software, you need to add that host to the Kerberos database (see Adding, modifying
and deleting principals), and generate a keytab for that host, that contains the host’s key. You also need to make sure
the host’s clock is within your maximum clock skew of the KDCs.

7.1 Keytabs

A keytab is a host’s copy of its own keylist, which is analogous to a user’s password. An application server that needs
to authenticate itself to the KDC has to have a keytab that contains its own principal and key. Just as it is important
for users to protect their passwords, it is equally important for hosts to protect their keytabs. You should always store
keytab files on local disk, and make them readable only by root, and you should never send a keytab file over a network
in the clear. Ideally, you should run the kadmin command to extract a keytab on the host on which the keytab is to
reside.

7.1.1 Adding principals to keytabs

To generate a keytab, or to add a principal to an existing keytab, use the ktadd command from kadmin.

7.1.2 ktadd

ktadd [options] principal
ktadd [options] -glob princ-exp

Adds a principal, or all principals matching princ-exp, to a keytab file. Each principal’s keys are randomized in the
process. The rules for princ-exp are described in the list_principals command.

This command requires the inquire and changepw privileges. With the -glob form, it also requires the list privilege.

The options are:

-k[eytab] keytab Use keytab as the keytab file. Otherwise, the default keytab is used.

-e enc:salt,... Uses the specified keysalt list for setting the new keys of the principal. See Keysalt lists in kdc.conf for
a list of possible values.

-q Display less verbose information.

-norandkey Do not randomize the keys. The keys and their version numbers stay unchanged. This option cannot be
specified in combination with the -e option.

75

Kerberos Administration Guide, Release 1.15.2

An entry for each of the principal’s unique encryption types is added, ignoring multiple keys with the same encryption
type but different salt types.

Example:

kadmin: ktadd -k /tmp/foo-new-keytab host/foo.mit.edu
Entry for principal host/foo.mit.edu@ATHENA.MIT.EDU with kvno 3,

encryption type aes256-cts-hmac-sha1-96 added to keytab
FILE:/tmp/foo-new-keytab

kadmin:

Examples

Here is a sample session, using configuration files that enable only AES encryption:

kadmin: ktadd host/daffodil.mit.edu@ATHENA.MIT.EDU
Entry for principal host/daffodil.mit.edu with kvno 2, encryption type aes256-cts-hmac-sha1-96 added to keytab FILE:/etc/krb5.keytab
Entry for principal host/daffodil.mit.edu with kvno 2, encryption type aes128-cts-hmac-sha1-96 added to keytab FILE:/etc/krb5.keytab
kadmin:

7.1.3 Removing principals from keytabs

To remove a principal from an existing keytab, use the kadmin ktremove command.

7.1.4 ktremove

ktremove [options] principal [kvno | all | old]

Removes entries for the specified principal from a keytab. Requires no permissions, since this does not require
database access.

If the string “all” is specified, all entries for that principal are removed; if the string “old” is specified, all entries for
that principal except those with the highest kvno are removed. Otherwise, the value specified is parsed as an integer,
and all entries whose kvno match that integer are removed.

The options are:

-k[eytab] keytab Use keytab as the keytab file. Otherwise, the default keytab is used.

-q Display less verbose information.

Example:

kadmin: ktremove kadmin/admin all
Entry for principal kadmin/admin with kvno 3 removed from keytab

FILE:/etc/krb5.keytab
kadmin:

7.2 Clock Skew

A Kerberos application server host must keep its clock synchronized or it will reject authentication requests from
clients. Modern operating systems typically provide a facility to maintain the correct time; make sure it is enabled.
This is especially important on virtual machines, where clocks tend to drift more rapidly than normal machine clocks.

The default allowable clock skew is controlled by the clockskew variable in [libdefaults].

76 Chapter 7. Application servers

Kerberos Administration Guide, Release 1.15.2

7.3 Getting DNS information correct

Several aspects of Kerberos rely on name service. When a hostname is used to name a service, the Kerberos library
canonicalizes the hostname using forward and reverse name resolution. (The reverse name resolution step can be
turned off using the rdns variable in [libdefaults].) The result of this canonicalization must match the principal entry
in the host’s keytab, or authentication will fail.

Each host’s canonical name must be the fully-qualified host name (including the domain), and each host’s IP address
must reverse-resolve to the canonical name.

Configuration of hostnames varies by operating system. On the application server itself, canonicalization will typically
use the /etc/hosts file rather than the DNS. Ensure that the line for the server’s hostname is in the following form:

IP address fully-qualified hostname aliases

Here is a sample /etc/hosts file:

this is a comment
127.0.0.1 localhost localhost.mit.edu
10.0.0.6 daffodil.mit.edu daffodil trillium wake-robin

The output of klist -k for this example host should look like:

viola# klist -k
Keytab name: /etc/krb5.keytab
KVNO Principal
---- --

2 host/daffodil.mit.edu@ATHENA.MIT.EDU

If you were to ssh to this host with a fresh credentials cache (ticket file), and then klist(1), the output should list a
service principal of host/daffodil.mit.edu@ATHENA.MIT.EDU.

7.4 Configuring your firewall to work with Kerberos V5

If you need off-site users to be able to get Kerberos tickets in your realm, they must be able to get to your KDC.
This requires either that you have a slave KDC outside your firewall, or that you configure your firewall to allow UDP
requests into at least one of your KDCs, on whichever port the KDC is running. (The default is port 88; other ports
may be specified in the KDC’s kdc.conf file.) Similarly, if you need off-site users to be able to change their passwords
in your realm, they must be able to get to your Kerberos admin server on the kpasswd port (which defaults to 464). If
you need off-site users to be able to administer your Kerberos realm, they must be able to get to your Kerberos admin
server on the administrative port (which defaults to 749).

If your on-site users inside your firewall will need to get to KDCs in other realms, you will also need to configure
your firewall to allow outgoing TCP and UDP requests to port 88, and to port 464 to allow password changes. If your
on-site users inside your firewall will need to get to Kerberos admin servers in other realms, you will also need to
allow outgoing TCP and UDP requests to port 749.

If any of your KDCs are outside your firewall, you will need to allow kprop requests to get through to the remote
KDC. kprop uses the krb5_prop service on port 754 (tcp).

The book UNIX System Security, by David Curry, is a good starting point for learning to configure firewalls.

7.3. Getting DNS information correct 77

Kerberos Administration Guide, Release 1.15.2

78 Chapter 7. Application servers

CHAPTER

EIGHT

HOST CONFIGURATION

All hosts running Kerberos software, whether they are clients, application servers, or KDCs, can be configured using
krb5.conf . Here we describe some of the behavior changes you might want to make.

8.1 Default realm

In the [libdefaults] section, the default_realm realm relation sets the default Kerberos realm. For example:

[libdefaults]
default_realm = ATHENA.MIT.EDU

The default realm affects Kerberos behavior in the following ways:

• When a principal name is parsed from text, the default realm is used if no @REALM component is specified.

• The default realm affects login authorization as described below.

• For programs which operate on a Kerberos database, the default realm is used to determine which database to
operate on, unless the -r parameter is given to specify a realm.

• A server program may use the default realm when looking up its key in a keytab file, if its realm is not determined
by [domain_realm] configuration or by the server program itself.

• If kinit(1) is passed the -n flag, it requests anonymous tickets from the default realm.

In some situations, these uses of the default realm might conflict. For example, it might be desirable for principal
name parsing to use one realm by default, but for login authorization to use a second realm. In this situation, the first
realm can be configured as the default realm, and auth_to_local relations can be used as described below to use the
second realm for login authorization.

8.2 Login authorization

If a host runs a Kerberos-enabled login service such as OpenSSH with GSSAPIAuthentication enabled, login autho-
rization rules determine whether a Kerberos principal is allowed to access a local account.

By default, a Kerberos principal is allowed access to an account if its realm matches the default realm
and its name matches the account name. (For historical reasons, access is also granted by default
if the name has two components and the second component matches the default realm; for instance,
alice/ATHENA.MIT.EDU@ATHENA.MIT.EDU is granted access to the alice account if ATHENA.MIT.EDU
is the default realm.)

The simplest way to control local access is using .k5login(5) files. To use these, place a .k5login file in the
home directory of each account listing the principal names which should have login access to that account. If it

79

Kerberos Administration Guide, Release 1.15.2

is not desirable to use .k5login files located in account home directories, the k5login_directory relation in the
[libdefaults] section can specify a directory containing one file per account uname.

By default, if a .k5login file is present, it controls authorization both positively and negatively–any principal name
contained in the file is granted access and any other principal name is denied access, even if it would have had access
if the .k5login file didn’t exist. The k5login_authoritative relation in the [libdefaults] section can be set to false
to make .k5login files provide positive authorization only.

The auth_to_local relation in the [realms] section for the default realm can specify pattern-matching rules to control
login authorization. For example, the following configuration allows access to principals from a different realm than
the default realm:

[realms]
DEFAULT.REALM = {

Allow access to principals from OTHER.REALM.
#
[1:$1@$0] matches single-component principal names and creates
a selection string containing the principal name and realm.
#
(.*@OTHER\.REALM) matches against the selection string, so that
only principals in OTHER.REALM are matched.
#
s/@OTHER\.REALM$// removes the realm name, leaving behind the
principal name as the acount name.
auth_to_local = RULE:[1:$1@$0](.*@OTHER\.REALM)s/@OTHER\.REALM$//

Also allow principals from the default realm. Omit this line
to only allow access to principals in OTHER.REALM.
auth_to_local = DEFAULT

}

The auth_to_local_names subsection of the [realms] section for the default realm can specify explicit mappings from
principal names to local accounts. The key used in this subsection is the principal name without realm, so it is only
safe to use in a Kerberos environment with a single realm or a tightly controlled set of realms. An example use of
auth_to_local_names might be:

[realms]
ATHENA.MIT.EDU = {

auth_to_local_names = {
Careful, these match principals in any realm!
host/example.com = hostaccount
fred = localfred

}
}

Local authorization behavior can also be modified using plugin modules; see hostrealm_plugin for details.

8.3 Plugin module configuration

Many aspects of Kerberos behavior, such as client preauthentication and KDC service location, can be modified
through the use of plugin modules. For most of these behaviors, you can use the [plugins] section of krb5.conf to
register third-party modules, and to switch off registered or built-in modules.

A plugin module takes the form of a Unix shared object (modname.so) or Windows DLL (modname.dll). If you
have installed a third-party plugin module and want to register it, you do so using the module relation in the appropriate
subsection of the [plugins] section. The value for module must give the module name and the path to the module,
separated by a colon. The module name will often be the same as the shared object’s name, but in unusual cases (such

80 Chapter 8. Host configuration

Kerberos Administration Guide, Release 1.15.2

as a shared object which implements multiple modules for the same interface) it might not be. For example, to register
a client preauthentication module named mypreauth installed at /path/to/mypreauth.so, you could write:

[plugins]
clpreauth = {

module = mypreauth:/path/to/mypreauth.so
}

Many of the pluggable behaviors in MIT krb5 contain built-in modules which can be switched off. You can disable a
built-in module (or one you have registered) using the disable directive in the appropriate subsection of the [plugins]
section. For example, to disable the use of .k5identity files to select credential caches, you could write:

[plugins]
ccselect = {

disable = k5identity
}

If you want to disable multiple modules, specify the disable directive multiple times, giving one module to disable
each time.

Alternatively, you can explicitly specify which modules you want to be enabled for that behavior using the enable_only
directive. For example, to make kadmind check password quality using only a module you have registered, and no
other mechanism, you could write:

[plugins]
pwqual = {

module = mymodule:/path/to/mymodule.so
enable_only = mymodule

}

Again, if you want to specify multiple modules, specify the enable_only directive multiple times, giving one module
to enable each time.

Some Kerberos interfaces use different mechanisms to register plugin modules.

8.3.1 KDC location modules

For historical reasons, modules to control how KDC servers are located are registered simply by placing the shared ob-
ject or DLL into the “libkrb5” subdirectory of the krb5 plugin directory, which defaults to LIBDIR/krb5/plugins.
For example, Samba’s winbind krb5 locator plugin would be registered by placing its shared object in LIB-
DIR/krb5/plugins/libkrb5/winbind_krb5_locator.so.

8.3.2 GSSAPI mechanism modules

GSSAPI mechanism modules are registered using the file /etc/gss/mech or configuration files in the
/etc/gss/mech.d/ directory. Only files with a .conf suffix will be read from the /etc/gss/mech.d/
directory. Each line in these files has the form:

oid pathname [options] <type>

Only the oid and pathname are required. oid is the object identifier of the GSSAPI mechanism to be registered.
pathname is a path to the module shared object or DLL. options (if present) are options provided to the plugin module,
surrounded in square brackets. type (if present) can be used to indicate a special type of module. Currently the only
special module type is “interposer”, for a module designed to intercept calls to other mechanisms.

8.3. Plugin module configuration 81

Kerberos Administration Guide, Release 1.15.2

8.3.3 Configuration profile modules

A configuration profile module replaces the information source for krb5.conf itself. To use a profile module, begin
krb5.conf with the line:

module PATHNAME:STRING

where PATHNAME is a path to the module shared object or DLL, and STRING is a string to provide to the module.
The module will then take over, and the rest of krb5.conf will be ignored.

82 Chapter 8. Host configuration

CHAPTER

NINE

BACKUPS OF SECURE HOSTS

When you back up a secure host, you should exclude the host’s keytab file from the backup. If someone obtained
a copy of the keytab from a backup, that person could make any host masquerade as the host whose keytab was
compromised. In many configurations, knowledge of the host’s keytab also allows root access to the host. This could
be particularly dangerous if the compromised keytab was from one of your KDCs. If the machine has a disk crash
and the keytab file is lost, it is easy to generate another keytab file. (See Adding principals to keytabs.) If you are
unable to exclude particular files from backups, you should ensure that the backups are kept as secure as the host’s
root password.

9.1 Backing up the Kerberos database

As with any file, it is possible that your Kerberos database could become corrupted. If this happens on one of the
slave KDCs, you might never notice, since the next automatic propagation of the database would install a fresh copy.
However, if it happens to the master KDC, the corrupted database would be propagated to all of the slaves during the
next propagation. For this reason, MIT recommends that you back up your Kerberos database regularly. Because the
master KDC is continuously dumping the database to a file in order to propagate it to the slave KDCs, it is a simple
matter to have a cron job periodically copy the dump file to a secure machine elsewhere on your network. (Of course,
it is important to make the host where these backups are stored as secure as your KDCs, and to encrypt its transmission
across your network.) Then if your database becomes corrupted, you can load the most recent dump onto the master
KDC. (See Restoring a Kerberos database from a dump file.)

83

Kerberos Administration Guide, Release 1.15.2

84 Chapter 9. Backups of secure hosts

CHAPTER

TEN

PKINIT CONFIGURATION

PKINIT is a preauthentication mechanism for Kerberos 5 which uses X.509 certificates to authenticate the KDC
to clients and vice versa. PKINIT can also be used to enable anonymity support, allowing clients to communicate
securely with the KDC or with application servers without authenticating as a particular client principal.

10.1 Creating certificates

PKINIT requires an X.509 certificate for the KDC and one for each client principal which will authenticate using
PKINIT. For anonymous PKINIT, a KDC certificate is required, but client certificates are not. A commercially issued
server certificate can be used for the KDC certificate, but generally cannot be used for client certificates.

The instruction in this section describe how to establish a certificate authority and create standard PKINIT certificates.
Skip this section if you are using a commercially issued server certificate as the KDC certificate for anonymous
PKINIT, or if you are configuring a client to use an Active Directory KDC.

10.1.1 Generating a certificate authority certificate

You can establish a new certificate authority (CA) for use with a PKINIT deployment with the commands:

openssl genrsa -out cakey.pem 2048
openssl req -key cakey.pem -new -x509 -out cacert.pem -days 3650

The second command will ask for the values of several certificate fields. These fields can be set to any values. You
can adjust the expiration time of the CA certificate by changing the number after -days. Since the CA certificate
must be deployed to client machines each time it changes, it should normally have an expiration time far in the future;
however, expiration times after 2037 may cause interoperability issues in rare circumstances.

The result of these commands will be two files, cakey.pem and cacert.pem. cakey.pem will contain a 2048-bit RSA
private key, which must be carefully protected. cacert.pem will contain the CA certificate, which must be placed in the
filesytems of the KDC and each client host. cakey.pem will be required to create KDC and client certificates.

10.1.2 Generating a KDC certificate

A KDC certificate for use with PKINIT is required to have some unusual fields, which makes generating them with
OpenSSL somewhat complicated. First, you will need a file containing the following:

[kdc_cert]
basicConstraints=CA:FALSE
keyUsage=nonRepudiation,digitalSignature,keyEncipherment,keyAgreement
extendedKeyUsage=1.3.6.1.5.2.3.5
subjectKeyIdentifier=hash

85

Kerberos Administration Guide, Release 1.15.2

authorityKeyIdentifier=keyid,issuer
issuerAltName=issuer:copy
subjectAltName=otherName:1.3.6.1.5.2.2;SEQUENCE:kdc_princ_name

[kdc_princ_name]
realm=EXP:0,GeneralString:${ENV::REALM}
principal_name=EXP:1,SEQUENCE:kdc_principal_seq

[kdc_principal_seq]
name_type=EXP:0,INTEGER:1
name_string=EXP:1,SEQUENCE:kdc_principals

[kdc_principals]
princ1=GeneralString:krbtgt
princ2=GeneralString:${ENV::REALM}

If the above contents are placed in extensions.kdc, you can generate and sign a KDC certificate with the following
commands:

openssl genrsa -out kdckey.pem 2048
openssl req -new -out kdc.req -key kdckey.pem
env REALM=YOUR_REALMNAME openssl x509 -req -in kdc.req \

-CAkey cakey.pem -CA cacert.pem -out kdc.pem -days 365 \
-extfile extensions.kdc -extensions kdc_cert -CAcreateserial

rm kdc.req

The second command will ask for the values of certificate fields, which can be set to any values. In the third command,
substitute your KDC’s realm name for YOUR_REALMNAME. You can adjust the certificate’s expiration date by
changing the number after -days. Remember to create a new KDC certificate before the old one expires.

The result of this operation will be in two files, kdckey.pem and kdc.pem. Both files must be placed in the KDC’s
filesystem. kdckey.pem, which contains the KDC’s private key, must be carefully protected.

If you examine the KDC certificate with openssl x509 -in kdc.pem -text -noout, OpenSSL will not
know how to display the KDC principal name in the Subject Alternative Name extension, so it will appear as
othername:<unsupported>. This is normal and does not mean anything is wrong with the KDC certificate.

10.1.3 Generating client certificates

PKINIT client certificates also must have some unusual certificate fields. To generate a client certificate with OpenSSL
for a single-component principal name, you will need an extensions file (different from the KDC extensions file above)
containing:

[client_cert]
basicConstraints=CA:FALSE
keyUsage=digitalSignature,keyEncipherment,keyAgreement
extendedKeyUsage=1.3.6.1.5.2.3.4
subjectKeyIdentifier=hash
authorityKeyIdentifier=keyid,issuer
issuerAltName=issuer:copy
subjectAltName=otherName:1.3.6.1.5.2.2;SEQUENCE:princ_name

[princ_name]
realm=EXP:0,GeneralString:${ENV::REALM}
principal_name=EXP:1,SEQUENCE:principal_seq

[principal_seq]

86 Chapter 10. PKINIT configuration

Kerberos Administration Guide, Release 1.15.2

name_type=EXP:0,INTEGER:1
name_string=EXP:1,SEQUENCE:principals

[principals]
princ1=GeneralString:${ENV::CLIENT}

If the above contents are placed in extensions.client, you can generate and sign a client certificate with the following
commands:

openssl genrsa -out clientkey.pem 2048
openssl req -new -key clientkey.pem -out client.req
env REALM=YOUR_REALMNAME CLIENT=YOUR_PRINCNAME openssl x509 \

-CAkey cakey.pem -CA cacert.pem -req -in client.req \
-extensions client_cert -extfile extensions.client \
-days 365 -out client.pem

rm client.req

Normally, the first two commands should be run on the client host, and the resulting client.req file transferred to
the certificate authority host for the third command. As in the previous steps, the second command will ask for the
values of certificate fields, which can be set to any values. In the third command, substitute your realm’s name for
YOUR_REALMNAME and the client’s principal name (without realm) for YOUR_PRINCNAME. You can adjust the
certificate’s expiration date by changing the number after -days.

The result of this operation will be two files, clientkey.pem and client.pem. Both files must be present on the client’s
host; clientkey.pem, which contains the client’s private key, must be protected from access by others.

As in the KDC certificate, OpenSSL will display the client principal name as othername:<unsupported> in the
Subject Alternative Name extension of a PKINIT client certificate.

If the client principal name contains more than one component (e.g. host/example.com@REALM), the
[principals] section of extensions.client must be altered to contain multiple entries. (Simply setting
CLIENT to host/example.com would generate a certificate for host\/example.com@REALM which would
not match the multi-component principal name.) For a two-component principal, the section should read:

[principals]
princ1=GeneralString:${ENV::CLIENT1}
princ2=GeneralString:${ENV::CLIENT2}

The environment variables CLIENT1 and CLIENT2must then be set to the first and second components when running
openssl x509.

10.2 Configuring the KDC

The KDC must have filesystem access to the KDC certificate (kdc.pem) and the KDC private key (kdckey.pem). Con-
figure the following relation in the KDC’s kdc.conf file, either in the [kdcdefaults] section or in a [realms] subsection
(with appropriate pathnames):

pkinit_identity = FILE:/var/lib/krb5kdc/kdc.pem,/var/lib/krb5kdc/kdckey.pem

If any clients will authenticate using regular (as opposed to anonymous) PKINIT, the KDC must also have filesystem
access to the CA certificate (cacert.pem), and the following configuration (with the appropriate pathname):

pkinit_anchors = FILE:/var/lib/krb5kdc/cacert.pem

Because of the larger size of requests and responses using PKINIT, you may also need to allow TCP access to the
KDC:

10.2. Configuring the KDC 87

Kerberos Administration Guide, Release 1.15.2

kdc_tcp_listen = 88

Restart the krb5kdc daemon to pick up the configuration changes.

The principal entry for each PKINIT-using client must be configured to require preauthentication. Ensure this with the
command:

kadmin -q ’modprinc +requires_preauth YOUR_PRINCNAME’

Starting with release 1.12, it is possible to remove the long-term keys of a principal entry, which can save some space
in the database and help to clarify some PKINIT-related error conditions by not asking for a password:

kadmin -q ’purgekeys -all YOUR_PRINCNAME’

These principal options can also be specified at principal creation time as follows:

kadmin -q ’add_principal +requires_preauth -nokey YOUR_PRINCNAME’

10.3 Configuring the clients

Client hosts must be configured to trust the issuing authority for the KDC certificate. For a newly established certificate
authority, the client host must have filesystem access to the CA certificate (cacert.pem) and the following relation in
krb5.conf in the appropriate [realms] subsection (with appropriate pathnames):

pkinit_anchors = FILE:/etc/krb5/cacert.pem

If the KDC certificate is a commercially issued server certificate, the issuing certificate is most likely included in a
system directory. You can specify it by filename as above, or specify the whole directory like so:

pkinit_anchors = DIR:/etc/ssl/certs

A commercially issued server certificate will usually not have the standard PKINIT principal name or Extended Key
Usage extensions, so the following additional configuration is required:

pkinit_eku_checking = kpServerAuth
pkinit_kdc_hostname = hostname.of.kdc.certificate

Multiple pkinit_kdc_hostname relations can be configured to recognize multiple KDC certificates. If the KDC is an
Active Directory domain controller, setting pkinit_kdc_hostname is necessary, but it should not be necessary to set
pkinit_eku_checking.

To perform regular (as opposed to anonymous) PKINIT authentication, a client host must have filesystem access to a
client certificate (client.pem), and the corresponding private key (clientkey.pem). Configure the following relations in
the client host’s krb5.conf file in the appropriate [realms] subsection (with appropriate pathnames):

pkinit_identities = FILE:/etc/krb5/client.pem,/etc/krb5/clientkey.pem

If the KDC and client are properly configured, it should now be possible to run kinit username without entering
a password.

10.4 Anonymous PKINIT

Anonymity support in Kerberos allows a client to obtain a ticket without authenticating as any particular principal.
Such a ticket can be used as a FAST armor ticket, or to securely communicate with an application server anonymously.

88 Chapter 10. PKINIT configuration

Kerberos Administration Guide, Release 1.15.2

To configure anonymity support, you must generate or otherwise procure a KDC certificate and configure the KDC
host, but you do not need to generate any client certificates. On the KDC, you must set the pkinit_identity variable to
provide the KDC certificate, but do not need to set the pkinit_anchors variable or store the issuing certificate if you
won’t have any client certificates to verify. On client hosts, you must set the pkinit_anchors variable (and possibly
pkinit_kdc_hostname and pkinit_eku_checking) in order to trust the issuing authority for the KDC certificate, but
do not need to set the pkinit_identities variable.

Anonymity support is not enabled by default. To enable it, you must create the principal WELLKNOWN/ANONYMOUS
using the command:

kadmin -q ’addprinc -randkey WELLKNOWN/ANONYMOUS’

Some Kerberos deployments include application servers which lack proper access control, and grant some level of
access to any user who can authenticate. In such an environment, enabling anonymity support on the KDC would
present a security issue. If you need to enable anonymity support for TGTs (for use as FAST armor tickets) without
enabling anonymous authentication to application servers, you can set the variable restrict_anonymous_to_tgt to
true in the appropriate [realms] subsection of the KDC’s kdc.conf file.

To obtain anonymous credentials on a client, run kinit -n, or kinit -n @REALMNAME to specify a realm. The
resulting tickets will have the client name WELLKNOWN/ANONYMOUS@WELLKNOWN:ANONYMOUS.

10.4. Anonymous PKINIT 89

Kerberos Administration Guide, Release 1.15.2

90 Chapter 10. PKINIT configuration

CHAPTER

ELEVEN

OTP PREAUTHENTICATION

OTP is a preauthentication mechanism for Kerberos 5 which uses One Time Passwords (OTP) to authenticate the client
to the KDC. The OTP is passed to the KDC over an encrypted FAST channel in clear-text. The KDC uses the password
along with per-user configuration to proxy the request to a third-party RADIUS system. This enables out-of-the-box
compatibility with a large number of already widely deployed proprietary systems.

Additionally, our implementation of the OTP system allows for the passing of RADIUS requests over a UNIX domain
stream socket. This permits the use of a local companion daemon which can handle the details of authentication.

11.1 Defining token types

Token types are defined in either krb5.conf or kdc.conf according to the following format:

[otp]
<name> = {

server = <host:port or filename> (default: see below)
secret = <filename>
timeout = <integer> (default: 5 [seconds])
retries = <integer> (default: 3)
strip_realm = <boolean> (default: true)
indicator = <string> (default: none)

}

If the server field begins with ‘/’, it will be interpreted as a UNIX socket. Otherwise, it is assumed to be in the format
host:port. When a UNIX domain socket is specified, the secret field is optional and an empty secret is used by default.
If the server field is not specified, it defaults to RUNSTATEDIR/krb5kdc/<name>.socket.

When forwarding the request over RADIUS, by default the principal is used in the User-Name attribute of the RADIUS
packet. The strip_realm parameter controls whether the principal is forwarded with or without the realm portion.

If an indicator field is present, tickets issued using this token type will be annotated with the specified authentication
indicator (see Authentication indicators). This key may be specified multiple times to add multiple indicators.

11.2 The default token type

A default token type is used internally when no token type is specified for a given user. It is defined as follows:

[otp]
DEFAULT = {

strip_realm = false
}

91

Kerberos Administration Guide, Release 1.15.2

The administrator may override the internal DEFAULT token type simply by defining a configuration with the same
name.

11.3 Token instance configuration

To enable OTP for a client principal, the administrator must define the otp string attribute for that principal. (See
set_string.) The otp user string is a JSON string of the format:

[{
"type": <string>,
"username": <string>,
"indicators": [<string>, ...]

}, ...]

This is an array of token objects. Both fields of token objects are optional. The type field names the token type of this
token; if not specified, it defaults to DEFAULT. The username field specifies the value to be sent in the User-Name
RADIUS attribute. If not specified, the principal name is sent, with or without realm as defined in the token type. The
indicators field specifies a list of authentication indicators to annotate tickets with, overriding any indicators specified
in the token type.

For ease of configuration, an empty array ([]) is treated as equivalent to one DEFAULT token ([{}]).

11.4 Other considerations

1. FAST is required for OTP to work.

92 Chapter 11. OTP Preauthentication

CHAPTER

TWELVE

PRINCIPAL NAMES AND DNS

Kerberos clients can do DNS lookups to canonicalize service principal names. This can cause difficulties when setting
up Kerberos application servers, especially when the client’s name for the service is different from what the service
thinks its name is.

12.1 Service principal names

A frequently used kind of principal name is the host-based service principal name. This kind of principal name has
two components: a service name and a hostname. For example, imap/imap.example.com is the principal name
of the “imap” service on the host “imap.example.com”. Other possible service names for the first component include
“host” (remote login services such as ssh), “HTTP”, and “nfs” (Network File System).

Service administrators often publish well-known hostname aliases that they would prefer users to use instead of the
canonical name of the service host. This gives service administrators more flexibility in deploying services. For
example, a shell login server might be named “long-vanity-hostname.example.com”, but users will naturally prefer to
type something like “login.example.com”. Hostname aliases also allow for administrators to set up load balancing for
some sorts of services based on rotating CNAME records in DNS.

12.2 Service principal canonicalization

MIT Kerberos clients currently always do forward resolution (looking up the IPv4 and possibly IPv6 addresses using
getaddrinfo()) of the hostname part of a host-based service principal to canonicalize the hostname. They obtain
the “canonical” name of the host when doing so. By default, MIT Kerberos clients will also then do reverse DNS reso-
lution (looking up the hostname associated with the IPv4 or IPv6 address using getnameinfo()) of the hostname.
Using the krb5.conf setting:

[libdefaults]
rdns = false

will disable reverse DNS lookup on clients. The default setting is “true”.

Operating system bugs may prevent a setting of rdns = false from disabling reverse DNS lookup. Some versions
of GNU libc have a bug in getaddrinfo() that cause them to look up PTR records even when not required. MIT
Kerberos releases krb5-1.10.2 and newer have a workaround for this problem, as does the krb5-1.9.x series as of
release krb5-1.9.4.

93

Kerberos Administration Guide, Release 1.15.2

12.3 Reverse DNS mismatches

Sometimes, an enterprise will have control over its forward DNS but not its reverse DNS. The reverse DNS is some-
times under the control of the Internet service provider of the enterprise, and the enterprise may not have much
influence in setting up reverse DNS records for its address space. If there are difficulties with getting forward and
reverse DNS to match, it is best to set rdns = false on client machines.

12.4 Overriding application behavior

Applications can choose to use a default hostname component in their service principal name when accepting authen-
tication, which avoids some sorts of hostname mismatches. Because not all relevant applications do this yet, using the
krb5.conf setting:

[libdefaults]
ignore_acceptor_hostname = true

will allow the Kerberos library to override the application’s choice of service principal hostname and will allow a
server program to accept incoming authentications using any key in its keytab that matches the service name and
realm name (if given). This setting defaults to “false” and is available in releases krb5-1.10 and later.

12.5 Provisioning keytabs

One service principal entry that should be in the keytab is a principal whose hostname component is the canonical
hostname that getaddrinfo() reports for all known aliases for the host. If the reverse DNS information does not
match this canonical hostname, an additional service principal entry should be in the keytab for this different hostname.

12.6 Specific application advice

12.6.1 Secure shell (ssh)

Setting GSSAPIStrictAcceptorCheck = no in the configuration file of modern versions of the openssh dae-
mon will allow the daemon to try any key in its keytab when accepting a connection, rather than looking for the keytab
entry that matches the host’s own idea of its name (typically the name that gethostname() returns). This requires
krb5-1.10 or later.

94 Chapter 12. Principal names and DNS

CHAPTER

THIRTEEN

ENCRYPTION TYPES

Kerberos can use a variety of cipher algorithms to protect data. A Kerberos encryption type (also known as an
enctype) is a specific combination of a cipher algorithm with an integrity algorithm to provide both confidentiality
and integrity to data.

13.1 Enctypes in requests

Clients make two types of requests (KDC-REQ) to the KDC: AS-REQs and TGS-REQs. The client uses the AS-REQ
to obtain initial tickets (typically a Ticket-Granting Ticket (TGT)), and uses the TGS-REQ to obtain service tickets.

The KDC uses three different keys when issuing a ticket to a client:

• The long-term key of the service: the KDC uses this to encrypt the actual service ticket. The KDC only uses the
first long-term key in the most recent kvno for this purpose.

• The session key: the KDC randomly chooses this key and places one copy inside the ticket and the other copy
inside the encrypted part of the reply.

• The reply-encrypting key: the KDC uses this to encrypt the reply it sends to the client. For AS replies, this is a
long-term key of the client principal. For TGS replies, this is either the session key of the authenticating ticket,
or a subsession key.

Each of these keys is of a specific enctype.

Each request type allows the client to submit a list of enctypes that it is willing to accept. For the AS-REQ, this list
affects both the session key selection and the reply-encrypting key selection. For the TGS-REQ, this list only affects
the session key selection.

13.2 Session key selection

The KDC chooses the session key enctype by taking the intersection of its permitted_enctypes list, the list of long-
term keys for the most recent kvno of the service, and the client’s requested list of enctypes. If allow_weak_crypto is
true, all services are assumed to support des-cbc-crc.

Starting in krb5-1.11, des_crc_session_supported in kdc.conf allows additional control over whether the KDC issues
des-cbc-crc session keys.

Also starting in krb5-1.11, it is possible to set a string attribute on a service principal to control what session key
enctypes the KDC may issue for service tickets for that principal. See set_string in kadmin for details.

95

Kerberos Administration Guide, Release 1.15.2

13.3 Choosing enctypes for a service

Generally, a service should have a key of the strongest enctype that both it and the KDC support. If the KDC is running
a release earlier than krb5-1.11, it is also useful to generate an additional key for each enctype that the service can
support. The KDC will only use the first key in the list of long-term keys for encrypting the service ticket, but the
additional long-term keys indicate the other enctypes that the service supports.

As noted above, starting with release krb5-1.11, there are additional configuration settings that control session key
enctype selection independently of the set of long-term keys that the KDC has stored for a service principal.

13.4 Configuration variables

The following [libdefaults] settings in krb5.conf will affect how enctypes are chosen.

allow_weak_crypto defaults to false starting with krb5-1.8. When false, removes single-DES enctypes (and other
weak enctypes) from permitted_enctypes, default_tkt_enctypes, and default_tgs_enctypes. Do not set this
to true unless the use of weak enctypes is an acceptable risk for your environment and the weak enctypes are
required for backward compatibility.

permitted_enctypes controls the set of enctypes that a service will accept as session keys.

default_tkt_enctypes controls the default set of enctypes that the Kerberos client library requests when making an
AS-REQ. Do not set this unless required for specific backward compatibility purposes; stale values of this
setting can prevent clients from taking advantage of new stronger enctypes when the libraries are upgraded.

default_tgs_enctypes controls the default set of enctypes that the Kerberos client library requests when making a
TGS-REQ. Do not set this unless required for specific backward compatibility purposes; stale values of this
setting can prevent clients from taking advantage of new stronger enctypes when the libraries are upgraded.

The following per-realm setting in kdc.conf affects the generation of long-term keys.

supported_enctypes controls the default set of enctype-salttype pairs that kadmind will use for generating long-term
keys, either randomly or from passwords

13.5 Enctype compatibility

See Encryption types for additional information about enctypes.

enctype weak? krb5 Windows
des-cbc-crc weak all >=2000
des-cbc-md4 weak all ?
des-cbc-md5 weak all >=2000
des3-cbc-sha1 >=1.1 none
arcfour-hmac >=1.3 >=2000
arcfour-hmac-exp weak >=1.3 >=2000
aes128-cts-hmac-sha1-96 >=1.3 >=Vista
aes256-cts-hmac-sha1-96 >=1.3 >=Vista
aes128-cts-hmac-sha256-128 >=1.15 none
aes256-cts-hmac-sha384-192 >=1.15 none
camellia128-cts-cmac >=1.9 none
camellia256-cts-cmac >=1.9 none

krb5 releases 1.8 and later disable the single-DES enctypes by default. Microsoft Windows releases Windows 7 and
later disable single-DES enctypes by default.

96 Chapter 13. Encryption types

CHAPTER

FOURTEEN

HTTPS PROXY CONFIGURATION

In addition to being able to use UDP or TCP to communicate directly with a KDC as is outlined in RFC4120, and with
kpasswd services in a similar fashion, the client libraries can attempt to use an HTTPS proxy server to communicate
with a KDC or kpasswd service, using the protocol outlined in [MS-KKDCP].

Communicating with a KDC through an HTTPS proxy allows clients to contact servers when network firewalls might
otherwise prevent them from doing so. The use of TLS also encrypts all traffic between the clients and the KDC,
preventing observers from conducting password dictionary attacks or from observing the client and server principals
being authenticated, at additional computational cost to both clients and servers.

An HTTPS proxy server is provided as a feature in some versions of Microsoft Windows Server, and a WSGI imple-
mentation named kdcproxy is available in the python package index.

14.1 Configuring the clients

To use an HTTPS proxy, a client host must trust the CA which issued that proxy’s SSL certificate. If that CA’s
certificate is not in the system-wide default set of trusted certificates, configure the following relation in the client
host’s krb5.conf file in the appropriate [realms] subsection:

http_anchors = FILE:/etc/krb5/cacert.pem

Adjust the pathname to match the path of the file which contains a copy of the CA’s certificate. The http_anchors
option is documented more fully in krb5.conf .

Configure the client to access the KDC and kpasswd service by specifying their locations in its krb5.conf file in the
form of HTTPS URLs for the proxy server:

kdc = https://server.fqdn/KdcProxy
kpasswd_server = https://server.fqdn/KdcProxy

If the proxy and client are properly configured, client commands such as kinit, kvno, and kpasswd should all
function normally.

97

Kerberos Administration Guide, Release 1.15.2

98 Chapter 14. HTTPS proxy configuration

CHAPTER

FIFTEEN

AUTHENTICATION INDICATORS

As of release 1.14, the KDC can be configured to annotate tickets if the client authenticated using a stronger preau-
thentication mechanism such as PKINIT or OTP. These annotations are called “authentication indicators.” Service
principals can be configured to require particular authentication indicators in order to authenticate to that service. An
authentication indicator value can be any string chosen by the KDC administrator; there are no pre-set values.

To use authentication indicators with PKINIT or OTP, first configure the KDC to include an indicator when that
preauthentication mechanism is used. For PKINIT, use the pkinit_indicator variable in kdc.conf . For OTP, use the
indicator variable in the token type definition, or specify the indicators in the otp user string as described in OTP
Preauthentication.

To require an indicator to be present in order to authenticate to a service principal, set the require_auth string attribute
on the principal to the indicator value to be required. If you wish to allow one of several indicators to be accepted, you
can specify multiple indicator values separated by spaces.

For example, a realm could be configured to set the authentication indicator value “strong” when PKINIT is used to
authenticate, using a setting in the [realms] subsection:

pkinit_indicator = strong

A service principal could be configured to require the “strong” authentication indicator value:

$ kadmin setstr host/high.value.server require_auth strong
Password for user/admin@KRBTEST.COM:

A user who authenticates with PKINIT would be able to obtain a ticket for the service principal:

$ kinit -X X509_user_identity=FILE:/my/cert.pem,/my/key.pem user
$ kvno host/high.value.server
host/high.value.server@KRBTEST.COM: kvno = 1

but a user who authenticates with a password would not:

$ kinit user
Password for user@KRBTEST.COM:
$ kvno host/high.value.server
kvno: KDC policy rejects request while getting credentials for

host/high.value.server@KRBTEST.COM

GSSAPI server applications can inspect authentication indicators through the auth-indicators name attribute.

99

Kerberos Administration Guide, Release 1.15.2

100 Chapter 15. Authentication indicators

CHAPTER

SIXTEEN

ADMINISTRATION PROGRAMS

16.1 kadmin

16.1.1 SYNOPSIS

kadmin [-O|-N] [-r realm] [-p principal] [-q query] [[-c cache_name]|[-k [-t keytab]]|-n] [-w password] [-s ad-
min_server[:port]] [command args...]

kadmin.local [-r realm] [-p principal] [-q query] [-d dbname] [-e enc:salt ...] [-m] [-x db_args] [command args...]

16.1.2 DESCRIPTION

kadmin and kadmin.local are command-line interfaces to the Kerberos V5 administration system. They provide nearly
identical functionalities; the difference is that kadmin.local directly accesses the KDC database, while kadmin per-
forms operations using kadmind. Except as explicitly noted otherwise, this man page will use “kadmin” to refer to
both versions. kadmin provides for the maintenance of Kerberos principals, password policies, and service key tables
(keytabs).

The remote kadmin client uses Kerberos to authenticate to kadmind using the service principal kadmin/ADMINHOST
(where ADMINHOST is the fully-qualified hostname of the admin server) or kadmin/admin. If the credentials
cache contains a ticket for one of these principals, and the -c credentials_cache option is specified, that ticket is used
to authenticate to kadmind. Otherwise, the -p and -k options are used to specify the client Kerberos principal name
used to authenticate. Once kadmin has determined the principal name, it requests a service ticket from the KDC, and
uses that service ticket to authenticate to kadmind.

Since kadmin.local directly accesses the KDC database, it usually must be run directly on the master KDC with
sufficient permissions to read the KDC database. If the KDC database uses the LDAP database module, kadmin.local
can be run on any host which can access the LDAP server.

16.1.3 OPTIONS

-r realm Use realm as the default database realm.

-p principal Use principal to authenticate. Otherwise, kadmin will append /admin to the primary principal name of
the default ccache, the value of the USER environment variable, or the username as obtained with getpwuid, in
order of preference.

-k Use a keytab to decrypt the KDC response instead of prompting for a password. In this case, the default principal
will be host/hostname. If there is no keytab specified with the -t option, then the default keytab will be
used.

-t keytab Use keytab to decrypt the KDC response. This can only be used with the -k option.

101

Kerberos Administration Guide, Release 1.15.2

-n Requests anonymous processing. Two types of anonymous principals are supported. For fully anonymous Ker-
beros, configure PKINIT on the KDC and configure pkinit_anchors in the client’s krb5.conf . Then use the
-n option with a principal of the form @REALM (an empty principal name followed by the at-sign and a realm
name). If permitted by the KDC, an anonymous ticket will be returned. A second form of anonymous tickets is
supported; these realm-exposed tickets hide the identity of the client but not the client’s realm. For this mode,
use kinit -n with a normal principal name. If supported by the KDC, the principal (but not realm) will be
replaced by the anonymous principal. As of release 1.8, the MIT Kerberos KDC only supports fully anonymous
operation.

-c credentials_cache Use credentials_cache as the credentials cache. The cache should contain a service ticket
for the kadmin/ADMINHOST (where ADMINHOST is the fully-qualified hostname of the admin server) or
kadmin/admin service; it can be acquired with the kinit(1) program. If this option is not specified, kadmin
requests a new service ticket from the KDC, and stores it in its own temporary ccache.

-w password Use password instead of prompting for one. Use this option with care, as it may expose the password to
other users on the system via the process list.

-q query Perform the specified query and then exit.

-d dbname Specifies the name of the KDC database. This option does not apply to the LDAP database module.

-s admin_server[:port] Specifies the admin server which kadmin should contact.

-m If using kadmin.local, prompt for the database master password instead of reading it from a stash file.

-e “enc:salt ...” Sets the keysalt list to be used for any new keys created. See Keysalt lists in kdc.conf for a list of
possible values.

-O Force use of old AUTH_GSSAPI authentication flavor.

-N Prevent fallback to AUTH_GSSAPI authentication flavor.

-x db_args Specifies the database specific arguments. See the next section for supported options.

Starting with release 1.14, if any command-line arguments remain after the options, they will be treated as a single
query to be executed. This mode of operation is intended for scripts and behaves differently from the interactive mode
in several respects:

• Query arguments are split by the shell, not by kadmin.

• Informational and warning messages are suppressed. Error messages and query output (e.g. for get_principal)
will still be displayed.

• Confirmation prompts are disabled (as if -force was given). Password prompts will still be issued as required.

• The exit status will be non-zero if the query fails.

The -q option does not carry these behavior differences; the query will be processed as if it was entered interactively.
The -q option cannot be used in combination with a query in the remaining arguments.

16.1.4 DATABASE OPTIONS

Database options can be used to override database-specific defaults. Supported options for the DB2 module are:

-x dbname=*filename* Specifies the base filename of the DB2 database.

-x lockiter Make iteration operations hold the lock for the duration of the entire operation, rather than
temporarily releasing the lock while handling each principal. This is the default behavior, but this
option exists to allow command line override of a [dbmodules] setting. First introduced in release
1.13.

-x unlockiter Make iteration operations unlock the database for each principal, instead of holding the
lock for the duration of the entire operation. First introduced in release 1.13.

102 Chapter 16. Administration programs

Kerberos Administration Guide, Release 1.15.2

Supported options for the LDAP module are:

-x host=ldapuri Specifies the LDAP server to connect to by a LDAP URI.

-x binddn=bind_dn Specifies the DN used to bind to the LDAP server.

-x bindpwd=password Specifies the password or SASL secret used to bind to the LDAP server. Using
this option may expose the password to other users on the system via the process list; to avoid this,
instead stash the password using the stashsrvpw command of kdb5_ldap_util.

-x sasl_mech=mechanism Specifies the SASL mechanism used to bind to the LDAP server. The bind
DN is ignored if a SASL mechanism is used. New in release 1.13.

-x sasl_authcid=name Specifies the authentication name used when binding to the LDAP server with a
SASL mechanism, if the mechanism requires one. New in release 1.13.

-x sasl_authzid=name Specifies the authorization name used when binding to the LDAP server with a
SASL mechanism. New in release 1.13.

-x sasl_realm=realm Specifies the realm used when binding to the LDAP server with a SASL mecha-
nism, if the mechanism uses one. New in release 1.13.

-x debug=level sets the OpenLDAP client library debug level. level is an integer to be interpreted by the
library. Debugging messages are printed to standard error. New in release 1.12.

16.1.5 COMMANDS

When using the remote client, available commands may be restricted according to the privileges specified in the
kadm5.acl file on the admin server.

add_principal

add_principal [options] newprinc

Creates the principal newprinc, prompting twice for a password. If no password policy is specified with the -policy
option, and the policy named default is assigned to the principal if it exists. However, creating a policy named
default will not automatically assign this policy to previously existing principals. This policy assignment can be
suppressed with the -clearpolicy option.

This command requires the add privilege.

Aliases: addprinc, ank

Options:

-expire expdate (getdate string) The expiration date of the principal.

-pwexpire pwexpdate (getdate string) The password expiration date.

-maxlife maxlife (duration or getdate string) The maximum ticket life for the principal.

-maxrenewlife maxrenewlife (duration or getdate string) The maximum renewable life of tickets for the principal.

-kvno kvno The initial key version number.

-policy policy The password policy used by this principal. If not specified, the policy default is used if it exists
(unless -clearpolicy is specified).

-clearpolicy Prevents any policy from being assigned when -policy is not specified.

{-|+}allow_postdated -allow_postdated prohibits this principal from obtaining postdated tickets. +allow_postdated
clears this flag.

16.1. kadmin 103

Kerberos Administration Guide, Release 1.15.2

{-|+}allow_forwardable -allow_forwardable prohibits this principal from obtaining forwardable tickets. +al-
low_forwardable clears this flag.

{-|+}allow_renewable -allow_renewable prohibits this principal from obtaining renewable tickets. +al-
low_renewable clears this flag.

{-|+}allow_proxiable -allow_proxiable prohibits this principal from obtaining proxiable tickets. +allow_proxiable
clears this flag.

{-|+}allow_dup_skey -allow_dup_skey disables user-to-user authentication for this principal by prohibiting this prin-
cipal from obtaining a session key for another user. +allow_dup_skey clears this flag.

{-|+}requires_preauth +requires_preauth requires this principal to preauthenticate before being allowed to kinit.
-requires_preauth clears this flag. When +requires_preauth is set on a service principal, the KDC will only
issue service tickets for that service principal if the client’s initial authentication was performed using preau-
thentication.

{-|+}requires_hwauth +requires_hwauth requires this principal to preauthenticate using a hardware device before
being allowed to kinit. -requires_hwauth clears this flag. When +requires_hwauth is set on a service prin-
cipal, the KDC will only issue service tickets for that service principal if the client’s initial authentication was
performed using a hardware device to preauthenticate.

{-|+}ok_as_delegate +ok_as_delegate sets the okay as delegate flag on tickets issued with this principal as the
service. Clients may use this flag as a hint that credentials should be delegated when authenticating to the
service. -ok_as_delegate clears this flag.

{-|+}allow_svr -allow_svr prohibits the issuance of service tickets for this principal. +allow_svr clears this flag.

{-|+}allow_tgs_req -allow_tgs_req specifies that a Ticket-Granting Service (TGS) request for a service ticket for this
principal is not permitted. +allow_tgs_req clears this flag.

{-|+}allow_tix -allow_tix forbids the issuance of any tickets for this principal. +allow_tix clears this flag.

{-|+}needchange +needchange forces a password change on the next initial authentication to this principal. -
needchange clears this flag.

{-|+}password_changing_service +password_changing_service marks this principal as a password change service
principal.

{-|+}ok_to_auth_as_delegate +ok_to_auth_as_delegate allows this principal to acquire forwardable tickets to itself
from arbitrary users, for use with constrained delegation.

{-|+}no_auth_data_required +no_auth_data_required prevents PAC or AD-SIGNEDPATH data from being added
to service tickets for the principal.

{-|+}lockdown_keys +lockdown_keys prevents keys for this principal from leaving the KDC via kadmind. The
chpass and extract operations are denied for a principal with this attribute. The chrand operation is allowed,
but will not return the new keys. The delete and rename operations are also denied if this attribute is set,
in order to prevent a malicious administrator from replacing principals like krbtgt/* or kadmin/* with new
principals without the attribute. This attribute can be set via the network protocol, but can only be removed
using kadmin.local.

-randkey Sets the key of the principal to a random value.

-nokey Causes the principal to be created with no key. New in release 1.12.

-pw password Sets the password of the principal to the specified string and does not prompt for a password. Note:
using this option in a shell script may expose the password to other users on the system via the process list.

-e enc:salt,... Uses the specified keysalt list for setting the keys of the principal. See Keysalt lists in kdc.conf for a list
of possible values.

-x db_princ_args Indicates database-specific options. The options for the LDAP database module are:

104 Chapter 16. Administration programs

Kerberos Administration Guide, Release 1.15.2

-x dn=dn Specifies the LDAP object that will contain the Kerberos principal being created.

-x linkdn=dn Specifies the LDAP object to which the newly created Kerberos principal object will point.

-x containerdn=container_dn Specifies the container object under which the Kerberos principal is to be cre-
ated.

-x tktpolicy=policy Associates a ticket policy to the Kerberos principal.

Note:
• The containerdn and linkdn options cannot be specified with the dn option.

• If the dn or containerdn options are not specified while adding the principal, the principals are created
under the principal container configured in the realm or the realm container.

• dn and containerdn should be within the subtrees or principal container configured in the realm.

Example:

kadmin: addprinc jennifer
WARNING: no policy specified for "jennifer@ATHENA.MIT.EDU";
defaulting to no policy.
Enter password for principal jennifer@ATHENA.MIT.EDU:
Re-enter password for principal jennifer@ATHENA.MIT.EDU:
Principal "jennifer@ATHENA.MIT.EDU" created.
kadmin:

modify_principal

modify_principal [options] principal

Modifies the specified principal, changing the fields as specified. The options to add_principal also apply to this
command, except for the -randkey, -pw, and -e options. In addition, the option -clearpolicy will clear the current
policy of a principal.

This command requires the modify privilege.

Alias: modprinc

Options (in addition to the addprinc options):

-unlock Unlocks a locked principal (one which has received too many failed authentication attempts without enough
time between them according to its password policy) so that it can successfully authenticate.

rename_principal

rename_principal [-force] old_principal new_principal

Renames the specified old_principal to new_principal. This command prompts for confirmation, unless the -force
option is given.

This command requires the add and delete privileges.

Alias: renprinc

16.1. kadmin 105

Kerberos Administration Guide, Release 1.15.2

delete_principal

delete_principal [-force] principal

Deletes the specified principal from the database. This command prompts for deletion, unless the -force option is
given.

This command requires the delete privilege.

Alias: delprinc

change_password

change_password [options] principal

Changes the password of principal. Prompts for a new password if neither -randkey or -pw is specified.

This command requires the changepw privilege, or that the principal running the program is the same as the principal
being changed.

Alias: cpw

The following options are available:

-randkey Sets the key of the principal to a random value.

-pw password Set the password to the specified string. Using this option in a script may expose the password to other
users on the system via the process list.

-e enc:salt,... Uses the specified keysalt list for setting the keys of the principal. See Keysalt lists in kdc.conf for a list
of possible values.

-keepold Keeps the existing keys in the database. This flag is usually not necessary except perhaps for krbtgt
principals.

Example:

kadmin: cpw systest
Enter password for principal systest@BLEEP.COM:
Re-enter password for principal systest@BLEEP.COM:
Password for systest@BLEEP.COM changed.
kadmin:

purgekeys

purgekeys [-all|-keepkvno oldest_kvno_to_keep] principal

Purges previously retained old keys (e.g., from change_password -keepold) from principal. If -keepkvno is specified,
then only purges keys with kvnos lower than oldest_kvno_to_keep. If -all is specified, then all keys are purged. The
-all option is new in release 1.12.

This command requires the modify privilege.

get_principal

get_principal [-terse] principal

106 Chapter 16. Administration programs

Kerberos Administration Guide, Release 1.15.2

Gets the attributes of principal. With the -terse option, outputs fields as quoted tab-separated strings.

This command requires the inquire privilege, or that the principal running the the program to be the same as the one
being listed.

Alias: getprinc

Examples:

kadmin: getprinc tlyu/admin
Principal: tlyu/admin@BLEEP.COM
Expiration date: [never]
Last password change: Mon Aug 12 14:16:47 EDT 1996
Password expiration date: [none]
Maximum ticket life: 0 days 10:00:00
Maximum renewable life: 7 days 00:00:00
Last modified: Mon Aug 12 14:16:47 EDT 1996 (bjaspan/admin@BLEEP.COM)
Last successful authentication: [never]
Last failed authentication: [never]
Failed password attempts: 0
Number of keys: 2
Key: vno 1, des-cbc-crc
Key: vno 1, des-cbc-crc:v4
Attributes:
Policy: [none]

kadmin: getprinc -terse systest
systest@BLEEP.COM 3 86400 604800 1
785926535 753241234 785900000
tlyu/admin@BLEEP.COM 786100034 0 0
kadmin:

list_principals

list_principals [expression]

Retrieves all or some principal names. expression is a shell-style glob expression that can contain the wild-card
characters ?, *, and []. All principal names matching the expression are printed. If no expression is provided, all
principal names are printed. If the expression does not contain an @ character, an @ character followed by the local
realm is appended to the expression.

This command requires the list privilege.

Alias: listprincs, get_principals, get_princs

Example:

kadmin: listprincs test*
test3@SECURE-TEST.OV.COM
test2@SECURE-TEST.OV.COM
test1@SECURE-TEST.OV.COM
testuser@SECURE-TEST.OV.COM
kadmin:

get_strings

get_strings principal

16.1. kadmin 107

Kerberos Administration Guide, Release 1.15.2

Displays string attributes on principal.

This command requires the inquire privilege.

Alias: getstr

set_string

set_string principal name value

Sets a string attribute on principal. String attributes are used to supply per-principal configuration to the KDC and
some KDC plugin modules. The following string attribute names are recognized by the KDC:

require_auth Specifies an authentication indicator which is required to authenticate to the principal as a service.
Multiple indicators can be specified, separated by spaces; in this case any of the specified indicators will be
accepted. (New in release 1.14.)

session_enctypes Specifies the encryption types supported for session keys when the principal is authenticated to as
a server. See Encryption types in kdc.conf for a list of the accepted values.

otp Enables One Time Passwords (OTP) preauthentication for a client principal. The value is a JSON string repre-
senting an array of objects, each having optional type and username fields.

This command requires the modify privilege.

Alias: setstr

Example:

set_string host/foo.mit.edu session_enctypes aes128-cts
set_string user@FOO.COM otp "[{""type"":""hotp"",""username"":""al""}]"

del_string

del_string principal key

Deletes a string attribute from principal.

This command requires the delete privilege.

Alias: delstr

add_policy

add_policy [options] policy

Adds a password policy named policy to the database.

This command requires the add privilege.

Alias: addpol

The following options are available:

-maxlife time (duration or getdate string) Sets the maximum lifetime of a password.

-minlife time (duration or getdate string) Sets the minimum lifetime of a password.

-minlength length Sets the minimum length of a password.

-minclasses number Sets the minimum number of character classes required in a password. The five character classes
are lower case, upper case, numbers, punctuation, and whitespace/unprintable characters.

108 Chapter 16. Administration programs

Kerberos Administration Guide, Release 1.15.2

-history number Sets the number of past keys kept for a principal. This option is not supported with the LDAP KDC
database module.

-maxfailure maxnumber Sets the number of authentication failures before the principal is locked. Authentication
failures are only tracked for principals which require preauthentication. The counter of failed attempts resets to
0 after a successful attempt to authenticate. A maxnumber value of 0 (the default) disables lockout.

-failurecountinterval failuretime (duration or getdate string) Sets the allowable time between authentication fail-
ures. If an authentication failure happens after failuretime has elapsed since the previous failure, the number of
authentication failures is reset to 1. A failuretime value of 0 (the default) means forever.

-lockoutduration lockouttime (duration or getdate string) Sets the duration for which the principal is locked from
authenticating if too many authentication failures occur without the specified failure count interval elapsing.
A duration of 0 (the default) means the principal remains locked out until it is administratively unlocked with
modprinc -unlock.

-allowedkeysalts Specifies the key/salt tuples supported for long-term keys when setting or changing a principal’s
password/keys. See Keysalt lists in kdc.conf for a list of the accepted values, but note that key/salt tuples must
be separated with commas (‘,’) only. To clear the allowed key/salt policy use a value of ‘-‘.

Example:

kadmin: add_policy -maxlife "2 days" -minlength 5 guests
kadmin:

modify_policy

modify_policy [options] policy

Modifies the password policy named policy. Options are as described for add_policy.

This command requires the modify privilege.

Alias: modpol

delete_policy

delete_policy [-force] policy

Deletes the password policy named policy. Prompts for confirmation before deletion. The command will fail if the
policy is in use by any principals.

This command requires the delete privilege.

Alias: delpol

Example:

kadmin: del_policy guests
Are you sure you want to delete the policy "guests"?
(yes/no): yes
kadmin:

get_policy

get_policy [-terse] policy

16.1. kadmin 109

Kerberos Administration Guide, Release 1.15.2

Displays the values of the password policy named policy. With the -terse flag, outputs the fields as quoted strings
separated by tabs.

This command requires the inquire privilege.

Alias: getpol

Examples:

kadmin: get_policy admin
Policy: admin
Maximum password life: 180 days 00:00:00
Minimum password life: 00:00:00
Minimum password length: 6
Minimum number of password character classes: 2
Number of old keys kept: 5
Reference count: 17

kadmin: get_policy -terse admin
admin 15552000 0 6 2 5 17
kadmin:

The “Reference count” is the number of principals using that policy. With the LDAP KDC database module, the
reference count field is not meaningful.

list_policies

list_policies [expression]

Retrieves all or some policy names. expression is a shell-style glob expression that can contain the wild-card characters
?, *, and []. All policy names matching the expression are printed. If no expression is provided, all existing policy
names are printed.

This command requires the list privilege.

Aliases: listpols, get_policies, getpols.

Examples:

kadmin: listpols
test-pol
dict-only
once-a-min
test-pol-nopw

kadmin: listpols t*
test-pol
test-pol-nopw
kadmin:

ktadd

ktadd [options] principal
ktadd [options] -glob princ-exp

Adds a principal, or all principals matching princ-exp, to a keytab file. Each principal’s keys are randomized in the
process. The rules for princ-exp are described in the list_principals command.

This command requires the inquire and changepw privileges. With the -glob form, it also requires the list privilege.

110 Chapter 16. Administration programs

Kerberos Administration Guide, Release 1.15.2

The options are:

-k[eytab] keytab Use keytab as the keytab file. Otherwise, the default keytab is used.

-e enc:salt,... Uses the specified keysalt list for setting the new keys of the principal. See Keysalt lists in kdc.conf for
a list of possible values.

-q Display less verbose information.

-norandkey Do not randomize the keys. The keys and their version numbers stay unchanged. This option cannot be
specified in combination with the -e option.

An entry for each of the principal’s unique encryption types is added, ignoring multiple keys with the same encryption
type but different salt types.

Example:

kadmin: ktadd -k /tmp/foo-new-keytab host/foo.mit.edu
Entry for principal host/foo.mit.edu@ATHENA.MIT.EDU with kvno 3,

encryption type aes256-cts-hmac-sha1-96 added to keytab
FILE:/tmp/foo-new-keytab

kadmin:

ktremove

ktremove [options] principal [kvno | all | old]

Removes entries for the specified principal from a keytab. Requires no permissions, since this does not require
database access.

If the string “all” is specified, all entries for that principal are removed; if the string “old” is specified, all entries for
that principal except those with the highest kvno are removed. Otherwise, the value specified is parsed as an integer,
and all entries whose kvno match that integer are removed.

The options are:

-k[eytab] keytab Use keytab as the keytab file. Otherwise, the default keytab is used.

-q Display less verbose information.

Example:

kadmin: ktremove kadmin/admin all
Entry for principal kadmin/admin with kvno 3 removed from keytab

FILE:/etc/krb5.keytab
kadmin:

lock

Lock database exclusively. Use with extreme caution! This command only works with the DB2 KDC database module.

unlock

Release the exclusive database lock.

16.1. kadmin 111

Kerberos Administration Guide, Release 1.15.2

list_requests

Lists available for kadmin requests.

Aliases: lr, ?

quit

Exit program. If the database was locked, the lock is released.

Aliases: exit, q

16.1.6 HISTORY

The kadmin program was originally written by Tom Yu at MIT, as an interface to the OpenVision Kerberos adminis-
tration program.

16.1.7 SEE ALSO

kpasswd(1), kadmind

16.2 kadmind

16.2.1 SYNOPSIS

kadmind [-x db_args] [-r realm] [-m] [-nofork] [-proponly] [-port port-number] [-P pid_file] [-p kdb5_util_path]
[-K kprop_path] [-k kprop_port] [-F dump_file]

16.2.2 DESCRIPTION

kadmind starts the Kerberos administration server. kadmind typically runs on the master Kerberos server, which stores
the KDC database. If the KDC database uses the LDAP module, the administration server and the KDC server need
not run on the same machine. kadmind accepts remote requests from programs such as kadmin and kpasswd(1) to
administer the information in these database.

kadmind requires a number of configuration files to be set up in order for it to work:

kdc.conf The KDC configuration file contains configuration information for the KDC and admin servers. kadmind
uses settings in this file to locate the Kerberos database, and is also affected by the acl_file, dict_file, kad-
mind_port, and iprop-related settings.

kadm5.acl kadmind’s ACL (access control list) tells it which principals are allowed to perform administration ac-
tions. The pathname to the ACL file can be specified with the acl_file kdc.conf variable; by default, it is
LOCALSTATEDIR/krb5kdc/kadm5.acl.

After the server begins running, it puts itself in the background and disassociates itself from its controlling terminal.

kadmind can be configured for incremental database propagation. Incremental propagation allows slave KDC servers
to receive principal and policy updates incrementally instead of receiving full dumps of the database. This facility
can be enabled in the kdc.conf file with the iprop_enable option. Incremental propagation requires the principal
kiprop/MASTER\@REALM (where MASTER is the master KDC’s canonical host name, and REALM the realm
name). In release 1.13, this principal is automatically created and registered into the datebase.

112 Chapter 16. Administration programs

Kerberos Administration Guide, Release 1.15.2

16.2.3 OPTIONS

-r realm specifies the realm that kadmind will serve; if it is not specified, the default realm of the host is used.

-m causes the master database password to be fetched from the keyboard (before the server puts itself in the back-
ground, if not invoked with the -nofork option) rather than from a file on disk.

-nofork causes the server to remain in the foreground and remain associated to the terminal. In normal operation, you
should allow the server to place itself in the background.

-proponly causes the server to only listen and respond to Kerberos slave incremental propagation polling requests.
This option can be used to set up a hierarchical propagation topology where a slave KDC provides incremental
updates to other Kerberos slaves.

-port port-number specifies the port on which the administration server listens for connections. The default port is
determined by the kadmind_port configuration variable in kdc.conf .

-P pid_file specifies the file to which the PID of kadmind process should be written after it starts up. This file can be
used to identify whether kadmind is still running and to allow init scripts to stop the correct process.

-p kdb5_util_path specifies the path to the kdb5_util command to use when dumping the KDB in response to full
resync requests when iprop is enabled.

-K kprop_path specifies the path to the kprop command to use to send full dumps to slaves in response to full resync
requests.

-k kprop_port specifies the port by which the kprop process that is spawned by kadmind connects to the slave kpropd,
in order to transfer the dump file during an iprop full resync request.

-F dump_file specifies the file path to be used for dumping the KDB in response to full resync requests when iprop is
enabled.

-x db_args specifies database-specific arguments. See Database Options in kadmin for supported arguments.

16.2.4 SEE ALSO

kpasswd(1), kadmin, kdb5_util, kdb5_ldap_util, kadm5.acl

16.3 kdb5_util

16.3.1 SYNOPSIS

kdb5_util [-r realm] [-d dbname] [-k mkeytype] [-M mkeyname] [-kv mkeyVNO] [-sf stashfilename] [-m] command
[command_options]

16.3.2 DESCRIPTION

kdb5_util allows an administrator to perform maintenance procedures on the KDC database. Databases can be created,
destroyed, and dumped to or loaded from ASCII files. kdb5_util can create a Kerberos master key stash file or perform
live rollover of the master key.

When kdb5_util is run, it attempts to acquire the master key and open the database. However, execution continues
regardless of whether or not kdb5_util successfully opens the database, because the database may not exist yet or the
stash file may be corrupt.

Note that some KDC database modules may not support all kdb5_util commands.

16.3. kdb5_util 113

Kerberos Administration Guide, Release 1.15.2

16.3.3 COMMAND-LINE OPTIONS

-r realm specifies the Kerberos realm of the database.

-d dbname specifies the name under which the principal database is stored; by default the database is that listed in
kdc.conf . The password policy database and lock files are also derived from this value.

-k mkeytype specifies the key type of the master key in the database. The default is given by the master_key_type
variable in kdc.conf .

-kv mkeyVNO Specifies the version number of the master key in the database; the default is 1. Note that 0 is not
allowed.

-M mkeyname principal name for the master key in the database. If not specified, the name is determined by the
master_key_name variable in kdc.conf .

-m specifies that the master database password should be read from the keyboard rather than fetched from a file on
disk.

-sf stash_file specifies the stash filename of the master database password. If not specified, the filename is determined
by the key_stash_file variable in kdc.conf .

-P password specifies the master database password. Using this option may expose the password to other users on the
system via the process list.

16.3.4 COMMANDS

create

create [-s]

Creates a new database. If the -s option is specified, the stash file is also created. This command fails if the database
already exists. If the command is successful, the database is opened just as if it had already existed when the program
was first run.

destroy

destroy [-f]

Destroys the database, first overwriting the disk sectors and then unlinking the files, after prompting the user for
confirmation. With the -f argument, does not prompt the user.

stash

stash [-f keyfile]

Stores the master principal’s keys in a stash file. The -f argument can be used to override the keyfile specified in
kdc.conf .

dump

dump [-b7|-ov|-r13] [-verbose] [-mkey_convert] [-new_mkey_file mkey_file] [-rev] [-recurse] [file-
name [principals...]]

114 Chapter 16. Administration programs

Kerberos Administration Guide, Release 1.15.2

Dumps the current Kerberos and KADM5 database into an ASCII file. By default, the database is dumped in current
format, “kdb5_util load_dump version 7”. If filename is not specified, or is the string “-”, the dump is sent to standard
output. Options:

-b7 causes the dump to be in the Kerberos 5 Beta 7 format (“kdb5_util load_dump version 4”). This was the dump
format produced on releases prior to 1.2.2.

-ov causes the dump to be in “ovsec_adm_export” format.

-r13 causes the dump to be in the Kerberos 5 1.3 format (“kdb5_util load_dump version 5”). This was the dump
format produced on releases prior to 1.8.

-r18 causes the dump to be in the Kerberos 5 1.8 format (“kdb5_util load_dump version 6”). This was the dump
format produced on releases prior to 1.11.

-verbose causes the name of each principal and policy to be printed as it is dumped.

-mkey_convert prompts for a new master key. This new master key will be used to re-encrypt principal key data in
the dumpfile. The principal keys themselves will not be changed.

-new_mkey_file mkey_file the filename of a stash file. The master key in this stash file will be used to re-encrypt the
key data in the dumpfile. The key data in the database will not be changed.

-rev dumps in reverse order. This may recover principals that do not dump normally, in cases where database corrup-
tion has occurred.

-recurse causes the dump to walk the database recursively (btree only). This may recover principals that do not dump
normally, in cases where database corruption has occurred. In cases of such corruption, this option will probably
retrieve more principals than the -rev option will.

Changed in version 1.15: Release 1.15 restored the functionality of the -recurse option.

Changed in version 1.5: The -recurse option ceased working until release 1.15, doing a normal dump instead of
a recursive traversal.

load

load [-b7|-ov|-r13] [-hash] [-verbose] [-update] filename [dbname]

Loads a database dump from the named file into the named database. If no option is given to determine the format
of the dump file, the format is detected automatically and handled as appropriate. Unless the -update option is given,
load creates a new database containing only the data in the dump file, overwriting the contents of any previously
existing database. Note that when using the LDAP KDC database module, the -update flag is required.

Options:

-b7 requires the database to be in the Kerberos 5 Beta 7 format (“kdb5_util load_dump version 4”). This was the
dump format produced on releases prior to 1.2.2.

-ov requires the database to be in “ovsec_adm_import” format. Must be used with the -update option.

-r13 requires the database to be in Kerberos 5 1.3 format (“kdb5_util load_dump version 5”). This was the dump
format produced on releases prior to 1.8.

-r18 requires the database to be in Kerberos 5 1.8 format (“kdb5_util load_dump version 6”). This was the dump
format produced on releases prior to 1.11.

-hash requires the database to be stored as a hash. If this option is not specified, the database will be stored as a
btree. This option is not recommended, as databases stored in hash format are known to corrupt data and lose
principals.

-verbose causes the name of each principal and policy to be printed as it is dumped.

16.3. kdb5_util 115

Kerberos Administration Guide, Release 1.15.2

-update records from the dump file are added to or updated in the existing database. Otherwise, a new database is
created containing only what is in the dump file and the old one destroyed upon successful completion.

If specified, dbname overrides the value specified on the command line or the default.

ark

ark [-e enc:salt,...] principal

Adds new random keys to principal at the next available key version number. Keys for the current highest key version
number will be preserved. The -e option specifies the list of encryption and salt types to be used for the new keys.

add_mkey

add_mkey [-e etype] [-s]

Adds a new master key to the master key principal, but does not mark it as active. Existing master keys will remain.
The -e option specifies the encryption type of the new master key; see Encryption types in kdc.conf for a list of possible
values. The -s option stashes the new master key in the stash file, which will be created if it doesn’t already exist.

After a new master key is added, it should be propagated to slave servers via a manual or periodic invocation of kprop.
Then, the stash files on the slave servers should be updated with the kdb5_util stash command. Once those steps are
complete, the key is ready to be marked active with the kdb5_util use_mkey command.

use_mkey

use_mkey mkeyVNO [time]

Sets the activation time of the master key specified by mkeyVNO. Once a master key becomes active, it will be used
to encrypt newly created principal keys. If no time argument is given, the current time is used, causing the specified
master key version to become active immediately. The format for time is getdate string.

After a new master key becomes active, the kdb5_util update_princ_encryption command can be used to update all
principal keys to be encrypted in the new master key.

list_mkeys

list_mkeys

List all master keys, from most recent to earliest, in the master key principal. The output will show the kvno, enctype,
and salt type for each mkey, similar to the output of kadmin getprinc. A * following an mkey denotes the currently
active master key.

purge_mkeys

purge_mkeys [-f] [-n] [-v]

Delete master keys from the master key principal that are not used to protect any principals. This command can be
used to remove old master keys all principal keys are protected by a newer master key.

-f does not prompt for confirmation.

-n performs a dry run, showing master keys that would be purged, but not actually purging any keys.

-v gives more verbose output.

116 Chapter 16. Administration programs

Kerberos Administration Guide, Release 1.15.2

update_princ_encryption

update_princ_encryption [-f] [-n] [-v] [princ-pattern]

Update all principal records (or only those matching the princ-pattern glob pattern) to re-encrypt the key data using
the active database master key, if they are encrypted using a different version, and give a count at the end of the number
of principals updated. If the -f option is not given, ask for confirmation before starting to make changes. The -v option
causes each principal processed to be listed, with an indication as to whether it needed updating or not. The -n option
performs a dry run, only showing the actions which would have been taken.

tabdump

tabdump [-H] [-c] [-e] [-n] [-o outfile] dumptype

Dump selected fields of the database in a tabular format suitable for reporting (e.g., using traditional Unix text pro-
cessing tools) or importing into relational databases. The data format is tab-separated (default), or optionally comma-
separated (CSV), with a fixed number of columns. The output begins with a header line containing field names, unless
suppression is requested using the -H option.

The dumptype parameter specifies the name of an output table (see below).

Options:

-H suppress writing the field names in a header line

-c use comma separated values (CSV) format, with minimal quoting, instead of the default tab-separated (unquoted,
unescaped) format

-e write empty hexadecimal string fields as empty fields instead of as “-1”.

-n produce numeric output for fields that normally have symbolic output, such as enctypes and flag names. Also
requests output of time stamps as decimal POSIX time_t values.

-o outfile write the dump to the specified output file instead of to standard output

Dump types:

keydata principal encryption key information, including actual key data (which is still encrypted in the master key)

name principal name

keyindex index of this key in the principal’s key list

kvno key version number

enctype encryption type

key key data as a hexadecimal string

salttype salt type

salt salt data as a hexadecimal string

keyinfo principal encryption key information (as in keydata above), excluding actual key data

princ_flags principal boolean attributes. Flag names print as hexadecimal numbers if the -n option is specified, and
all flag positions are printed regardless of whether or not they are set. If -n is not specified, print all known flag
names for each principal, but only print hexadecimal flag names if the corresponding flag is set.

name principal name

flag flag name

value boolean value (0 for clear, or 1 for set)

16.3. kdb5_util 117

Kerberos Administration Guide, Release 1.15.2

princ_lockout state information used for tracking repeated password failures

name principal name

last_success time stamp of most recent successful authentication

last_failed time stamp of most recent failed authentication

fail_count count of failed attempts

princ_meta principal metadata

name principal name

modby name of last principal to modify this principal

modtime timestamp of last modification

lastpwd timestamp of last password change

policy policy object name

mkvno key version number of the master key that encrypts this principal’s key data

hist_kvno key version number of the history key that encrypts the key history data for this principal

princ_stringattrs string attributes (key/value pairs)

name principal name

key attribute name

value attribute value

princ_tktpolicy per-principal ticket policy data, including maximum ticket lifetimes

name principal name

expiration principal expiration date

pw_expiration password expiration date

max_life maximum ticket lifetime

max_renew_life maximum renewable ticket lifetime

Examples:

$ kdb5_util tabdump -o keyinfo.txt keyinfo
$ cat keyinfo.txt
name keyindex kvno enctype salttype salt
foo@EXAMPLE.COM 0 1 aes128-cts-hmac-sha1-96 normal -1
bar@EXAMPLE.COM 0 1 aes128-cts-hmac-sha1-96 normal -1
bar@EXAMPLE.COM 1 1 des-cbc-crc normal -1
$ sqlite3
sqlite> .mode tabs
sqlite> .import keyinfo.txt keyinfo
sqlite> select * from keyinfo where enctype like ’des-cbc-%’;
bar@EXAMPLE.COM 1 1 des-cbc-crc normal -1
sqlite> .quit
$ awk -F’\t’ ’$4 ~ /des-cbc-/ { print }’ keyinfo.txt
bar@EXAMPLE.COM 1 1 des-cbc-crc normal -1

16.3.5 SEE ALSO

kadmin

118 Chapter 16. Administration programs

Kerberos Administration Guide, Release 1.15.2

16.4 kdb5_ldap_util

16.4.1 SYNOPSIS

kdb5_ldap_util [-D user_dn [-w passwd]] [-H ldapuri] command [command_options]

16.4.2 DESCRIPTION

kdb5_ldap_util allows an administrator to manage realms, Kerberos services and ticket policies.

16.4.3 COMMAND-LINE OPTIONS

-D user_dn Specifies the Distinguished Name (DN) of the user who has sufficient rights to perform the operation on
the LDAP server.

-w passwd Specifies the password of user_dn. This option is not recommended.

-H ldapuri Specifies the URI of the LDAP server. It is recommended to use ldapi:// or ldaps:// to connect to
the LDAP server.

16.4.4 COMMANDS

create

create [-subtrees subtree_dn_list] [-sscope search_scope] [-containerref container_reference_dn]
[-k mkeytype] [-kv mkeyVNO] [-m|-P password|-sf stashfilename] [-s] [-r realm] [-maxtktlife
max_ticket_life] [-maxrenewlife max_renewable_ticket_life] [ticket_flags]

Creates realm in directory. Options:

-subtrees subtree_dn_list Specifies the list of subtrees containing the principals of a realm. The list contains the DNs
of the subtree objects separated by colon (:).

-sscope search_scope Specifies the scope for searching the principals under the subtree. The possible values are 1 or
one (one level), 2 or sub (subtrees).

-containerref container_reference_dn Specifies the DN of the container object in which the principals of a realm
will be created. If the container reference is not configured for a realm, the principals will be created in the
realm container.

-k mkeytype Specifies the key type of the master key in the database. The default is given by the master_key_type
variable in kdc.conf .

-kv mkeyVNO Specifies the version number of the master key in the database; the default is 1. Note that 0 is not
allowed.

-m Specifies that the master database password should be read from the TTY rather than fetched from a file on the
disk.

-P password Specifies the master database password. This option is not recommended.

-r realm Specifies the Kerberos realm of the database.

-sf stashfilename Specifies the stash file of the master database password.

-s Specifies that the stash file is to be created.

16.4. kdb5_ldap_util 119

Kerberos Administration Guide, Release 1.15.2

-maxtktlife max_ticket_life (getdate string) Specifies maximum ticket life for principals in this realm.

-maxrenewlife max_renewable_ticket_life (getdate string) Specifies maximum renewable life of tickets for princi-
pals in this realm.

ticket_flags Specifies global ticket flags for the realm. Allowable flags are documented in the description of the
add_principal command in kadmin.

Example:

kdb5_ldap_util -D cn=admin,o=org -H ldaps://ldap-server1.mit.edu
create -subtrees o=org -sscope SUB -r ATHENA.MIT.EDU

Password for "cn=admin,o=org":
Initializing database for realm ’ATHENA.MIT.EDU’
You will be prompted for the database Master Password.
It is important that you NOT FORGET this password.
Enter KDC database master key:
Re-enter KDC database master key to verify:

modify

modify [-subtrees subtree_dn_list] [-sscope search_scope] [-containerref container_reference_dn] [-r
realm] [-maxtktlife max_ticket_life] [-maxrenewlife max_renewable_ticket_life] [ticket_flags]

Modifies the attributes of a realm. Options:

-subtrees subtree_dn_list Specifies the list of subtrees containing the principals of a realm. The list contains the DNs
of the subtree objects separated by colon (:). This list replaces the existing list.

-sscope search_scope Specifies the scope for searching the principals under the subtrees. The possible values are 1
or one (one level), 2 or sub (subtrees).

-containerref container_reference_dn Specifies the DN of the container object in which the principals of a realm
will be created.

-r realm Specifies the Kerberos realm of the database.

-maxtktlife max_ticket_life (getdate string) Specifies maximum ticket life for principals in this realm.

-maxrenewlife max_renewable_ticket_life (getdate string) Specifies maximum renewable life of tickets for princi-
pals in this realm.

ticket_flags Specifies global ticket flags for the realm. Allowable flags are documented in the description of the
add_principal command in kadmin.

Example:

shell% kdb5_ldap_util -D cn=admin,o=org -H
ldaps://ldap-server1.mit.edu modify +requires_preauth -r
ATHENA.MIT.EDU

Password for "cn=admin,o=org":
shell%

view

view [-r realm]

Displays the attributes of a realm. Options:

-r realm Specifies the Kerberos realm of the database.

120 Chapter 16. Administration programs

Kerberos Administration Guide, Release 1.15.2

Example:

kdb5_ldap_util -D cn=admin,o=org -H ldaps://ldap-server1.mit.edu
view -r ATHENA.MIT.EDU

Password for "cn=admin,o=org":
Realm Name: ATHENA.MIT.EDU
Subtree: ou=users,o=org
Subtree: ou=servers,o=org
SearchScope: ONE
Maximum ticket life: 0 days 01:00:00
Maximum renewable life: 0 days 10:00:00
Ticket flags: DISALLOW_FORWARDABLE REQUIRES_PWCHANGE

destroy

destroy [-f] [-r realm]

Destroys an existing realm. Options:

-f If specified, will not prompt the user for confirmation.

-r realm Specifies the Kerberos realm of the database.

Example:

shell% kdb5_ldap_util -D cn=admin,o=org -H
ldaps://ldap-server1.mit.edu destroy -r ATHENA.MIT.EDU

Password for "cn=admin,o=org":
Deleting KDC database of ’ATHENA.MIT.EDU’, are you sure?
(type ’yes’ to confirm)? yes
OK, deleting database of ’ATHENA.MIT.EDU’...
shell%

list

list

Lists the name of realms.

Example:

shell% kdb5_ldap_util -D cn=admin,o=org -H
ldaps://ldap-server1.mit.edu list

Password for "cn=admin,o=org":
ATHENA.MIT.EDU
OPENLDAP.MIT.EDU
MEDIA-LAB.MIT.EDU
shell%

stashsrvpw

stashsrvpw [-f filename] name

Allows an administrator to store the password for service object in a file so that KDC and Administration server can
use it to authenticate to the LDAP server. Options:

-f filename Specifies the complete path of the service password file. By default,
/usr/local/var/service_passwd is used.

16.4. kdb5_ldap_util 121

Kerberos Administration Guide, Release 1.15.2

name Specifies the name of the object whose password is to be stored. If krb5kdc or kadmind are configured for simple
binding, this should be the distinguished name it will use as given by the ldap_kdc_dn or ldap_kadmind_dn
variable in kdc.conf . If the KDC or kadmind is configured for SASL binding, this should be the authentication
name it will use as given by the ldap_kdc_sasl_authcid or ldap_kadmind_sasl_authcid variable.

Example:

kdb5_ldap_util stashsrvpw -f /home/andrew/conf_keyfile
cn=service-kdc,o=org

Password for "cn=service-kdc,o=org":
Re-enter password for "cn=service-kdc,o=org":

create_policy

create_policy [-r realm] [-maxtktlife max_ticket_life] [-maxrenewlife max_renewable_ticket_life]
[ticket_flags] policy_name

Creates a ticket policy in the directory. Options:

-r realm Specifies the Kerberos realm of the database.

-maxtktlife max_ticket_life (getdate string) Specifies maximum ticket life for principals.

-maxrenewlife max_renewable_ticket_life (getdate string) Specifies maximum renewable life of tickets for princi-
pals.

ticket_flags Specifies the ticket flags. If this option is not specified, by default, no restriction will be set by the policy.
Allowable flags are documented in the description of the add_principal command in kadmin.

policy_name Specifies the name of the ticket policy.

Example:

kdb5_ldap_util -D cn=admin,o=org -H ldaps://ldap-server1.mit.edu
create_policy -r ATHENA.MIT.EDU -maxtktlife "1 day"
-maxrenewlife "1 week" -allow_postdated +needchange
-allow_forwardable tktpolicy

Password for "cn=admin,o=org":

modify_policy

modify_policy [-r realm] [-maxtktlife max_ticket_life] [-maxrenewlife max_renewable_ticket_life]
[ticket_flags] policy_name

Modifies the attributes of a ticket policy. Options are same as for create_policy.

Example:

kdb5_ldap_util -D cn=admin,o=org -H
ldaps://ldap-server1.mit.edu modify_policy -r ATHENA.MIT.EDU
-maxtktlife "60 minutes" -maxrenewlife "10 hours"
+allow_postdated -requires_preauth tktpolicy

Password for "cn=admin,o=org":

view_policy

view_policy [-r realm] policy_name

Displays the attributes of a ticket policy. Options:

122 Chapter 16. Administration programs

Kerberos Administration Guide, Release 1.15.2

policy_name Specifies the name of the ticket policy.

Example:

kdb5_ldap_util -D cn=admin,o=org -H ldaps://ldap-server1.mit.edu
view_policy -r ATHENA.MIT.EDU tktpolicy

Password for "cn=admin,o=org":
Ticket policy: tktpolicy
Maximum ticket life: 0 days 01:00:00
Maximum renewable life: 0 days 10:00:00
Ticket flags: DISALLOW_FORWARDABLE REQUIRES_PWCHANGE

destroy_policy

destroy_policy [-r realm] [-force] policy_name

Destroys an existing ticket policy. Options:

-r realm Specifies the Kerberos realm of the database.

-force Forces the deletion of the policy object. If not specified, the user will be prompted for confirmation before
deleting the policy.

policy_name Specifies the name of the ticket policy.

Example:

kdb5_ldap_util -D cn=admin,o=org -H ldaps://ldap-server1.mit.edu
destroy_policy -r ATHENA.MIT.EDU tktpolicy

Password for "cn=admin,o=org":
This will delete the policy object ’tktpolicy’, are you sure?
(type ’yes’ to confirm)? yes

** policy object ’tktpolicy’ deleted.

list_policy

list_policy [-r realm]

Lists the ticket policies in realm if specified or in the default realm. Options:

-r realm Specifies the Kerberos realm of the database.

Example:

kdb5_ldap_util -D cn=admin,o=org -H ldaps://ldap-server1.mit.edu
list_policy -r ATHENA.MIT.EDU

Password for "cn=admin,o=org":
tktpolicy
tmppolicy
userpolicy

16.4.5 SEE ALSO

kadmin

16.4. kdb5_ldap_util 123

Kerberos Administration Guide, Release 1.15.2

16.5 krb5kdc

16.5.1 SYNOPSIS

krb5kdc [-x db_args] [-d dbname] [-k keytype] [-M mkeyname] [-p portnum] [-m] [-r realm] [-n] [-w numworkers]
[-P pid_file] [-T time_offset]

16.5.2 DESCRIPTION

krb5kdc is the Kerberos version 5 Authentication Service and Key Distribution Center (AS/KDC).

16.5.3 OPTIONS

The -r realm option specifies the realm for which the server should provide service.

The -d dbname option specifies the name under which the principal database can be found. This option does not apply
to the LDAP database.

The -k keytype option specifies the key type of the master key to be entered manually as a password when -m is given;
the default is des-cbc-crc.

The -M mkeyname option specifies the principal name for the master key in the database (usually K/M in the KDC’s
realm).

The -m option specifies that the master database password should be fetched from the keyboard rather than from a
stash file.

The -n option specifies that the KDC does not put itself in the background and does not disassociate itself from the
terminal. In normal operation, you should always allow the KDC to place itself in the background.

The -P pid_file option tells the KDC to write its PID into pid_file after it starts up. This can be used to identify whether
the KDC is still running and to allow init scripts to stop the correct process.

The -p portnum option specifies the default UDP port numbers which the KDC should listen on for Kerberos version 5
requests, as a comma-separated list. This value overrides the UDP port numbers specified in the [kdcdefaults] section
of kdc.conf , but may be overridden by realm-specific values. If no value is given from any source, the default port is
88.

The -w numworkers option tells the KDC to fork numworkers processes to listen to the KDC ports and process requests
in parallel. The top level KDC process (whose pid is recorded in the pid file if the -P option is also given) acts as a
supervisor. The supervisor will relay SIGHUP signals to the worker subprocesses, and will terminate the worker
subprocess if the it is itself terminated or if any other worker process exits.

Note: On operating systems which do not have pktinfo support, using worker processes will prevent the KDC from
listening for UDP packets on network interfaces created after the KDC starts.

The -x db_args option specifies database-specific arguments. See Database Options in kadmin for supported argu-
ments.

The -T offset option specifies a time offset, in seconds, which the KDC will operate under. It is intended only for
testing purposes.

124 Chapter 16. Administration programs

Kerberos Administration Guide, Release 1.15.2

16.5.4 EXAMPLE

The KDC may service requests for multiple realms (maximum 32 realms). The realms are listed on the command line.
Per-realm options that can be specified on the command line pertain for each realm that follows it and are superseded
by subsequent definitions of the same option.

For example:

krb5kdc -p 2001 -r REALM1 -p 2002 -r REALM2 -r REALM3

specifies that the KDC listen on port 2001 for REALM1 and on port 2002 for REALM2 and REALM3. Addition-
ally, per-realm parameters may be specified in the kdc.conf file. The location of this file may be specified by the
KRB5_KDC_PROFILE environment variable. Per-realm parameters specified in this file take precedence over op-
tions specified on the command line. See the kdc.conf description for further details.

16.5.5 ENVIRONMENT

krb5kdc uses the following environment variables:

• KRB5_CONFIG

• KRB5_KDC_PROFILE

16.5.6 SEE ALSO

kdb5_util, kdc.conf , krb5.conf , kdb5_ldap_util

16.6 kprop

16.6.1 SYNOPSIS

kprop [-r realm] [-f file] [-d] [-P port] [-s keytab] slave_host

16.6.2 DESCRIPTION

kprop is used to securely propagate a Kerberos V5 database dump file from the master Kerberos server to a slave
Kerberos server, which is specified by slave_host. The dump file must be created by kdb5_util.

16.6.3 OPTIONS

-r realm Specifies the realm of the master server.

-f file Specifies the filename where the dumped principal database file is to be found; by default the dumped database
file is normally LOCALSTATEDIR/krb5kdc/slave_datatrans.

-P port Specifies the port to use to contact the kpropd server on the remote host.

-d Prints debugging information.

-s keytab Specifies the location of the keytab file.

16.6. kprop 125

Kerberos Administration Guide, Release 1.15.2

16.6.4 ENVIRONMENT

kprop uses the following environment variable:

• KRB5_CONFIG

16.6.5 SEE ALSO

kpropd, kdb5_util, krb5kdc

16.7 kpropd

16.7.1 SYNOPSIS

kpropd [-r realm] [-A admin_server] [-a acl_file] [-f slave_dumpfile] [-F principal_database] [-p kdb5_util_prog]
[-P port] [-d] [-t]

16.7.2 DESCRIPTION

The kpropd command runs on the slave KDC server. It listens for update requests made by the kprop program. If
incremental propagation is enabled, it periodically requests incremental updates from the master KDC.

When the slave receives a kprop request from the master, kpropd accepts the dumped KDC database and places it
in a file, and then runs kdb5_util to load the dumped database into the active database which is used by krb5kdc.
This allows the master Kerberos server to use kprop to propagate its database to the slave servers. Upon a successful
download of the KDC database file, the slave Kerberos server will have an up-to-date KDC database.

Where incremental propagation is not used, kpropd is commonly invoked out of inetd(8) as a nowait service. This is
done by adding a line to the /etc/inetd.conf file which looks like this:

kprop stream tcp nowait root /usr/local/sbin/kpropd kpropd

kpropd can also run as a standalone daemon, backgrounding itself and waiting for connections on port 754 (or the port
specified with the -P option if given). Standalone mode is required for incremental propagation. Starting in release
1.11, kpropd automatically detects whether it was run from inetd and runs in standalone mode if it is not. Prior to
release 1.11, the -S option is required to run kpropd in standalone mode; this option is now accepted for backward
compatibility but does nothing.

Incremental propagation may be enabled with the iprop_enable variable in kdc.conf . If incremental propagation is
enabled, the slave periodically polls the master KDC for updates, at an interval determined by the iprop_slave_poll
variable. If the slave receives updates, kpropd updates its log file with any updates from the master. kproplog can be
used to view a summary of the update entry log on the slave KDC. If incremental propagation is enabled, the principal
kiprop/slavehostname@REALM (where slavehostname is the name of the slave KDC host, and REALM is the
name of the Kerberos realm) must be present in the slave’s keytab file.

kproplog can be used to force full replication when iprop is enabled.

16.7.3 OPTIONS

-r realm Specifies the realm of the master server.

-A admin_server Specifies the server to be contacted for incremental updates; by default, the master admin server is
contacted.

126 Chapter 16. Administration programs

Kerberos Administration Guide, Release 1.15.2

-f file Specifies the filename where the dumped principal database file is to be stored; by default the dumped database
file is LOCALSTATEDIR/krb5kdc/from_master.

-p Allows the user to specify the pathname to the kdb5_util program; by default the pathname used is
SBINDIR/kdb5_util.

-d Turn on debug mode. In this mode, kpropd will not detach itself from the current job and run in the background.
Instead, it will run in the foreground and print out debugging messages during the database propagation.

-t In standalone mode without incremental propagation, exit after one dump file is received. In incremental propaga-
tion mode, exit as soon as the database is up to date, or if the master returns an error.

-P Allow for an alternate port number for kpropd to listen on. This is only useful in combination with the -S option.

-a acl_file Allows the user to specify the path to the kpropd.acl file; by default the path used is LOCALSTATE-
DIR/krb5kdc/kpropd.acl.

16.7.4 ENVIRONMENT

kpropd uses the following environment variables:

• KRB5_CONFIG

• KRB5_KDC_PROFILE

16.7.5 FILES

kpropd.acl Access file for kpropd; the default location is /usr/local/var/krb5kdc/kpropd.acl. Each
entry is a line containing the principal of a host from which the local machine will allow Kerberos database
propagation via kprop.

16.7.6 SEE ALSO

kprop, kdb5_util, krb5kdc, inetd(8)

16.8 kproplog

16.8.1 SYNOPSIS

kproplog [-h] [-e num] [-v] kproplog [-R]

16.8.2 DESCRIPTION

The kproplog command displays the contents of the KDC database update log to standard output. It can be used to
keep track of incremental updates to the principal database. The update log file contains the update log maintained
by the kadmind process on the master KDC server and the kpropd process on the slave KDC servers. When updates
occur, they are logged to this file. Subsequently any KDC slave configured for incremental updates will request the
current data from the master KDC and update their log file with any updates returned.

The kproplog command requires read access to the update log file. It will display update entries only for the KDC it
runs on.

16.8. kproplog 127

Kerberos Administration Guide, Release 1.15.2

If no options are specified, kproplog displays a summary of the update log. If invoked on the master, kproplog also
displays all of the update entries. If invoked on a slave KDC server, kproplog displays only a summary of the updates,
which includes the serial number of the last update received and the associated time stamp of the last update.

16.8.3 OPTIONS

-R Reset the update log. This forces full resynchronization. If used on a slave then that slave will request a full resync.
If used on the master then all slaves will request full resyncs.

-h Display a summary of the update log. This information includes the database version number, state of the database,
the number of updates in the log, the time stamp of the first and last update, and the version number of the first
and last update entry.

-e num Display the last num update entries in the log. This is useful when debugging synchronization between KDC
servers.

-v Display individual attributes per update. An example of the output generated for one entry:

Update Entry
Update serial # : 4
Update operation : Add
Update principal : test@EXAMPLE.COM
Update size : 424
Update committed : True
Update time stamp : Fri Feb 20 23:37:42 2004
Attributes changed : 6

Principal
Key data
Password last changed
Modifying principal
Modification time
TL data

16.8.4 ENVIRONMENT

kproplog uses the following environment variables:

• KRB5_KDC_PROFILE

16.8.5 SEE ALSO

kpropd

16.9 ktutil

16.9.1 SYNOPSIS

ktutil

128 Chapter 16. Administration programs

Kerberos Administration Guide, Release 1.15.2

16.9.2 DESCRIPTION

The ktutil command invokes a command interface from which an administrator can read, write, or edit entries in a
keytab or Kerberos V4 srvtab file.

16.9.3 COMMANDS

list

list

Displays the current keylist.

Alias: l

read_kt

read_kt keytab

Read the Kerberos V5 keytab file keytab into the current keylist.

Alias: rkt

read_st

read_st srvtab

Read the Kerberos V4 srvtab file srvtab into the current keylist.

Alias: rst

write_kt

write_kt keytab

Write the current keylist into the Kerberos V5 keytab file keytab.

Alias: wkt

write_st

write_st srvtab

Write the current keylist into the Kerberos V4 srvtab file srvtab.

Alias: wst

clear_list

clear_list

Clear the current keylist.

Alias: clear

16.9. ktutil 129

Kerberos Administration Guide, Release 1.15.2

delete_entry

delete_entry slot

Delete the entry in slot number slot from the current keylist.

Alias: delent

add_entry

add_entry {-key|-password} -p principal -k kvno -e enctype

Add principal to keylist using key or password.

Alias: addent

list_requests

list_requests

Displays a listing of available commands.

Aliases: lr, ?

quit

quit

Quits ktutil.

Aliases: exit, q

16.9.4 EXAMPLE

ktutil: add_entry -password -p alice@BLEEP.COM -k 1 -e
aes128-cts-hmac-sha1-96

Password for alice@BLEEP.COM:
ktutil: add_entry -password -p alice@BLEEP.COM -k 1 -e

aes256-cts-hmac-sha1-96
Password for alice@BLEEP.COM:
ktutil: write_kt keytab
ktutil:

16.9.5 SEE ALSO

kadmin, kdb5_util

16.10 k5srvutil

16.10.1 SYNOPSIS

k5srvutil operation [-i] [-f filename] [-e keysalts]

130 Chapter 16. Administration programs

Kerberos Administration Guide, Release 1.15.2

16.10.2 DESCRIPTION

k5srvutil allows an administrator to list keys currently in a keytab, to obtain new keys for a principal currently in a
keytab, or to delete non-current keys from a keytab.

operation must be one of the following:

list Lists the keys in a keytab, showing version number and principal name.

change Uses the kadmin protocol to update the keys in the Kerberos database to new randomly-generated keys, and
updates the keys in the keytab to match. If a key’s version number doesn’t match the version number stored
in the Kerberos server’s database, then the operation will fail. If the -i flag is given, k5srvutil will prompt
for confirmation before changing each key. If the -k option is given, the old and new keys will be displayed.
Ordinarily, keys will be generated with the default encryption types and key salts. This can be overridden with
the -e option. Old keys are retained in the keytab so that existing tickets continue to work, but delold should be
used after such tickets expire, to prevent attacks against the old keys.

delold Deletes keys that are not the most recent version from the keytab. This operation should be used some time
after a change operation to remove old keys, after existing tickets issued for the service have expired. If the -i
flag is given, then k5srvutil will prompt for confirmation for each principal.

delete Deletes particular keys in the keytab, interactively prompting for each key.

In all cases, the default keytab is used unless this is overridden by the -f option.

k5srvutil uses the kadmin program to edit the keytab in place.

16.10.3 SEE ALSO

kadmin, ktutil

16.11 sserver

16.11.1 SYNOPSIS

sserver [-p port] [-S keytab] [server_port]

16.11.2 DESCRIPTION

sserver and sclient(1) are a simple demonstration client/server application. When sclient connects to sserver, it per-
forms a Kerberos authentication, and then sserver returns to sclient the Kerberos principal which was used for the
Kerberos authentication. It makes a good test that Kerberos has been successfully installed on a machine.

The service name used by sserver and sclient is sample. Hence, sserver will require that there be a keytab entry for the
service sample/hostname.domain.name@REALM.NAME. This keytab is generated using the kadmin program.
The keytab file is usually installed as DEFKTNAME.

The -S option allows for a different keytab than the default.

sserver is normally invoked out of inetd(8), using a line in /etc/inetd.conf that looks like this:

sample stream tcp nowait root /usr/local/sbin/sserver sserver

Since sample is normally not a port defined in /etc/services, you will usually have to add a line to
/etc/services which looks like this:

16.11. sserver 131

Kerberos Administration Guide, Release 1.15.2

sample 13135/tcp

When using sclient, you will first have to have an entry in the Kerberos database, by using kadmin, and then you have
to get Kerberos tickets, by using kinit(1). Also, if you are running the sclient program on a different host than the
sserver it will be connecting to, be sure that both hosts have an entry in /etc/services for the sample tcp port, and that
the same port number is in both files.

When you run sclient you should see something like this:

sendauth succeeded, reply is:
reply len 32, contents:
You are nlgilman@JIMI.MIT.EDU

16.11.3 COMMON ERROR MESSAGES

1. kinit returns the error:

kinit: Client not found in Kerberos database while getting
initial credentials

This means that you didn’t create an entry for your username in the Kerberos database.

2. sclient returns the error:

unknown service sample/tcp; check /etc/services

This means that you don’t have an entry in /etc/services for the sample tcp port.

3. sclient returns the error:

connect: Connection refused

This probably means you didn’t edit /etc/inetd.conf correctly, or you didn’t restart inetd after editing inetd.conf.

4. sclient returns the error:

sclient: Server not found in Kerberos database while using
sendauth

This means that the sample/hostname@LOCAL.REALM service was not defined in the Kerberos database;
it should be created using kadmin, and a keytab file needs to be generated to make the key for that service
principal available for sclient.

5. sclient returns the error:

sendauth rejected, error reply is:
"No such file or directory"

This probably means sserver couldn’t find the keytab file. It was probably not installed in the proper directory.

16.11.4 SEE ALSO

sclient(1), services(5), inetd(8)

132 Chapter 16. Administration programs

133

Kerberos Administration Guide, Release 1.15.2

CHAPTER

SEVENTEEN

MIT KERBEROS DEFAULTS

17.1 General defaults

Description Default Environ-
ment

keytab_definition
file

DEFKTNAME KRB5_KTNAME

Client
keytab_definition
file

DEFCKTNAME KRB5_CLIENT_KTNAME

Kerberos
config file
krb5.conf

/etc/krb5.conf:SYSCONFDIR/krb5.conf KRB5_CONFIG

KDC config
file kdc.conf

LOCALSTATEDIR/krb5kdc/kdc.conf KRB5_KDC_PROFILE

KDC database
path (DB2)

LOCALSTATEDIR/krb5kdc/principal

Master key
stash_definition

LOCALSTATEDIR/krb5kdc/.k5.realm

Admin server
ACL file
kadm5.acl

LOCALSTATEDIR/krb5kdc/kadm5.acl

OTP socket
directory

RUNSTATEDIR/krb5kdc

Plugin base
directory

LIBDIR/krb5/plugins

rcache_definition
directory

/var/tmp KRB5RCACHEDIR

Master key
default enctype

aes256-cts-hmac-sha1-96

Default keysalt
list

aes256-cts-hmac-sha1-96:normal
aes128-cts-hmac-sha1-96:normal des3-cbc-sha1:normal
arcfour-hmac-md5:normal

Permitted
enctypes

aes256-cts-hmac-sha1-96 aes128-cts-hmac-sha1-96
aes128-cts-hmac-sha256-128
aes256-cts-hmac-sha384-192 des3-cbc-sha1
arcfour-hmac-md5 camellia256-cts-cmac
camellia128-cts-cmac des-cbc-crc des-cbc-md5
des-cbc-md4

KDC default
port

88

Admin server
port

749

Password
change port

464
134 Chapter 17. MIT Kerberos defaults

Kerberos Administration Guide, Release 1.15.2

17.2 Slave KDC propagation defaults

This table shows defaults used by the kprop and kpropd programs.

Description Default Environment
kprop database dump file LOCALSTATEDIR/krb5kdc/slave_datatrans
kpropd temporary dump file LOCALSTATEDIR/krb5kdc/from_master
kdb5_util location SBINDIR/kdb5_util
kprop location SBINDIR/kprop
kpropd ACL file LOCALSTATEDIR/krb5kdc/kpropd.acl
kprop port 754 KPROP_PORT

17.3 Default paths for Unix-like systems

On Unix-like systems, some paths used by MIT krb5 depend on parameters chosen at build time. For a custom build,
these paths default to subdirectories of /usr/local. When MIT krb5 is integrated into an operating system, the
paths are generally chosen to match the operating system’s filesystem layout.

Description Symbolic name Custom build path Typical OS path
User programs BINDIR /usr/local/bin /usr/bin
Libraries and plugins LIBDIR /usr/local/lib /usr/lib
Parent of KDC state dir LOCALSTATE-

DIR
/usr/local/var /var

Parent of KDC runtime
dir

RUNSTATEDIR /usr/local/var/run /run

Administrative
programs

SBINDIR /usr/local/sbin /usr/sbin

Alternate krb5.conf dir SYSCONFDIR /usr/local/etc /etc
Default ccache name DEFCCNAME FILE:/tmp/krb5cc_%{uid}FILE:/tmp/krb5cc_%{uid}
Default keytab name DEFKTNAME FILE:/etc/krb5.keytab FILE:/etc/krb5.keytab

The default client keytab name (DEFCKTNAME) typically defaults to FILE:/usr/local/var/krb5/user/%{euid}/client.keytab
for a custom build. A native build will typically use a path which will vary according to the operating system’s layout
of /var.

17.2. Slave KDC propagation defaults 135

Kerberos Administration Guide, Release 1.15.2

136 Chapter 17. MIT Kerberos defaults

CHAPTER

EIGHTEEN

ENVIRONMENT VARIABLES

The following environment variables can be used during runtime:

KRB5_CONFIG Main Kerberos configuration file. Multiple filenames can be specified, separated by a colon; all
files which are present will be read. (See MIT Kerberos defaults for the default path.)

KRB5_KDC_PROFILE KDC configuration file. (See MIT Kerberos defaults for the default name.)

KRB5_KTNAME Default keytab file name. (See MIT Kerberos defaults for the default name.)

KRB5_CLIENT_KTNAME Default client keytab file name. (See MIT Kerberos defaults for the default name.)

KRB5CCNAME Default name for the credentials cache file, in the form type:residual. The type of the default cache
may determine the availability of a cache collection. For instance, a default cache of type DIR causes caches
within the directory to be present in the global cache collection.

KRB5RCACHETYPE Default replay cache type. Defaults to dfl. A value of none disables the replay cache.

KRB5RCACHEDIR Default replay cache directory. (See MIT Kerberos defaults for the default location.)

KPROP_PORT kprop port to use. Defaults to 754.

KRB5_TRACE Filename for trace-logging output (introduced in release 1.9). For example, env
KRB5_TRACE=/dev/stdout kinit would send tracing information for kinit to /dev/stdout. Some
programs may ignore this variable (particularly setuid or login system programs).

137

Kerberos Administration Guide, Release 1.15.2

138 Chapter 18. Environment variables

CHAPTER

NINETEEN

TROUBLESHOOTING

19.1 Trace logging

Most programs using MIT krb5 1.9 or later can be made to provide information about internal krb5 library operations
using trace logging. To enable this, set the KRB5_TRACE environment variable to a filename before running the
program. On many operating systems, the filename /dev/stdout can be used to send trace logging output to
standard output.

Some programs do not honor KRB5_TRACE, either because they use secure library contexts (this generally applies
to setuid programs and parts of the login system) or because they take direct control of the trace logging system using
the API.

Here is a short example showing trace logging output for an invocation of the kvno(1) command:

shell% env KRB5_TRACE=/dev/stdout kvno krbtgt/KRBTEST.COM
[9138] 1332348778.823276: Getting credentials user@KRBTEST.COM ->

krbtgt/KRBTEST.COM@KRBTEST.COM using ccache
FILE:/me/krb5/build/testdir/ccache

[9138] 1332348778.823381: Retrieving user@KRBTEST.COM ->
krbtgt/KRBTEST.COM@KRBTEST.COM from
FILE:/me/krb5/build/testdir/ccache with result: 0/Unknown code 0

krbtgt/KRBTEST.COM@KRBTEST.COM: kvno = 1

19.2 List of errors

19.2.1 Frequently seen errors

1. KDC has no support for encryption type while getting initial credentials

2. credential verification failed: KDC has no support for encryption type

3. Cannot create cert chain: certificate has expired

19.2.2 Errors seen by admins

1. kprop: No route to host while connecting to server

2. kprop: Connection refused while connecting to server

3. kprop: Server rejected authentication (during sendauth exchange) while authenticating to server

139

Kerberos Administration Guide, Release 1.15.2

KDC has no support for encryption type while getting initial credentials

credential verification failed: KDC has no support for encryption type

This most commonly happens when trying to use a principal with only DES keys, in a release (MIT krb5 1.7 or later)
which disables DES by default. DES encryption is considered weak due to its inadequate key size. If you cannot
migrate away from its use, you can re-enable DES by adding allow_weak_crypto = true to the [libdefaults]
section of krb5.conf .

Cannot create cert chain: certificate has expired

This error message indicates that PKINIT authentication failed because the client certificate, KDC certificate, or one
of the certificates in the signing chain above them has expired.

If the KDC certificate has expired, this message appears in the KDC log file, and the client will receive a “Preauthen-
tication failed” error. (Prior to release 1.11, the KDC log file message erroneously appears as “Out of memory”. Prior
to release 1.12, the client will receive a “Generic error”.)

If the client or a signing certificate has expired, this message may appear in trace_logging output from kinit(1) or,
starting in release 1.12, as an error message from kinit or another program which gets initial tickets. The error message
is more likely to appear properly on the client if the principal entry has no long-term keys.

kprop: No route to host while connecting to server

Make sure that the hostname of the slave (as given to kprop) is correct, and that any firewalls between the master and
the slave allow a connection on port 754.

kprop: Connection refused while connecting to server

If the slave is intended to run kpropd out of inetd, make sure that inetd is configured to accept krb5_prop connections.
inetd may need to be restarted or sent a SIGHUP to recognize the new configuration. If the slave is intended to run
kpropd in standalone mode, make sure that it is running.

kprop: Server rejected authentication (during sendauth exchange) while authenticating to server

Make sure that:

1. The time is synchronized between the master and slave KDCs.

2. The master stash file was copied from the master to the expected location on the slave.

3. The slave has a keytab file in the default location containing a host principal for the slave’s hostname.

140 Chapter 19. Troubleshooting

CHAPTER

TWENTY

ADVANCED TOPICS

20.1 LDAP backend on Ubuntu 10.4 (lucid)

Setting up Kerberos v1.9 with LDAP backend on Ubuntu 10.4 (Lucid Lynx)

20.1.1 Prerequisites

Install the following packages: slapd, ldap-utils and libldap2-dev

You can install the necessary packages with these commands:

sudo apt-get install slapd
sudo apt-get install ldap-utils
sudo apt-get install libldap2-dev

Extend the user schema using schemas from standart OpenLDAP distribution: cosine, mics, nis, inetcomperson

ldapadd -Y EXTERNAL -H ldapi:/// -f /etc/ldap/schema/cosine.ldif
ldapadd -Y EXTERNAL -H ldapi:/// -f /etc/ldap/schema/mics.ldif
ldapadd -Y EXTERNAL -H ldapi:/// -f /etc/ldap/schema/nis.ldif
ldapadd -Y EXTERNAL -H ldapi:/// -f /etc/ldap/schema/inetcomperson.ldif

20.1.2 Building Kerberos from source

./configure --with-ldap
make
sudo make install

20.1.3 Setting up Kerberos

Configuration

Update kdc.conf with the LDAP back-end information:

[realms]
EXAMPLE.COM = {

database_module = LDAP
}

[dbmodules]
LDAP = {

141

Kerberos Administration Guide, Release 1.15.2

db_library = kldap
ldap_kerberos_container_dn = cn=krbContainer,dc=example,dc=com
ldap_kdc_dn = cn=admin,dc=example,dc=com
ldap_kadmind_dn = cn=admin,dc=example,dc=com
ldap_service_password_file = /usr/local/var/krb5kdc/admin.stash
ldap_servers = ldapi:///

}

Schema

From the source tree copy src/plugins/kdb/ldap/libkdb_ldap/kerberos.schema into
/etc/ldap/schema

Warning: this step should be done after slapd is installed to avoid problems with slapd installation.

To convert kerberos.schema to run-time configuration (cn=config) do the following:

1. Create a temporary file /tmp/schema_convert.conf with the following content:

include /etc/ldap/schema/kerberos.schema

2. Create a temporary directory /tmp/krb5_ldif.

3. Run:

slaptest -f /tmp/schema_convert.conf -F /tmp/krb5_ldif

This should in a new file named /tmp/krb5_ldif/cn=config/cn=schema/cn={0}kerberos.ldif.

4. Edit /tmp/krb5_ldif/cn=config/cn=schema/cn={0}kerberos.ldif by replacing the lines:

dn: cn={0}kerberos
cn: {0}kerberos

with

dn: cn=kerberos,cn=schema,cn=config cn: kerberos

Also, remove following attribute-value pairs:

structuralObjectClass: olcSchemaConfig
entryUUID: ...
creatorsName: cn=config
createTimestamp: ...
entryCSN: ...
modifiersName: cn=config
modifyTimestamp: ...

5. Load the new schema with ldapadd (with the proper authentication):

ldapadd -Y EXTERNAL -H ldapi:/// -f /tmp/krb5_ldif/cn=config/cn=schema/cn={0}kerberos.ldif

which should result the message adding new entry "cn=kerberos,cn=schema,cn=config".

20.1.4 Create Kerberos database

Using LDAP administrator credentials, create Kerberos database and master key stash:

142 Chapter 20. Advanced topics

Kerberos Administration Guide, Release 1.15.2

kdb5_ldap_util -D cn=admin,dc=example,dc=com -H ldapi:/// create -s

Stash the LDAP administrative passwords:

kdb5_ldap_util -D cn=admin,dc=example,dc=com -H ldapi:/// stashsrvpw cn=admin,dc=example,dc=com

Start krb5kdc:

krb5kdc

To destroy database run:

kdb5_ldap_util -D cn=admin,dc=example,dc=com -H ldapi:/// destroy -f

20.1.5 Useful references

• Kerberos and LDAP

20.2 Retiring DES

Version 5 of the Kerberos protocol was originally implemented using the Data Encryption Standard (DES) as a block
cipher for encryption. While it was considered secure at the time, advancements in computational ability have rendered
DES vulnerable to brute force attacks on its 56-bit keyspace. As such, it is now considered insecure and should not be
used (RFC 6649).

20.2.1 History

DES was used in the original Kerberos implementation, and was the only cryptosystem in krb5 1.0. Partial support
for triple-DES (3DES) was added in version 1.1, with full support following in version 1.2. The Advanced Encryption
Standard (AES), which supersedes DES, gained partial support in version 1.3.0 of krb5 and full support in version
1.3.2. However, deployments of krb5 using Kerberos databases created with older versions of krb5 will not necessarily
start using strong crypto for ordinary operation without administrator intervention.

20.2.2 Types of keys

• The database master key: This key is not exposed to user requests, but is used to encrypt other key material
stored in the kerberos database. The database master key is currently stored as K/M by default.

• Password-derived keys: User principals frequently have keys derived from a password. When a new password
is set, the KDC uses various string2key functions to generate keys in the database for that principal.

• Keytab keys: Application server principals generally use random keys which are not derived from a password.
When the database entry is created, the KDC generates random keys of various enctypes to enter in the database,
which are conveyed to the application server and stored in a keytab.

• Session keys: These are short-term keys generated by the KDC while processing client requests, with an enctype
selected by the KDC.

For details on the various enctypes and how enctypes are selected by the KDC for session keys and client/server long-
term keys, see Encryption types. When using the kadmin interface to generate new long-term keys, the -e argument
can be used to force a particular set of enctypes, overriding the KDC default values.

Note: When the KDC is selecting a session key, it has no knowledge about the kerberos installation on the server

20.2. Retiring DES 143

https://help.ubuntu.com/10.04/serverguide/C/kerberos-ldap.html
http://tools.ietf.org/html/rfc6649.html

Kerberos Administration Guide, Release 1.15.2

which will receive the service ticket, only what keys are in the database for the service principal. In order to allow
uninterrupted operation to clients while migrating away from DES, care must be taken to ensure that kerberos instal-
lations on application server machines are configured to support newer encryption types before keys of those new
encryption types are created in the Kerberos database for those server principals.

20.2.3 Upgrade procedure

This procedure assumes that the KDC software has already been upgraded to a modern version of krb5 that supports
non-DES keys, so that the only remaining task is to update the actual keys used to service requests. The realm used
for demonstrating this procedure, ZONE.MIT.EDU, is an example of the worst-case scenario, where all keys in the
realm are DES. The realm was initially created with a very old version of krb5, and supported_enctypes in kdc.conf
was set to a value appropriate when the KDC was installed, but was not updated as the KDC was upgraded:

[realms]
ZONE.MIT.EDU = {

[...]
master_key_type = des-cbc-crc
supported_enctypes = des-cbc-crc:normal des:normal des:v4 des:norealm des:onlyrealm des:afs3

}

This resulted in the keys for all principals in the realm being forced to DES-only, unless specifically requested using
kadmin.

Before starting the upgrade, all KDCs were running krb5 1.11, and the database entries for some “high-value” princi-
pals were:

[root@casio krb5kdc]# kadmin.local -r ZONE.MIT.EDU -q ’getprinc krbtgt/ZONE.MIT.EDU’
[...]
Number of keys: 1
Key: vno 1, des-cbc-crc:v4
[...]
[root@casio krb5kdc]# kadmin.local -r ZONE.MIT.EDU -q ’getprinc kadmin/admin’
[...]
Number of keys: 1
Key: vno 15, des-cbc-crc
[...]
[root@casio krb5kdc]# kadmin.local -r ZONE.MIT.EDU -q ’getprinc kadmin/changepw’
[...]
Number of keys: 1
Key: vno 14, des-cbc-crc
[...]

The krbtgt/REALM key appears to have never been changed since creation (its kvno is 1), and all three database
entries have only a des-cbc-crc key.

The krbtgt key and KDC keys

Perhaps the biggest single-step improvement in the security of the cell is gained by strengthening the key of the ticket-
granting service principal, krbtgt/REALM—if this principal’s key is compromised, so is the entire realm. Since the
server that will handle service tickets for this principal is the KDC itself, it is easy to guarantee that it will be configured
to support any encryption types which might be selected. However, the default KDC behavior when creating new keys
is to remove the old keys, which would invalidate all existing tickets issued against that principal, rendering the TGTs
cached by clients useless. Instead, a new key can be created with the old key retained, so that existing tickets will still
function until their scheduled expiry (see Changing the krbtgt key).

144 Chapter 20. Advanced topics

Kerberos Administration Guide, Release 1.15.2

[root@casio krb5kdc]# enctypes=aes256-cts-hmac-sha1-96:normal,\
> aes128-cts-hmac-sha1-96:normal,des3-hmac-sha1:normal,des-cbc-crc:normal
[root@casio krb5kdc]# kadmin.local -r ZONE.MIT.EDU -q "cpw -e ${enctypes} -randkey \
> -keepold krbtgt/ZONE.MIT.EDU"
Authenticating as principal root/admin@ZONE.MIT.EDU with password.
Key for "krbtgt/ZONE.MIT.EDU@ZONE.MIT.EDU" randomized.

Note: The new krbtgt@REALM key should be propagated to slave KDCs immediately so that TGTs issued by the
master KDC can be used to issue service tickets on slave KDCs. Slave KDCs will refuse requests using the new TGT
kvno until the new krbtgt entry has been propagated to them.

It is necessary to explicitly specify the enctypes for the new database entry, since supported_enctypes has not been
changed. Leaving supported_enctypes unchanged makes a potential rollback operation easier, since all new keys
of new enctypes are the result of explicit administrator action and can be easily enumerated. Upgrading the krbtgt
key should have minimal user-visible disruption other than that described in the note above, since only clients which
list the new enctypes as supported will use them, per the procedure in Session key selection. Once the krbtgt key is
updated, the session and ticket keys for user TGTs will be strong keys, but subsequent requests for service tickets will
still get DES keys until the service principals have new keys generated. Application service remains uninterrupted due
to the key-selection procedure on the KDC.

After the change, the database entry is now:

[root@casio krb5kdc]# kadmin.local -r ZONE.MIT.EDU -q ’getprinc krbtgt/ZONE.MIT.EDU’
[...]
Number of keys: 5
Key: vno 2, aes256-cts-hmac-sha1-96
Key: vno 2, aes128-cts-hmac-sha1-96
Key: vno 2, des3-cbc-sha1
Key: vno 2, des-cbc-crc
Key: vno 1, des-cbc-crc:v4
[...]

Since the expected disruptions from rekeying the krbtgt principal are minor, after a short testing period, it is appropriate
to rekey the other high-value principals, kadmin/admin@REALM and kadmin/changepw@REALM. These are the
service principals used for changing user passwords and updating application keytabs. The kadmin and password-
changing services are regular kerberized services, so the session-key-selection algorithm described in Session key
selection applies. It is particularly important to have strong session keys for these services, since user passwords and
new long-term keys are conveyed over the encrypted channel.

[root@casio krb5kdc]# enctypes=aes256-cts-hmac-sha1-96:normal,\
> aes128-cts-hmac-sha1-96:normal,des3-hmac-sha1:normal
[root@casio krb5kdc]# kadmin.local -r ZONE.MIT.EDU -q "cpw -e ${enctypes} -randkey \
> kadmin/admin"
Authenticating as principal root/admin@ZONE.MIT.EDU with password.
Key for "kadmin/admin@ZONE.MIT.EDU" randomized.
[root@casio krb5kdc]# kadmin.local -r ZONE.MIT.EDU -q "cpw -e ${enctypes} -randkey \
> kadmin/changepw"
Authenticating as principal root/admin@ZONE.MIT.EDU with password.
Key for "kadmin/changepw@ZONE.MIT.EDU" randomized.

It is not necessary to retain a single-DES key for these services, since password changes are not part of normal daily
workflow, and disruption from a client failure is likely to be minimal. Furthermore, if a kerberos client experiences
failure changing a user password or keytab key, this indicates that that client will become inoperative once services
are rekeyed to non-DES enctypes. Such problems can be detected early at this stage, giving more time for corrective
action.

20.2. Retiring DES 145

Kerberos Administration Guide, Release 1.15.2

Adding strong keys to application servers

Before switching the default enctypes for new keys over to strong enctypes, it may be desired to test upgrading a
handful of services with the new configuration before flipping the switch for the defaults. This still requires using the
-e argument in kadmin to get non-default enctypes:

[root@casio krb5kdc]# enctypes=aes256-cts-hmac-sha1-96:normal,\
> aes128-cts-hmac-sha1-96:normal,des3-cbc-sha1:normal,des-cbc-crc:normal
[root@casio krb5kdc]# kadmin -r ZONE.MIT.EDU -p zephyr/zephyr@ZONE.MIT.EDU -k -t \
> /etc/zephyr/krb5.keytab -q "ktadd -e ${enctypes} \
> -k /etc/zephyr/krb5.keytab zephyr/zephyr@ZONE.MIT.EDU"
Authenticating as principal zephyr/zephyr@ZONE.MIT.EDU with keytab /etc/zephyr/krb5.keytab.
Entry for principal zephyr/zephyr@ZONE.MIT.EDU with kvno 4, encryption type aes256-cts-hmac-sha1-96 added to keytab WRFILE:/etc/zephyr/krb5.keytab.
Entry for principal zephyr/zephyr@ZONE.MIT.EDU with kvno 4, encryption type aes128-cts-hmac-sha1-96 added to keytab WRFILE:/etc/zephyr/krb5.keytab.
Entry for principal zephyr/zephyr@ZONE.MIT.EDU with kvno 4, encryption type des3-cbc-sha1 added to keytab WRFILE:/etc/zephyr/krb5.keytab.
Entry for principal zephyr/zephyr@ZONE.MIT.EDU with kvno 4, encryption type des-cbc-crc added to keytab WRFILE:/etc/zephyr/krb5.keytab.

Be sure to remove the old keys from the application keytab, per best practice.

[root@casio krb5kdc]# k5srvutil -f /etc/zephyr/krb5.keytab delold
Authenticating as principal zephyr/zephyr@ZONE.MIT.EDU with keytab /etc/zephyr/krb5.keytab.
Entry for principal zephyr/zephyr@ZONE.MIT.EDU with kvno 3 removed from keytab WRFILE:/etc/zephyr/krb5.keytab.

Adding strong keys by default

Once the high-visibility services have been rekeyed, it is probably appropriate to change kdc.conf to generate keys
with the new encryption types by default. This enables server administrators to generate new enctypes with the
change subcommand of k5srvutil, and causes user password changes to add new encryption types for their entries.
It will probably be necessary to implement administrative controls to cause all user principal keys to be updated in a
reasonable period of time, whether by forcing password changes or a password synchronization service that has access
to the current password and can add the new keys.

[realms]
ZONE.MIT.EDU = {

supported_enctypes = aes256-cts-hmac-sha1-96:normal aes128-cts-hmac-sha1-96:normal des3-cbc-sha1:normal des3-hmac-sha1:normal des-cbc-crc:normal

Note: The krb5kdc process must be restarted for these changes to take effect.

At this point, all service administrators can update their services and the servers behind them to take advantage of
strong cryptography. If necessary, the server’s krb5 installation should be configured and/or upgraded to a version
supporting non-DES keys. See Encryption types for krb5 version and configuration settings. Only when the ser-
vice is configured to accept non-DES keys should the key version number be incremented and new keys generated
(k5srvutil change && k5srvutil delold).

root@dr-willy:~# k5srvutil change
Authenticating as principal host/dr-willy.xvm.mit.edu@ZONE.MIT.EDU with keytab /etc/krb5.keytab.
Entry for principal host/dr-willy.xvm.mit.edu@ZONE.MIT.EDU with kvno 3, encryption type AES-256 CTS mode with 96-bit SHA-1 HMAC added to keytab WRFILE:/etc/krb5.keytab.
Entry for principal host/dr-willy.xvm.mit.edu@ZONE.MIT.EDU with kvno 3, encryption type AES-128 CTS mode with 96-bit SHA-1 HMAC added to keytab WRFILE:/etc/krb5.keytab.
Entry for principal host/dr-willy.xvm.mit.edu@ZONE.MIT.EDU with kvno 3, encryption type Triple DES cbc mode with HMAC/sha1 added to keytab WRFILE:/etc/krb5.keytab.
Entry for principal host/dr-willy.xvm.mit.edu@ZONE.MIT.EDU with kvno 3, encryption type DES cbc mode with CRC-32 added to keytab WRFILE:/etc/krb5.keytab.
root@dr-willy:~# klist -e -k -t /etc/krb5.keytab
Keytab name: WRFILE:/etc/krb5.keytab
KVNO Timestamp Principal
---- ----------------- --

2 10/10/12 17:03:59 host/dr-willy.xvm.mit.edu@ZONE.MIT.EDU (DES cbc mode with CRC-32)
3 12/12/12 15:31:19 host/dr-willy.xvm.mit.edu@ZONE.MIT.EDU (AES-256 CTS mode with 96-bit SHA-1 HMAC)

146 Chapter 20. Advanced topics

Kerberos Administration Guide, Release 1.15.2

3 12/12/12 15:31:19 host/dr-willy.xvm.mit.edu@ZONE.MIT.EDU (AES-128 CTS mode with 96-bit SHA-1 HMAC)
3 12/12/12 15:31:19 host/dr-willy.xvm.mit.edu@ZONE.MIT.EDU (Triple DES cbc mode with HMAC/sha1)
3 12/12/12 15:31:19 host/dr-willy.xvm.mit.edu@ZONE.MIT.EDU (DES cbc mode with CRC-32)

root@dr-willy:~# k5srvutil delold
Authenticating as principal host/dr-willy.xvm.mit.edu@ZONE.MIT.EDU with keytab /etc/krb5.keytab.
Entry for principal host/dr-willy.xvm.mit.edu@ZONE.MIT.EDU with kvno 2 removed from keytab WRFILE:/etc/krb5.keytab.

When a single service principal is shared by multiple backend servers in a load-balanced environment, it may be
necessary to schedule downtime or adjust the population in the load-balanced pool in order to propagate the updated
keytab to all hosts in the pool with minimal service interruption.

Removing DES keys from usage

This situation remains something of a testing or transitory state, as new DES keys are still being generated, and will be
used if requested by a client. To make more progress removing DES from the realm, the KDC should be configured
to not generate such keys by default.

Note: An attacker posing as a client can implement a brute force attack against a DES key for any principal, if that
key is in the current (highest-kvno) key list. This attack is only possible if allow_weak_crypto = true is enabled on
the KDC. Setting the +requires_preauth flag on a principal forces this attack to be an online attack, much slower than
the offline attack otherwise available to the attacker. However, setting this flag on a service principal is not always
advisable; see the entry in add_principal for details.

The following KDC configuration will not generate DES keys by default:

[realms]
ZONE.MIT.EDU = {

supported_enctypes = aes256-cts-hmac-sha1-96:normal aes128-cts-hmac-sha1-96:normal des3-cbc-sha1:normal des3-hmac-sha1:normal

Note: As before, the KDC process must be restarted for this change to take effect. It is best practice to update
kdc.conf on all KDCs, not just the master, to avoid unpleasant surprises should the master fail and a slave need to be
promoted.

It is now appropriate to remove the legacy single-DES key from the krbtgt/REALM entry:

[root@casio krb5kdc]# kadmin.local -r ZONE.MIT.EDU -q "cpw -randkey -keepold \
> krbtgt/ZONE.MIT.EDU"
Authenticating as principal host/admin@ATHENA.MIT.EDU with password.
Key for "krbtgt/ZONE.MIT.EDU@ZONE.MIT.EDU" randomized.

After the maximum ticket lifetime has passed, the old database entry should be removed.

[root@casio krb5kdc]# kadmin.local -r ZONE.MIT.EDU -q ’purgekeys krbtgt/ZONE.MIT.EDU’
Authenticating as principal root/admin@ZONE.MIT.EDU with password.
Old keys for principal "krbtgt/ZONE.MIT.EDU@ZONE.MIT.EDU" purged.

After the KDC is restarted with the new supported_enctypes, all user password changes and application keytab
updates will not generate DES keys by default.

contents-vnder-pressvre:~> kpasswd zonetest@ZONE.MIT.EDU
Password for zonetest@ZONE.MIT.EDU: [enter old password]
Enter new password: [enter new password]
Enter it again: [enter new password]
Password changed.
contents-vnder-pressvre:~> kadmin -r ZONE.MIT.EDU -q ’getprinc zonetest’
[...]

20.2. Retiring DES 147

Kerberos Administration Guide, Release 1.15.2

Number of keys: 3
Key: vno 9, aes256-cts-hmac-sha1-96
Key: vno 9, aes128-cts-hmac-sha1-96
Key: vno 9, des3-cbc-sha1
[...]

[kaduk@glossolalia ~]$ kadmin -p kaduk@ZONE.MIT.EDU -r ZONE.MIT.EDU -k \
> -t kaduk-zone.keytab -q ’ktadd -k kaduk-zone.keytab kaduk@ZONE.MIT.EDU’
Authenticating as principal kaduk@ZONE.MIT.EDU with keytab kaduk-zone.keytab.
Entry for principal kaduk@ZONE.MIT.EDU with kvno 3, encryption type aes256-cts-hmac-sha1-96 added to keytab WRFILE:kaduk-zone.keytab.
Entry for principal kaduk@ZONE.MIT.EDU with kvno 3, encryption type aes128-cts-hmac-sha1-96 added to keytab WRFILE:kaduk-zone.keytab.
Entry for principal kaduk@ZONE.MIT.EDU with kvno 3, encryption type des3-cbc-sha1 added to keytab WRFILE:kaduk-zone.keytab.

Once all principals have been re-keyed, DES support can be disabled on the KDC (allow_weak_crypto = false),
and client machines can remove allow_weak_crypto = true from their krb5.conf configuration files, completing the
migration. allow_weak_crypto takes precedence over all places where DES enctypes could be explicitly configured.
DES keys will not be used, even if they are present, when allow_weak_crypto = false.

Support for legacy services

If there remain legacy services which do not support non-DES enctypes (such as older versions of AFS), al-
low_weak_crypto must remain enabled on the KDC. Client machines need not have this setting, though—applications
which require DES can use API calls to allow weak crypto on a per-request basis, overriding the system krb5.conf.
However, having allow_weak_crypto set on the KDC means that any principals which have a DES key in the database
could still use those keys. To minimize the use of DES in the realm and restrict it to just legacy services which require
DES, it is necessary to remove all other DES keys. The realm has been configured such that at password and keytab
change, no DES keys will be generated by default. The task then reduces to requiring user password changes and
having server administrators update their service keytabs. Administrative outreach will be necessary, and if the desire
to eliminate DES is sufficiently strong, the KDC administrators may choose to randkey any principals which have not
been rekeyed after some timeout period, forcing the user to contact the helpdesk for access.

20.2.4 The Database Master Key

This procedure does not alter K/M@REALM, the key used to encrypt key material in the Kerberos database. (This is the
key stored in the stash file on the KDC if stash files are used.) However, the security risk of a single-DES key for K/M
is minimal, given that access to material encrypted in K/M (the Kerberos database) is generally tightly controlled. If an
attacker can gain access to the encrypted database, they likely have access to the stash file as well, rendering the weak
cryptography broken by non-cryptographic means. As such, upgrading K/M to a stronger encryption type is unlikely
to be a high-priority task.

Is is possible to upgrade the master key used for the database, if desired. Using kdb5_util‘s add_mkey, use_mkey,
and update_princ_encryption commands, a new master key can be added and activated for use on new key material,
and the existing entries converted to the new master key.

148 Chapter 20. Advanced topics

CHAPTER

TWENTYONE

VARIOUS LINKS

21.1 Whitepapers

1. http://kerberos.org/software/whitepapers.html

21.2 Tutorials

1. Fulvio Ricciardi <http://www.kerberos.org/software/tutorial.html>_

21.3 Troubleshooting

1. http://www.ncsa.illinois.edu/UserInfo/Resources/Software/kerberos/troubleshooting.html

2. http://nfsv4.bullopensource.org/doc/kerberosnfs/krbnfs_howto_v3.pdf

3. http://sysdoc.doors.ch/HP/T1417-90005.pdf

4. http://www.shrubbery.net/solaris9ab/SUNWaadm/SYSADV6/p27.html

5. http://download.oracle.com/docs/cd/E19253-01/816-4557/trouble-1/index.html

6. http://technet.microsoft.com/en-us/library/bb463167.aspx#EBAA

7. https://bugs.launchpad.net/ubuntu/+source/libpam-heimdal/+bug/86528

8. http://h71000.www7.hp.com/doc/83final/ba548_90007/ch06s05.html

149

http://kerberos.org/software/whitepapers.html
http://www.kerberos.org/software/tutorial.html
http://www.ncsa.illinois.edu/UserInfo/Resources/Software/kerberos/troubleshooting.html
http://nfsv4.bullopensource.org/doc/kerberosnfs/krbnfs_howto_v3.pdf
http://sysdoc.doors.ch/HP/T1417-90005.pdf
http://www.shrubbery.net/solaris9ab/SUNWaadm/SYSADV6/p27.html
http://download.oracle.com/docs/cd/E19253-01/816-4557/trouble-1/index.html
http://technet.microsoft.com/en-us/library/bb463167.aspx#EBAA
https://bugs.launchpad.net/ubuntu/+source/libpam-heimdal/+bug/86528
http://h71000.www7.hp.com/doc/83final/ba548_90007/ch06s05.html

Kerberos Administration Guide, Release 1.15.2

150 Chapter 21. Various links

INDEX

R
RFC

RFC 2253, 22
RFC 2782, 41
RFC 4556, 23, 33
RFC 6649, 143
RFC 7553, 41

151

	Installation guide
	Contents
	Additional references

	Configuration Files
	Contents

	Realm configuration decisions
	Realm name
	Mapping hostnames onto Kerberos realms
	Ports for the KDC and admin services
	Slave KDCs
	Hostnames for KDCs
	KDC Discovery
	Database propagation

	Database administration
	kadmin options
	Date Format
	Principals
	Policies
	Privileges
	Operations on the Kerberos database
	Operations on the LDAP database
	Cross-realm authentication
	Changing the krbtgt key
	Incremental database propagation

	Account lockout
	Configuring account lockout
	Testing account lockout
	Account lockout principal state
	KDC replication and account lockout
	KDC performance and account lockout
	KDC setup and account lockout

	Configuring Kerberos with OpenLDAP back-end
	Application servers
	Keytabs
	Clock Skew
	Getting DNS information correct
	Configuring your firewall to work with Kerberos V5

	Host configuration
	Default realm
	Login authorization
	Plugin module configuration

	Backups of secure hosts
	Backing up the Kerberos database

	PKINIT configuration
	Creating certificates
	Configuring the KDC
	Configuring the clients
	Anonymous PKINIT

	OTP Preauthentication
	Defining token types
	The default token type
	Token instance configuration
	Other considerations

	Principal names and DNS
	Service principal names
	Service principal canonicalization
	Reverse DNS mismatches
	Overriding application behavior
	Provisioning keytabs
	Specific application advice

	Encryption types
	Enctypes in requests
	Session key selection
	Choosing enctypes for a service
	Configuration variables
	Enctype compatibility

	HTTPS proxy configuration
	Configuring the clients

	Authentication indicators
	Administration programs
	kadmin
	kadmind
	kdb5_util
	kdb5_ldap_util
	krb5kdc
	kprop
	kpropd
	kproplog
	ktutil
	k5srvutil
	sserver

	MIT Kerberos defaults
	General defaults
	Slave KDC propagation defaults
	Default paths for Unix-like systems

	Environment variables
	Troubleshooting
	Trace logging
	List of errors

	Advanced topics
	LDAP backend on Ubuntu 10.4 (lucid)
	Retiring DES

	Various links
	Whitepapers
	Tutorials
	Troubleshooting

	Index

