1 \# --------------------------------------------------------------------------
3 \# Copyright 1996-2009 The NASM Authors - All Rights Reserved
4 \# See the file AUTHORS included with the NASM distribution for
5 \# the specific copyright holders.
7 \# Redistribution and use in source and binary forms, with or without
8 \# modification, are permitted provided that the following
11 \# * Redistributions of source code must retain the above copyright
12 \# notice, this list of conditions and the following disclaimer.
13 \# * Redistributions in binary form must reproduce the above
14 \# copyright notice, this list of conditions and the following
15 \# disclaimer in the documentation and/or other materials provided
16 \# with the distribution.
18 \# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
19 \# CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
20 \# INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 \# MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 \# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 \# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 \# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 \# NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 \# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 \# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 \# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
29 \# OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
30 \# EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 \# --------------------------------------------------------------------------
34 \# Source code to NASM documentation
36 \M{category}{Programming}
37 \M{title}{NASM - The Netwide Assembler}
39 \M{author}{The NASM Development Team}
40 \M{copyright_tail}{-- All Rights Reserved}
41 \M{license}{This document is redistributable under the license given in the file "COPYING" distributed in the NASM archive.}
42 \M{auxinfo}{This release is dedicated to the memory of Charles A. Crayne. We miss you, Chuck.}
43 \M{summary}{This file documents NASM, the Netwide Assembler: an assembler targetting the Intel x86 series of processors, with portable source.}
46 \M{infotitle}{The Netwide Assembler for x86}
47 \M{epslogo}{nasmlogo.eps}
53 \IR{-MD} \c{-MD} option
54 \IR{-MF} \c{-MF} option
55 \IR{-MG} \c{-MG} option
56 \IR{-MP} \c{-MP} option
57 \IR{-MQ} \c{-MQ} option
58 \IR{-MT} \c{-MT} option
79 \IR{!=} \c{!=} operator
80 \IR{$, here} \c{$}, Here token
81 \IR{$, prefix} \c{$}, prefix
84 \IR{%%} \c{%%} operator
85 \IR{%+1} \c{%+1} and \c{%-1} syntax
87 \IR{%0} \c{%0} parameter count
89 \IR{&&} \c{&&} operator
91 \IR{..@} \c{..@} symbol prefix
93 \IR{//} \c{//} operator
95 \IR{<<} \c{<<} operator
96 \IR{<=} \c{<=} operator
97 \IR{<>} \c{<>} operator
99 \IR{==} \c{==} operator
100 \IR{>} \c{>} operator
101 \IR{>=} \c{>=} operator
102 \IR{>>} \c{>>} operator
103 \IR{?} \c{?} MASM syntax
104 \IR{^} \c{^} operator
105 \IR{^^} \c{^^} operator
106 \IR{|} \c{|} operator
107 \IR{||} \c{||} operator
108 \IR{~} \c{~} operator
109 \IR{%$} \c{%$} and \c{%$$} prefixes
111 \IR{+ opaddition} \c{+} operator, binary
112 \IR{+ opunary} \c{+} operator, unary
113 \IR{+ modifier} \c{+} modifier
114 \IR{- opsubtraction} \c{-} operator, binary
115 \IR{- opunary} \c{-} operator, unary
116 \IR{! opunary} \c{!} operator, unary
117 \IR{alignment, in bin sections} alignment, in \c{bin} sections
118 \IR{alignment, in elf sections} alignment, in \c{elf} sections
119 \IR{alignment, in win32 sections} alignment, in \c{win32} sections
120 \IR{alignment, of elf common variables} alignment, of \c{elf} common
122 \IR{alignment, in obj sections} alignment, in \c{obj} sections
123 \IR{a.out, bsd version} \c{a.out}, BSD version
124 \IR{a.out, linux version} \c{a.out}, Linux version
125 \IR{autoconf} Autoconf
127 \IR{bitwise and} bitwise AND
128 \IR{bitwise or} bitwise OR
129 \IR{bitwise xor} bitwise XOR
130 \IR{block ifs} block IFs
131 \IR{borland pascal} Borland, Pascal
132 \IR{borland's win32 compilers} Borland, Win32 compilers
133 \IR{braces, after % sign} braces, after \c{%} sign
135 \IR{c calling convention} C calling convention
136 \IR{c symbol names} C symbol names
137 \IA{critical expressions}{critical expression}
138 \IA{command line}{command-line}
139 \IA{case sensitivity}{case sensitive}
140 \IA{case-sensitive}{case sensitive}
141 \IA{case-insensitive}{case sensitive}
142 \IA{character constants}{character constant}
143 \IR{common object file format} Common Object File Format
144 \IR{common variables, alignment in elf} common variables, alignment
146 \IR{common, elf extensions to} \c{COMMON}, \c{elf} extensions to
147 \IR{common, obj extensions to} \c{COMMON}, \c{obj} extensions to
148 \IR{declaring structure} declaring structures
149 \IR{default-wrt mechanism} default-\c{WRT} mechanism
152 \IR{dll symbols, exporting} DLL symbols, exporting
153 \IR{dll symbols, importing} DLL symbols, importing
155 \IR{dos archive} DOS archive
156 \IR{dos source archive} DOS source archive
157 \IA{effective address}{effective addresses}
158 \IA{effective-address}{effective addresses}
160 \IR{elf, 16-bit code and} ELF, 16-bit code and
161 \IR{elf shared libraries} ELF, shared libraries
164 \IR{executable and linkable format} Executable and Linkable Format
165 \IR{extern, obj extensions to} \c{EXTERN}, \c{obj} extensions to
166 \IR{extern, rdf extensions to} \c{EXTERN}, \c{rdf} extensions to
167 \IR{floating-point, constants} floating-point, constants
168 \IR{floating-point, packed bcd constants} floating-point, packed BCD constants
170 \IR{freelink} FreeLink
171 \IR{functions, c calling convention} functions, C calling convention
172 \IR{functions, pascal calling convention} functions, Pascal calling
174 \IR{global, aoutb extensions to} \c{GLOBAL}, \c{aoutb} extensions to
175 \IR{global, elf extensions to} \c{GLOBAL}, \c{elf} extensions to
176 \IR{global, rdf extensions to} \c{GLOBAL}, \c{rdf} extensions to
178 \IR{got relocations} \c{GOT} relocations
179 \IR{gotoff relocation} \c{GOTOFF} relocations
180 \IR{gotpc relocation} \c{GOTPC} relocations
181 \IR{intel number formats} Intel number formats
182 \IR{linux, elf} Linux, ELF
183 \IR{linux, a.out} Linux, \c{a.out}
184 \IR{linux, as86} Linux, \c{as86}
185 \IR{logical and} logical AND
186 \IR{logical or} logical OR
187 \IR{logical xor} logical XOR
188 \IR{mach object file format} Mach, object file format
190 \IR{macho32} \c{macho32}
191 \IR{macho64} \c{macho64}
194 \IA{memory reference}{memory references}
196 \IA{misc directory}{misc subdirectory}
197 \IR{misc subdirectory} \c{misc} subdirectory
198 \IR{microsoft omf} Microsoft OMF
199 \IR{mmx registers} MMX registers
200 \IA{modr/m}{modr/m byte}
201 \IR{modr/m byte} ModR/M byte
203 \IR{ms-dos device drivers} MS-DOS device drivers
204 \IR{multipush} \c{multipush} macro
206 \IR{nasm version} NASM version
210 \IR{operating system} operating system
212 \IR{pascal calling convention}Pascal calling convention
213 \IR{passes} passes, assembly
218 \IR{plt} \c{PLT} relocations
219 \IA{pre-defining macros}{pre-define}
220 \IA{preprocessor expressions}{preprocessor, expressions}
221 \IA{preprocessor loops}{preprocessor, loops}
222 \IA{preprocessor variables}{preprocessor, variables}
223 \IA{rdoff subdirectory}{rdoff}
224 \IR{rdoff} \c{rdoff} subdirectory
225 \IR{relocatable dynamic object file format} Relocatable Dynamic
227 \IR{relocations, pic-specific} relocations, PIC-specific
228 \IA{repeating}{repeating code}
229 \IR{section alignment, in elf} section alignment, in \c{elf}
230 \IR{section alignment, in bin} section alignment, in \c{bin}
231 \IR{section alignment, in obj} section alignment, in \c{obj}
232 \IR{section alignment, in win32} section alignment, in \c{win32}
233 \IR{section, elf extensions to} \c{SECTION}, \c{elf} extensions to
234 \IR{section, win32 extensions to} \c{SECTION}, \c{win32} extensions to
235 \IR{segment alignment, in bin} segment alignment, in \c{bin}
236 \IR{segment alignment, in obj} segment alignment, in \c{obj}
237 \IR{segment, obj extensions to} \c{SEGMENT}, \c{elf} extensions to
238 \IR{segment names, borland pascal} segment names, Borland Pascal
239 \IR{shift command} \c{shift} command
241 \IR{sib byte} SIB byte
242 \IR{align, smart} \c{ALIGN}, smart
243 \IR{solaris x86} Solaris x86
244 \IA{standard section names}{standardized section names}
245 \IR{symbols, exporting from dlls} symbols, exporting from DLLs
246 \IR{symbols, importing from dlls} symbols, importing from DLLs
247 \IR{test subdirectory} \c{test} subdirectory
249 \IR{underscore, in c symbols} underscore, in C symbols
255 \IA{sco unix}{unix, sco}
256 \IR{unix, sco} Unix, SCO
257 \IA{unix source archive}{unix, source archive}
258 \IR{unix, source archive} Unix, source archive
259 \IA{unix system v}{unix, system v}
260 \IR{unix, system v} Unix, System V
261 \IR{unixware} UnixWare
263 \IR{version number of nasm} version number of NASM
264 \IR{visual c++} Visual C++
265 \IR{www page} WWW page
269 \IR{windows 95} Windows 95
270 \IR{windows nt} Windows NT
271 \# \IC{program entry point}{entry point, program}
272 \# \IC{program entry point}{start point, program}
273 \# \IC{MS-DOS device drivers}{device drivers, MS-DOS}
274 \# \IC{16-bit mode, versus 32-bit mode}{32-bit mode, versus 16-bit mode}
275 \# \IC{c symbol names}{symbol names, in C}
278 \C{intro} Introduction
280 \H{whatsnasm} What Is NASM?
282 The Netwide Assembler, NASM, is an 80x86 and x86-64 assembler designed
283 for portability and modularity. It supports a range of object file
284 formats, including Linux and \c{*BSD} \c{a.out}, \c{ELF}, \c{COFF},
285 \c{Mach-O}, Microsoft 16-bit \c{OBJ}, \c{Win32} and \c{Win64}. It will
286 also output plain binary files. Its syntax is designed to be simple
287 and easy to understand, similar to Intel's but less complex. It
288 supports all currently known x86 architectural extensions, and has
289 strong support for macros.
292 \S{yaasm} Why Yet Another Assembler?
294 The Netwide Assembler grew out of an idea on \i\c{comp.lang.asm.x86}
295 (or possibly \i\c{alt.lang.asm} - I forget which), which was
296 essentially that there didn't seem to be a good \e{free} x86-series
297 assembler around, and that maybe someone ought to write one.
299 \b \i\c{a86} is good, but not free, and in particular you don't get any
300 32-bit capability until you pay. It's DOS only, too.
302 \b \i\c{gas} is free, and ports over to DOS and Unix, but it's not
303 very good, since it's designed to be a back end to \i\c{gcc}, which
304 always feeds it correct code. So its error checking is minimal. Also,
305 its syntax is horrible, from the point of view of anyone trying to
306 actually \e{write} anything in it. Plus you can't write 16-bit code in
309 \b \i\c{as86} is specific to Minix and Linux, and (my version at least)
310 doesn't seem to have much (or any) documentation.
312 \b \i\c{MASM} isn't very good, and it's (was) expensive, and it runs only under
315 \b \i\c{TASM} is better, but still strives for MASM compatibility,
316 which means millions of directives and tons of red tape. And its syntax
317 is essentially MASM's, with the contradictions and quirks that
318 entails (although it sorts out some of those by means of Ideal mode.)
319 It's expensive too. And it's DOS-only.
321 So here, for your coding pleasure, is NASM. At present it's
322 still in prototype stage - we don't promise that it can outperform
323 any of these assemblers. But please, \e{please} send us bug reports,
324 fixes, helpful information, and anything else you can get your hands
325 on (and thanks to the many people who've done this already! You all
326 know who you are), and we'll improve it out of all recognition.
330 \S{legal} \i{License} Conditions
332 Please see the file \c{LICENSE}, supplied as part of any NASM
333 distribution archive, for the license conditions under which you may
334 use NASM. NASM is now under the so-called 2-clause BSD license, also
335 known as the simplified BSD license.
337 Copyright 1996-2009 the NASM Authors - All rights reserved.
339 Redistribution and use in source and binary forms, with or without
340 modification, are permitted provided that the following conditions are
343 \b Redistributions of source code must retain the above copyright
344 notice, this list of conditions and the following disclaimer.
346 \b Redistributions in binary form must reproduce the above copyright
347 notice, this list of conditions and the following disclaimer in the
348 documentation and/or other materials provided with the distribution.
350 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
351 CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
352 INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
353 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
354 DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
355 CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
356 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
357 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
358 LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
359 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
360 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
361 OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
362 EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
365 \H{contact} Contact Information
367 The current version of NASM (since about 0.98.08) is maintained by a
368 team of developers, accessible through the \c{nasm-devel} mailing list
369 (see below for the link).
370 If you want to report a bug, please read \k{bugs} first.
372 NASM has a \i{website} at
373 \W{http://www.nasm.us/}\c{http://www.nasm.us/}. If it's not there,
376 \i{New releases} of NASM are available from the official web site.
378 Announcements are posted to
379 \W{news:comp.lang.asm.x86}\i\c{comp.lang.asm.x86},
381 \W{http://www.freshmeat.net/}\c{http://www.freshmeat.net/}.
383 If you want information about NASM beta releases, and the current
384 development status, please subscribe to the \i\c{nasm-devel} email
385 list; see link from the website.
388 \H{install} Installation
390 \S{instdos} \i{Installing} NASM under MS-\i{DOS} or Windows
392 Once you've obtained the appropriate archive for NASM,
393 \i\c{nasm-XXX-dos.zip} or \i\c{nasm-XXX-win32.zip} (where \c{XXX}
394 denotes the version number of NASM contained in the archive), unpack
395 it into its own directory (for example \c{c:\\nasm}).
397 The archive will contain a set of executable files: the NASM
398 executable file \i\c{nasm.exe}, the NDISASM executable file
399 \i\c{ndisasm.exe}, and possibly additional utilities to handle the
402 The only file NASM needs to run is its own executable, so copy
403 \c{nasm.exe} to a directory on your PATH, or alternatively edit
404 \i\c{autoexec.bat} to add the \c{nasm} directory to your
405 \i\c{PATH} (to do that under Windows XP, go to Start > Control Panel >
406 System > Advanced > Environment Variables; these instructions may work
407 under other versions of Windows as well.)
409 That's it - NASM is installed. You don't need the nasm directory
410 to be present to run NASM (unless you've added it to your \c{PATH}),
411 so you can delete it if you need to save space; however, you may
412 want to keep the documentation or test programs.
414 If you've downloaded the \i{DOS source archive}, \i\c{nasm-XXX.zip},
415 the \c{nasm} directory will also contain the full NASM \i{source
416 code}, and a selection of \i{Makefiles} you can (hopefully) use to
417 rebuild your copy of NASM from scratch. See the file \c{INSTALL} in
420 Note that a number of files are generated from other files by Perl
421 scripts. Although the NASM source distribution includes these
422 generated files, you will need to rebuild them (and hence, will need a
423 Perl interpreter) if you change insns.dat, standard.mac or the
424 documentation. It is possible future source distributions may not
425 include these files at all. Ports of \i{Perl} for a variety of
426 platforms, including DOS and Windows, are available from
427 \W{http://www.cpan.org/ports/}\i{www.cpan.org}.
430 \S{instdos} Installing NASM under \i{Unix}
432 Once you've obtained the \i{Unix source archive} for NASM,
433 \i\c{nasm-XXX.tar.gz} (where \c{XXX} denotes the version number of
434 NASM contained in the archive), unpack it into a directory such
435 as \c{/usr/local/src}. The archive, when unpacked, will create its
436 own subdirectory \c{nasm-XXX}.
438 NASM is an \I{Autoconf}\I\c{configure}auto-configuring package: once
439 you've unpacked it, \c{cd} to the directory it's been unpacked into
440 and type \c{./configure}. This shell script will find the best C
441 compiler to use for building NASM and set up \i{Makefiles}
444 Once NASM has auto-configured, you can type \i\c{make} to build the
445 \c{nasm} and \c{ndisasm} binaries, and then \c{make install} to
446 install them in \c{/usr/local/bin} and install the \i{man pages}
447 \i\c{nasm.1} and \i\c{ndisasm.1} in \c{/usr/local/man/man1}.
448 Alternatively, you can give options such as \c{--prefix} to the
449 configure script (see the file \i\c{INSTALL} for more details), or
450 install the programs yourself.
452 NASM also comes with a set of utilities for handling the \c{RDOFF}
453 custom object-file format, which are in the \i\c{rdoff} subdirectory
454 of the NASM archive. You can build these with \c{make rdf} and
455 install them with \c{make rdf_install}, if you want them.
458 \C{running} Running NASM
460 \H{syntax} NASM \i{Command-Line} Syntax
462 To assemble a file, you issue a command of the form
464 \c nasm -f <format> <filename> [-o <output>]
468 \c nasm -f elf myfile.asm
470 will assemble \c{myfile.asm} into an \c{ELF} object file \c{myfile.o}. And
472 \c nasm -f bin myfile.asm -o myfile.com
474 will assemble \c{myfile.asm} into a raw binary file \c{myfile.com}.
476 To produce a listing file, with the hex codes output from NASM
477 displayed on the left of the original sources, use the \c{-l} option
478 to give a listing file name, for example:
480 \c nasm -f coff myfile.asm -l myfile.lst
482 To get further usage instructions from NASM, try typing
486 As \c{-hf}, this will also list the available output file formats, and what they
489 If you use Linux but aren't sure whether your system is \c{a.out}
494 (in the directory in which you put the NASM binary when you
495 installed it). If it says something like
497 \c nasm: ELF 32-bit LSB executable i386 (386 and up) Version 1
499 then your system is \c{ELF}, and you should use the option \c{-f elf}
500 when you want NASM to produce Linux object files. If it says
502 \c nasm: Linux/i386 demand-paged executable (QMAGIC)
504 or something similar, your system is \c{a.out}, and you should use
505 \c{-f aout} instead (Linux \c{a.out} systems have long been obsolete,
506 and are rare these days.)
508 Like Unix compilers and assemblers, NASM is silent unless it
509 goes wrong: you won't see any output at all, unless it gives error
513 \S{opt-o} The \i\c{-o} Option: Specifying the Output File Name
515 NASM will normally choose the name of your output file for you;
516 precisely how it does this is dependent on the object file format.
517 For Microsoft object file formats (\c{obj}, \c{win32} and \c{win64}),
518 it will remove the \c{.asm} \i{extension} (or whatever extension you
519 like to use - NASM doesn't care) from your source file name and
520 substitute \c{.obj}. For Unix object file formats (\c{aout}, \c{as86},
521 \c{coff}, \c{elf32}, \c{elf64}, \c{ieee}, \c{macho32} and \c{macho64})
522 it will substitute \c{.o}. For \c{dbg}, \c{rdf}, \c{ith} and \c{srec},
523 it will use \c{.dbg}, \c{.rdf}, \c{.ith} and \c{.srec}, respectively,
524 and for the \c{bin} format it will simply remove the extension, so
525 that \c{myfile.asm} produces the output file \c{myfile}.
527 If the output file already exists, NASM will overwrite it, unless it
528 has the same name as the input file, in which case it will give a
529 warning and use \i\c{nasm.out} as the output file name instead.
531 For situations in which this behaviour is unacceptable, NASM
532 provides the \c{-o} command-line option, which allows you to specify
533 your desired output file name. You invoke \c{-o} by following it
534 with the name you wish for the output file, either with or without
535 an intervening space. For example:
537 \c nasm -f bin program.asm -o program.com
538 \c nasm -f bin driver.asm -odriver.sys
540 Note that this is a small o, and is different from a capital O , which
541 is used to specify the number of optimisation passes required. See \k{opt-O}.
544 \S{opt-f} The \i\c{-f} Option: Specifying the \i{Output File Format}
546 If you do not supply the \c{-f} option to NASM, it will choose an
547 output file format for you itself. In the distribution versions of
548 NASM, the default is always \i\c{bin}; if you've compiled your own
549 copy of NASM, you can redefine \i\c{OF_DEFAULT} at compile time and
550 choose what you want the default to be.
552 Like \c{-o}, the intervening space between \c{-f} and the output
553 file format is optional; so \c{-f elf} and \c{-felf} are both valid.
555 A complete list of the available output file formats can be given by
556 issuing the command \i\c{nasm -hf}.
559 \S{opt-l} The \i\c{-l} Option: Generating a \i{Listing File}
561 If you supply the \c{-l} option to NASM, followed (with the usual
562 optional space) by a file name, NASM will generate a
563 \i{source-listing file} for you, in which addresses and generated
564 code are listed on the left, and the actual source code, with
565 expansions of multi-line macros (except those which specifically
566 request no expansion in source listings: see \k{nolist}) on the
569 \c nasm -f elf myfile.asm -l myfile.lst
571 If a list file is selected, you may turn off listing for a
572 section of your source with \c{[list -]}, and turn it back on
573 with \c{[list +]}, (the default, obviously). There is no "user
574 form" (without the brackets). This can be used to list only
575 sections of interest, avoiding excessively long listings.
578 \S{opt-M} The \i\c{-M} Option: Generate \i{Makefile Dependencies}
580 This option can be used to generate makefile dependencies on stdout.
581 This can be redirected to a file for further processing. For example:
583 \c nasm -M myfile.asm > myfile.dep
586 \S{opt-MG} The \i\c{-MG} Option: Generate \i{Makefile Dependencies}
588 This option can be used to generate makefile dependencies on stdout.
589 This differs from the \c{-M} option in that if a nonexisting file is
590 encountered, it is assumed to be a generated file and is added to the
591 dependency list without a prefix.
594 \S{opt-MF} The \i\c\{-MF} Option: Set Makefile Dependency File
596 This option can be used with the \c{-M} or \c{-MG} options to send the
597 output to a file, rather than to stdout. For example:
599 \c nasm -M -MF myfile.dep myfile.asm
602 \S{opt-MD} The \i\c{-MD} Option: Assemble and Generate Dependencies
604 The \c{-MD} option acts as the combination of the \c{-M} and \c{-MF}
605 options (i.e. a filename has to be specified.) However, unlike the
606 \c{-M} or \c{-MG} options, \c{-MD} does \e{not} inhibit the normal
607 operation of the assembler. Use this to automatically generate
608 updated dependencies with every assembly session. For example:
610 \c nasm -f elf -o myfile.o -MD myfile.dep myfile.asm
613 \S{opt-MT} The \i\c{-MT} Option: Dependency Target Name
615 The \c{-MT} option can be used to override the default name of the
616 dependency target. This is normally the same as the output filename,
617 specified by the \c{-o} option.
620 \S{opt-MQ} The \i\c{-MQ} Option: Dependency Target Name (Quoted)
622 The \c{-MQ} option acts as the \c{-MT} option, except it tries to
623 quote characters that have special meaning in Makefile syntax. This
624 is not foolproof, as not all characters with special meaning are
628 \S{opt-MP} The \i\c{-MP} Option: Emit phony targets
630 When used with any of the dependency generation options, the \c{-MP}
631 option causes NASM to emit a phony target without dependencies for
632 each header file. This prevents Make from complaining if a header
633 file has been removed.
636 \S{opt-F} The \i\c{-F} Option: Selecting a \i{Debug Information Format}
638 This option is used to select the format of the debug information
639 emitted into the output file, to be used by a debugger (or \e{will}
640 be). Prior to version 2.03.01, the use of this switch did \e{not} enable
641 output of the selected debug info format. Use \c{-g}, see \k{opt-g},
642 to enable output. Versions 2.03.01 and later automatically enable \c{-g}
643 if \c{-F} is specified.
645 A complete list of the available debug file formats for an output
646 format can be seen by issuing the command \c{nasm -f <format> -y}. Not
647 all output formats currently support debugging output. See \k{opt-y}.
649 This should not be confused with the \c{-f dbg} output format option which
650 is not built into NASM by default. For information on how
651 to enable it when building from the sources, see \k{dbgfmt}.
654 \S{opt-g} The \i\c{-g} Option: Enabling \i{Debug Information}.
656 This option can be used to generate debugging information in the specified
657 format. See \k{opt-F}. Using \c{-g} without \c{-F} results in emitting
658 debug info in the default format, if any, for the selected output format.
659 If no debug information is currently implemented in the selected output
660 format, \c{-g} is \e{silently ignored}.
663 \S{opt-X} The \i\c{-X} Option: Selecting an \i{Error Reporting Format}
665 This option can be used to select an error reporting format for any
666 error messages that might be produced by NASM.
668 Currently, two error reporting formats may be selected. They are
669 the \c{-Xvc} option and the \c{-Xgnu} option. The GNU format is
670 the default and looks like this:
672 \c filename.asm:65: error: specific error message
674 where \c{filename.asm} is the name of the source file in which the
675 error was detected, \c{65} is the source file line number on which
676 the error was detected, \c{error} is the severity of the error (this
677 could be \c{warning}), and \c{specific error message} is a more
678 detailed text message which should help pinpoint the exact problem.
680 The other format, specified by \c{-Xvc} is the style used by Microsoft
681 Visual C++ and some other programs. It looks like this:
683 \c filename.asm(65) : error: specific error message
685 where the only difference is that the line number is in parentheses
686 instead of being delimited by colons.
688 See also the \c{Visual C++} output format, \k{win32fmt}.
690 \S{opt-Z} The \i\c{-Z} Option: Send Errors to a File
692 Under \I{DOS}\c{MS-DOS} it can be difficult (though there are ways) to
693 redirect the standard-error output of a program to a file. Since
694 NASM usually produces its warning and \i{error messages} on
695 \i\c{stderr}, this can make it hard to capture the errors if (for
696 example) you want to load them into an editor.
698 NASM therefore provides the \c{-Z} option, taking a filename argument
699 which causes errors to be sent to the specified files rather than
700 standard error. Therefore you can \I{redirecting errors}redirect
701 the errors into a file by typing
703 \c nasm -Z myfile.err -f obj myfile.asm
705 In earlier versions of NASM, this option was called \c{-E}, but it was
706 changed since \c{-E} is an option conventionally used for
707 preprocessing only, with disastrous results. See \k{opt-E}.
709 \S{opt-s} The \i\c{-s} Option: Send Errors to \i\c{stdout}
711 The \c{-s} option redirects \i{error messages} to \c{stdout} rather
712 than \c{stderr}, so it can be redirected under \I{DOS}\c{MS-DOS}. To
713 assemble the file \c{myfile.asm} and pipe its output to the \c{more}
714 program, you can type:
716 \c nasm -s -f obj myfile.asm | more
718 See also the \c{-Z} option, \k{opt-Z}.
721 \S{opt-i} The \i\c{-i}\I\c{-I} Option: Include File Search Directories
723 When NASM sees the \i\c{%include} or \i\c{%pathsearch} directive in a
724 source file (see \k{include}, \k{pathsearch} or \k{incbin}), it will
725 search for the given file not only in the current directory, but also
726 in any directories specified on the command line by the use of the
727 \c{-i} option. Therefore you can include files from a \i{macro
728 library}, for example, by typing
730 \c nasm -ic:\macrolib\ -f obj myfile.asm
732 (As usual, a space between \c{-i} and the path name is allowed, and
735 NASM, in the interests of complete source-code portability, does not
736 understand the file naming conventions of the OS it is running on;
737 the string you provide as an argument to the \c{-i} option will be
738 prepended exactly as written to the name of the include file.
739 Therefore the trailing backslash in the above example is necessary.
740 Under Unix, a trailing forward slash is similarly necessary.
742 (You can use this to your advantage, if you're really \i{perverse},
743 by noting that the option \c{-ifoo} will cause \c{%include "bar.i"}
744 to search for the file \c{foobar.i}...)
746 If you want to define a \e{standard} \i{include search path},
747 similar to \c{/usr/include} on Unix systems, you should place one or
748 more \c{-i} directives in the \c{NASMENV} environment variable (see
751 For Makefile compatibility with many C compilers, this option can also
752 be specified as \c{-I}.
755 \S{opt-p} The \i\c{-p}\I\c{-P} Option: \I{pre-including files}Pre-Include a File
757 \I\c{%include}NASM allows you to specify files to be
758 \e{pre-included} into your source file, by the use of the \c{-p}
761 \c nasm myfile.asm -p myinc.inc
763 is equivalent to running \c{nasm myfile.asm} and placing the
764 directive \c{%include "myinc.inc"} at the start of the file.
766 For consistency with the \c{-I}, \c{-D} and \c{-U} options, this
767 option can also be specified as \c{-P}.
770 \S{opt-d} The \i\c{-d}\I\c{-D} Option: \I{pre-defining macros}Pre-Define a Macro
772 \I\c{%define}Just as the \c{-p} option gives an alternative to placing
773 \c{%include} directives at the start of a source file, the \c{-d}
774 option gives an alternative to placing a \c{%define} directive. You
777 \c nasm myfile.asm -dFOO=100
779 as an alternative to placing the directive
783 at the start of the file. You can miss off the macro value, as well:
784 the option \c{-dFOO} is equivalent to coding \c{%define FOO}. This
785 form of the directive may be useful for selecting \i{assembly-time
786 options} which are then tested using \c{%ifdef}, for example
789 For Makefile compatibility with many C compilers, this option can also
790 be specified as \c{-D}.
793 \S{opt-u} The \i\c{-u}\I\c{-U} Option: \I{Undefining macros}Undefine a Macro
795 \I\c{%undef}The \c{-u} option undefines a macro that would otherwise
796 have been pre-defined, either automatically or by a \c{-p} or \c{-d}
797 option specified earlier on the command lines.
799 For example, the following command line:
801 \c nasm myfile.asm -dFOO=100 -uFOO
803 would result in \c{FOO} \e{not} being a predefined macro in the
804 program. This is useful to override options specified at a different
807 For Makefile compatibility with many C compilers, this option can also
808 be specified as \c{-U}.
811 \S{opt-E} The \i\c{-E}\I{-e} Option: Preprocess Only
813 NASM allows the \i{preprocessor} to be run on its own, up to a
814 point. Using the \c{-E} option (which requires no arguments) will
815 cause NASM to preprocess its input file, expand all the macro
816 references, remove all the comments and preprocessor directives, and
817 print the resulting file on standard output (or save it to a file,
818 if the \c{-o} option is also used).
820 This option cannot be applied to programs which require the
821 preprocessor to evaluate \I{preprocessor expressions}\i{expressions}
822 which depend on the values of symbols: so code such as
824 \c %assign tablesize ($-tablestart)
826 will cause an error in \i{preprocess-only mode}.
828 For compatiblity with older version of NASM, this option can also be
829 written \c{-e}. \c{-E} in older versions of NASM was the equivalent
830 of the current \c{-Z} option, \k{opt-Z}.
832 \S{opt-a} The \i\c{-a} Option: Don't Preprocess At All
834 If NASM is being used as the back end to a compiler, it might be
835 desirable to \I{suppressing preprocessing}suppress preprocessing
836 completely and assume the compiler has already done it, to save time
837 and increase compilation speeds. The \c{-a} option, requiring no
838 argument, instructs NASM to replace its powerful \i{preprocessor}
839 with a \i{stub preprocessor} which does nothing.
842 \S{opt-O} The \i\c{-O} Option: Specifying \i{Multipass Optimization}
844 NASM defaults to not optimizing operands which can fit into a signed byte.
845 This means that if you want the shortest possible object code,
846 you have to enable optimization.
848 Using the \c{-O} option, you can tell NASM to carry out different
849 levels of optimization. The syntax is:
851 \b \c{-O0}: No optimization. All operands take their long forms,
852 if a short form is not specified, except conditional jumps.
853 This is intended to match NASM 0.98 behavior.
855 \b \c{-O1}: Minimal optimization. As above, but immediate operands
856 which will fit in a signed byte are optimized,
857 unless the long form is specified. Conditional jumps default
858 to the long form unless otherwise specified.
860 \b \c{-Ox} (where \c{x} is the actual letter \c{x}): Multipass optimization.
861 Minimize branch offsets and signed immediate bytes,
862 overriding size specification unless the \c{strict} keyword
863 has been used (see \k{strict}). For compatability with earlier
864 releases, the letter \c{x} may also be any number greater than
865 one. This number has no effect on the actual number of passes.
867 The \c{-Ox} mode is recommended for most uses.
869 Note that this is a capital \c{O}, and is different from a small \c{o}, which
870 is used to specify the output file name. See \k{opt-o}.
873 \S{opt-t} The \i\c{-t} Option: Enable TASM Compatibility Mode
875 NASM includes a limited form of compatibility with Borland's \i\c{TASM}.
876 When NASM's \c{-t} option is used, the following changes are made:
878 \b local labels may be prefixed with \c{@@} instead of \c{.}
880 \b size override is supported within brackets. In TASM compatible mode,
881 a size override inside square brackets changes the size of the operand,
882 and not the address type of the operand as it does in NASM syntax. E.g.
883 \c{mov eax,[DWORD val]} is valid syntax in TASM compatibility mode.
884 Note that you lose the ability to override the default address type for
887 \b unprefixed forms of some directives supported (\c{arg}, \c{elif},
888 \c{else}, \c{endif}, \c{if}, \c{ifdef}, \c{ifdifi}, \c{ifndef},
889 \c{include}, \c{local})
891 \S{opt-w} The \i\c{-w} and \i\c{-W} Options: Enable or Disable Assembly \i{Warnings}
893 NASM can observe many conditions during the course of assembly which
894 are worth mentioning to the user, but not a sufficiently severe
895 error to justify NASM refusing to generate an output file. These
896 conditions are reported like errors, but come up with the word
897 `warning' before the message. Warnings do not prevent NASM from
898 generating an output file and returning a success status to the
901 Some conditions are even less severe than that: they are only
902 sometimes worth mentioning to the user. Therefore NASM supports the
903 \c{-w} command-line option, which enables or disables certain
904 classes of assembly warning. Such warning classes are described by a
905 name, for example \c{orphan-labels}; you can enable warnings of
906 this class by the command-line option \c{-w+orphan-labels} and
907 disable it by \c{-w-orphan-labels}.
909 The \i{suppressible warning} classes are:
911 \b \i\c{macro-params} covers warnings about \i{multi-line macros}
912 being invoked with the wrong number of parameters. This warning
913 class is enabled by default; see \k{mlmacover} for an example of why
914 you might want to disable it.
916 \b \i\c{macro-selfref} warns if a macro references itself. This
917 warning class is disabled by default.
919 \b\i\c{macro-defaults} warns when a macro has more default
920 parameters than optional parameters. This warning class
921 is enabled by default; see \k{mlmacdef} for why you might want to disable it.
923 \b \i\c{orphan-labels} covers warnings about source lines which
924 contain no instruction but define a label without a trailing colon.
925 NASM warns about this somewhat obscure condition by default;
926 see \k{syntax} for more information.
928 \b \i\c{number-overflow} covers warnings about numeric constants which
929 don't fit in 64 bits. This warning class is enabled by default.
931 \b \i\c{gnu-elf-extensions} warns if 8-bit or 16-bit relocations
932 are used in \c{-f elf} format. The GNU extensions allow this.
933 This warning class is disabled by default.
935 \b \i\c{float-overflow} warns about floating point overflow.
938 \b \i\c{float-denorm} warns about floating point denormals.
941 \b \i\c{float-underflow} warns about floating point underflow.
944 \b \i\c{float-toolong} warns about too many digits in floating-point numbers.
947 \b \i\c{user} controls \c{%warning} directives (see \k{pperror}).
950 \b \i\c{error} causes warnings to be treated as errors. Disabled by
953 \b \i\c{all} is an alias for \e{all} suppressible warning classes (not
954 including \c{error}). Thus, \c{-w+all} enables all available warnings.
956 In addition, you can set warning classes across sections.
957 Warning classes may be enabled with \i\c{[warning +warning-name]},
958 disabled with \i\c{[warning -warning-name]} or reset to their
959 original value with \i\c{[warning *warning-name]}. No "user form"
960 (without the brackets) exists.
962 Since version 2.00, NASM has also supported the gcc-like syntax
963 \c{-Wwarning} and \c{-Wno-warning} instead of \c{-w+warning} and
964 \c{-w-warning}, respectively.
967 \S{opt-v} The \i\c{-v} Option: Display \i{Version} Info
969 Typing \c{NASM -v} will display the version of NASM which you are using,
970 and the date on which it was compiled.
972 You will need the version number if you report a bug.
974 \S{opt-y} The \i\c{-y} Option: Display Available Debug Info Formats
976 Typing \c{nasm -f <option> -y} will display a list of the available
977 debug info formats for the given output format. The default format
978 is indicated by an asterisk. For example:
982 \c valid debug formats for 'elf32' output format are
983 \c ('*' denotes default):
984 \c * stabs ELF32 (i386) stabs debug format for Linux
985 \c dwarf elf32 (i386) dwarf debug format for Linux
988 \S{opt-pfix} The \i\c{--prefix} and \i\c{--postfix} Options.
990 The \c{--prefix} and \c{--postfix} options prepend or append
991 (respectively) the given argument to all \c{global} or
992 \c{extern} variables. E.g. \c{--prefix _} will prepend the
993 underscore to all global and external variables, as C sometimes
994 (but not always) likes it.
997 \S{nasmenv} The \i\c{NASMENV} \i{Environment} Variable
999 If you define an environment variable called \c{NASMENV}, the program
1000 will interpret it as a list of extra command-line options, which are
1001 processed before the real command line. You can use this to define
1002 standard search directories for include files, by putting \c{-i}
1003 options in the \c{NASMENV} variable.
1005 The value of the variable is split up at white space, so that the
1006 value \c{-s -ic:\\nasmlib} will be treated as two separate options.
1007 However, that means that the value \c{-dNAME="my name"} won't do
1008 what you might want, because it will be split at the space and the
1009 NASM command-line processing will get confused by the two
1010 nonsensical words \c{-dNAME="my} and \c{name"}.
1012 To get round this, NASM provides a feature whereby, if you begin the
1013 \c{NASMENV} environment variable with some character that isn't a minus
1014 sign, then NASM will treat this character as the \i{separator
1015 character} for options. So setting the \c{NASMENV} variable to the
1016 value \c{!-s!-ic:\\nasmlib} is equivalent to setting it to \c{-s
1017 -ic:\\nasmlib}, but \c{!-dNAME="my name"} will work.
1019 This environment variable was previously called \c{NASM}. This was
1020 changed with version 0.98.31.
1023 \H{qstart} \i{Quick Start} for \i{MASM} Users
1025 If you're used to writing programs with MASM, or with \i{TASM} in
1026 MASM-compatible (non-Ideal) mode, or with \i\c{a86}, this section
1027 attempts to outline the major differences between MASM's syntax and
1028 NASM's. If you're not already used to MASM, it's probably worth
1029 skipping this section.
1032 \S{qscs} NASM Is \I{case sensitivity}Case-Sensitive
1034 One simple difference is that NASM is case-sensitive. It makes a
1035 difference whether you call your label \c{foo}, \c{Foo} or \c{FOO}.
1036 If you're assembling to \c{DOS} or \c{OS/2} \c{.OBJ} files, you can
1037 invoke the \i\c{UPPERCASE} directive (documented in \k{objfmt}) to
1038 ensure that all symbols exported to other code modules are forced
1039 to be upper case; but even then, \e{within} a single module, NASM
1040 will distinguish between labels differing only in case.
1043 \S{qsbrackets} NASM Requires \i{Square Brackets} For \i{Memory References}
1045 NASM was designed with simplicity of syntax in mind. One of the
1046 \i{design goals} of NASM is that it should be possible, as far as is
1047 practical, for the user to look at a single line of NASM code
1048 and tell what opcode is generated by it. You can't do this in MASM:
1049 if you declare, for example,
1054 then the two lines of code
1059 generate completely different opcodes, despite having
1060 identical-looking syntaxes.
1062 NASM avoids this undesirable situation by having a much simpler
1063 syntax for memory references. The rule is simply that any access to
1064 the \e{contents} of a memory location requires square brackets
1065 around the address, and any access to the \e{address} of a variable
1066 doesn't. So an instruction of the form \c{mov ax,foo} will
1067 \e{always} refer to a compile-time constant, whether it's an \c{EQU}
1068 or the address of a variable; and to access the \e{contents} of the
1069 variable \c{bar}, you must code \c{mov ax,[bar]}.
1071 This also means that NASM has no need for MASM's \i\c{OFFSET}
1072 keyword, since the MASM code \c{mov ax,offset bar} means exactly the
1073 same thing as NASM's \c{mov ax,bar}. If you're trying to get
1074 large amounts of MASM code to assemble sensibly under NASM, you
1075 can always code \c{%idefine offset} to make the preprocessor treat
1076 the \c{OFFSET} keyword as a no-op.
1078 This issue is even more confusing in \i\c{a86}, where declaring a
1079 label with a trailing colon defines it to be a `label' as opposed to
1080 a `variable' and causes \c{a86} to adopt NASM-style semantics; so in
1081 \c{a86}, \c{mov ax,var} has different behaviour depending on whether
1082 \c{var} was declared as \c{var: dw 0} (a label) or \c{var dw 0} (a
1083 word-size variable). NASM is very simple by comparison:
1084 \e{everything} is a label.
1086 NASM, in the interests of simplicity, also does not support the
1087 \i{hybrid syntaxes} supported by MASM and its clones, such as
1088 \c{mov ax,table[bx]}, where a memory reference is denoted by one
1089 portion outside square brackets and another portion inside. The
1090 correct syntax for the above is \c{mov ax,[table+bx]}. Likewise,
1091 \c{mov ax,es:[di]} is wrong and \c{mov ax,[es:di]} is right.
1094 \S{qstypes} NASM Doesn't Store \i{Variable Types}
1096 NASM, by design, chooses not to remember the types of variables you
1097 declare. Whereas MASM will remember, on seeing \c{var dw 0}, that
1098 you declared \c{var} as a word-size variable, and will then be able
1099 to fill in the \i{ambiguity} in the size of the instruction \c{mov
1100 var,2}, NASM will deliberately remember nothing about the symbol
1101 \c{var} except where it begins, and so you must explicitly code
1102 \c{mov word [var],2}.
1104 For this reason, NASM doesn't support the \c{LODS}, \c{MOVS},
1105 \c{STOS}, \c{SCAS}, \c{CMPS}, \c{INS}, or \c{OUTS} instructions,
1106 but only supports the forms such as \c{LODSB}, \c{MOVSW}, and
1107 \c{SCASD}, which explicitly specify the size of the components of
1108 the strings being manipulated.
1111 \S{qsassume} NASM Doesn't \i\c{ASSUME}
1113 As part of NASM's drive for simplicity, it also does not support the
1114 \c{ASSUME} directive. NASM will not keep track of what values you
1115 choose to put in your segment registers, and will never
1116 \e{automatically} generate a \i{segment override} prefix.
1119 \S{qsmodel} NASM Doesn't Support \i{Memory Models}
1121 NASM also does not have any directives to support different 16-bit
1122 memory models. The programmer has to keep track of which functions
1123 are supposed to be called with a \i{far call} and which with a
1124 \i{near call}, and is responsible for putting the correct form of
1125 \c{RET} instruction (\c{RETN} or \c{RETF}; NASM accepts \c{RET}
1126 itself as an alternate form for \c{RETN}); in addition, the
1127 programmer is responsible for coding CALL FAR instructions where
1128 necessary when calling \e{external} functions, and must also keep
1129 track of which external variable definitions are far and which are
1133 \S{qsfpu} \i{Floating-Point} Differences
1135 NASM uses different names to refer to floating-point registers from
1136 MASM: where MASM would call them \c{ST(0)}, \c{ST(1)} and so on, and
1137 \i\c{a86} would call them simply \c{0}, \c{1} and so on, NASM
1138 chooses to call them \c{st0}, \c{st1} etc.
1140 As of version 0.96, NASM now treats the instructions with
1141 \i{`nowait'} forms in the same way as MASM-compatible assemblers.
1142 The idiosyncratic treatment employed by 0.95 and earlier was based
1143 on a misunderstanding by the authors.
1146 \S{qsother} Other Differences
1148 For historical reasons, NASM uses the keyword \i\c{TWORD} where MASM
1149 and compatible assemblers use \i\c{TBYTE}.
1151 NASM does not declare \i{uninitialized storage} in the same way as
1152 MASM: where a MASM programmer might use \c{stack db 64 dup (?)},
1153 NASM requires \c{stack resb 64}, intended to be read as `reserve 64
1154 bytes'. For a limited amount of compatibility, since NASM treats
1155 \c{?} as a valid character in symbol names, you can code \c{? equ 0}
1156 and then writing \c{dw ?} will at least do something vaguely useful.
1157 \I\c{RESB}\i\c{DUP} is still not a supported syntax, however.
1159 In addition to all of this, macros and directives work completely
1160 differently to MASM. See \k{preproc} and \k{directive} for further
1164 \C{lang} The NASM Language
1166 \H{syntax} Layout of a NASM Source Line
1168 Like most assemblers, each NASM source line contains (unless it
1169 is a macro, a preprocessor directive or an assembler directive: see
1170 \k{preproc} and \k{directive}) some combination of the four fields
1172 \c label: instruction operands ; comment
1174 As usual, most of these fields are optional; the presence or absence
1175 of any combination of a label, an instruction and a comment is allowed.
1176 Of course, the operand field is either required or forbidden by the
1177 presence and nature of the instruction field.
1179 NASM uses backslash (\\) as the line continuation character; if a line
1180 ends with backslash, the next line is considered to be a part of the
1181 backslash-ended line.
1183 NASM places no restrictions on white space within a line: labels may
1184 have white space before them, or instructions may have no space
1185 before them, or anything. The \i{colon} after a label is also
1186 optional. (Note that this means that if you intend to code \c{lodsb}
1187 alone on a line, and type \c{lodab} by accident, then that's still a
1188 valid source line which does nothing but define a label. Running
1189 NASM with the command-line option
1190 \I{orphan-labels}\c{-w+orphan-labels} will cause it to warn you if
1191 you define a label alone on a line without a \i{trailing colon}.)
1193 \i{Valid characters} in labels are letters, numbers, \c{_}, \c{$},
1194 \c{#}, \c{@}, \c{~}, \c{.}, and \c{?}. The only characters which may
1195 be used as the \e{first} character of an identifier are letters,
1196 \c{.} (with special meaning: see \k{locallab}), \c{_} and \c{?}.
1197 An identifier may also be prefixed with a \I{$, prefix}\c{$} to
1198 indicate that it is intended to be read as an identifier and not a
1199 reserved word; thus, if some other module you are linking with
1200 defines a symbol called \c{eax}, you can refer to \c{$eax} in NASM
1201 code to distinguish the symbol from the register. Maximum length of
1202 an identifier is 4095 characters.
1204 The instruction field may contain any machine instruction: Pentium
1205 and P6 instructions, FPU instructions, MMX instructions and even
1206 undocumented instructions are all supported. The instruction may be
1207 prefixed by \c{LOCK}, \c{REP}, \c{REPE}/\c{REPZ} or
1208 \c{REPNE}/\c{REPNZ}, in the usual way. Explicit \I{address-size
1209 prefixes}address-size and \i{operand-size prefixes} \i\c{A16},
1210 \i\c{A32}, \i\c{A64}, \i\c{O16} and \i\c{O32}, \i\c{O64} are provided - one example of their use
1211 is given in \k{mixsize}. You can also use the name of a \I{segment
1212 override}segment register as an instruction prefix: coding
1213 \c{es mov [bx],ax} is equivalent to coding \c{mov [es:bx],ax}. We
1214 recommend the latter syntax, since it is consistent with other
1215 syntactic features of the language, but for instructions such as
1216 \c{LODSB}, which has no operands and yet can require a segment
1217 override, there is no clean syntactic way to proceed apart from
1220 An instruction is not required to use a prefix: prefixes such as
1221 \c{CS}, \c{A32}, \c{LOCK} or \c{REPE} can appear on a line by
1222 themselves, and NASM will just generate the prefix bytes.
1224 In addition to actual machine instructions, NASM also supports a
1225 number of pseudo-instructions, described in \k{pseudop}.
1227 Instruction \i{operands} may take a number of forms: they can be
1228 registers, described simply by the register name (e.g. \c{ax},
1229 \c{bp}, \c{ebx}, \c{cr0}: NASM does not use the \c{gas}-style
1230 syntax in which register names must be prefixed by a \c{%} sign), or
1231 they can be \i{effective addresses} (see \k{effaddr}), constants
1232 (\k{const}) or expressions (\k{expr}).
1234 For x87 \i{floating-point} instructions, NASM accepts a wide range of
1235 syntaxes: you can use two-operand forms like MASM supports, or you
1236 can use NASM's native single-operand forms in most cases.
1238 \# all forms of each supported instruction are given in
1240 For example, you can code:
1242 \c fadd st1 ; this sets st0 := st0 + st1
1243 \c fadd st0,st1 ; so does this
1245 \c fadd st1,st0 ; this sets st1 := st1 + st0
1246 \c fadd to st1 ; so does this
1248 Almost any x87 floating-point instruction that references memory must
1249 use one of the prefixes \i\c{DWORD}, \i\c{QWORD} or \i\c{TWORD} to
1250 indicate what size of \i{memory operand} it refers to.
1253 \H{pseudop} \i{Pseudo-Instructions}
1255 Pseudo-instructions are things which, though not real x86 machine
1256 instructions, are used in the instruction field anyway because that's
1257 the most convenient place to put them. The current pseudo-instructions
1258 are \i\c{DB}, \i\c{DW}, \i\c{DD}, \i\c{DQ}, \i\c{DT}, \i\c{DO} and
1259 \i\c{DY}; their \i{uninitialized} counterparts \i\c{RESB}, \i\c{RESW},
1260 \i\c{RESD}, \i\c{RESQ}, \i\c{REST}, \i\c{RESO} and \i\c{RESY}; the
1261 \i\c{INCBIN} command, the \i\c{EQU} command, and the \i\c{TIMES}
1265 \S{db} \c{DB} and Friends: Declaring Initialized Data
1267 \i\c{DB}, \i\c{DW}, \i\c{DD}, \i\c{DQ}, \i\c{DT}, \i\c{DO} and
1268 \i\c{DY} are used, much as in MASM, to declare initialized data in the
1269 output file. They can be invoked in a wide range of ways:
1270 \I{floating-point}\I{character constant}\I{string constant}
1272 \c db 0x55 ; just the byte 0x55
1273 \c db 0x55,0x56,0x57 ; three bytes in succession
1274 \c db 'a',0x55 ; character constants are OK
1275 \c db 'hello',13,10,'$' ; so are string constants
1276 \c dw 0x1234 ; 0x34 0x12
1277 \c dw 'a' ; 0x61 0x00 (it's just a number)
1278 \c dw 'ab' ; 0x61 0x62 (character constant)
1279 \c dw 'abc' ; 0x61 0x62 0x63 0x00 (string)
1280 \c dd 0x12345678 ; 0x78 0x56 0x34 0x12
1281 \c dd 1.234567e20 ; floating-point constant
1282 \c dq 0x123456789abcdef0 ; eight byte constant
1283 \c dq 1.234567e20 ; double-precision float
1284 \c dt 1.234567e20 ; extended-precision float
1286 \c{DT}, \c{DO} and \c{DY} do not accept \i{numeric constants} as operands.
1289 \S{resb} \c{RESB} and Friends: Declaring \i{Uninitialized} Data
1291 \i\c{RESB}, \i\c{RESW}, \i\c{RESD}, \i\c{RESQ}, \i\c{REST}, \i\c{RESO}
1292 and \i\c{RESY} are designed to be used in the BSS section of a module:
1293 they declare \e{uninitialized} storage space. Each takes a single
1294 operand, which is the number of bytes, words, doublewords or whatever
1295 to reserve. As stated in \k{qsother}, NASM does not support the
1296 MASM/TASM syntax of reserving uninitialized space by writing
1297 \I\c{?}\c{DW ?} or similar things: this is what it does instead. The
1298 operand to a \c{RESB}-type pseudo-instruction is a \i\e{critical
1299 expression}: see \k{crit}.
1303 \c buffer: resb 64 ; reserve 64 bytes
1304 \c wordvar: resw 1 ; reserve a word
1305 \c realarray resq 10 ; array of ten reals
1306 \c ymmval: resy 1 ; one YMM register
1308 \S{incbin} \i\c{INCBIN}: Including External \i{Binary Files}
1310 \c{INCBIN} is borrowed from the old Amiga assembler \i{DevPac}: it
1311 includes a binary file verbatim into the output file. This can be
1312 handy for (for example) including \i{graphics} and \i{sound} data
1313 directly into a game executable file. It can be called in one of
1316 \c incbin "file.dat" ; include the whole file
1317 \c incbin "file.dat",1024 ; skip the first 1024 bytes
1318 \c incbin "file.dat",1024,512 ; skip the first 1024, and
1319 \c ; actually include at most 512
1321 \c{INCBIN} is both a directive and a standard macro; the standard
1322 macro version searches for the file in the include file search path
1323 and adds the file to the dependency lists. This macro can be
1324 overridden if desired.
1327 \S{equ} \i\c{EQU}: Defining Constants
1329 \c{EQU} defines a symbol to a given constant value: when \c{EQU} is
1330 used, the source line must contain a label. The action of \c{EQU} is
1331 to define the given label name to the value of its (only) operand.
1332 This definition is absolute, and cannot change later. So, for
1335 \c message db 'hello, world'
1336 \c msglen equ $-message
1338 defines \c{msglen} to be the constant 12. \c{msglen} may not then be
1339 redefined later. This is not a \i{preprocessor} definition either:
1340 the value of \c{msglen} is evaluated \e{once}, using the value of
1341 \c{$} (see \k{expr} for an explanation of \c{$}) at the point of
1342 definition, rather than being evaluated wherever it is referenced
1343 and using the value of \c{$} at the point of reference.
1346 \S{times} \i\c{TIMES}: \i{Repeating} Instructions or Data
1348 The \c{TIMES} prefix causes the instruction to be assembled multiple
1349 times. This is partly present as NASM's equivalent of the \i\c{DUP}
1350 syntax supported by \i{MASM}-compatible assemblers, in that you can
1353 \c zerobuf: times 64 db 0
1355 or similar things; but \c{TIMES} is more versatile than that. The
1356 argument to \c{TIMES} is not just a numeric constant, but a numeric
1357 \e{expression}, so you can do things like
1359 \c buffer: db 'hello, world'
1360 \c times 64-$+buffer db ' '
1362 which will store exactly enough spaces to make the total length of
1363 \c{buffer} up to 64. Finally, \c{TIMES} can be applied to ordinary
1364 instructions, so you can code trivial \i{unrolled loops} in it:
1368 Note that there is no effective difference between \c{times 100 resb
1369 1} and \c{resb 100}, except that the latter will be assembled about
1370 100 times faster due to the internal structure of the assembler.
1372 The operand to \c{TIMES} is a critical expression (\k{crit}).
1374 Note also that \c{TIMES} can't be applied to \i{macros}: the reason
1375 for this is that \c{TIMES} is processed after the macro phase, which
1376 allows the argument to \c{TIMES} to contain expressions such as
1377 \c{64-$+buffer} as above. To repeat more than one line of code, or a
1378 complex macro, use the preprocessor \i\c{%rep} directive.
1381 \H{effaddr} Effective Addresses
1383 An \i{effective address} is any operand to an instruction which
1384 \I{memory reference}references memory. Effective addresses, in NASM,
1385 have a very simple syntax: they consist of an expression evaluating
1386 to the desired address, enclosed in \i{square brackets}. For
1391 \c mov ax,[wordvar+1]
1392 \c mov ax,[es:wordvar+bx]
1394 Anything not conforming to this simple system is not a valid memory
1395 reference in NASM, for example \c{es:wordvar[bx]}.
1397 More complicated effective addresses, such as those involving more
1398 than one register, work in exactly the same way:
1400 \c mov eax,[ebx*2+ecx+offset]
1403 NASM is capable of doing \i{algebra} on these effective addresses,
1404 so that things which don't necessarily \e{look} legal are perfectly
1407 \c mov eax,[ebx*5] ; assembles as [ebx*4+ebx]
1408 \c mov eax,[label1*2-label2] ; ie [label1+(label1-label2)]
1410 Some forms of effective address have more than one assembled form;
1411 in most such cases NASM will generate the smallest form it can. For
1412 example, there are distinct assembled forms for the 32-bit effective
1413 addresses \c{[eax*2+0]} and \c{[eax+eax]}, and NASM will generally
1414 generate the latter on the grounds that the former requires four
1415 bytes to store a zero offset.
1417 NASM has a hinting mechanism which will cause \c{[eax+ebx]} and
1418 \c{[ebx+eax]} to generate different opcodes; this is occasionally
1419 useful because \c{[esi+ebp]} and \c{[ebp+esi]} have different
1420 default segment registers.
1422 However, you can force NASM to generate an effective address in a
1423 particular form by the use of the keywords \c{BYTE}, \c{WORD},
1424 \c{DWORD} and \c{NOSPLIT}. If you need \c{[eax+3]} to be assembled
1425 using a double-word offset field instead of the one byte NASM will
1426 normally generate, you can code \c{[dword eax+3]}. Similarly, you
1427 can force NASM to use a byte offset for a small value which it
1428 hasn't seen on the first pass (see \k{crit} for an example of such a
1429 code fragment) by using \c{[byte eax+offset]}. As special cases,
1430 \c{[byte eax]} will code \c{[eax+0]} with a byte offset of zero, and
1431 \c{[dword eax]} will code it with a double-word offset of zero. The
1432 normal form, \c{[eax]}, will be coded with no offset field.
1434 The form described in the previous paragraph is also useful if you
1435 are trying to access data in a 32-bit segment from within 16 bit code.
1436 For more information on this see the section on mixed-size addressing
1437 (\k{mixaddr}). In particular, if you need to access data with a known
1438 offset that is larger than will fit in a 16-bit value, if you don't
1439 specify that it is a dword offset, nasm will cause the high word of
1440 the offset to be lost.
1442 Similarly, NASM will split \c{[eax*2]} into \c{[eax+eax]} because
1443 that allows the offset field to be absent and space to be saved; in
1444 fact, it will also split \c{[eax*2+offset]} into
1445 \c{[eax+eax+offset]}. You can combat this behaviour by the use of
1446 the \c{NOSPLIT} keyword: \c{[nosplit eax*2]} will force
1447 \c{[eax*2+0]} to be generated literally.
1449 In 64-bit mode, NASM will by default generate absolute addresses. The
1450 \i\c{REL} keyword makes it produce \c{RIP}-relative addresses. Since
1451 this is frequently the normally desired behaviour, see the \c{DEFAULT}
1452 directive (\k{default}). The keyword \i\c{ABS} overrides \i\c{REL}.
1455 \H{const} \i{Constants}
1457 NASM understands four different types of constant: numeric,
1458 character, string and floating-point.
1461 \S{numconst} \i{Numeric Constants}
1463 A numeric constant is simply a number. NASM allows you to specify
1464 numbers in a variety of number bases, in a variety of ways: you can
1465 suffix \c{H} or \c{X}, \c{Q} or \c{O}, and \c{B} for \i{hexadecimal},
1466 \i{octal} and \i{binary} respectively, or you can prefix \c{0x} for
1467 hexadecimal in the style of C, or you can prefix \c{$} for hexadecimal
1468 in the style of Borland Pascal. Note, though, that the \I{$,
1469 prefix}\c{$} prefix does double duty as a prefix on identifiers (see
1470 \k{syntax}), so a hex number prefixed with a \c{$} sign must have a
1471 digit after the \c{$} rather than a letter. In addition, current
1472 versions of NASM accept the prefix \c{0h} for hexadecimal, \c{0o} or
1473 \c{0q} for octal, and \c{0b} for binary. Please note that unlike C, a
1474 \c{0} prefix by itself does \e{not} imply an octal constant!
1476 Numeric constants can have underscores (\c{_}) interspersed to break
1479 Some examples (all producing exactly the same code):
1481 \c mov ax,200 ; decimal
1482 \c mov ax,0200 ; still decimal
1483 \c mov ax,0200d ; explicitly decimal
1484 \c mov ax,0d200 ; also decimal
1485 \c mov ax,0c8h ; hex
1486 \c mov ax,$0c8 ; hex again: the 0 is required
1487 \c mov ax,0xc8 ; hex yet again
1488 \c mov ax,0hc8 ; still hex
1489 \c mov ax,310q ; octal
1490 \c mov ax,310o ; octal again
1491 \c mov ax,0o310 ; octal yet again
1492 \c mov ax,0q310 ; hex yet again
1493 \c mov ax,11001000b ; binary
1494 \c mov ax,1100_1000b ; same binary constant
1495 \c mov ax,0b1100_1000 ; same binary constant yet again
1497 \S{strings} \I{Strings}\i{Character Strings}
1499 A character string consists of up to eight characters enclosed in
1500 either single quotes (\c{'...'}), double quotes (\c{"..."}) or
1501 backquotes (\c{`...`}). Single or double quotes are equivalent to
1502 NASM (except of course that surrounding the constant with single
1503 quotes allows double quotes to appear within it and vice versa); the
1504 contents of those are represented verbatim. Strings enclosed in
1505 backquotes support C-style \c{\\}-escapes for special characters.
1508 The following \i{escape sequences} are recognized by backquoted strings:
1510 \c \' single quote (')
1511 \c \" double quote (")
1513 \c \\\ backslash (\)
1514 \c \? question mark (?)
1522 \c \e ESC (ASCII 27)
1523 \c \377 Up to 3 octal digits - literal byte
1524 \c \xFF Up to 2 hexadecimal digits - literal byte
1525 \c \u1234 4 hexadecimal digits - Unicode character
1526 \c \U12345678 8 hexadecimal digits - Unicode character
1528 All other escape sequences are reserved. Note that \c{\\0}, meaning a
1529 \c{NUL} character (ASCII 0), is a special case of the octal escape
1532 \i{Unicode} characters specified with \c{\\u} or \c{\\U} are converted to
1533 \i{UTF-8}. For example, the following lines are all equivalent:
1535 \c db `\u263a` ; UTF-8 smiley face
1536 \c db `\xe2\x98\xba` ; UTF-8 smiley face
1537 \c db 0E2h, 098h, 0BAh ; UTF-8 smiley face
1540 \S{chrconst} \i{Character Constants}
1542 A character constant consists of a string up to eight bytes long, used
1543 in an expression context. It is treated as if it was an integer.
1545 A character constant with more than one byte will be arranged
1546 with \i{little-endian} order in mind: if you code
1550 then the constant generated is not \c{0x61626364}, but
1551 \c{0x64636261}, so that if you were then to store the value into
1552 memory, it would read \c{abcd} rather than \c{dcba}. This is also
1553 the sense of character constants understood by the Pentium's
1554 \i\c{CPUID} instruction.
1557 \S{strconst} \i{String Constants}
1559 String constants are character strings used in the context of some
1560 pseudo-instructions, namely the
1561 \I\c{DW}\I\c{DD}\I\c{DQ}\I\c{DT}\I\c{DO}\I\c{DY}\i\c{DB} family and
1562 \i\c{INCBIN} (where it represents a filename.) They are also used in
1563 certain preprocessor directives.
1565 A string constant looks like a character constant, only longer. It
1566 is treated as a concatenation of maximum-size character constants
1567 for the conditions. So the following are equivalent:
1569 \c db 'hello' ; string constant
1570 \c db 'h','e','l','l','o' ; equivalent character constants
1572 And the following are also equivalent:
1574 \c dd 'ninechars' ; doubleword string constant
1575 \c dd 'nine','char','s' ; becomes three doublewords
1576 \c db 'ninechars',0,0,0 ; and really looks like this
1578 Note that when used in a string-supporting context, quoted strings are
1579 treated as a string constants even if they are short enough to be a
1580 character constant, because otherwise \c{db 'ab'} would have the same
1581 effect as \c{db 'a'}, which would be silly. Similarly, three-character
1582 or four-character constants are treated as strings when they are
1583 operands to \c{DW}, and so forth.
1585 \S{unicode} \I{UTF-16}\I{UTF-32}\i{Unicode} Strings
1587 The special operators \i\c{__utf16__} and \i\c{__utf32__} allows
1588 definition of Unicode strings. They take a string in UTF-8 format and
1589 converts it to (littleendian) UTF-16 or UTF-32, respectively.
1593 \c %define u(x) __utf16__(x)
1594 \c %define w(x) __utf32__(x)
1596 \c dw u('C:\WINDOWS'), 0 ; Pathname in UTF-16
1597 \c dd w(`A + B = \u206a`), 0 ; String in UTF-32
1599 \c{__utf16__} and \c{__utf32__} can be applied either to strings
1600 passed to the \c{DB} family instructions, or to character constants in
1601 an expression context.
1603 \S{fltconst} \I{floating-point, constants}Floating-Point Constants
1605 \i{Floating-point} constants are acceptable only as arguments to
1606 \i\c{DB}, \i\c{DW}, \i\c{DD}, \i\c{DQ}, \i\c{DT}, and \i\c{DO}, or as
1607 arguments to the special operators \i\c{__float8__},
1608 \i\c{__float16__}, \i\c{__float32__}, \i\c{__float64__},
1609 \i\c{__float80m__}, \i\c{__float80e__}, \i\c{__float128l__}, and
1610 \i\c{__float128h__}.
1612 Floating-point constants are expressed in the traditional form:
1613 digits, then a period, then optionally more digits, then optionally an
1614 \c{E} followed by an exponent. The period is mandatory, so that NASM
1615 can distinguish between \c{dd 1}, which declares an integer constant,
1616 and \c{dd 1.0} which declares a floating-point constant. NASM also
1617 support C99-style hexadecimal floating-point: \c{0x}, hexadecimal
1618 digits, period, optionally more hexadeximal digits, then optionally a
1619 \c{P} followed by a \e{binary} (not hexadecimal) exponent in decimal
1622 Underscores to break up groups of digits are permitted in
1623 floating-point constants as well.
1627 \c db -0.2 ; "Quarter precision"
1628 \c dw -0.5 ; IEEE 754r/SSE5 half precision
1629 \c dd 1.2 ; an easy one
1630 \c dd 1.222_222_222 ; underscores are permitted
1631 \c dd 0x1p+2 ; 1.0x2^2 = 4.0
1632 \c dq 0x1p+32 ; 1.0x2^32 = 4 294 967 296.0
1633 \c dq 1.e10 ; 10 000 000 000.0
1634 \c dq 1.e+10 ; synonymous with 1.e10
1635 \c dq 1.e-10 ; 0.000 000 000 1
1636 \c dt 3.141592653589793238462 ; pi
1637 \c do 1.e+4000 ; IEEE 754r quad precision
1639 The 8-bit "quarter-precision" floating-point format is
1640 sign:exponent:mantissa = 1:4:3 with an exponent bias of 7. This
1641 appears to be the most frequently used 8-bit floating-point format,
1642 although it is not covered by any formal standard. This is sometimes
1643 called a "\i{minifloat}."
1645 The special operators are used to produce floating-point numbers in
1646 other contexts. They produce the binary representation of a specific
1647 floating-point number as an integer, and can use anywhere integer
1648 constants are used in an expression. \c{__float80m__} and
1649 \c{__float80e__} produce the 64-bit mantissa and 16-bit exponent of an
1650 80-bit floating-point number, and \c{__float128l__} and
1651 \c{__float128h__} produce the lower and upper 64-bit halves of a 128-bit
1652 floating-point number, respectively.
1656 \c mov rax,__float64__(3.141592653589793238462)
1658 ... would assign the binary representation of pi as a 64-bit floating
1659 point number into \c{RAX}. This is exactly equivalent to:
1661 \c mov rax,0x400921fb54442d18
1663 NASM cannot do compile-time arithmetic on floating-point constants.
1664 This is because NASM is designed to be portable - although it always
1665 generates code to run on x86 processors, the assembler itself can
1666 run on any system with an ANSI C compiler. Therefore, the assembler
1667 cannot guarantee the presence of a floating-point unit capable of
1668 handling the \i{Intel number formats}, and so for NASM to be able to
1669 do floating arithmetic it would have to include its own complete set
1670 of floating-point routines, which would significantly increase the
1671 size of the assembler for very little benefit.
1673 The special tokens \i\c{__Infinity__}, \i\c{__QNaN__} (or
1674 \i\c{__NaN__}) and \i\c{__SNaN__} can be used to generate
1675 \I{infinity}infinities, quiet \i{NaN}s, and signalling NaNs,
1676 respectively. These are normally used as macros:
1678 \c %define Inf __Infinity__
1679 \c %define NaN __QNaN__
1681 \c dq +1.5, -Inf, NaN ; Double-precision constants
1683 \S{bcdconst} \I{floating-point, packed BCD constants}Packed BCD Constants
1685 x87-style packed BCD constants can be used in the same contexts as
1686 80-bit floating-point numbers. They are suffixed with \c{p} or
1687 prefixed with \c{0p}, and can include up to 18 decimal digits.
1689 As with other numeric constants, underscores can be used to separate
1694 \c dt 12_345_678_901_245_678p
1695 \c dt -12_345_678_901_245_678p
1700 \H{expr} \i{Expressions}
1702 Expressions in NASM are similar in syntax to those in C. Expressions
1703 are evaluated as 64-bit integers which are then adjusted to the
1706 NASM supports two special tokens in expressions, allowing
1707 calculations to involve the current assembly position: the
1708 \I{$, here}\c{$} and \i\c{$$} tokens. \c{$} evaluates to the assembly
1709 position at the beginning of the line containing the expression; so
1710 you can code an \i{infinite loop} using \c{JMP $}. \c{$$} evaluates
1711 to the beginning of the current section; so you can tell how far
1712 into the section you are by using \c{($-$$)}.
1714 The arithmetic \i{operators} provided by NASM are listed here, in
1715 increasing order of \i{precedence}.
1718 \S{expor} \i\c{|}: \i{Bitwise OR} Operator
1720 The \c{|} operator gives a bitwise OR, exactly as performed by the
1721 \c{OR} machine instruction. Bitwise OR is the lowest-priority
1722 arithmetic operator supported by NASM.
1725 \S{expxor} \i\c{^}: \i{Bitwise XOR} Operator
1727 \c{^} provides the bitwise XOR operation.
1730 \S{expand} \i\c{&}: \i{Bitwise AND} Operator
1732 \c{&} provides the bitwise AND operation.
1735 \S{expshift} \i\c{<<} and \i\c{>>}: \i{Bit Shift} Operators
1737 \c{<<} gives a bit-shift to the left, just as it does in C. So \c{5<<3}
1738 evaluates to 5 times 8, or 40. \c{>>} gives a bit-shift to the
1739 right; in NASM, such a shift is \e{always} unsigned, so that
1740 the bits shifted in from the left-hand end are filled with zero
1741 rather than a sign-extension of the previous highest bit.
1744 \S{expplmi} \I{+ opaddition}\c{+} and \I{- opsubtraction}\c{-}:
1745 \i{Addition} and \i{Subtraction} Operators
1747 The \c{+} and \c{-} operators do perfectly ordinary addition and
1751 \S{expmul} \i\c{*}, \i\c{/}, \i\c{//}, \i\c{%} and \i\c{%%}:
1752 \i{Multiplication} and \i{Division}
1754 \c{*} is the multiplication operator. \c{/} and \c{//} are both
1755 division operators: \c{/} is \i{unsigned division} and \c{//} is
1756 \i{signed division}. Similarly, \c{%} and \c{%%} provide \I{unsigned
1757 modulo}\I{modulo operators}unsigned and
1758 \i{signed modulo} operators respectively.
1760 NASM, like ANSI C, provides no guarantees about the sensible
1761 operation of the signed modulo operator.
1763 Since the \c{%} character is used extensively by the macro
1764 \i{preprocessor}, you should ensure that both the signed and unsigned
1765 modulo operators are followed by white space wherever they appear.
1768 \S{expmul} \i{Unary Operators}: \I{+ opunary}\c{+}, \I{- opunary}\c{-},
1769 \i\c{~}, \I{! opunary}\c{!} and \i\c{SEG}
1771 The highest-priority operators in NASM's expression grammar are
1772 those which only apply to one argument. \c{-} negates its operand,
1773 \c{+} does nothing (it's provided for symmetry with \c{-}), \c{~}
1774 computes the \i{one's complement} of its operand, \c{!} is the
1775 \i{logical negation} operator, and \c{SEG} provides the \i{segment address}
1776 of its operand (explained in more detail in \k{segwrt}).
1779 \H{segwrt} \i\c{SEG} and \i\c{WRT}
1781 When writing large 16-bit programs, which must be split into
1782 multiple \i{segments}, it is often necessary to be able to refer to
1783 the \I{segment address}segment part of the address of a symbol. NASM
1784 supports the \c{SEG} operator to perform this function.
1786 The \c{SEG} operator returns the \i\e{preferred} segment base of a
1787 symbol, defined as the segment base relative to which the offset of
1788 the symbol makes sense. So the code
1790 \c mov ax,seg symbol
1794 will load \c{ES:BX} with a valid pointer to the symbol \c{symbol}.
1796 Things can be more complex than this: since 16-bit segments and
1797 \i{groups} may \I{overlapping segments}overlap, you might occasionally
1798 want to refer to some symbol using a different segment base from the
1799 preferred one. NASM lets you do this, by the use of the \c{WRT}
1800 (With Reference To) keyword. So you can do things like
1802 \c mov ax,weird_seg ; weird_seg is a segment base
1804 \c mov bx,symbol wrt weird_seg
1806 to load \c{ES:BX} with a different, but functionally equivalent,
1807 pointer to the symbol \c{symbol}.
1809 NASM supports far (inter-segment) calls and jumps by means of the
1810 syntax \c{call segment:offset}, where \c{segment} and \c{offset}
1811 both represent immediate values. So to call a far procedure, you
1812 could code either of
1814 \c call (seg procedure):procedure
1815 \c call weird_seg:(procedure wrt weird_seg)
1817 (The parentheses are included for clarity, to show the intended
1818 parsing of the above instructions. They are not necessary in
1821 NASM supports the syntax \I\c{CALL FAR}\c{call far procedure} as a
1822 synonym for the first of the above usages. \c{JMP} works identically
1823 to \c{CALL} in these examples.
1825 To declare a \i{far pointer} to a data item in a data segment, you
1828 \c dw symbol, seg symbol
1830 NASM supports no convenient synonym for this, though you can always
1831 invent one using the macro processor.
1834 \H{strict} \i\c{STRICT}: Inhibiting Optimization
1836 When assembling with the optimizer set to level 2 or higher (see
1837 \k{opt-O}), NASM will use size specifiers (\c{BYTE}, \c{WORD},
1838 \c{DWORD}, \c{QWORD}, \c{TWORD}, \c{OWORD} or \c{YWORD}), but will
1839 give them the smallest possible size. The keyword \c{STRICT} can be
1840 used to inhibit optimization and force a particular operand to be
1841 emitted in the specified size. For example, with the optimizer on, and
1842 in \c{BITS 16} mode,
1846 is encoded in three bytes \c{66 6A 21}, whereas
1848 \c push strict dword 33
1850 is encoded in six bytes, with a full dword immediate operand \c{66 68
1853 With the optimizer off, the same code (six bytes) is generated whether
1854 the \c{STRICT} keyword was used or not.
1857 \H{crit} \i{Critical Expressions}
1859 Although NASM has an optional multi-pass optimizer, there are some
1860 expressions which must be resolvable on the first pass. These are
1861 called \e{Critical Expressions}.
1863 The first pass is used to determine the size of all the assembled
1864 code and data, so that the second pass, when generating all the
1865 code, knows all the symbol addresses the code refers to. So one
1866 thing NASM can't handle is code whose size depends on the value of a
1867 symbol declared after the code in question. For example,
1869 \c times (label-$) db 0
1870 \c label: db 'Where am I?'
1872 The argument to \i\c{TIMES} in this case could equally legally
1873 evaluate to anything at all; NASM will reject this example because
1874 it cannot tell the size of the \c{TIMES} line when it first sees it.
1875 It will just as firmly reject the slightly \I{paradox}paradoxical
1878 \c times (label-$+1) db 0
1879 \c label: db 'NOW where am I?'
1881 in which \e{any} value for the \c{TIMES} argument is by definition
1884 NASM rejects these examples by means of a concept called a
1885 \e{critical expression}, which is defined to be an expression whose
1886 value is required to be computable in the first pass, and which must
1887 therefore depend only on symbols defined before it. The argument to
1888 the \c{TIMES} prefix is a critical expression.
1890 \H{locallab} \i{Local Labels}
1892 NASM gives special treatment to symbols beginning with a \i{period}.
1893 A label beginning with a single period is treated as a \e{local}
1894 label, which means that it is associated with the previous non-local
1895 label. So, for example:
1897 \c label1 ; some code
1905 \c label2 ; some code
1913 In the above code fragment, each \c{JNE} instruction jumps to the
1914 line immediately before it, because the two definitions of \c{.loop}
1915 are kept separate by virtue of each being associated with the
1916 previous non-local label.
1918 This form of local label handling is borrowed from the old Amiga
1919 assembler \i{DevPac}; however, NASM goes one step further, in
1920 allowing access to local labels from other parts of the code. This
1921 is achieved by means of \e{defining} a local label in terms of the
1922 previous non-local label: the first definition of \c{.loop} above is
1923 really defining a symbol called \c{label1.loop}, and the second
1924 defines a symbol called \c{label2.loop}. So, if you really needed
1927 \c label3 ; some more code
1932 Sometimes it is useful - in a macro, for instance - to be able to
1933 define a label which can be referenced from anywhere but which
1934 doesn't interfere with the normal local-label mechanism. Such a
1935 label can't be non-local because it would interfere with subsequent
1936 definitions of, and references to, local labels; and it can't be
1937 local because the macro that defined it wouldn't know the label's
1938 full name. NASM therefore introduces a third type of label, which is
1939 probably only useful in macro definitions: if a label begins with
1940 the \I{label prefix}special prefix \i\c{..@}, then it does nothing
1941 to the local label mechanism. So you could code
1943 \c label1: ; a non-local label
1944 \c .local: ; this is really label1.local
1945 \c ..@foo: ; this is a special symbol
1946 \c label2: ; another non-local label
1947 \c .local: ; this is really label2.local
1949 \c jmp ..@foo ; this will jump three lines up
1951 NASM has the capacity to define other special symbols beginning with
1952 a double period: for example, \c{..start} is used to specify the
1953 entry point in the \c{obj} output format (see \k{dotdotstart}).
1956 \C{preproc} The NASM \i{Preprocessor}
1958 NASM contains a powerful \i{macro processor}, which supports
1959 conditional assembly, multi-level file inclusion, two forms of macro
1960 (single-line and multi-line), and a `context stack' mechanism for
1961 extra macro power. Preprocessor directives all begin with a \c{%}
1964 The preprocessor collapses all lines which end with a backslash (\\)
1965 character into a single line. Thus:
1967 \c %define THIS_VERY_LONG_MACRO_NAME_IS_DEFINED_TO \\
1970 will work like a single-line macro without the backslash-newline
1973 \H{slmacro} \i{Single-Line Macros}
1975 \S{define} The Normal Way: \I\c{%idefine}\i\c{%define}
1977 Single-line macros are defined using the \c{%define} preprocessor
1978 directive. The definitions work in a similar way to C; so you can do
1981 \c %define ctrl 0x1F &
1982 \c %define param(a,b) ((a)+(a)*(b))
1984 \c mov byte [param(2,ebx)], ctrl 'D'
1986 which will expand to
1988 \c mov byte [(2)+(2)*(ebx)], 0x1F & 'D'
1990 When the expansion of a single-line macro contains tokens which
1991 invoke another macro, the expansion is performed at invocation time,
1992 not at definition time. Thus the code
1994 \c %define a(x) 1+b(x)
1999 will evaluate in the expected way to \c{mov ax,1+2*8}, even though
2000 the macro \c{b} wasn't defined at the time of definition of \c{a}.
2002 Macros defined with \c{%define} are \i{case sensitive}: after
2003 \c{%define foo bar}, only \c{foo} will expand to \c{bar}: \c{Foo} or
2004 \c{FOO} will not. By using \c{%idefine} instead of \c{%define} (the
2005 `i' stands for `insensitive') you can define all the case variants
2006 of a macro at once, so that \c{%idefine foo bar} would cause
2007 \c{foo}, \c{Foo}, \c{FOO}, \c{fOO} and so on all to expand to
2010 There is a mechanism which detects when a macro call has occurred as
2011 a result of a previous expansion of the same macro, to guard against
2012 \i{circular references} and infinite loops. If this happens, the
2013 preprocessor will only expand the first occurrence of the macro.
2016 \c %define a(x) 1+a(x)
2020 the macro \c{a(3)} will expand once, becoming \c{1+a(3)}, and will
2021 then expand no further. This behaviour can be useful: see \k{32c}
2022 for an example of its use.
2024 You can \I{overloading, single-line macros}overload single-line
2025 macros: if you write
2027 \c %define foo(x) 1+x
2028 \c %define foo(x,y) 1+x*y
2030 the preprocessor will be able to handle both types of macro call,
2031 by counting the parameters you pass; so \c{foo(3)} will become
2032 \c{1+3} whereas \c{foo(ebx,2)} will become \c{1+ebx*2}. However, if
2037 then no other definition of \c{foo} will be accepted: a macro with
2038 no parameters prohibits the definition of the same name as a macro
2039 \e{with} parameters, and vice versa.
2041 This doesn't prevent single-line macros being \e{redefined}: you can
2042 perfectly well define a macro with
2046 and then re-define it later in the same source file with
2050 Then everywhere the macro \c{foo} is invoked, it will be expanded
2051 according to the most recent definition. This is particularly useful
2052 when defining single-line macros with \c{%assign} (see \k{assign}).
2054 You can \i{pre-define} single-line macros using the `-d' option on
2055 the NASM command line: see \k{opt-d}.
2058 \S{xdefine} Resolving \c{%define}: \I\c{%ixdefine}\i\c{%xdefine}
2060 To have a reference to an embedded single-line macro resolved at the
2061 time that the embedding macro is \e{defined}, as opposed to when the
2062 embedding macro is \e{expanded}, you need a different mechanism to the
2063 one offered by \c{%define}. The solution is to use \c{%xdefine}, or
2064 it's \I{case sensitive}case-insensitive counterpart \c{%ixdefine}.
2066 Suppose you have the following code:
2069 \c %define isFalse isTrue
2078 In this case, \c{val1} is equal to 0, and \c{val2} is equal to 1.
2079 This is because, when a single-line macro is defined using
2080 \c{%define}, it is expanded only when it is called. As \c{isFalse}
2081 expands to \c{isTrue}, the expansion will be the current value of
2082 \c{isTrue}. The first time it is called that is 0, and the second
2085 If you wanted \c{isFalse} to expand to the value assigned to the
2086 embedded macro \c{isTrue} at the time that \c{isFalse} was defined,
2087 you need to change the above code to use \c{%xdefine}.
2089 \c %xdefine isTrue 1
2090 \c %xdefine isFalse isTrue
2091 \c %xdefine isTrue 0
2095 \c %xdefine isTrue 1
2099 Now, each time that \c{isFalse} is called, it expands to 1,
2100 as that is what the embedded macro \c{isTrue} expanded to at
2101 the time that \c{isFalse} was defined.
2104 \S{indmacro} \i{Macro Indirection}: \I\c{%[}\c{%[...]}
2106 The \c{%[...]} construct can be used to expand macros in contexts
2107 where macro expansion would otherwise not occur, including in the
2108 names other macros. For example, if you have a set of macros named
2109 \c{Foo16}, \c{Foo32} and \c{Foo64}, you could write:
2111 \c mov ax,Foo%[__BITS__] ; The Foo value
2113 to use the builtin macro \c{__BITS__} (see \k{bitsm}) to automatically
2114 select between them. Similarly, the two statements:
2116 \c %xdefine Bar Quux ; Expands due to %xdefine
2117 \c %define Bar %[Quux] ; Expands due to %[...]
2119 have, in fact, exactly the same effect.
2121 \c{%[...]} concatenates to adjacent tokens in the same way that
2122 multi-line macro parameters do, see \k{concat} for details.
2125 \S{concat%+} Concatenating Single Line Macro Tokens: \i\c{%+}
2127 Individual tokens in single line macros can be concatenated, to produce
2128 longer tokens for later processing. This can be useful if there are
2129 several similar macros that perform similar functions.
2131 Please note that a space is required after \c{%+}, in order to
2132 disambiguate it from the syntax \c{%+1} used in multiline macros.
2134 As an example, consider the following:
2136 \c %define BDASTART 400h ; Start of BIOS data area
2138 \c struc tBIOSDA ; its structure
2144 Now, if we need to access the elements of tBIOSDA in different places,
2147 \c mov ax,BDASTART + tBIOSDA.COM1addr
2148 \c mov bx,BDASTART + tBIOSDA.COM2addr
2150 This will become pretty ugly (and tedious) if used in many places, and
2151 can be reduced in size significantly by using the following macro:
2153 \c ; Macro to access BIOS variables by their names (from tBDA):
2155 \c %define BDA(x) BDASTART + tBIOSDA. %+ x
2157 Now the above code can be written as:
2159 \c mov ax,BDA(COM1addr)
2160 \c mov bx,BDA(COM2addr)
2162 Using this feature, we can simplify references to a lot of macros (and,
2163 in turn, reduce typing errors).
2166 \S{selfref%?} The Macro Name Itself: \i\c{%?} and \i\c{%??}
2168 The special symbols \c{%?} and \c{%??} can be used to reference the
2169 macro name itself inside a macro expansion, this is supported for both
2170 single-and multi-line macros. \c{%?} refers to the macro name as
2171 \e{invoked}, whereas \c{%??} refers to the macro name as
2172 \e{declared}. The two are always the same for case-sensitive
2173 macros, but for case-insensitive macros, they can differ.
2177 \c %idefine Foo mov %?,%??
2189 \c %idefine keyword $%?
2191 can be used to make a keyword "disappear", for example in case a new
2192 instruction has been used as a label in older code. For example:
2194 \c %idefine pause $%? ; Hide the PAUSE instruction
2197 \S{undef} Undefining Single-Line Macros: \i\c{%undef}
2199 Single-line macros can be removed with the \c{%undef} directive. For
2200 example, the following sequence:
2207 will expand to the instruction \c{mov eax, foo}, since after
2208 \c{%undef} the macro \c{foo} is no longer defined.
2210 Macros that would otherwise be pre-defined can be undefined on the
2211 command-line using the `-u' option on the NASM command line: see
2215 \S{assign} \i{Preprocessor Variables}: \i\c{%assign}
2217 An alternative way to define single-line macros is by means of the
2218 \c{%assign} command (and its \I{case sensitive}case-insensitive
2219 counterpart \i\c{%iassign}, which differs from \c{%assign} in
2220 exactly the same way that \c{%idefine} differs from \c{%define}).
2222 \c{%assign} is used to define single-line macros which take no
2223 parameters and have a numeric value. This value can be specified in
2224 the form of an expression, and it will be evaluated once, when the
2225 \c{%assign} directive is processed.
2227 Like \c{%define}, macros defined using \c{%assign} can be re-defined
2228 later, so you can do things like
2232 to increment the numeric value of a macro.
2234 \c{%assign} is useful for controlling the termination of \c{%rep}
2235 preprocessor loops: see \k{rep} for an example of this. Another
2236 use for \c{%assign} is given in \k{16c} and \k{32c}.
2238 The expression passed to \c{%assign} is a \i{critical expression}
2239 (see \k{crit}), and must also evaluate to a pure number (rather than
2240 a relocatable reference such as a code or data address, or anything
2241 involving a register).
2244 \S{defstr} Defining Strings: \I\c{%idefstr}\i\c{%defstr}
2246 \c{%defstr}, and its case-insensitive counterpart \c{%idefstr}, define
2247 or redefine a single-line macro without parameters but converts the
2248 entire right-hand side, after macro expansion, to a quoted string
2253 \c %defstr test TEST
2257 \c %define test 'TEST'
2259 This can be used, for example, with the \c{%!} construct (see
2262 \c %defstr PATH %!PATH ; The operating system PATH variable
2265 \H{strlen} \i{String Manipulation in Macros}
2267 It's often useful to be able to handle strings in macros. NASM
2268 supports a few simple string handling macro operators from which
2269 more complex operations can be constructed.
2271 All the string operators define or redefine a value (either a string
2272 or a numeric value) to a single-line macro. When producing a string
2273 value, it may change the style of quoting of the input string or
2274 strings, and possibly use \c{\\}-escapes inside \c{`}-quoted strings.
2276 \S{strcat} \i{Concatenating Strings}: \i\c{%strcat}
2278 The \c{%strcat} operator concatenates quoted strings and assign them to
2279 a single-line macro.
2283 \c %strcat alpha "Alpha: ", '12" screen'
2285 ... would assign the value \c{'Alpha: 12" screen'} to \c{alpha}.
2288 \c %strcat beta '"foo"\', "'bar'"
2290 ... would assign the value \c{`"foo"\\'bar'`} to \c{beta}.
2292 The use of commas to separate strings is permitted but optional.
2295 \S{strlen} \i{String Length}: \i\c{%strlen}
2297 The \c{%strlen} operator assigns the length of a string to a macro.
2300 \c %strlen charcnt 'my string'
2302 In this example, \c{charcnt} would receive the value 9, just as
2303 if an \c{%assign} had been used. In this example, \c{'my string'}
2304 was a literal string but it could also have been a single-line
2305 macro that expands to a string, as in the following example:
2307 \c %define sometext 'my string'
2308 \c %strlen charcnt sometext
2310 As in the first case, this would result in \c{charcnt} being
2311 assigned the value of 9.
2314 \S{substr} \i{Extracting Substrings}: \i\c{%substr}
2316 Individual letters or substrings in strings can be extracted using the
2317 \c{%substr} operator. An example of its use is probably more useful
2318 than the description:
2320 \c %substr mychar 'xyzw' 1 ; equivalent to %define mychar 'x'
2321 \c %substr mychar 'xyzw' 2 ; equivalent to %define mychar 'y'
2322 \c %substr mychar 'xyzw' 3 ; equivalent to %define mychar 'z'
2323 \c %substr mychar 'xyzw' 2,2 ; equivalent to %define mychar 'yz'
2324 \c %substr mychar 'xyzw' 2,-1 ; equivalent to %define mychar 'yzw'
2325 \c %substr mychar 'xyzw' 2,-2 ; equivalent to %define mychar 'yz'
2327 As with \c{%strlen} (see \k{strlen}), the first parameter is the
2328 single-line macro to be created and the second is the string. The
2329 third parameter specifies the first character to be selected, and the
2330 optional fourth parameter preceeded by comma) is the length. Note
2331 that the first index is 1, not 0 and the last index is equal to the
2332 value that \c{%strlen} would assign given the same string. Index
2333 values out of range result in an empty string. A negative length
2334 means "until N-1 characters before the end of string", i.e. \c{-1}
2335 means until end of string, \c{-2} until one character before, etc.
2338 \H{mlmacro} \i{Multi-Line Macros}: \I\c{%imacro}\i\c{%macro}
2340 Multi-line macros are much more like the type of macro seen in MASM
2341 and TASM: a multi-line macro definition in NASM looks something like
2344 \c %macro prologue 1
2352 This defines a C-like function prologue as a macro: so you would
2353 invoke the macro with a call such as
2355 \c myfunc: prologue 12
2357 which would expand to the three lines of code
2363 The number \c{1} after the macro name in the \c{%macro} line defines
2364 the number of parameters the macro \c{prologue} expects to receive.
2365 The use of \c{%1} inside the macro definition refers to the first
2366 parameter to the macro call. With a macro taking more than one
2367 parameter, subsequent parameters would be referred to as \c{%2},
2370 Multi-line macros, like single-line macros, are \i{case-sensitive},
2371 unless you define them using the alternative directive \c{%imacro}.
2373 If you need to pass a comma as \e{part} of a parameter to a
2374 multi-line macro, you can do that by enclosing the entire parameter
2375 in \I{braces, around macro parameters}braces. So you could code
2384 \c silly 'a', letter_a ; letter_a: db 'a'
2385 \c silly 'ab', string_ab ; string_ab: db 'ab'
2386 \c silly {13,10}, crlf ; crlf: db 13,10
2389 \S{mlmacover} Overloading Multi-Line Macros\I{overloading, multi-line macros}
2391 As with single-line macros, multi-line macros can be overloaded by
2392 defining the same macro name several times with different numbers of
2393 parameters. This time, no exception is made for macros with no
2394 parameters at all. So you could define
2396 \c %macro prologue 0
2403 to define an alternative form of the function prologue which
2404 allocates no local stack space.
2406 Sometimes, however, you might want to `overload' a machine
2407 instruction; for example, you might want to define
2416 so that you could code
2418 \c push ebx ; this line is not a macro call
2419 \c push eax,ecx ; but this one is
2421 Ordinarily, NASM will give a warning for the first of the above two
2422 lines, since \c{push} is now defined to be a macro, and is being
2423 invoked with a number of parameters for which no definition has been
2424 given. The correct code will still be generated, but the assembler
2425 will give a warning. This warning can be disabled by the use of the
2426 \c{-w-macro-params} command-line option (see \k{opt-w}).
2429 \S{maclocal} \i{Macro-Local Labels}
2431 NASM allows you to define labels within a multi-line macro
2432 definition in such a way as to make them local to the macro call: so
2433 calling the same macro multiple times will use a different label
2434 each time. You do this by prefixing \i\c{%%} to the label name. So
2435 you can invent an instruction which executes a \c{RET} if the \c{Z}
2436 flag is set by doing this:
2446 You can call this macro as many times as you want, and every time
2447 you call it NASM will make up a different `real' name to substitute
2448 for the label \c{%%skip}. The names NASM invents are of the form
2449 \c{..@2345.skip}, where the number 2345 changes with every macro
2450 call. The \i\c{..@} prefix prevents macro-local labels from
2451 interfering with the local label mechanism, as described in
2452 \k{locallab}. You should avoid defining your own labels in this form
2453 (the \c{..@} prefix, then a number, then another period) in case
2454 they interfere with macro-local labels.
2457 \S{mlmacgre} \i{Greedy Macro Parameters}
2459 Occasionally it is useful to define a macro which lumps its entire
2460 command line into one parameter definition, possibly after
2461 extracting one or two smaller parameters from the front. An example
2462 might be a macro to write a text string to a file in MS-DOS, where
2463 you might want to be able to write
2465 \c writefile [filehandle],"hello, world",13,10
2467 NASM allows you to define the last parameter of a macro to be
2468 \e{greedy}, meaning that if you invoke the macro with more
2469 parameters than it expects, all the spare parameters get lumped into
2470 the last defined one along with the separating commas. So if you
2473 \c %macro writefile 2+
2479 \c mov cx,%%endstr-%%str
2486 then the example call to \c{writefile} above will work as expected:
2487 the text before the first comma, \c{[filehandle]}, is used as the
2488 first macro parameter and expanded when \c{%1} is referred to, and
2489 all the subsequent text is lumped into \c{%2} and placed after the
2492 The greedy nature of the macro is indicated to NASM by the use of
2493 the \I{+ modifier}\c{+} sign after the parameter count on the
2496 If you define a greedy macro, you are effectively telling NASM how
2497 it should expand the macro given \e{any} number of parameters from
2498 the actual number specified up to infinity; in this case, for
2499 example, NASM now knows what to do when it sees a call to
2500 \c{writefile} with 2, 3, 4 or more parameters. NASM will take this
2501 into account when overloading macros, and will not allow you to
2502 define another form of \c{writefile} taking 4 parameters (for
2505 Of course, the above macro could have been implemented as a
2506 non-greedy macro, in which case the call to it would have had to
2509 \c writefile [filehandle], {"hello, world",13,10}
2511 NASM provides both mechanisms for putting \i{commas in macro
2512 parameters}, and you choose which one you prefer for each macro
2515 See \k{sectmac} for a better way to write the above macro.
2518 \S{mlmacdef} \i{Default Macro Parameters}
2520 NASM also allows you to define a multi-line macro with a \e{range}
2521 of allowable parameter counts. If you do this, you can specify
2522 defaults for \i{omitted parameters}. So, for example:
2524 \c %macro die 0-1 "Painful program death has occurred."
2532 This macro (which makes use of the \c{writefile} macro defined in
2533 \k{mlmacgre}) can be called with an explicit error message, which it
2534 will display on the error output stream before exiting, or it can be
2535 called with no parameters, in which case it will use the default
2536 error message supplied in the macro definition.
2538 In general, you supply a minimum and maximum number of parameters
2539 for a macro of this type; the minimum number of parameters are then
2540 required in the macro call, and then you provide defaults for the
2541 optional ones. So if a macro definition began with the line
2543 \c %macro foobar 1-3 eax,[ebx+2]
2545 then it could be called with between one and three parameters, and
2546 \c{%1} would always be taken from the macro call. \c{%2}, if not
2547 specified by the macro call, would default to \c{eax}, and \c{%3} if
2548 not specified would default to \c{[ebx+2]}.
2550 You can provide extra information to a macro by providing
2551 too many default parameters:
2553 \c %macro quux 1 something
2555 This will trigger a warning by default; see \k{opt-w} for
2557 When \c{quux} is invoked, it receives not one but two parameters.
2558 \c{something} can be referred to as \c{%2}. The difference
2559 between passing \c{something} this way and writing \c{something}
2560 in the macro body is that with this way \c{something} is evaluated
2561 when the macro is defined, not when it is expanded.
2563 You may omit parameter defaults from the macro definition, in which
2564 case the parameter default is taken to be blank. This can be useful
2565 for macros which can take a variable number of parameters, since the
2566 \i\c{%0} token (see \k{percent0}) allows you to determine how many
2567 parameters were really passed to the macro call.
2569 This defaulting mechanism can be combined with the greedy-parameter
2570 mechanism; so the \c{die} macro above could be made more powerful,
2571 and more useful, by changing the first line of the definition to
2573 \c %macro die 0-1+ "Painful program death has occurred.",13,10
2575 The maximum parameter count can be infinite, denoted by \c{*}. In
2576 this case, of course, it is impossible to provide a \e{full} set of
2577 default parameters. Examples of this usage are shown in \k{rotate}.
2580 \S{percent0} \i\c{%0}: \I{counting macro parameters}Macro Parameter Counter
2582 The parameter reference \c{%0} will return a numeric constant giving the
2583 number of parameters received, that is, if \c{%0} is n then \c{%}n is the
2584 last parameter. \c{%0} is mostly useful for macros that can take a variable
2585 number of parameters. It can be used as an argument to \c{%rep}
2586 (see \k{rep}) in order to iterate through all the parameters of a macro.
2587 Examples are given in \k{rotate}.
2590 \S{rotate} \i\c{%rotate}: \i{Rotating Macro Parameters}
2592 Unix shell programmers will be familiar with the \I{shift
2593 command}\c{shift} shell command, which allows the arguments passed
2594 to a shell script (referenced as \c{$1}, \c{$2} and so on) to be
2595 moved left by one place, so that the argument previously referenced
2596 as \c{$2} becomes available as \c{$1}, and the argument previously
2597 referenced as \c{$1} is no longer available at all.
2599 NASM provides a similar mechanism, in the form of \c{%rotate}. As
2600 its name suggests, it differs from the Unix \c{shift} in that no
2601 parameters are lost: parameters rotated off the left end of the
2602 argument list reappear on the right, and vice versa.
2604 \c{%rotate} is invoked with a single numeric argument (which may be
2605 an expression). The macro parameters are rotated to the left by that
2606 many places. If the argument to \c{%rotate} is negative, the macro
2607 parameters are rotated to the right.
2609 \I{iterating over macro parameters}So a pair of macros to save and
2610 restore a set of registers might work as follows:
2612 \c %macro multipush 1-*
2621 This macro invokes the \c{PUSH} instruction on each of its arguments
2622 in turn, from left to right. It begins by pushing its first
2623 argument, \c{%1}, then invokes \c{%rotate} to move all the arguments
2624 one place to the left, so that the original second argument is now
2625 available as \c{%1}. Repeating this procedure as many times as there
2626 were arguments (achieved by supplying \c{%0} as the argument to
2627 \c{%rep}) causes each argument in turn to be pushed.
2629 Note also the use of \c{*} as the maximum parameter count,
2630 indicating that there is no upper limit on the number of parameters
2631 you may supply to the \i\c{multipush} macro.
2633 It would be convenient, when using this macro, to have a \c{POP}
2634 equivalent, which \e{didn't} require the arguments to be given in
2635 reverse order. Ideally, you would write the \c{multipush} macro
2636 call, then cut-and-paste the line to where the pop needed to be
2637 done, and change the name of the called macro to \c{multipop}, and
2638 the macro would take care of popping the registers in the opposite
2639 order from the one in which they were pushed.
2641 This can be done by the following definition:
2643 \c %macro multipop 1-*
2652 This macro begins by rotating its arguments one place to the
2653 \e{right}, so that the original \e{last} argument appears as \c{%1}.
2654 This is then popped, and the arguments are rotated right again, so
2655 the second-to-last argument becomes \c{%1}. Thus the arguments are
2656 iterated through in reverse order.
2659 \S{concat} \i{Concatenating Macro Parameters}
2661 NASM can concatenate macro parameters and macro indirection constructs
2662 on to other text surrounding them. This allows you to declare a family
2663 of symbols, for example, in a macro definition. If, for example, you
2664 wanted to generate a table of key codes along with offsets into the
2665 table, you could code something like
2667 \c %macro keytab_entry 2
2669 \c keypos%1 equ $-keytab
2675 \c keytab_entry F1,128+1
2676 \c keytab_entry F2,128+2
2677 \c keytab_entry Return,13
2679 which would expand to
2682 \c keyposF1 equ $-keytab
2684 \c keyposF2 equ $-keytab
2686 \c keyposReturn equ $-keytab
2689 You can just as easily concatenate text on to the other end of a
2690 macro parameter, by writing \c{%1foo}.
2692 If you need to append a \e{digit} to a macro parameter, for example
2693 defining labels \c{foo1} and \c{foo2} when passed the parameter
2694 \c{foo}, you can't code \c{%11} because that would be taken as the
2695 eleventh macro parameter. Instead, you must code
2696 \I{braces, after % sign}\c{%\{1\}1}, which will separate the first
2697 \c{1} (giving the number of the macro parameter) from the second
2698 (literal text to be concatenated to the parameter).
2700 This concatenation can also be applied to other preprocessor in-line
2701 objects, such as macro-local labels (\k{maclocal}) and context-local
2702 labels (\k{ctxlocal}). In all cases, ambiguities in syntax can be
2703 resolved by enclosing everything after the \c{%} sign and before the
2704 literal text in braces: so \c{%\{%foo\}bar} concatenates the text
2705 \c{bar} to the end of the real name of the macro-local label
2706 \c{%%foo}. (This is unnecessary, since the form NASM uses for the
2707 real names of macro-local labels means that the two usages
2708 \c{%\{%foo\}bar} and \c{%%foobar} would both expand to the same
2709 thing anyway; nevertheless, the capability is there.)
2711 The single-line macro indirection construct, \c{%[...]}
2712 (\k{indmacro}), behaves the same way as macro parameters for the
2713 purpose of concatenation.
2715 See also the \c{%+} operator, \k{concat%+}.
2718 \S{mlmaccc} \i{Condition Codes as Macro Parameters}
2720 NASM can give special treatment to a macro parameter which contains
2721 a condition code. For a start, you can refer to the macro parameter
2722 \c{%1} by means of the alternative syntax \i\c{%+1}, which informs
2723 NASM that this macro parameter is supposed to contain a condition
2724 code, and will cause the preprocessor to report an error message if
2725 the macro is called with a parameter which is \e{not} a valid
2728 Far more usefully, though, you can refer to the macro parameter by
2729 means of \i\c{%-1}, which NASM will expand as the \e{inverse}
2730 condition code. So the \c{retz} macro defined in \k{maclocal} can be
2731 replaced by a general \i{conditional-return macro} like this:
2741 This macro can now be invoked using calls like \c{retc ne}, which
2742 will cause the conditional-jump instruction in the macro expansion
2743 to come out as \c{JE}, or \c{retc po} which will make the jump a
2746 The \c{%+1} macro-parameter reference is quite happy to interpret
2747 the arguments \c{CXZ} and \c{ECXZ} as valid condition codes;
2748 however, \c{%-1} will report an error if passed either of these,
2749 because no inverse condition code exists.
2752 \S{nolist} \i{Disabling Listing Expansion}\I\c{.nolist}
2754 When NASM is generating a listing file from your program, it will
2755 generally expand multi-line macros by means of writing the macro
2756 call and then listing each line of the expansion. This allows you to
2757 see which instructions in the macro expansion are generating what
2758 code; however, for some macros this clutters the listing up
2761 NASM therefore provides the \c{.nolist} qualifier, which you can
2762 include in a macro definition to inhibit the expansion of the macro
2763 in the listing file. The \c{.nolist} qualifier comes directly after
2764 the number of parameters, like this:
2766 \c %macro foo 1.nolist
2770 \c %macro bar 1-5+.nolist a,b,c,d,e,f,g,h
2772 \S{unmacro} Undefining Multi-Line Macros: \i\c{%unmacro}
2774 Multi-line macros can be removed with the \c{%unmacro} directive.
2775 Unlike the \c{%undef} directive, however, \c{%unmacro} takes an
2776 argument specification, and will only remove \i{exact matches} with
2777 that argument specification.
2786 removes the previously defined macro \c{foo}, but
2793 does \e{not} remove the macro \c{bar}, since the argument
2794 specification does not match exactly.
2796 \H{condasm} \i{Conditional Assembly}\I\c{%if}
2798 Similarly to the C preprocessor, NASM allows sections of a source
2799 file to be assembled only if certain conditions are met. The general
2800 syntax of this feature looks like this:
2803 \c ; some code which only appears if <condition> is met
2804 \c %elif<condition2>
2805 \c ; only appears if <condition> is not met but <condition2> is
2807 \c ; this appears if neither <condition> nor <condition2> was met
2810 The inverse forms \i\c{%ifn} and \i\c{%elifn} are also supported.
2812 The \i\c{%else} clause is optional, as is the \i\c{%elif} clause.
2813 You can have more than one \c{%elif} clause as well.
2815 There are a number of variants of the \c{%if} directive. Each has its
2816 corresponding \c{%elif}, \c{%ifn}, and \c{%elifn} directives; for
2817 example, the equivalents to the \c{%ifdef} directive are \c{%elifdef},
2818 \c{%ifndef}, and \c{%elifndef}.
2820 \S{ifdef} \i\c{%ifdef}: Testing Single-Line Macro Existence\I{testing,
2821 single-line macro existence}
2823 Beginning a conditional-assembly block with the line \c{%ifdef
2824 MACRO} will assemble the subsequent code if, and only if, a
2825 single-line macro called \c{MACRO} is defined. If not, then the
2826 \c{%elif} and \c{%else} blocks (if any) will be processed instead.
2828 For example, when debugging a program, you might want to write code
2831 \c ; perform some function
2833 \c writefile 2,"Function performed successfully",13,10
2835 \c ; go and do something else
2837 Then you could use the command-line option \c{-dDEBUG} to create a
2838 version of the program which produced debugging messages, and remove
2839 the option to generate the final release version of the program.
2841 You can test for a macro \e{not} being defined by using
2842 \i\c{%ifndef} instead of \c{%ifdef}. You can also test for macro
2843 definitions in \c{%elif} blocks by using \i\c{%elifdef} and
2847 \S{ifmacro} \i\c{%ifmacro}: Testing Multi-Line Macro
2848 Existence\I{testing, multi-line macro existence}
2850 The \c{%ifmacro} directive operates in the same way as the \c{%ifdef}
2851 directive, except that it checks for the existence of a multi-line macro.
2853 For example, you may be working with a large project and not have control
2854 over the macros in a library. You may want to create a macro with one
2855 name if it doesn't already exist, and another name if one with that name
2858 The \c{%ifmacro} is considered true if defining a macro with the given name
2859 and number of arguments would cause a definitions conflict. For example:
2861 \c %ifmacro MyMacro 1-3
2863 \c %error "MyMacro 1-3" causes a conflict with an existing macro.
2867 \c %macro MyMacro 1-3
2869 \c ; insert code to define the macro
2875 This will create the macro "MyMacro 1-3" if no macro already exists which
2876 would conflict with it, and emits a warning if there would be a definition
2879 You can test for the macro not existing by using the \i\c{%ifnmacro} instead
2880 of \c{%ifmacro}. Additional tests can be performed in \c{%elif} blocks by using
2881 \i\c{%elifmacro} and \i\c{%elifnmacro}.
2884 \S{ifctx} \i\c{%ifctx}: Testing the Context Stack\I{testing, context
2887 The conditional-assembly construct \c{%ifctx} will cause the
2888 subsequent code to be assembled if and only if the top context on
2889 the preprocessor's context stack has the same name as one of the arguments.
2890 As with \c{%ifdef}, the inverse and \c{%elif} forms \i\c{%ifnctx},
2891 \i\c{%elifctx} and \i\c{%elifnctx} are also supported.
2893 For more details of the context stack, see \k{ctxstack}. For a
2894 sample use of \c{%ifctx}, see \k{blockif}.
2897 \S{if} \i\c{%if}: Testing Arbitrary Numeric Expressions\I{testing,
2898 arbitrary numeric expressions}
2900 The conditional-assembly construct \c{%if expr} will cause the
2901 subsequent code to be assembled if and only if the value of the
2902 numeric expression \c{expr} is non-zero. An example of the use of
2903 this feature is in deciding when to break out of a \c{%rep}
2904 preprocessor loop: see \k{rep} for a detailed example.
2906 The expression given to \c{%if}, and its counterpart \i\c{%elif}, is
2907 a critical expression (see \k{crit}).
2909 \c{%if} extends the normal NASM expression syntax, by providing a
2910 set of \i{relational operators} which are not normally available in
2911 expressions. The operators \i\c{=}, \i\c{<}, \i\c{>}, \i\c{<=},
2912 \i\c{>=} and \i\c{<>} test equality, less-than, greater-than,
2913 less-or-equal, greater-or-equal and not-equal respectively. The
2914 C-like forms \i\c{==} and \i\c{!=} are supported as alternative
2915 forms of \c{=} and \c{<>}. In addition, low-priority logical
2916 operators \i\c{&&}, \i\c{^^} and \i\c{||} are provided, supplying
2917 \i{logical AND}, \i{logical XOR} and \i{logical OR}. These work like
2918 the C logical operators (although C has no logical XOR), in that
2919 they always return either 0 or 1, and treat any non-zero input as 1
2920 (so that \c{^^}, for example, returns 1 if exactly one of its inputs
2921 is zero, and 0 otherwise). The relational operators also return 1
2922 for true and 0 for false.
2924 Like other \c{%if} constructs, \c{%if} has a counterpart
2925 \i\c{%elif}, and negative forms \i\c{%ifn} and \i\c{%elifn}.
2927 \S{ifidn} \i\c{%ifidn} and \i\c{%ifidni}: Testing Exact Text
2928 Identity\I{testing, exact text identity}
2930 The construct \c{%ifidn text1,text2} will cause the subsequent code
2931 to be assembled if and only if \c{text1} and \c{text2}, after
2932 expanding single-line macros, are identical pieces of text.
2933 Differences in white space are not counted.
2935 \c{%ifidni} is similar to \c{%ifidn}, but is \i{case-insensitive}.
2937 For example, the following macro pushes a register or number on the
2938 stack, and allows you to treat \c{IP} as a real register:
2940 \c %macro pushparam 1
2951 Like other \c{%if} constructs, \c{%ifidn} has a counterpart
2952 \i\c{%elifidn}, and negative forms \i\c{%ifnidn} and \i\c{%elifnidn}.
2953 Similarly, \c{%ifidni} has counterparts \i\c{%elifidni},
2954 \i\c{%ifnidni} and \i\c{%elifnidni}.
2956 \S{iftyp} \i\c{%ifid}, \i\c{%ifnum}, \i\c{%ifstr}: Testing Token
2957 Types\I{testing, token types}
2959 Some macros will want to perform different tasks depending on
2960 whether they are passed a number, a string, or an identifier. For
2961 example, a string output macro might want to be able to cope with
2962 being passed either a string constant or a pointer to an existing
2965 The conditional assembly construct \c{%ifid}, taking one parameter
2966 (which may be blank), assembles the subsequent code if and only if
2967 the first token in the parameter exists and is an identifier.
2968 \c{%ifnum} works similarly, but tests for the token being a numeric
2969 constant; \c{%ifstr} tests for it being a string.
2971 For example, the \c{writefile} macro defined in \k{mlmacgre} can be
2972 extended to take advantage of \c{%ifstr} in the following fashion:
2974 \c %macro writefile 2-3+
2983 \c %%endstr: mov dx,%%str
2984 \c mov cx,%%endstr-%%str
2995 Then the \c{writefile} macro can cope with being called in either of
2996 the following two ways:
2998 \c writefile [file], strpointer, length
2999 \c writefile [file], "hello", 13, 10
3001 In the first, \c{strpointer} is used as the address of an
3002 already-declared string, and \c{length} is used as its length; in
3003 the second, a string is given to the macro, which therefore declares
3004 it itself and works out the address and length for itself.
3006 Note the use of \c{%if} inside the \c{%ifstr}: this is to detect
3007 whether the macro was passed two arguments (so the string would be a
3008 single string constant, and \c{db %2} would be adequate) or more (in
3009 which case, all but the first two would be lumped together into
3010 \c{%3}, and \c{db %2,%3} would be required).
3012 The usual \I\c{%elifid}\I\c{%elifnum}\I\c{%elifstr}\c{%elif}...,
3013 \I\c{%ifnid}\I\c{%ifnnum}\I\c{%ifnstr}\c{%ifn}..., and
3014 \I\c{%elifnid}\I\c{%elifnnum}\I\c{%elifnstr}\c{%elifn}... versions
3015 exist for each of \c{%ifid}, \c{%ifnum} and \c{%ifstr}.
3017 \S{iftoken} \i\c{%iftoken}: Test for a Single Token
3019 Some macros will want to do different things depending on if it is
3020 passed a single token (e.g. paste it to something else using \c{%+})
3021 versus a multi-token sequence.
3023 The conditional assembly construct \c{%iftoken} assembles the
3024 subsequent code if and only if the expanded parameters consist of
3025 exactly one token, possibly surrounded by whitespace.
3031 will assemble the subsequent code, but
3035 will not, since \c{-1} contains two tokens: the unary minus operator
3036 \c{-}, and the number \c{1}.
3038 The usual \i\c{%eliftoken}, \i\c\{%ifntoken}, and \i\c{%elifntoken}
3039 variants are also provided.
3041 \S{ifempty} \i\c{%ifempty}: Test for Empty Expansion
3043 The conditional assembly construct \c{%ifempty} assembles the
3044 subsequent code if and only if the expanded parameters do not contain
3045 any tokens at all, whitespace excepted.
3047 The usual \i\c{%elifempty}, \i\c\{%ifnempty}, and \i\c{%elifnempty}
3048 variants are also provided.
3050 \H{rep} \i{Preprocessor Loops}\I{repeating code}: \i\c{%rep}
3052 NASM's \c{TIMES} prefix, though useful, cannot be used to invoke a
3053 multi-line macro multiple times, because it is processed by NASM
3054 after macros have already been expanded. Therefore NASM provides
3055 another form of loop, this time at the preprocessor level: \c{%rep}.
3057 The directives \c{%rep} and \i\c{%endrep} (\c{%rep} takes a numeric
3058 argument, which can be an expression; \c{%endrep} takes no
3059 arguments) can be used to enclose a chunk of code, which is then
3060 replicated as many times as specified by the preprocessor:
3064 \c inc word [table+2*i]
3068 This will generate a sequence of 64 \c{INC} instructions,
3069 incrementing every word of memory from \c{[table]} to
3072 For more complex termination conditions, or to break out of a repeat
3073 loop part way along, you can use the \i\c{%exitrep} directive to
3074 terminate the loop, like this:
3089 \c fib_number equ ($-fibonacci)/2
3091 This produces a list of all the Fibonacci numbers that will fit in
3092 16 bits. Note that a maximum repeat count must still be given to
3093 \c{%rep}. This is to prevent the possibility of NASM getting into an
3094 infinite loop in the preprocessor, which (on multitasking or
3095 multi-user systems) would typically cause all the system memory to
3096 be gradually used up and other applications to start crashing.
3099 \H{files} Source Files and Dependencies
3101 These commands allow you to split your sources into multiple files.
3103 \S{include} \i\c{%include}: \i{Including Other Files}
3105 Using, once again, a very similar syntax to the C preprocessor,
3106 NASM's preprocessor lets you include other source files into your
3107 code. This is done by the use of the \i\c{%include} directive:
3109 \c %include "macros.mac"
3111 will include the contents of the file \c{macros.mac} into the source
3112 file containing the \c{%include} directive.
3114 Include files are \I{searching for include files}searched for in the
3115 current directory (the directory you're in when you run NASM, as
3116 opposed to the location of the NASM executable or the location of
3117 the source file), plus any directories specified on the NASM command
3118 line using the \c{-i} option.
3120 The standard C idiom for preventing a file being included more than
3121 once is just as applicable in NASM: if the file \c{macros.mac} has
3124 \c %ifndef MACROS_MAC
3125 \c %define MACROS_MAC
3126 \c ; now define some macros
3129 then including the file more than once will not cause errors,
3130 because the second time the file is included nothing will happen
3131 because the macro \c{MACROS_MAC} will already be defined.
3133 You can force a file to be included even if there is no \c{%include}
3134 directive that explicitly includes it, by using the \i\c{-p} option
3135 on the NASM command line (see \k{opt-p}).
3138 \S{pathsearch} \i\c{%pathsearch}: Search the Include Path
3140 The \c{%pathsearch} directive takes a single-line macro name and a
3141 filename, and declare or redefines the specified single-line macro to
3142 be the include-path-resolved version of the filename, if the file
3143 exists (otherwise, it is passed unchanged.)
3147 \c %pathsearch MyFoo "foo.bin"
3149 ... with \c{-Ibins/} in the include path may end up defining the macro
3150 \c{MyFoo} to be \c{"bins/foo.bin"}.
3153 \S{depend} \i\c{%depend}: Add Dependent Files
3155 The \c{%depend} directive takes a filename and adds it to the list of
3156 files to be emitted as dependency generation when the \c{-M} options
3157 and its relatives (see \k{opt-M}) are used. It produces no output.
3159 This is generally used in conjunction with \c{%pathsearch}. For
3160 example, a simplified version of the standard macro wrapper for the
3161 \c{INCBIN} directive looks like:
3163 \c %imacro incbin 1-2+ 0
3164 \c %pathsearch dep %1
3169 This first resolves the location of the file into the macro \c{dep},
3170 then adds it to the dependency lists, and finally issues the
3171 assembler-level \c{INCBIN} directive.
3174 \S{use} \i\c{%use}: Include Standard Macro Package
3176 The \c{%use} directive is similar to \c{%include}, but rather than
3177 including the contents of a file, it includes a named standard macro
3178 package. The standard macro packages are part of NASM, and are
3179 described in \k{macropkg}.
3181 Unlike the \c{%include} directive, package names for the \c{%use}
3182 directive do not require quotes, but quotes are permitted. In NASM
3183 2.04 and 2.05 the unquoted form would be macro-expanded; this is no
3184 longer true. Thus, the following lines are equivalent:
3189 Standard macro packages are protected from multiple inclusion. When a
3190 standard macro package is used, a testable single-line macro of the
3191 form \c{__USE_}\e{package}\c{__} is also defined, see \k{use_def}.
3193 \H{ctxstack} The \i{Context Stack}
3195 Having labels that are local to a macro definition is sometimes not
3196 quite powerful enough: sometimes you want to be able to share labels
3197 between several macro calls. An example might be a \c{REPEAT} ...
3198 \c{UNTIL} loop, in which the expansion of the \c{REPEAT} macro
3199 would need to be able to refer to a label which the \c{UNTIL} macro
3200 had defined. However, for such a macro you would also want to be
3201 able to nest these loops.
3203 NASM provides this level of power by means of a \e{context stack}.
3204 The preprocessor maintains a stack of \e{contexts}, each of which is
3205 characterized by a name. You add a new context to the stack using
3206 the \i\c{%push} directive, and remove one using \i\c{%pop}. You can
3207 define labels that are local to a particular context on the stack.
3210 \S{pushpop} \i\c{%push} and \i\c{%pop}: \I{creating
3211 contexts}\I{removing contexts}Creating and Removing Contexts
3213 The \c{%push} directive is used to create a new context and place it
3214 on the top of the context stack. \c{%push} takes an optional argument,
3215 which is the name of the context. For example:
3219 This pushes a new context called \c{foobar} on the stack. You can have
3220 several contexts on the stack with the same name: they can still be
3221 distinguished. If no name is given, the context is unnamed (this is
3222 normally used when both the \c{%push} and the \c{%pop} are inside a
3223 single macro definition.)
3225 The directive \c{%pop}, taking one optional argument, removes the top
3226 context from the context stack and destroys it, along with any
3227 labels associated with it. If an argument is given, it must match the
3228 name of the current context, otherwise it will issue an error.
3231 \S{ctxlocal} \i{Context-Local Labels}
3233 Just as the usage \c{%%foo} defines a label which is local to the
3234 particular macro call in which it is used, the usage \I{%$}\c{%$foo}
3235 is used to define a label which is local to the context on the top
3236 of the context stack. So the \c{REPEAT} and \c{UNTIL} example given
3237 above could be implemented by means of:
3253 and invoked by means of, for example,
3261 which would scan every fourth byte of a string in search of the byte
3264 If you need to define, or access, labels local to the context
3265 \e{below} the top one on the stack, you can use \I{%$$}\c{%$$foo}, or
3266 \c{%$$$foo} for the context below that, and so on.
3269 \S{ctxdefine} \i{Context-Local Single-Line Macros}
3271 NASM also allows you to define single-line macros which are local to
3272 a particular context, in just the same way:
3274 \c %define %$localmac 3
3276 will define the single-line macro \c{%$localmac} to be local to the
3277 top context on the stack. Of course, after a subsequent \c{%push},
3278 it can then still be accessed by the name \c{%$$localmac}.
3281 \S{ctxrepl} \i\c{%repl}: \I{renaming contexts}Renaming a Context
3283 If you need to change the name of the top context on the stack (in
3284 order, for example, to have it respond differently to \c{%ifctx}),
3285 you can execute a \c{%pop} followed by a \c{%push}; but this will
3286 have the side effect of destroying all context-local labels and
3287 macros associated with the context that was just popped.
3289 NASM provides the directive \c{%repl}, which \e{replaces} a context
3290 with a different name, without touching the associated macros and
3291 labels. So you could replace the destructive code
3296 with the non-destructive version \c{%repl newname}.
3299 \S{blockif} Example Use of the \i{Context Stack}: \i{Block IFs}
3301 This example makes use of almost all the context-stack features,
3302 including the conditional-assembly construct \i\c{%ifctx}, to
3303 implement a block IF statement as a set of macros.
3319 \c %error "expected `if' before `else'"
3333 \c %error "expected `if' or `else' before `endif'"
3338 This code is more robust than the \c{REPEAT} and \c{UNTIL} macros
3339 given in \k{ctxlocal}, because it uses conditional assembly to check
3340 that the macros are issued in the right order (for example, not
3341 calling \c{endif} before \c{if}) and issues a \c{%error} if they're
3344 In addition, the \c{endif} macro has to be able to cope with the two
3345 distinct cases of either directly following an \c{if}, or following
3346 an \c{else}. It achieves this, again, by using conditional assembly
3347 to do different things depending on whether the context on top of
3348 the stack is \c{if} or \c{else}.
3350 The \c{else} macro has to preserve the context on the stack, in
3351 order to have the \c{%$ifnot} referred to by the \c{if} macro be the
3352 same as the one defined by the \c{endif} macro, but has to change
3353 the context's name so that \c{endif} will know there was an
3354 intervening \c{else}. It does this by the use of \c{%repl}.
3356 A sample usage of these macros might look like:
3378 The block-\c{IF} macros handle nesting quite happily, by means of
3379 pushing another context, describing the inner \c{if}, on top of the
3380 one describing the outer \c{if}; thus \c{else} and \c{endif} always
3381 refer to the last unmatched \c{if} or \c{else}.
3384 \H{stackrel} \i{Stack Relative Preprocessor Directives}
3386 The following preprocessor directives provide a way to use
3387 labels to refer to local variables allocated on the stack.
3389 \b\c{%arg} (see \k{arg})
3391 \b\c{%stacksize} (see \k{stacksize})
3393 \b\c{%local} (see \k{local})
3396 \S{arg} \i\c{%arg} Directive
3398 The \c{%arg} directive is used to simplify the handling of
3399 parameters passed on the stack. Stack based parameter passing
3400 is used by many high level languages, including C, C++ and Pascal.
3402 While NASM has macros which attempt to duplicate this
3403 functionality (see \k{16cmacro}), the syntax is not particularly
3404 convenient to use. and is not TASM compatible. Here is an example
3405 which shows the use of \c{%arg} without any external macros:
3409 \c %push mycontext ; save the current context
3410 \c %stacksize large ; tell NASM to use bp
3411 \c %arg i:word, j_ptr:word
3418 \c %pop ; restore original context
3420 This is similar to the procedure defined in \k{16cmacro} and adds
3421 the value in i to the value pointed to by j_ptr and returns the
3422 sum in the ax register. See \k{pushpop} for an explanation of
3423 \c{push} and \c{pop} and the use of context stacks.
3426 \S{stacksize} \i\c{%stacksize} Directive
3428 The \c{%stacksize} directive is used in conjunction with the
3429 \c{%arg} (see \k{arg}) and the \c{%local} (see \k{local}) directives.
3430 It tells NASM the default size to use for subsequent \c{%arg} and
3431 \c{%local} directives. The \c{%stacksize} directive takes one
3432 required argument which is one of \c{flat}, \c{flat64}, \c{large} or \c{small}.
3436 This form causes NASM to use stack-based parameter addressing
3437 relative to \c{ebp} and it assumes that a near form of call was used
3438 to get to this label (i.e. that \c{eip} is on the stack).
3440 \c %stacksize flat64
3442 This form causes NASM to use stack-based parameter addressing
3443 relative to \c{rbp} and it assumes that a near form of call was used
3444 to get to this label (i.e. that \c{rip} is on the stack).
3448 This form uses \c{bp} to do stack-based parameter addressing and
3449 assumes that a far form of call was used to get to this address
3450 (i.e. that \c{ip} and \c{cs} are on the stack).
3454 This form also uses \c{bp} to address stack parameters, but it is
3455 different from \c{large} because it also assumes that the old value
3456 of bp is pushed onto the stack (i.e. it expects an \c{ENTER}
3457 instruction). In other words, it expects that \c{bp}, \c{ip} and
3458 \c{cs} are on the top of the stack, underneath any local space which
3459 may have been allocated by \c{ENTER}. This form is probably most
3460 useful when used in combination with the \c{%local} directive
3464 \S{local} \i\c{%local} Directive
3466 The \c{%local} directive is used to simplify the use of local
3467 temporary stack variables allocated in a stack frame. Automatic
3468 local variables in C are an example of this kind of variable. The
3469 \c{%local} directive is most useful when used with the \c{%stacksize}
3470 (see \k{stacksize} and is also compatible with the \c{%arg} directive
3471 (see \k{arg}). It allows simplified reference to variables on the
3472 stack which have been allocated typically by using the \c{ENTER}
3474 \# (see \k{insENTER} for a description of that instruction).
3475 An example of its use is the following:
3479 \c %push mycontext ; save the current context
3480 \c %stacksize small ; tell NASM to use bp
3481 \c %assign %$localsize 0 ; see text for explanation
3482 \c %local old_ax:word, old_dx:word
3484 \c enter %$localsize,0 ; see text for explanation
3485 \c mov [old_ax],ax ; swap ax & bx
3486 \c mov [old_dx],dx ; and swap dx & cx
3491 \c leave ; restore old bp
3494 \c %pop ; restore original context
3496 The \c{%$localsize} variable is used internally by the
3497 \c{%local} directive and \e{must} be defined within the
3498 current context before the \c{%local} directive may be used.
3499 Failure to do so will result in one expression syntax error for
3500 each \c{%local} variable declared. It then may be used in
3501 the construction of an appropriately sized ENTER instruction
3502 as shown in the example.
3505 \H{pperror} Reporting \i{User-Defined Errors}: \i\c{%error}, \i\c{%warning}, \i\c{%fatal}
3507 The preprocessor directive \c{%error} will cause NASM to report an
3508 error if it occurs in assembled code. So if other users are going to
3509 try to assemble your source files, you can ensure that they define the
3510 right macros by means of code like this:
3515 \c ; do some different setup
3517 \c %error "Neither F1 nor F2 was defined."
3520 Then any user who fails to understand the way your code is supposed
3521 to be assembled will be quickly warned of their mistake, rather than
3522 having to wait until the program crashes on being run and then not
3523 knowing what went wrong.
3525 Similarly, \c{%warning} issues a warning, but allows assembly to continue:
3530 \c ; do some different setup
3532 \c %warning "Neither F1 nor F2 was defined, assuming F1."
3536 \c{%error} and \c{%warning} are issued only on the final assembly
3537 pass. This makes them safe to use in conjunction with tests that
3538 depend on symbol values.
3540 \c{%fatal} terminates assembly immediately, regardless of pass. This
3541 is useful when there is no point in continuing the assembly further,
3542 and doing so is likely just going to cause a spew of confusing error
3545 It is optional for the message string after \c{%error}, \c{%warning}
3546 or \c{%fatal} to be quoted. If it is \e{not}, then single-line macros
3547 are expanded in it, which can be used to display more information to
3548 the user. For example:
3551 \c %assign foo_over foo-64
3552 \c %error foo is foo_over bytes too large
3556 \H{otherpreproc} \i{Other Preprocessor Directives}
3558 NASM also has preprocessor directives which allow access to
3559 information from external sources. Currently they include:
3561 \b\c{%line} enables NASM to correctly handle the output of another
3562 preprocessor (see \k{line}).
3564 \b\c{%!} enables NASM to read in the value of an environment variable,
3565 which can then be used in your program (see \k{getenv}).
3567 \S{line} \i\c{%line} Directive
3569 The \c{%line} directive is used to notify NASM that the input line
3570 corresponds to a specific line number in another file. Typically
3571 this other file would be an original source file, with the current
3572 NASM input being the output of a pre-processor. The \c{%line}
3573 directive allows NASM to output messages which indicate the line
3574 number of the original source file, instead of the file that is being
3577 This preprocessor directive is not generally of use to programmers,
3578 by may be of interest to preprocessor authors. The usage of the
3579 \c{%line} preprocessor directive is as follows:
3581 \c %line nnn[+mmm] [filename]
3583 In this directive, \c{nnn} identifies the line of the original source
3584 file which this line corresponds to. \c{mmm} is an optional parameter
3585 which specifies a line increment value; each line of the input file
3586 read in is considered to correspond to \c{mmm} lines of the original
3587 source file. Finally, \c{filename} is an optional parameter which
3588 specifies the file name of the original source file.
3590 After reading a \c{%line} preprocessor directive, NASM will report
3591 all file name and line numbers relative to the values specified
3595 \S{getenv} \i\c{%!}\c{<env>}: Read an environment variable.
3597 The \c{%!<env>} directive makes it possible to read the value of an
3598 environment variable at assembly time. This could, for example, be used
3599 to store the contents of an environment variable into a string, which
3600 could be used at some other point in your code.
3602 For example, suppose that you have an environment variable \c{FOO}, and
3603 you want the contents of \c{FOO} to be embedded in your program. You
3604 could do that as follows:
3606 \c %defstr FOO %!FOO
3608 See \k{defstr} for notes on the \c{%defstr} directive.
3611 \H{stdmac} \i{Standard Macros}
3613 NASM defines a set of standard macros, which are already defined
3614 when it starts to process any source file. If you really need a
3615 program to be assembled with no pre-defined macros, you can use the
3616 \i\c{%clear} directive to empty the preprocessor of everything but
3617 context-local preprocessor variables and single-line macros.
3619 Most \i{user-level assembler directives} (see \k{directive}) are
3620 implemented as macros which invoke primitive directives; these are
3621 described in \k{directive}. The rest of the standard macro set is
3625 \S{stdmacver} \i{NASM Version} Macros
3627 The single-line macros \i\c{__NASM_MAJOR__}, \i\c{__NASM_MINOR__},
3628 \i\c{__NASM_SUBMINOR__} and \i\c{___NASM_PATCHLEVEL__} expand to the
3629 major, minor, subminor and patch level parts of the \i{version
3630 number of NASM} being used. So, under NASM 0.98.32p1 for
3631 example, \c{__NASM_MAJOR__} would be defined to be 0, \c{__NASM_MINOR__}
3632 would be defined as 98, \c{__NASM_SUBMINOR__} would be defined to 32,
3633 and \c{___NASM_PATCHLEVEL__} would be defined as 1.
3635 Additionally, the macro \i\c{__NASM_SNAPSHOT__} is defined for
3636 automatically generated snapshot releases \e{only}.
3639 \S{stdmacverid} \i\c{__NASM_VERSION_ID__}: \i{NASM Version ID}
3641 The single-line macro \c{__NASM_VERSION_ID__} expands to a dword integer
3642 representing the full version number of the version of nasm being used.
3643 The value is the equivalent to \c{__NASM_MAJOR__}, \c{__NASM_MINOR__},
3644 \c{__NASM_SUBMINOR__} and \c{___NASM_PATCHLEVEL__} concatenated to
3645 produce a single doubleword. Hence, for 0.98.32p1, the returned number
3646 would be equivalent to:
3654 Note that the above lines are generate exactly the same code, the second
3655 line is used just to give an indication of the order that the separate
3656 values will be present in memory.
3659 \S{stdmacverstr} \i\c{__NASM_VER__}: \i{NASM Version string}
3661 The single-line macro \c{__NASM_VER__} expands to a string which defines
3662 the version number of nasm being used. So, under NASM 0.98.32 for example,
3671 \S{fileline} \i\c{__FILE__} and \i\c{__LINE__}: File Name and Line Number
3673 Like the C preprocessor, NASM allows the user to find out the file
3674 name and line number containing the current instruction. The macro
3675 \c{__FILE__} expands to a string constant giving the name of the
3676 current input file (which may change through the course of assembly
3677 if \c{%include} directives are used), and \c{__LINE__} expands to a
3678 numeric constant giving the current line number in the input file.
3680 These macros could be used, for example, to communicate debugging
3681 information to a macro, since invoking \c{__LINE__} inside a macro
3682 definition (either single-line or multi-line) will return the line
3683 number of the macro \e{call}, rather than \e{definition}. So to
3684 determine where in a piece of code a crash is occurring, for
3685 example, one could write a routine \c{stillhere}, which is passed a
3686 line number in \c{EAX} and outputs something like `line 155: still
3687 here'. You could then write a macro
3689 \c %macro notdeadyet 0
3698 and then pepper your code with calls to \c{notdeadyet} until you
3699 find the crash point.
3702 \S{bitsm} \i\c{__BITS__}: Current BITS Mode
3704 The \c{__BITS__} standard macro is updated every time that the BITS mode is
3705 set using the \c{BITS XX} or \c{[BITS XX]} directive, where XX is a valid mode
3706 number of 16, 32 or 64. \c{__BITS__} receives the specified mode number and
3707 makes it globally available. This can be very useful for those who utilize
3708 mode-dependent macros.
3710 \S{ofmtm} \i\c{__OUTPUT_FORMAT__}: Current Output Format
3712 The \c{__OUTPUT_FORMAT__} standard macro holds the current Output Format,
3713 as given by the \c{-f} option or NASM's default. Type \c{nasm -hf} for a
3716 \c %ifidn __OUTPUT_FORMAT__, win32
3717 \c %define NEWLINE 13, 10
3718 \c %elifidn __OUTPUT_FORMAT__, elf32
3719 \c %define NEWLINE 10
3723 \S{datetime} Assembly Date and Time Macros
3725 NASM provides a variety of macros that represent the timestamp of the
3728 \b The \i\c{__DATE__} and \i\c{__TIME__} macros give the assembly date and
3729 time as strings, in ISO 8601 format (\c{"YYYY-MM-DD"} and \c{"HH:MM:SS"},
3732 \b The \i\c{__DATE_NUM__} and \i\c{__TIME_NUM__} macros give the assembly
3733 date and time in numeric form; in the format \c{YYYYMMDD} and
3734 \c{HHMMSS} respectively.
3736 \b The \i\c{__UTC_DATE__} and \i\c{__UTC_TIME__} macros give the assembly
3737 date and time in universal time (UTC) as strings, in ISO 8601 format
3738 (\c{"YYYY-MM-DD"} and \c{"HH:MM:SS"}, respectively.) If the host
3739 platform doesn't provide UTC time, these macros are undefined.
3741 \b The \i\c{__UTC_DATE_NUM__} and \i\c{__UTC_TIME_NUM__} macros give the
3742 assembly date and time universal time (UTC) in numeric form; in the
3743 format \c{YYYYMMDD} and \c{HHMMSS} respectively. If the
3744 host platform doesn't provide UTC time, these macros are
3747 \b The \c{__POSIX_TIME__} macro is defined as a number containing the
3748 number of seconds since the POSIX epoch, 1 January 1970 00:00:00 UTC;
3749 excluding any leap seconds. This is computed using UTC time if
3750 available on the host platform, otherwise it is computed using the
3751 local time as if it was UTC.
3753 All instances of time and date macros in the same assembly session
3754 produce consistent output. For example, in an assembly session
3755 started at 42 seconds after midnight on January 1, 2010 in Moscow
3756 (timezone UTC+3) these macros would have the following values,
3757 assuming, of course, a properly configured environment with a correct
3760 \c __DATE__ "2010-01-01"
3761 \c __TIME__ "00:00:42"
3762 \c __DATE_NUM__ 20100101
3763 \c __TIME_NUM__ 000042
3764 \c __UTC_DATE__ "2009-12-31"
3765 \c __UTC_TIME__ "21:00:42"
3766 \c __UTC_DATE_NUM__ 20091231
3767 \c __UTC_TIME_NUM__ 210042
3768 \c __POSIX_TIME__ 1262293242
3771 \S{use_def} \I\c{__USE_*__}\c{__USE_}\e{package}\c{__}: Package
3774 When a standard macro package (see \k{macropkg}) is included with the
3775 \c{%use} directive (see \k{use}), a single-line macro of the form
3776 \c{__USE_}\e{package}\c{__} is automatically defined. This allows
3777 testing if a particular package is invoked or not.
3779 For example, if the \c{altreg} package is included (see
3780 \k{pkg_altreg}), then the macro \c{__USE_ALTREG__} is defined.
3783 \S{pass_macro} \i\c{__PASS__}: Assembly Pass
3785 The macro \c{__PASS__} is defined to be \c{1} on preparatory passes,
3786 and \c{2} on the final pass. In preprocess-only mode, it is set to
3787 \c{3}, and when running only to generate dependencies (due to the
3788 \c{-M} or \c{-MG} option, see \k{opt-M}) it is set to \c{0}.
3790 \e{Avoid using this macro if at all possible. It is tremendously easy
3791 to generate very strange errors by misusing it, and the semantics may
3792 change in future versions of NASM.}
3795 \S{struc} \i\c{STRUC} and \i\c{ENDSTRUC}: \i{Declaring Structure} Data Types
3797 The core of NASM contains no intrinsic means of defining data
3798 structures; instead, the preprocessor is sufficiently powerful that
3799 data structures can be implemented as a set of macros. The macros
3800 \c{STRUC} and \c{ENDSTRUC} are used to define a structure data type.
3802 \c{STRUC} takes one or two parameters. The first parameter is the name
3803 of the data type. The second, optional parameter is the base offset of
3804 the structure. The name of the data type is defined as a symbol with
3805 the value of the base offset, and the name of the data type with the
3806 suffix \c{_size} appended to it is defined as an \c{EQU} giving the
3807 size of the structure. Once \c{STRUC} has been issued, you are
3808 defining the structure, and should define fields using the \c{RESB}
3809 family of pseudo-instructions, and then invoke \c{ENDSTRUC} to finish
3812 For example, to define a structure called \c{mytype} containing a
3813 longword, a word, a byte and a string of bytes, you might code
3824 The above code defines six symbols: \c{mt_long} as 0 (the offset
3825 from the beginning of a \c{mytype} structure to the longword field),
3826 \c{mt_word} as 4, \c{mt_byte} as 6, \c{mt_str} as 7, \c{mytype_size}
3827 as 39, and \c{mytype} itself as zero.
3829 The reason why the structure type name is defined at zero by default
3830 is a side effect of allowing structures to work with the local label
3831 mechanism: if your structure members tend to have the same names in
3832 more than one structure, you can define the above structure like this:
3843 This defines the offsets to the structure fields as \c{mytype.long},
3844 \c{mytype.word}, \c{mytype.byte} and \c{mytype.str}.
3846 NASM, since it has no \e{intrinsic} structure support, does not
3847 support any form of period notation to refer to the elements of a
3848 structure once you have one (except the above local-label notation),
3849 so code such as \c{mov ax,[mystruc.mt_word]} is not valid.
3850 \c{mt_word} is a constant just like any other constant, so the
3851 correct syntax is \c{mov ax,[mystruc+mt_word]} or \c{mov
3852 ax,[mystruc+mytype.word]}.
3854 Sometimes you only have the address of the structure displaced by an
3855 offset. For example, consider this standard stack frame setup:
3861 In this case, you could access an element by subtracting the offset:
3863 \c mov [ebp - 40 + mytype.word], ax
3865 However, if you do not want to repeat this offset, you can use -40 as
3868 \c struc mytype, -40
3870 And access an element this way:
3872 \c mov [ebp + mytype.word], ax
3875 \S{istruc} \i\c{ISTRUC}, \i\c{AT} and \i\c{IEND}: Declaring
3876 \i{Instances of Structures}
3878 Having defined a structure type, the next thing you typically want
3879 to do is to declare instances of that structure in your data
3880 segment. NASM provides an easy way to do this in the \c{ISTRUC}
3881 mechanism. To declare a structure of type \c{mytype} in a program,
3882 you code something like this:
3887 \c at mt_long, dd 123456
3888 \c at mt_word, dw 1024
3889 \c at mt_byte, db 'x'
3890 \c at mt_str, db 'hello, world', 13, 10, 0
3894 The function of the \c{AT} macro is to make use of the \c{TIMES}
3895 prefix to advance the assembly position to the correct point for the
3896 specified structure field, and then to declare the specified data.
3897 Therefore the structure fields must be declared in the same order as
3898 they were specified in the structure definition.
3900 If the data to go in a structure field requires more than one source
3901 line to specify, the remaining source lines can easily come after
3902 the \c{AT} line. For example:
3904 \c at mt_str, db 123,134,145,156,167,178,189
3907 Depending on personal taste, you can also omit the code part of the
3908 \c{AT} line completely, and start the structure field on the next
3912 \c db 'hello, world'
3916 \S{align} \i\c{ALIGN} and \i\c{ALIGNB}: Data Alignment
3918 The \c{ALIGN} and \c{ALIGNB} macros provides a convenient way to
3919 align code or data on a word, longword, paragraph or other boundary.
3920 (Some assemblers call this directive \i\c{EVEN}.) The syntax of the
3921 \c{ALIGN} and \c{ALIGNB} macros is
3923 \c align 4 ; align on 4-byte boundary
3924 \c align 16 ; align on 16-byte boundary
3925 \c align 8,db 0 ; pad with 0s rather than NOPs
3926 \c align 4,resb 1 ; align to 4 in the BSS
3927 \c alignb 4 ; equivalent to previous line
3929 Both macros require their first argument to be a power of two; they
3930 both compute the number of additional bytes required to bring the
3931 length of the current section up to a multiple of that power of two,
3932 and then apply the \c{TIMES} prefix to their second argument to
3933 perform the alignment.
3935 If the second argument is not specified, the default for \c{ALIGN}
3936 is \c{NOP}, and the default for \c{ALIGNB} is \c{RESB 1}. So if the
3937 second argument is specified, the two macros are equivalent.
3938 Normally, you can just use \c{ALIGN} in code and data sections and
3939 \c{ALIGNB} in BSS sections, and never need the second argument
3940 except for special purposes.
3942 \c{ALIGN} and \c{ALIGNB}, being simple macros, perform no error
3943 checking: they cannot warn you if their first argument fails to be a
3944 power of two, or if their second argument generates more than one
3945 byte of code. In each of these cases they will silently do the wrong
3948 \c{ALIGNB} (or \c{ALIGN} with a second argument of \c{RESB 1}) can
3949 be used within structure definitions:
3966 This will ensure that the structure members are sensibly aligned
3967 relative to the base of the structure.
3969 A final caveat: \c{ALIGN} and \c{ALIGNB} work relative to the
3970 beginning of the \e{section}, not the beginning of the address space
3971 in the final executable. Aligning to a 16-byte boundary when the
3972 section you're in is only guaranteed to be aligned to a 4-byte
3973 boundary, for example, is a waste of effort. Again, NASM does not
3974 check that the section's alignment characteristics are sensible for
3975 the use of \c{ALIGN} or \c{ALIGNB}.
3977 See also the \c{smartalign} standard macro package, \k{pkg_smartalign}.
3980 \C{macropkg} \i{Standard Macro Packages}
3982 The \i\c{%use} directive (see \k{use}) includes one of the standard
3983 macro packages included with the NASM distribution and compiled into
3984 the NASM binary. It operates like the \c{%include} directive (see
3985 \k{include}), but the included contents is provided by NASM itself.
3987 The names of standard macro packages are case insensitive, and can be
3991 \H{pkg_altreg} \i\c{altreg}: \i{Alternate Register Names}
3993 The \c{altreg} standard macro package provides alternate register
3994 names. It provides numeric register names for all registers (not just
3995 \c{R8}-\c{R15}), the Intel-defined aliases \c{R8L}-\c{R15L} for the
3996 low bytes of register (as opposed to the NASM/AMD standard names
3997 \c{R8B}-\c{R15B}), and the names \c{R0H}-\c{R3H} (by analogy with
3998 \c{R0L}-\c{R3L}) for \c{AH}, \c{CH}, \c{DH}, and \c{BH}.
4005 \c mov r0l,r3h ; mov al,bh
4011 \H{pkg_smartalign} \i\c{smartalign}\I{align, smart}: Smart \c{ALIGN} Macro
4013 The \c{smartalign} standard macro package provides for an \i\c{ALIGN}
4014 macro which is more powerful than the default (and
4015 backwards-compatible) one (see \k{align}). When the \c{smartalign}
4016 package is enabled, when \c{ALIGN} is used without a second argument,
4017 NASM will generate a sequence of instructions more efficient than a
4018 series of \c{NOP}. Furthermore, if the padding exceeds a specific
4019 threshold, then NASM will generate a jump over the entire padding
4022 The specific instructions generated can be controlled with the
4023 new \i\c{ALIGNMODE} macro. This macro takes two parameters: one mode,
4024 and an optional jump threshold override. The modes are as
4027 \b \c{generic}: Works on all x86 CPUs and should have reasonable
4028 performance. The default jump threshold is 8. This is the
4031 \b \c{nop}: Pad out with \c{NOP} instructions. The only difference
4032 compared to the standard \c{ALIGN} macro is that NASM can still jump
4033 over a large padding area. The default jump threshold is 16.
4035 \b \c{k7}: Optimize for the AMD K7 (Athlon/Althon XP). These
4036 instructions should still work on all x86 CPUs. The default jump
4039 \b \c{k8}: Optimize for the AMD K8 (Opteron/Althon 64). These
4040 instructions should still work on all x86 CPUs. The default jump
4043 \b \c{p6}: Optimize for Intel CPUs. This uses the long \c{NOP}
4044 instructions first introduced in Pentium Pro. This is incompatible
4045 with all CPUs of family 5 or lower, as well as some VIA CPUs and
4046 several virtualization solutions. The default jump threshold is 16.
4048 The macro \i\c{__ALIGNMODE__} is defined to contain the current
4049 alignment mode. A number of other macros beginning with \c{__ALIGN_}
4050 are used internally by this macro package.
4053 \C{directive} \i{Assembler Directives}
4055 NASM, though it attempts to avoid the bureaucracy of assemblers like
4056 MASM and TASM, is nevertheless forced to support a \e{few}
4057 directives. These are described in this chapter.
4059 NASM's directives come in two types: \I{user-level
4060 directives}\e{user-level} directives and \I{primitive
4061 directives}\e{primitive} directives. Typically, each directive has a
4062 user-level form and a primitive form. In almost all cases, we
4063 recommend that users use the user-level forms of the directives,
4064 which are implemented as macros which call the primitive forms.
4066 Primitive directives are enclosed in square brackets; user-level
4069 In addition to the universal directives described in this chapter,
4070 each object file format can optionally supply extra directives in
4071 order to control particular features of that file format. These
4072 \I{format-specific directives}\e{format-specific} directives are
4073 documented along with the formats that implement them, in \k{outfmt}.
4076 \H{bits} \i\c{BITS}: Specifying Target \i{Processor Mode}
4078 The \c{BITS} directive specifies whether NASM should generate code
4079 \I{16-bit mode, versus 32-bit mode}designed to run on a processor
4080 operating in 16-bit mode, 32-bit mode or 64-bit mode. The syntax is
4081 \c{BITS XX}, where XX is 16, 32 or 64.
4083 In most cases, you should not need to use \c{BITS} explicitly. The
4084 \c{aout}, \c{coff}, \c{elf}, \c{macho}, \c{win32} and \c{win64}
4085 object formats, which are designed for use in 32-bit or 64-bit
4086 operating systems, all cause NASM to select 32-bit or 64-bit mode,
4087 respectively, by default. The \c{obj} object format allows you
4088 to specify each segment you define as either \c{USE16} or \c{USE32},
4089 and NASM will set its operating mode accordingly, so the use of the
4090 \c{BITS} directive is once again unnecessary.
4092 The most likely reason for using the \c{BITS} directive is to write
4093 32-bit or 64-bit code in a flat binary file; this is because the \c{bin}
4094 output format defaults to 16-bit mode in anticipation of it being
4095 used most frequently to write DOS \c{.COM} programs, DOS \c{.SYS}
4096 device drivers and boot loader software.
4098 You do \e{not} need to specify \c{BITS 32} merely in order to use
4099 32-bit instructions in a 16-bit DOS program; if you do, the
4100 assembler will generate incorrect code because it will be writing
4101 code targeted at a 32-bit platform, to be run on a 16-bit one.
4103 When NASM is in \c{BITS 16} mode, instructions which use 32-bit
4104 data are prefixed with an 0x66 byte, and those referring to 32-bit
4105 addresses have an 0x67 prefix. In \c{BITS 32} mode, the reverse is
4106 true: 32-bit instructions require no prefixes, whereas instructions
4107 using 16-bit data need an 0x66 and those working on 16-bit addresses
4110 When NASM is in \c{BITS 64} mode, most instructions operate the same
4111 as they do for \c{BITS 32} mode. However, there are 8 more general and
4112 SSE registers, and 16-bit addressing is no longer supported.
4114 The default address size is 64 bits; 32-bit addressing can be selected
4115 with the 0x67 prefix. The default operand size is still 32 bits,
4116 however, and the 0x66 prefix selects 16-bit operand size. The \c{REX}
4117 prefix is used both to select 64-bit operand size, and to access the
4118 new registers. NASM automatically inserts REX prefixes when
4121 When the \c{REX} prefix is used, the processor does not know how to
4122 address the AH, BH, CH or DH (high 8-bit legacy) registers. Instead,
4123 it is possible to access the the low 8-bits of the SP, BP SI and DI
4124 registers as SPL, BPL, SIL and DIL, respectively; but only when the
4127 The \c{BITS} directive has an exactly equivalent primitive form,
4128 \c{[BITS 16]}, \c{[BITS 32]} and \c{[BITS 64]}. The user-level form is
4129 a macro which has no function other than to call the primitive form.
4131 Note that the space is neccessary, e.g. \c{BITS32} will \e{not} work!
4133 \S{USE16 & USE32} \i\c{USE16} & \i\c{USE32}: Aliases for BITS
4135 The `\c{USE16}' and `\c{USE32}' directives can be used in place of
4136 `\c{BITS 16}' and `\c{BITS 32}', for compatibility with other assemblers.
4139 \H{default} \i\c{DEFAULT}: Change the assembler defaults
4141 The \c{DEFAULT} directive changes the assembler defaults. Normally,
4142 NASM defaults to a mode where the programmer is expected to explicitly
4143 specify most features directly. However, this is occationally
4144 obnoxious, as the explicit form is pretty much the only one one wishes
4147 Currently, the only \c{DEFAULT} that is settable is whether or not
4148 registerless instructions in 64-bit mode are \c{RIP}-relative or not.
4149 By default, they are absolute unless overridden with the \i\c{REL}
4150 specifier (see \k{effaddr}). However, if \c{DEFAULT REL} is
4151 specified, \c{REL} is default, unless overridden with the \c{ABS}
4152 specifier, \e{except when used with an FS or GS segment override}.
4154 The special handling of \c{FS} and \c{GS} overrides are due to the
4155 fact that these registers are generally used as thread pointers or
4156 other special functions in 64-bit mode, and generating
4157 \c{RIP}-relative addresses would be extremely confusing.
4159 \c{DEFAULT REL} is disabled with \c{DEFAULT ABS}.
4161 \H{section} \i\c{SECTION} or \i\c{SEGMENT}: Changing and \i{Defining
4164 \I{changing sections}\I{switching between sections}The \c{SECTION}
4165 directive (\c{SEGMENT} is an exactly equivalent synonym) changes
4166 which section of the output file the code you write will be
4167 assembled into. In some object file formats, the number and names of
4168 sections are fixed; in others, the user may make up as many as they
4169 wish. Hence \c{SECTION} may sometimes give an error message, or may
4170 define a new section, if you try to switch to a section that does
4173 The Unix object formats, and the \c{bin} object format (but see
4174 \k{multisec}, all support
4175 the \i{standardized section names} \c{.text}, \c{.data} and \c{.bss}
4176 for the code, data and uninitialized-data sections. The \c{obj}
4177 format, by contrast, does not recognize these section names as being
4178 special, and indeed will strip off the leading period of any section
4182 \S{sectmac} The \i\c{__SECT__} Macro
4184 The \c{SECTION} directive is unusual in that its user-level form
4185 functions differently from its primitive form. The primitive form,
4186 \c{[SECTION xyz]}, simply switches the current target section to the
4187 one given. The user-level form, \c{SECTION xyz}, however, first
4188 defines the single-line macro \c{__SECT__} to be the primitive
4189 \c{[SECTION]} directive which it is about to issue, and then issues
4190 it. So the user-level directive
4194 expands to the two lines
4196 \c %define __SECT__ [SECTION .text]
4199 Users may find it useful to make use of this in their own macros.
4200 For example, the \c{writefile} macro defined in \k{mlmacgre} can be
4201 usefully rewritten in the following more sophisticated form:
4203 \c %macro writefile 2+
4213 \c mov cx,%%endstr-%%str
4220 This form of the macro, once passed a string to output, first
4221 switches temporarily to the data section of the file, using the
4222 primitive form of the \c{SECTION} directive so as not to modify
4223 \c{__SECT__}. It then declares its string in the data section, and
4224 then invokes \c{__SECT__} to switch back to \e{whichever} section
4225 the user was previously working in. It thus avoids the need, in the
4226 previous version of the macro, to include a \c{JMP} instruction to
4227 jump over the data, and also does not fail if, in a complicated
4228 \c{OBJ} format module, the user could potentially be assembling the
4229 code in any of several separate code sections.
4232 \H{absolute} \i\c{ABSOLUTE}: Defining Absolute Labels
4234 The \c{ABSOLUTE} directive can be thought of as an alternative form
4235 of \c{SECTION}: it causes the subsequent code to be directed at no
4236 physical section, but at the hypothetical section starting at the
4237 given absolute address. The only instructions you can use in this
4238 mode are the \c{RESB} family.
4240 \c{ABSOLUTE} is used as follows:
4248 This example describes a section of the PC BIOS data area, at
4249 segment address 0x40: the above code defines \c{kbuf_chr} to be
4250 0x1A, \c{kbuf_free} to be 0x1C, and \c{kbuf} to be 0x1E.
4252 The user-level form of \c{ABSOLUTE}, like that of \c{SECTION},
4253 redefines the \i\c{__SECT__} macro when it is invoked.
4255 \i\c{STRUC} and \i\c{ENDSTRUC} are defined as macros which use
4256 \c{ABSOLUTE} (and also \c{__SECT__}).
4258 \c{ABSOLUTE} doesn't have to take an absolute constant as an
4259 argument: it can take an expression (actually, a \i{critical
4260 expression}: see \k{crit}) and it can be a value in a segment. For
4261 example, a TSR can re-use its setup code as run-time BSS like this:
4263 \c org 100h ; it's a .COM program
4265 \c jmp setup ; setup code comes last
4267 \c ; the resident part of the TSR goes here
4269 \c ; now write the code that installs the TSR here
4273 \c runtimevar1 resw 1
4274 \c runtimevar2 resd 20
4278 This defines some variables `on top of' the setup code, so that
4279 after the setup has finished running, the space it took up can be
4280 re-used as data storage for the running TSR. The symbol `tsr_end'
4281 can be used to calculate the total size of the part of the TSR that
4282 needs to be made resident.
4285 \H{extern} \i\c{EXTERN}: \i{Importing Symbols} from Other Modules
4287 \c{EXTERN} is similar to the MASM directive \c{EXTRN} and the C
4288 keyword \c{extern}: it is used to declare a symbol which is not
4289 defined anywhere in the module being assembled, but is assumed to be
4290 defined in some other module and needs to be referred to by this
4291 one. Not every object-file format can support external variables:
4292 the \c{bin} format cannot.
4294 The \c{EXTERN} directive takes as many arguments as you like. Each
4295 argument is the name of a symbol:
4298 \c extern _sscanf,_fscanf
4300 Some object-file formats provide extra features to the \c{EXTERN}
4301 directive. In all cases, the extra features are used by suffixing a
4302 colon to the symbol name followed by object-format specific text.
4303 For example, the \c{obj} format allows you to declare that the
4304 default segment base of an external should be the group \c{dgroup}
4305 by means of the directive
4307 \c extern _variable:wrt dgroup
4309 The primitive form of \c{EXTERN} differs from the user-level form
4310 only in that it can take only one argument at a time: the support
4311 for multiple arguments is implemented at the preprocessor level.
4313 You can declare the same variable as \c{EXTERN} more than once: NASM
4314 will quietly ignore the second and later redeclarations. You can't
4315 declare a variable as \c{EXTERN} as well as something else, though.
4318 \H{global} \i\c{GLOBAL}: \i{Exporting Symbols} to Other Modules
4320 \c{GLOBAL} is the other end of \c{EXTERN}: if one module declares a
4321 symbol as \c{EXTERN} and refers to it, then in order to prevent
4322 linker errors, some other module must actually \e{define} the
4323 symbol and declare it as \c{GLOBAL}. Some assemblers use the name
4324 \i\c{PUBLIC} for this purpose.
4326 The \c{GLOBAL} directive applying to a symbol must appear \e{before}
4327 the definition of the symbol.
4329 \c{GLOBAL} uses the same syntax as \c{EXTERN}, except that it must
4330 refer to symbols which \e{are} defined in the same module as the
4331 \c{GLOBAL} directive. For example:
4337 \c{GLOBAL}, like \c{EXTERN}, allows object formats to define private
4338 extensions by means of a colon. The \c{elf} object format, for
4339 example, lets you specify whether global data items are functions or
4342 \c global hashlookup:function, hashtable:data
4344 Like \c{EXTERN}, the primitive form of \c{GLOBAL} differs from the
4345 user-level form only in that it can take only one argument at a
4349 \H{common} \i\c{COMMON}: Defining Common Data Areas
4351 The \c{COMMON} directive is used to declare \i\e{common variables}.
4352 A common variable is much like a global variable declared in the
4353 uninitialized data section, so that
4357 is similar in function to
4364 The difference is that if more than one module defines the same
4365 common variable, then at link time those variables will be
4366 \e{merged}, and references to \c{intvar} in all modules will point
4367 at the same piece of memory.
4369 Like \c{GLOBAL} and \c{EXTERN}, \c{COMMON} supports object-format
4370 specific extensions. For example, the \c{obj} format allows common
4371 variables to be NEAR or FAR, and the \c{elf} format allows you to
4372 specify the alignment requirements of a common variable:
4374 \c common commvar 4:near ; works in OBJ
4375 \c common intarray 100:4 ; works in ELF: 4 byte aligned
4377 Once again, like \c{EXTERN} and \c{GLOBAL}, the primitive form of
4378 \c{COMMON} differs from the user-level form only in that it can take
4379 only one argument at a time.
4382 \H{CPU} \i\c{CPU}: Defining CPU Dependencies
4384 The \i\c{CPU} directive restricts assembly to those instructions which
4385 are available on the specified CPU.
4389 \b\c{CPU 8086} Assemble only 8086 instruction set
4391 \b\c{CPU 186} Assemble instructions up to the 80186 instruction set
4393 \b\c{CPU 286} Assemble instructions up to the 286 instruction set
4395 \b\c{CPU 386} Assemble instructions up to the 386 instruction set
4397 \b\c{CPU 486} 486 instruction set
4399 \b\c{CPU 586} Pentium instruction set
4401 \b\c{CPU PENTIUM} Same as 586
4403 \b\c{CPU 686} P6 instruction set
4405 \b\c{CPU PPRO} Same as 686
4407 \b\c{CPU P2} Same as 686
4409 \b\c{CPU P3} Pentium III (Katmai) instruction sets
4411 \b\c{CPU KATMAI} Same as P3
4413 \b\c{CPU P4} Pentium 4 (Willamette) instruction set
4415 \b\c{CPU WILLAMETTE} Same as P4
4417 \b\c{CPU PRESCOTT} Prescott instruction set
4419 \b\c{CPU X64} x86-64 (x64/AMD64/Intel 64) instruction set
4421 \b\c{CPU IA64} IA64 CPU (in x86 mode) instruction set
4423 All options are case insensitive. All instructions will be selected
4424 only if they apply to the selected CPU or lower. By default, all
4425 instructions are available.
4428 \H{FLOAT} \i\c{FLOAT}: Handling of \I{floating-point, constants}floating-point constants
4430 By default, floating-point constants are rounded to nearest, and IEEE
4431 denormals are supported. The following options can be set to alter
4434 \b\c{FLOAT DAZ} Flush denormals to zero
4436 \b\c{FLOAT NODAZ} Do not flush denormals to zero (default)
4438 \b\c{FLOAT NEAR} Round to nearest (default)
4440 \b\c{FLOAT UP} Round up (toward +Infinity)
4442 \b\c{FLOAT DOWN} Round down (toward -Infinity)
4444 \b\c{FLOAT ZERO} Round toward zero
4446 \b\c{FLOAT DEFAULT} Restore default settings
4448 The standard macros \i\c{__FLOAT_DAZ__}, \i\c{__FLOAT_ROUND__}, and
4449 \i\c{__FLOAT__} contain the current state, as long as the programmer
4450 has avoided the use of the brackeded primitive form, (\c{[FLOAT]}).
4452 \c{__FLOAT__} contains the full set of floating-point settings; this
4453 value can be saved away and invoked later to restore the setting.
4456 \C{outfmt} \i{Output Formats}
4458 NASM is a portable assembler, designed to be able to compile on any
4459 ANSI C-supporting platform and produce output to run on a variety of
4460 Intel x86 operating systems. For this reason, it has a large number
4461 of available output formats, selected using the \i\c{-f} option on
4462 the NASM \i{command line}. Each of these formats, along with its
4463 extensions to the base NASM syntax, is detailed in this chapter.
4465 As stated in \k{opt-o}, NASM chooses a \i{default name} for your
4466 output file based on the input file name and the chosen output
4467 format. This will be generated by removing the \i{extension}
4468 (\c{.asm}, \c{.s}, or whatever you like to use) from the input file
4469 name, and substituting an extension defined by the output format.
4470 The extensions are given with each format below.
4473 \H{binfmt} \i\c{bin}: \i{Flat-Form Binary}\I{pure binary} Output
4475 The \c{bin} format does not produce object files: it generates
4476 nothing in the output file except the code you wrote. Such `pure
4477 binary' files are used by \i{MS-DOS}: \i\c{.COM} executables and
4478 \i\c{.SYS} device drivers are pure binary files. Pure binary output
4479 is also useful for \i{operating system} and \i{boot loader}
4482 The \c{bin} format supports \i{multiple section names}. For details of
4483 how NASM handles sections in the \c{bin} format, see \k{multisec}.
4485 Using the \c{bin} format puts NASM by default into 16-bit mode (see
4486 \k{bits}). In order to use \c{bin} to write 32-bit or 64-bit code,
4487 such as an OS kernel, you need to explicitly issue the \I\c{BITS}\c{BITS 32}
4488 or \I\c{BITS}\c{BITS 64} directive.
4490 \c{bin} has no default output file name extension: instead, it
4491 leaves your file name as it is once the original extension has been
4492 removed. Thus, the default is for NASM to assemble \c{binprog.asm}
4493 into a binary file called \c{binprog}.
4496 \S{org} \i\c{ORG}: Binary File \i{Program Origin}
4498 The \c{bin} format provides an additional directive to the list
4499 given in \k{directive}: \c{ORG}. The function of the \c{ORG}
4500 directive is to specify the origin address which NASM will assume
4501 the program begins at when it is loaded into memory.
4503 For example, the following code will generate the longword
4510 Unlike the \c{ORG} directive provided by MASM-compatible assemblers,
4511 which allows you to jump around in the object file and overwrite
4512 code you have already generated, NASM's \c{ORG} does exactly what
4513 the directive says: \e{origin}. Its sole function is to specify one
4514 offset which is added to all internal address references within the
4515 section; it does not permit any of the trickery that MASM's version
4516 does. See \k{proborg} for further comments.
4519 \S{binseg} \c{bin} Extensions to the \c{SECTION}
4520 Directive\I{SECTION, bin extensions to}
4522 The \c{bin} output format extends the \c{SECTION} (or \c{SEGMENT})
4523 directive to allow you to specify the alignment requirements of
4524 segments. This is done by appending the \i\c{ALIGN} qualifier to the
4525 end of the section-definition line. For example,
4527 \c section .data align=16
4529 switches to the section \c{.data} and also specifies that it must be
4530 aligned on a 16-byte boundary.
4532 The parameter to \c{ALIGN} specifies how many low bits of the
4533 section start address must be forced to zero. The alignment value
4534 given may be any power of two.\I{section alignment, in
4535 bin}\I{segment alignment, in bin}\I{alignment, in bin sections}
4538 \S{multisec} \i{Multisection}\I{bin, multisection} Support for the \c{bin} Format
4540 The \c{bin} format allows the use of multiple sections, of arbitrary names,
4541 besides the "known" \c{.text}, \c{.data}, and \c{.bss} names.
4543 \b Sections may be designated \i\c{progbits} or \i\c{nobits}. Default
4544 is \c{progbits} (except \c{.bss}, which defaults to \c{nobits},
4547 \b Sections can be aligned at a specified boundary following the previous
4548 section with \c{align=}, or at an arbitrary byte-granular position with
4551 \b Sections can be given a virtual start address, which will be used
4552 for the calculation of all memory references within that section
4555 \b Sections can be ordered using \i\c{follows=}\c{<section>} or
4556 \i\c{vfollows=}\c{<section>} as an alternative to specifying an explicit
4559 \b Arguments to \c{org}, \c{start}, \c{vstart}, and \c{align=} are
4560 critical expressions. See \k{crit}. E.g. \c{align=(1 << ALIGN_SHIFT)}
4561 - \c{ALIGN_SHIFT} must be defined before it is used here.
4563 \b Any code which comes before an explicit \c{SECTION} directive
4564 is directed by default into the \c{.text} section.
4566 \b If an \c{ORG} statement is not given, \c{ORG 0} is used
4569 \b The \c{.bss} section will be placed after the last \c{progbits}
4570 section, unless \c{start=}, \c{vstart=}, \c{follows=}, or \c{vfollows=}
4573 \b All sections are aligned on dword boundaries, unless a different
4574 alignment has been specified.
4576 \b Sections may not overlap.
4578 \b NASM creates the \c{section.<secname>.start} for each section,
4579 which may be used in your code.
4581 \S{map}\i{Map Files}
4583 Map files can be generated in \c{-f bin} format by means of the \c{[map]}
4584 option. Map types of \c{all} (default), \c{brief}, \c{sections}, \c{segments},
4585 or \c{symbols} may be specified. Output may be directed to \c{stdout}
4586 (default), \c{stderr}, or a specified file. E.g.
4587 \c{[map symbols myfile.map]}. No "user form" exists, the square
4588 brackets must be used.
4591 \H{ithfmt} \i\c{ith}: \i{Intel Hex} Output
4593 The \c{ith} file format produces Intel hex-format files. Just as the
4594 \c{bin} format, this is a flat memory image format with no support for
4595 relocation or linking. It is usually used with ROM programmers and
4598 All extensions supported by the \c{bin} file format is also supported by
4599 the \c{ith} file format.
4601 \c{ith} provides a default output file-name extension of \c{.ith}.
4604 \H{srecfmt} \i\c{srec}: \i{Motorola S-Records} Output
4606 The \c{srec} file format produces Motorola S-records files. Just as the
4607 \c{bin} format, this is a flat memory image format with no support for
4608 relocation or linking. It is usually used with ROM programmers and
4611 All extensions supported by the \c{bin} file format is also supported by
4612 the \c{srec} file format.
4614 \c{srec} provides a default output file-name extension of \c{.srec}.
4617 \H{objfmt} \i\c{obj}: \i{Microsoft OMF}\I{OMF} Object Files
4619 The \c{obj} file format (NASM calls it \c{obj} rather than \c{omf}
4620 for historical reasons) is the one produced by \i{MASM} and
4621 \i{TASM}, which is typically fed to 16-bit DOS linkers to produce
4622 \i\c{.EXE} files. It is also the format used by \i{OS/2}.
4624 \c{obj} provides a default output file-name extension of \c{.obj}.
4626 \c{obj} is not exclusively a 16-bit format, though: NASM has full
4627 support for the 32-bit extensions to the format. In particular,
4628 32-bit \c{obj} format files are used by \i{Borland's Win32
4629 compilers}, instead of using Microsoft's newer \i\c{win32} object
4632 The \c{obj} format does not define any special segment names: you
4633 can call your segments anything you like. Typical names for segments
4634 in \c{obj} format files are \c{CODE}, \c{DATA} and \c{BSS}.
4636 If your source file contains code before specifying an explicit
4637 \c{SEGMENT} directive, then NASM will invent its own segment called
4638 \i\c{__NASMDEFSEG} for you.
4640 When you define a segment in an \c{obj} file, NASM defines the
4641 segment name as a symbol as well, so that you can access the segment
4642 address of the segment. So, for example:
4651 \c mov ax,data ; get segment address of data
4652 \c mov ds,ax ; and move it into DS
4653 \c inc word [dvar] ; now this reference will work
4656 The \c{obj} format also enables the use of the \i\c{SEG} and
4657 \i\c{WRT} operators, so that you can write code which does things
4662 \c mov ax,seg foo ; get preferred segment of foo
4664 \c mov ax,data ; a different segment
4666 \c mov ax,[ds:foo] ; this accesses `foo'
4667 \c mov [es:foo wrt data],bx ; so does this
4670 \S{objseg} \c{obj} Extensions to the \c{SEGMENT}
4671 Directive\I{SEGMENT, obj extensions to}
4673 The \c{obj} output format extends the \c{SEGMENT} (or \c{SECTION})
4674 directive to allow you to specify various properties of the segment
4675 you are defining. This is done by appending extra qualifiers to the
4676 end of the segment-definition line. For example,
4678 \c segment code private align=16
4680 defines the segment \c{code}, but also declares it to be a private
4681 segment, and requires that the portion of it described in this code
4682 module must be aligned on a 16-byte boundary.
4684 The available qualifiers are:
4686 \b \i\c{PRIVATE}, \i\c{PUBLIC}, \i\c{COMMON} and \i\c{STACK} specify
4687 the combination characteristics of the segment. \c{PRIVATE} segments
4688 do not get combined with any others by the linker; \c{PUBLIC} and
4689 \c{STACK} segments get concatenated together at link time; and
4690 \c{COMMON} segments all get overlaid on top of each other rather
4691 than stuck end-to-end.
4693 \b \i\c{ALIGN} is used, as shown above, to specify how many low bits
4694 of the segment start address must be forced to zero. The alignment
4695 value given may be any power of two from 1 to 4096; in reality, the
4696 only values supported are 1, 2, 4, 16, 256 and 4096, so if 8 is
4697 specified it will be rounded up to 16, and 32, 64 and 128 will all
4698 be rounded up to 256, and so on. Note that alignment to 4096-byte
4699 boundaries is a \i{PharLap} extension to the format and may not be
4700 supported by all linkers.\I{section alignment, in OBJ}\I{segment
4701 alignment, in OBJ}\I{alignment, in OBJ sections}
4703 \b \i\c{CLASS} can be used to specify the segment class; this feature
4704 indicates to the linker that segments of the same class should be
4705 placed near each other in the output file. The class name can be any
4706 word, e.g. \c{CLASS=CODE}.
4708 \b \i\c{OVERLAY}, like \c{CLASS}, is specified with an arbitrary word
4709 as an argument, and provides overlay information to an
4710 overlay-capable linker.
4712 \b Segments can be declared as \i\c{USE16} or \i\c{USE32}, which has
4713 the effect of recording the choice in the object file and also
4714 ensuring that NASM's default assembly mode when assembling in that
4715 segment is 16-bit or 32-bit respectively.
4717 \b When writing \i{OS/2} object files, you should declare 32-bit
4718 segments as \i\c{FLAT}, which causes the default segment base for
4719 anything in the segment to be the special group \c{FLAT}, and also
4720 defines the group if it is not already defined.
4722 \b The \c{obj} file format also allows segments to be declared as
4723 having a pre-defined absolute segment address, although no linkers
4724 are currently known to make sensible use of this feature;
4725 nevertheless, NASM allows you to declare a segment such as
4726 \c{SEGMENT SCREEN ABSOLUTE=0xB800} if you need to. The \i\c{ABSOLUTE}
4727 and \c{ALIGN} keywords are mutually exclusive.
4729 NASM's default segment attributes are \c{PUBLIC}, \c{ALIGN=1}, no
4730 class, no overlay, and \c{USE16}.
4733 \S{group} \i\c{GROUP}: Defining Groups of Segments\I{segments, groups of}
4735 The \c{obj} format also allows segments to be grouped, so that a
4736 single segment register can be used to refer to all the segments in
4737 a group. NASM therefore supplies the \c{GROUP} directive, whereby
4746 \c ; some uninitialized data
4748 \c group dgroup data bss
4750 which will define a group called \c{dgroup} to contain the segments
4751 \c{data} and \c{bss}. Like \c{SEGMENT}, \c{GROUP} causes the group
4752 name to be defined as a symbol, so that you can refer to a variable
4753 \c{var} in the \c{data} segment as \c{var wrt data} or as \c{var wrt
4754 dgroup}, depending on which segment value is currently in your
4757 If you just refer to \c{var}, however, and \c{var} is declared in a
4758 segment which is part of a group, then NASM will default to giving
4759 you the offset of \c{var} from the beginning of the \e{group}, not
4760 the \e{segment}. Therefore \c{SEG var}, also, will return the group
4761 base rather than the segment base.
4763 NASM will allow a segment to be part of more than one group, but
4764 will generate a warning if you do this. Variables declared in a
4765 segment which is part of more than one group will default to being
4766 relative to the first group that was defined to contain the segment.
4768 A group does not have to contain any segments; you can still make
4769 \c{WRT} references to a group which does not contain the variable
4770 you are referring to. OS/2, for example, defines the special group
4771 \c{FLAT} with no segments in it.
4774 \S{uppercase} \i\c{UPPERCASE}: Disabling Case Sensitivity in Output
4776 Although NASM itself is \i{case sensitive}, some OMF linkers are
4777 not; therefore it can be useful for NASM to output single-case
4778 object files. The \c{UPPERCASE} format-specific directive causes all
4779 segment, group and symbol names that are written to the object file
4780 to be forced to upper case just before being written. Within a
4781 source file, NASM is still case-sensitive; but the object file can
4782 be written entirely in upper case if desired.
4784 \c{UPPERCASE} is used alone on a line; it requires no parameters.
4787 \S{import} \i\c{IMPORT}: Importing DLL Symbols\I{DLL symbols,
4788 importing}\I{symbols, importing from DLLs}
4790 The \c{IMPORT} format-specific directive defines a symbol to be
4791 imported from a DLL, for use if you are writing a DLL's \i{import
4792 library} in NASM. You still need to declare the symbol as \c{EXTERN}
4793 as well as using the \c{IMPORT} directive.
4795 The \c{IMPORT} directive takes two required parameters, separated by
4796 white space, which are (respectively) the name of the symbol you
4797 wish to import and the name of the library you wish to import it
4800 \c import WSAStartup wsock32.dll
4802 A third optional parameter gives the name by which the symbol is
4803 known in the library you are importing it from, in case this is not
4804 the same as the name you wish the symbol to be known by to your code
4805 once you have imported it. For example:
4807 \c import asyncsel wsock32.dll WSAAsyncSelect
4810 \S{export} \i\c{EXPORT}: Exporting DLL Symbols\I{DLL symbols,
4811 exporting}\I{symbols, exporting from DLLs}
4813 The \c{EXPORT} format-specific directive defines a global symbol to
4814 be exported as a DLL symbol, for use if you are writing a DLL in
4815 NASM. You still need to declare the symbol as \c{GLOBAL} as well as
4816 using the \c{EXPORT} directive.
4818 \c{EXPORT} takes one required parameter, which is the name of the
4819 symbol you wish to export, as it was defined in your source file. An
4820 optional second parameter (separated by white space from the first)
4821 gives the \e{external} name of the symbol: the name by which you
4822 wish the symbol to be known to programs using the DLL. If this name
4823 is the same as the internal name, you may leave the second parameter
4826 Further parameters can be given to define attributes of the exported
4827 symbol. These parameters, like the second, are separated by white
4828 space. If further parameters are given, the external name must also
4829 be specified, even if it is the same as the internal name. The
4830 available attributes are:
4832 \b \c{resident} indicates that the exported name is to be kept
4833 resident by the system loader. This is an optimisation for
4834 frequently used symbols imported by name.
4836 \b \c{nodata} indicates that the exported symbol is a function which
4837 does not make use of any initialized data.
4839 \b \c{parm=NNN}, where \c{NNN} is an integer, sets the number of
4840 parameter words for the case in which the symbol is a call gate
4841 between 32-bit and 16-bit segments.
4843 \b An attribute which is just a number indicates that the symbol
4844 should be exported with an identifying number (ordinal), and gives
4850 \c export myfunc TheRealMoreFormalLookingFunctionName
4851 \c export myfunc myfunc 1234 ; export by ordinal
4852 \c export myfunc myfunc resident parm=23 nodata
4855 \S{dotdotstart} \i\c{..start}: Defining the \i{Program Entry
4858 \c{OMF} linkers require exactly one of the object files being linked to
4859 define the program entry point, where execution will begin when the
4860 program is run. If the object file that defines the entry point is
4861 assembled using NASM, you specify the entry point by declaring the
4862 special symbol \c{..start} at the point where you wish execution to
4866 \S{objextern} \c{obj} Extensions to the \c{EXTERN}
4867 Directive\I{EXTERN, obj extensions to}
4869 If you declare an external symbol with the directive
4873 then references such as \c{mov ax,foo} will give you the offset of
4874 \c{foo} from its preferred segment base (as specified in whichever
4875 module \c{foo} is actually defined in). So to access the contents of
4876 \c{foo} you will usually need to do something like
4878 \c mov ax,seg foo ; get preferred segment base
4879 \c mov es,ax ; move it into ES
4880 \c mov ax,[es:foo] ; and use offset `foo' from it
4882 This is a little unwieldy, particularly if you know that an external
4883 is going to be accessible from a given segment or group, say
4884 \c{dgroup}. So if \c{DS} already contained \c{dgroup}, you could
4887 \c mov ax,[foo wrt dgroup]
4889 However, having to type this every time you want to access \c{foo}
4890 can be a pain; so NASM allows you to declare \c{foo} in the
4893 \c extern foo:wrt dgroup
4895 This form causes NASM to pretend that the preferred segment base of
4896 \c{foo} is in fact \c{dgroup}; so the expression \c{seg foo} will
4897 now return \c{dgroup}, and the expression \c{foo} is equivalent to
4900 This \I{default-WRT mechanism}default-\c{WRT} mechanism can be used
4901 to make externals appear to be relative to any group or segment in
4902 your program. It can also be applied to common variables: see
4906 \S{objcommon} \c{obj} Extensions to the \c{COMMON}
4907 Directive\I{COMMON, obj extensions to}
4909 The \c{obj} format allows common variables to be either near\I{near
4910 common variables} or far\I{far common variables}; NASM allows you to
4911 specify which your variables should be by the use of the syntax
4913 \c common nearvar 2:near ; `nearvar' is a near common
4914 \c common farvar 10:far ; and `farvar' is far
4916 Far common variables may be greater in size than 64Kb, and so the
4917 OMF specification says that they are declared as a number of
4918 \e{elements} of a given size. So a 10-byte far common variable could
4919 be declared as ten one-byte elements, five two-byte elements, two
4920 five-byte elements or one ten-byte element.
4922 Some \c{OMF} linkers require the \I{element size, in common
4923 variables}\I{common variables, element size}element size, as well as
4924 the variable size, to match when resolving common variables declared
4925 in more than one module. Therefore NASM must allow you to specify
4926 the element size on your far common variables. This is done by the
4929 \c common c_5by2 10:far 5 ; two five-byte elements
4930 \c common c_2by5 10:far 2 ; five two-byte elements
4932 If no element size is specified, the default is 1. Also, the \c{FAR}
4933 keyword is not required when an element size is specified, since
4934 only far commons may have element sizes at all. So the above
4935 declarations could equivalently be
4937 \c common c_5by2 10:5 ; two five-byte elements
4938 \c common c_2by5 10:2 ; five two-byte elements
4940 In addition to these extensions, the \c{COMMON} directive in \c{obj}
4941 also supports default-\c{WRT} specification like \c{EXTERN} does
4942 (explained in \k{objextern}). So you can also declare things like
4944 \c common foo 10:wrt dgroup
4945 \c common bar 16:far 2:wrt data
4946 \c common baz 24:wrt data:6
4949 \H{win32fmt} \i\c{win32}: Microsoft Win32 Object Files
4951 The \c{win32} output format generates Microsoft Win32 object files,
4952 suitable for passing to Microsoft linkers such as \i{Visual C++}.
4953 Note that Borland Win32 compilers do not use this format, but use
4954 \c{obj} instead (see \k{objfmt}).
4956 \c{win32} provides a default output file-name extension of \c{.obj}.
4958 Note that although Microsoft say that Win32 object files follow the
4959 \c{COFF} (Common Object File Format) standard, the object files produced
4960 by Microsoft Win32 compilers are not compatible with COFF linkers
4961 such as DJGPP's, and vice versa. This is due to a difference of
4962 opinion over the precise semantics of PC-relative relocations. To
4963 produce COFF files suitable for DJGPP, use NASM's \c{coff} output
4964 format; conversely, the \c{coff} format does not produce object
4965 files that Win32 linkers can generate correct output from.
4968 \S{win32sect} \c{win32} Extensions to the \c{SECTION}
4969 Directive\I{SECTION, win32 extensions to}
4971 Like the \c{obj} format, \c{win32} allows you to specify additional
4972 information on the \c{SECTION} directive line, to control the type
4973 and properties of sections you declare. Section types and properties
4974 are generated automatically by NASM for the \i{standard section names}
4975 \c{.text}, \c{.data} and \c{.bss}, but may still be overridden by
4978 The available qualifiers are:
4980 \b \c{code}, or equivalently \c{text}, defines the section to be a
4981 code section. This marks the section as readable and executable, but
4982 not writable, and also indicates to the linker that the type of the
4985 \b \c{data} and \c{bss} define the section to be a data section,
4986 analogously to \c{code}. Data sections are marked as readable and
4987 writable, but not executable. \c{data} declares an initialized data
4988 section, whereas \c{bss} declares an uninitialized data section.
4990 \b \c{rdata} declares an initialized data section that is readable
4991 but not writable. Microsoft compilers use this section to place
4994 \b \c{info} defines the section to be an \i{informational section},
4995 which is not included in the executable file by the linker, but may
4996 (for example) pass information \e{to} the linker. For example,
4997 declaring an \c{info}-type section called \i\c{.drectve} causes the
4998 linker to interpret the contents of the section as command-line
5001 \b \c{align=}, used with a trailing number as in \c{obj}, gives the
5002 \I{section alignment, in win32}\I{alignment, in win32
5003 sections}alignment requirements of the section. The maximum you may
5004 specify is 64: the Win32 object file format contains no means to
5005 request a greater section alignment than this. If alignment is not
5006 explicitly specified, the defaults are 16-byte alignment for code
5007 sections, 8-byte alignment for rdata sections and 4-byte alignment
5008 for data (and BSS) sections.
5009 Informational sections get a default alignment of 1 byte (no
5010 alignment), though the value does not matter.
5012 The defaults assumed by NASM if you do not specify the above
5015 \c section .text code align=16
5016 \c section .data data align=4
5017 \c section .rdata rdata align=8
5018 \c section .bss bss align=4
5020 Any other section name is treated by default like \c{.text}.
5022 \S{win32safeseh} \c{win32}: Safe Structured Exception Handling
5024 Among other improvements in Windows XP SP2 and Windows Server 2003
5025 Microsoft has introduced concept of "safe structured exception
5026 handling." General idea is to collect handlers' entry points in
5027 designated read-only table and have alleged entry point verified
5028 against this table prior exception control is passed to the handler. In
5029 order for an executable module to be equipped with such "safe exception
5030 handler table," all object modules on linker command line has to comply
5031 with certain criteria. If one single module among them does not, then
5032 the table in question is omitted and above mentioned run-time checks
5033 will not be performed for application in question. Table omission is by
5034 default silent and therefore can be easily overlooked. One can instruct
5035 linker to refuse to produce binary without such table by passing
5036 \c{/safeseh} command line option.
5038 Without regard to this run-time check merits it's natural to expect
5039 NASM to be capable of generating modules suitable for \c{/safeseh}
5040 linking. From developer's viewpoint the problem is two-fold:
5042 \b how to adapt modules not deploying exception handlers of their own;
5044 \b how to adapt/develop modules utilizing custom exception handling;
5046 Former can be easily achieved with any NASM version by adding following
5047 line to source code:
5051 As of version 2.03 NASM adds this absolute symbol automatically. If
5052 it's not already present to be precise. I.e. if for whatever reason
5053 developer would choose to assign another value in source file, it would
5054 still be perfectly possible.
5056 Registering custom exception handler on the other hand requires certain
5057 "magic." As of version 2.03 additional directive is implemented,
5058 \c{safeseh}, which instructs the assembler to produce appropriately
5059 formatted input data for above mentioned "safe exception handler
5060 table." Its typical use would be:
5063 \c extern _MessageBoxA@16
5064 \c %if __NASM_VERSION_ID__ >= 0x02030000
5065 \c safeseh handler ; register handler as "safe handler"
5068 \c push DWORD 1 ; MB_OKCANCEL
5069 \c push DWORD caption
5072 \c call _MessageBoxA@16
5073 \c sub eax,1 ; incidentally suits as return value
5074 \c ; for exception handler
5078 \c push DWORD handler
5079 \c push DWORD [fs:0]
5080 \c mov DWORD [fs:0],esp ; engage exception handler
5082 \c mov eax,DWORD[eax] ; cause exception
5083 \c pop DWORD [fs:0] ; disengage exception handler
5086 \c text: db 'OK to rethrow, CANCEL to generate core dump',0
5087 \c caption:db 'SEGV',0
5089 \c section .drectve info
5090 \c db '/defaultlib:user32.lib /defaultlib:msvcrt.lib '
5092 As you might imagine, it's perfectly possible to produce .exe binary
5093 with "safe exception handler table" and yet engage unregistered
5094 exception handler. Indeed, handler is engaged by simply manipulating
5095 \c{[fs:0]} location at run-time, something linker has no power over,
5096 run-time that is. It should be explicitly mentioned that such failure
5097 to register handler's entry point with \c{safeseh} directive has
5098 undesired side effect at run-time. If exception is raised and
5099 unregistered handler is to be executed, the application is abruptly
5100 terminated without any notification whatsoever. One can argue that
5101 system could at least have logged some kind "non-safe exception
5102 handler in x.exe at address n" message in event log, but no, literally
5103 no notification is provided and user is left with no clue on what
5104 caused application failure.
5106 Finally, all mentions of linker in this paragraph refer to Microsoft
5107 linker version 7.x and later. Presence of \c{@feat.00} symbol and input
5108 data for "safe exception handler table" causes no backward
5109 incompatibilities and "safeseh" modules generated by NASM 2.03 and
5110 later can still be linked by earlier versions or non-Microsoft linkers.
5113 \H{win64fmt} \i\c{win64}: Microsoft Win64 Object Files
5115 The \c{win64} output format generates Microsoft Win64 object files,
5116 which is nearly 100% identical to the \c{win32} object format (\k{win32fmt})
5117 with the exception that it is meant to target 64-bit code and the x86-64
5118 platform altogether. This object file is used exactly the same as the \c{win32}
5119 object format (\k{win32fmt}), in NASM, with regard to this exception.
5121 \S{win64pic} \c{win64}: Writing Position-Independent Code
5123 While \c{REL} takes good care of RIP-relative addressing, there is one
5124 aspect that is easy to overlook for a Win64 programmer: indirect
5125 references. Consider a switch dispatch table:
5127 \c jmp QWORD[dsptch+rax*8]
5133 Even novice Win64 assembler programmer will soon realize that the code
5134 is not 64-bit savvy. Most notably linker will refuse to link it with
5135 "\c{'ADDR32' relocation to '.text' invalid without
5136 /LARGEADDRESSAWARE:NO}". So [s]he will have to split jmp instruction as
5139 \c lea rbx,[rel dsptch]
5140 \c jmp QWORD[rbx+rax*8]
5142 What happens behind the scene is that effective address in \c{lea} is
5143 encoded relative to instruction pointer, or in perfectly
5144 position-independent manner. But this is only part of the problem!
5145 Trouble is that in .dll context \c{caseN} relocations will make their
5146 way to the final module and might have to be adjusted at .dll load
5147 time. To be specific when it can't be loaded at preferred address. And
5148 when this occurs, pages with such relocations will be rendered private
5149 to current process, which kind of undermines the idea of sharing .dll.
5150 But no worry, it's trivial to fix:
5152 \c lea rbx,[rel dsptch]
5153 \c add rbx,QWORD[rbx+rax*8]
5156 \c dsptch: dq case0-dsptch
5160 NASM version 2.03 and later provides another alternative, \c{wrt
5161 ..imagebase} operator, which returns offset from base address of the
5162 current image, be it .exe or .dll module, therefore the name. For those
5163 acquainted with PE-COFF format base address denotes start of
5164 \c{IMAGE_DOS_HEADER} structure. Here is how to implement switch with
5165 these image-relative references:
5167 \c lea rbx,[rel dsptch]
5168 \c mov eax,DWORD[rbx+rax*4]
5169 \c sub rbx,dsptch wrt ..imagebase
5173 \c dsptch: dd case0 wrt ..imagebase
5174 \c dd case1 wrt ..imagebase
5176 One can argue that the operator is redundant. Indeed, snippet before
5177 last works just fine with any NASM version and is not even Windows
5178 specific... The real reason for implementing \c{wrt ..imagebase} will
5179 become apparent in next paragraph.
5181 It should be noted that \c{wrt ..imagebase} is defined as 32-bit
5184 \c dd label wrt ..imagebase ; ok
5185 \c dq label wrt ..imagebase ; bad
5186 \c mov eax,label wrt ..imagebase ; ok
5187 \c mov rax,label wrt ..imagebase ; bad
5189 \S{win64seh} \c{win64}: Structured Exception Handling
5191 Structured exception handing in Win64 is completely different matter
5192 from Win32. Upon exception program counter value is noted, and
5193 linker-generated table comprising start and end addresses of all the
5194 functions [in given executable module] is traversed and compared to the
5195 saved program counter. Thus so called \c{UNWIND_INFO} structure is
5196 identified. If it's not found, then offending subroutine is assumed to
5197 be "leaf" and just mentioned lookup procedure is attempted for its
5198 caller. In Win64 leaf function is such function that does not call any
5199 other function \e{nor} modifies any Win64 non-volatile registers,
5200 including stack pointer. The latter ensures that it's possible to
5201 identify leaf function's caller by simply pulling the value from the
5204 While majority of subroutines written in assembler are not calling any
5205 other function, requirement for non-volatile registers' immutability
5206 leaves developer with not more than 7 registers and no stack frame,
5207 which is not necessarily what [s]he counted with. Customarily one would
5208 meet the requirement by saving non-volatile registers on stack and
5209 restoring them upon return, so what can go wrong? If [and only if] an
5210 exception is raised at run-time and no \c{UNWIND_INFO} structure is
5211 associated with such "leaf" function, the stack unwind procedure will
5212 expect to find caller's return address on the top of stack immediately
5213 followed by its frame. Given that developer pushed caller's
5214 non-volatile registers on stack, would the value on top point at some
5215 code segment or even addressable space? Well, developer can attempt
5216 copying caller's return address to the top of stack and this would
5217 actually work in some very specific circumstances. But unless developer
5218 can guarantee that these circumstances are always met, it's more
5219 appropriate to assume worst case scenario, i.e. stack unwind procedure
5220 going berserk. Relevant question is what happens then? Application is
5221 abruptly terminated without any notification whatsoever. Just like in
5222 Win32 case, one can argue that system could at least have logged
5223 "unwind procedure went berserk in x.exe at address n" in event log, but
5224 no, no trace of failure is left.
5226 Now, when we understand significance of the \c{UNWIND_INFO} structure,
5227 let's discuss what's in it and/or how it's processed. First of all it
5228 is checked for presence of reference to custom language-specific
5229 exception handler. If there is one, then it's invoked. Depending on the
5230 return value, execution flow is resumed (exception is said to be
5231 "handled"), \e{or} rest of \c{UNWIND_INFO} structure is processed as
5232 following. Beside optional reference to custom handler, it carries
5233 information about current callee's stack frame and where non-volatile
5234 registers are saved. Information is detailed enough to be able to
5235 reconstruct contents of caller's non-volatile registers upon call to
5236 current callee. And so caller's context is reconstructed, and then
5237 unwind procedure is repeated, i.e. another \c{UNWIND_INFO} structure is
5238 associated, this time, with caller's instruction pointer, which is then
5239 checked for presence of reference to language-specific handler, etc.
5240 The procedure is recursively repeated till exception is handled. As
5241 last resort system "handles" it by generating memory core dump and
5242 terminating the application.
5244 As for the moment of this writing NASM unfortunately does not
5245 facilitate generation of above mentioned detailed information about
5246 stack frame layout. But as of version 2.03 it implements building
5247 blocks for generating structures involved in stack unwinding. As
5248 simplest example, here is how to deploy custom exception handler for
5253 \c extern MessageBoxA
5259 \c mov r9,1 ; MB_OKCANCEL
5261 \c sub eax,1 ; incidentally suits as return value
5262 \c ; for exception handler
5268 \c mov rax,QWORD[rax] ; cause exception
5271 \c text: db 'OK to rethrow, CANCEL to generate core dump',0
5272 \c caption:db 'SEGV',0
5274 \c section .pdata rdata align=4
5275 \c dd main wrt ..imagebase
5276 \c dd main_end wrt ..imagebase
5277 \c dd xmain wrt ..imagebase
5278 \c section .xdata rdata align=8
5279 \c xmain: db 9,0,0,0
5280 \c dd handler wrt ..imagebase
5281 \c section .drectve info
5282 \c db '/defaultlib:user32.lib /defaultlib:msvcrt.lib '
5284 What you see in \c{.pdata} section is element of the "table comprising
5285 start and end addresses of function" along with reference to associated
5286 \c{UNWIND_INFO} structure. And what you see in \c{.xdata} section is
5287 \c{UNWIND_INFO} structure describing function with no frame, but with
5288 designated exception handler. References are \e{required} to be
5289 image-relative (which is the real reason for implementing \c{wrt
5290 ..imagebase} operator). It should be noted that \c{rdata align=n}, as
5291 well as \c{wrt ..imagebase}, are optional in these two segments'
5292 contexts, i.e. can be omitted. Latter means that \e{all} 32-bit
5293 references, not only above listed required ones, placed into these two
5294 segments turn out image-relative. Why is it important to understand?
5295 Developer is allowed to append handler-specific data to \c{UNWIND_INFO}
5296 structure, and if [s]he adds a 32-bit reference, then [s]he will have
5297 to remember to adjust its value to obtain the real pointer.
5299 As already mentioned, in Win64 terms leaf function is one that does not
5300 call any other function \e{nor} modifies any non-volatile register,
5301 including stack pointer. But it's not uncommon that assembler
5302 programmer plans to utilize every single register and sometimes even
5303 have variable stack frame. Is there anything one can do with bare
5304 building blocks? I.e. besides manually composing fully-fledged
5305 \c{UNWIND_INFO} structure, which would surely be considered
5306 error-prone? Yes, there is. Recall that exception handler is called
5307 first, before stack layout is analyzed. As it turned out, it's
5308 perfectly possible to manipulate current callee's context in custom
5309 handler in manner that permits further stack unwinding. General idea is
5310 that handler would not actually "handle" the exception, but instead
5311 restore callee's context, as it was at its entry point and thus mimic
5312 leaf function. In other words, handler would simply undertake part of
5313 unwinding procedure. Consider following example:
5316 \c mov rax,rsp ; copy rsp to volatile register
5317 \c push r15 ; save non-volatile registers
5320 \c mov r11,rsp ; prepare variable stack frame
5323 \c mov QWORD[r11],rax ; check for exceptions
5324 \c mov rsp,r11 ; allocate stack frame
5325 \c mov QWORD[rsp],rax ; save original rsp value
5328 \c mov r11,QWORD[rsp] ; pull original rsp value
5329 \c mov rbp,QWORD[r11-24]
5330 \c mov rbx,QWORD[r11-16]
5331 \c mov r15,QWORD[r11-8]
5332 \c mov rsp,r11 ; destroy frame
5335 The keyword is that up to \c{magic_point} original \c{rsp} value
5336 remains in chosen volatile register and no non-volatile register,
5337 except for \c{rsp}, is modified. While past \c{magic_point} \c{rsp}
5338 remains constant till the very end of the \c{function}. In this case
5339 custom language-specific exception handler would look like this:
5341 \c EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
5342 \c CONTEXT *context,DISPATCHER_CONTEXT *disp)
5344 \c if (context->Rip<(ULONG64)magic_point)
5345 \c rsp = (ULONG64 *)context->Rax;
5347 \c { rsp = ((ULONG64 **)context->Rsp)[0];
5348 \c context->Rbp = rsp[-3];
5349 \c context->Rbx = rsp[-2];
5350 \c context->R15 = rsp[-1];
5352 \c context->Rsp = (ULONG64)rsp;
5354 \c memcpy (disp->ContextRecord,context,sizeof(CONTEXT));
5355 \c RtlVirtualUnwind(UNW_FLAG_NHANDLER,disp->ImageBase,
5356 \c dips->ControlPc,disp->FunctionEntry,disp->ContextRecord,
5357 \c &disp->HandlerData,&disp->EstablisherFrame,NULL);
5358 \c return ExceptionContinueSearch;
5361 As custom handler mimics leaf function, corresponding \c{UNWIND_INFO}
5362 structure does not have to contain any information about stack frame
5365 \H{cofffmt} \i\c{coff}: \i{Common Object File Format}
5367 The \c{coff} output type produces \c{COFF} object files suitable for
5368 linking with the \i{DJGPP} linker.
5370 \c{coff} provides a default output file-name extension of \c{.o}.
5372 The \c{coff} format supports the same extensions to the \c{SECTION}
5373 directive as \c{win32} does, except that the \c{align} qualifier and
5374 the \c{info} section type are not supported.
5376 \H{machofmt} \I{Mach-O}\i\c{macho32} and \i\c{macho64}: \i{Mach Object File Format}
5378 The \c{macho32} and \c{macho64} output formts produces \c{Mach-O}
5379 object files suitable for linking with the \i{MacOS X} linker.
5380 \i\c{macho} is a synonym for \c{macho32}.
5382 \c{macho} provides a default output file-name extension of \c{.o}.
5384 \H{elffmt} \i\c{elf32} and \i\c{elf64}: \I{ELF}\I{linux, elf}\i{Executable and Linkable
5385 Format} Object Files
5387 The \c{elf32} and \c{elf64} output formats generate \c{ELF32 and ELF64} (Executable and Linkable Format) object files, as used by Linux as well as \i{Unix System V},
5388 including \i{Solaris x86}, \i{UnixWare} and \i{SCO Unix}. \c{elf}
5389 provides a default output file-name extension of \c{.o}.
5390 \c{elf} is a synonym for \c{elf32}.
5392 \S{abisect} ELF specific directive \i\c{osabi}
5394 The ELF header specifies the application binary interface for the target operating system (OSABI).
5395 This field can be set by using the \c{osabi} directive with the numeric value (0-255) of the target
5396 system. If this directive is not used, the default value will be "UNIX System V ABI" (0) which will work on
5397 most systems which support ELF.
5399 \S{elfsect} \c{elf} Extensions to the \c{SECTION}
5400 Directive\I{SECTION, elf extensions to}
5402 Like the \c{obj} format, \c{elf} allows you to specify additional
5403 information on the \c{SECTION} directive line, to control the type
5404 and properties of sections you declare. Section types and properties
5405 are generated automatically by NASM for the \i{standard section
5406 names}, but may still be
5407 overridden by these qualifiers.
5409 The available qualifiers are:
5411 \b \i\c{alloc} defines the section to be one which is loaded into
5412 memory when the program is run. \i\c{noalloc} defines it to be one
5413 which is not, such as an informational or comment section.
5415 \b \i\c{exec} defines the section to be one which should have execute
5416 permission when the program is run. \i\c{noexec} defines it as one
5419 \b \i\c{write} defines the section to be one which should be writable
5420 when the program is run. \i\c{nowrite} defines it as one which should
5423 \b \i\c{progbits} defines the section to be one with explicit contents
5424 stored in the object file: an ordinary code or data section, for
5425 example, \i\c{nobits} defines the section to be one with no explicit
5426 contents given, such as a BSS section.
5428 \b \c{align=}, used with a trailing number as in \c{obj}, gives the
5429 \I{section alignment, in elf}\I{alignment, in elf sections}alignment
5430 requirements of the section.
5432 \b \i\c{tls} defines the section to be one which contains
5433 thread local variables.
5435 The defaults assumed by NASM if you do not specify the above
5438 \I\c{.text} \I\c{.rodata} \I\c{.lrodata} \I\c{.data} \I\c{.ldata}
5439 \I\c{.bss} \I\c{.lbss} \I\c{.tdata} \I\c{.tbss} \I\c\{.comment}
5441 \c section .text progbits alloc exec nowrite align=16
5442 \c section .rodata progbits alloc noexec nowrite align=4
5443 \c section .lrodata progbits alloc noexec nowrite align=4
5444 \c section .data progbits alloc noexec write align=4
5445 \c section .ldata progbits alloc noexec write align=4
5446 \c section .bss nobits alloc noexec write align=4
5447 \c section .lbss nobits alloc noexec write align=4
5448 \c section .tdata progbits alloc noexec write align=4 tls
5449 \c section .tbss nobits alloc noexec write align=4 tls
5450 \c section .comment progbits noalloc noexec nowrite align=1
5451 \c section other progbits alloc noexec nowrite align=1
5453 (Any section name other than those in the above table
5454 is treated by default like \c{other} in the above table.
5455 Please note that section names are case sensitive.)
5458 \S{elfwrt} \i{Position-Independent Code}\I{PIC}: \c{elf} Special
5459 Symbols and \i\c{WRT}
5461 The \c{ELF} specification contains enough features to allow
5462 position-independent code (PIC) to be written, which makes \i{ELF
5463 shared libraries} very flexible. However, it also means NASM has to
5464 be able to generate a variety of ELF specific relocation types in ELF
5465 object files, if it is to be an assembler which can write PIC.
5467 Since \c{ELF} does not support segment-base references, the \c{WRT}
5468 operator is not used for its normal purpose; therefore NASM's
5469 \c{elf} output format makes use of \c{WRT} for a different purpose,
5470 namely the PIC-specific \I{relocations, PIC-specific}relocation
5473 \c{elf} defines five special symbols which you can use as the
5474 right-hand side of the \c{WRT} operator to obtain PIC relocation
5475 types. They are \i\c{..gotpc}, \i\c{..gotoff}, \i\c{..got},
5476 \i\c{..plt} and \i\c{..sym}. Their functions are summarized here:
5478 \b Referring to the symbol marking the global offset table base
5479 using \c{wrt ..gotpc} will end up giving the distance from the
5480 beginning of the current section to the global offset table.
5481 (\i\c{_GLOBAL_OFFSET_TABLE_} is the standard symbol name used to
5482 refer to the \i{GOT}.) So you would then need to add \i\c{$$} to the
5483 result to get the real address of the GOT.
5485 \b Referring to a location in one of your own sections using \c{wrt
5486 ..gotoff} will give the distance from the beginning of the GOT to
5487 the specified location, so that adding on the address of the GOT
5488 would give the real address of the location you wanted.
5490 \b Referring to an external or global symbol using \c{wrt ..got}
5491 causes the linker to build an entry \e{in} the GOT containing the
5492 address of the symbol, and the reference gives the distance from the
5493 beginning of the GOT to the entry; so you can add on the address of
5494 the GOT, load from the resulting address, and end up with the
5495 address of the symbol.
5497 \b Referring to a procedure name using \c{wrt ..plt} causes the
5498 linker to build a \i{procedure linkage table} entry for the symbol,
5499 and the reference gives the address of the \i{PLT} entry. You can
5500 only use this in contexts which would generate a PC-relative
5501 relocation normally (i.e. as the destination for \c{CALL} or
5502 \c{JMP}), since ELF contains no relocation type to refer to PLT
5505 \b Referring to a symbol name using \c{wrt ..sym} causes NASM to
5506 write an ordinary relocation, but instead of making the relocation
5507 relative to the start of the section and then adding on the offset
5508 to the symbol, it will write a relocation record aimed directly at
5509 the symbol in question. The distinction is a necessary one due to a
5510 peculiarity of the dynamic linker.
5512 A fuller explanation of how to use these relocation types to write
5513 shared libraries entirely in NASM is given in \k{picdll}.
5515 \S{elftls} \i{Thread Local Storage}\I{TLS}: \c{elf} Special
5516 Symbols and \i\c{WRT}
5518 \b In ELF32 mode, referring to an external or global symbol using
5519 \c{wrt ..tlsie} \I\c{..tlsie}
5520 causes the linker to build an entry \e{in} the GOT containing the
5521 offset of the symbol within the TLS block, so you can access the value
5522 of the symbol with code such as:
5524 \c mov eax,[tid wrt ..tlsie]
5528 \b In ELF64 mode, referring to an external or global symbol using
5529 \c{wrt ..gottpoff} \I\c{..gottpoff}
5530 causes the linker to build an entry \e{in} the GOT containing the
5531 offset of the symbol within the TLS block, so you can access the value
5532 of the symbol with code such as:
5534 \c mov rax,[rel tid wrt ..gottpoff]
5538 \S{elfglob} \c{elf} Extensions to the \c{GLOBAL} Directive\I{GLOBAL,
5539 elf extensions to}\I{GLOBAL, aoutb extensions to}
5541 \c{ELF} object files can contain more information about a global symbol
5542 than just its address: they can contain the \I{symbol sizes,
5543 specifying}\I{size, of symbols}size of the symbol and its \I{symbol
5544 types, specifying}\I{type, of symbols}type as well. These are not
5545 merely debugger conveniences, but are actually necessary when the
5546 program being written is a \i{shared library}. NASM therefore
5547 supports some extensions to the \c{GLOBAL} directive, allowing you
5548 to specify these features.
5550 You can specify whether a global variable is a function or a data
5551 object by suffixing the name with a colon and the word
5552 \i\c{function} or \i\c{data}. (\i\c{object} is a synonym for
5553 \c{data}.) For example:
5555 \c global hashlookup:function, hashtable:data
5557 exports the global symbol \c{hashlookup} as a function and
5558 \c{hashtable} as a data object.
5560 Optionally, you can control the ELF visibility of the symbol. Just
5561 add one of the visibility keywords: \i\c{default}, \i\c{internal},
5562 \i\c{hidden}, or \i\c{protected}. The default is \i\c{default} of
5563 course. For example, to make \c{hashlookup} hidden:
5565 \c global hashlookup:function hidden
5567 You can also specify the size of the data associated with the
5568 symbol, as a numeric expression (which may involve labels, and even
5569 forward references) after the type specifier. Like this:
5571 \c global hashtable:data (hashtable.end - hashtable)
5574 \c db this,that,theother ; some data here
5577 This makes NASM automatically calculate the length of the table and
5578 place that information into the \c{ELF} symbol table.
5580 Declaring the type and size of global symbols is necessary when
5581 writing shared library code. For more information, see
5585 \S{elfcomm} \c{elf} Extensions to the \c{COMMON} Directive
5586 \I{COMMON, elf extensions to}
5588 \c{ELF} also allows you to specify alignment requirements \I{common
5589 variables, alignment in elf}\I{alignment, of elf common variables}on
5590 common variables. This is done by putting a number (which must be a
5591 power of two) after the name and size of the common variable,
5592 separated (as usual) by a colon. For example, an array of
5593 doublewords would benefit from 4-byte alignment:
5595 \c common dwordarray 128:4
5597 This declares the total size of the array to be 128 bytes, and
5598 requires that it be aligned on a 4-byte boundary.
5601 \S{elf16} 16-bit code and ELF
5602 \I{ELF, 16-bit code and}
5604 The \c{ELF32} specification doesn't provide relocations for 8- and
5605 16-bit values, but the GNU \c{ld} linker adds these as an extension.
5606 NASM can generate GNU-compatible relocations, to allow 16-bit code to
5607 be linked as ELF using GNU \c{ld}. If NASM is used with the
5608 \c{-w+gnu-elf-extensions} option, a warning is issued when one of
5609 these relocations is generated.
5611 \S{elfdbg} Debug formats and ELF
5612 \I{ELF, Debug formats and}
5614 \c{ELF32} and \c{ELF64} provide debug information in \c{STABS} and \c{DWARF} formats.
5615 Line number information is generated for all executable sections, but please
5616 note that only the ".text" section is executable by default.
5618 \H{aoutfmt} \i\c{aout}: Linux \I{a.out, Linux version}\I{linux, a.out}\c{a.out} Object Files
5620 The \c{aout} format generates \c{a.out} object files, in the form used
5621 by early Linux systems (current Linux systems use ELF, see
5622 \k{elffmt}.) These differ from other \c{a.out} object files in that
5623 the magic number in the first four bytes of the file is
5624 different; also, some implementations of \c{a.out}, for example
5625 NetBSD's, support position-independent code, which Linux's
5626 implementation does not.
5628 \c{a.out} provides a default output file-name extension of \c{.o}.
5630 \c{a.out} is a very simple object format. It supports no special
5631 directives, no special symbols, no use of \c{SEG} or \c{WRT}, and no
5632 extensions to any standard directives. It supports only the three
5633 \i{standard section names} \i\c{.text}, \i\c{.data} and \i\c{.bss}.
5636 \H{aoutfmt} \i\c{aoutb}: \i{NetBSD}/\i{FreeBSD}/\i{OpenBSD}
5637 \I{a.out, BSD version}\c{a.out} Object Files
5639 The \c{aoutb} format generates \c{a.out} object files, in the form
5640 used by the various free \c{BSD Unix} clones, \c{NetBSD}, \c{FreeBSD}
5641 and \c{OpenBSD}. For simple object files, this object format is exactly
5642 the same as \c{aout} except for the magic number in the first four bytes
5643 of the file. However, the \c{aoutb} format supports
5644 \I{PIC}\i{position-independent code} in the same way as the \c{elf}
5645 format, so you can use it to write \c{BSD} \i{shared libraries}.
5647 \c{aoutb} provides a default output file-name extension of \c{.o}.
5649 \c{aoutb} supports no special directives, no special symbols, and
5650 only the three \i{standard section names} \i\c{.text}, \i\c{.data}
5651 and \i\c{.bss}. However, it also supports the same use of \i\c{WRT} as
5652 \c{elf} does, to provide position-independent code relocation types.
5653 See \k{elfwrt} for full documentation of this feature.
5655 \c{aoutb} also supports the same extensions to the \c{GLOBAL}
5656 directive as \c{elf} does: see \k{elfglob} for documentation of
5660 \H{as86fmt} \c{as86}: \i{Minix}/Linux\I{linux, as86} \i\c{as86} Object Files
5662 The Minix/Linux 16-bit assembler \c{as86} has its own non-standard
5663 object file format. Although its companion linker \i\c{ld86} produces
5664 something close to ordinary \c{a.out} binaries as output, the object
5665 file format used to communicate between \c{as86} and \c{ld86} is not
5668 NASM supports this format, just in case it is useful, as \c{as86}.
5669 \c{as86} provides a default output file-name extension of \c{.o}.
5671 \c{as86} is a very simple object format (from the NASM user's point
5672 of view). It supports no special directives, no use of \c{SEG} or \c{WRT},
5673 and no extensions to any standard directives. It supports only the three
5674 \i{standard section names} \i\c{.text}, \i\c{.data} and \i\c{.bss}. The
5675 only special symbol supported is \c{..start}.
5678 \H{rdffmt} \I{RDOFF}\i\c{rdf}: \i{Relocatable Dynamic Object File
5681 The \c{rdf} output format produces \c{RDOFF} object files. \c{RDOFF}
5682 (Relocatable Dynamic Object File Format) is a home-grown object-file
5683 format, designed alongside NASM itself and reflecting in its file
5684 format the internal structure of the assembler.
5686 \c{RDOFF} is not used by any well-known operating systems. Those
5687 writing their own systems, however, may well wish to use \c{RDOFF}
5688 as their object format, on the grounds that it is designed primarily
5689 for simplicity and contains very little file-header bureaucracy.
5691 The Unix NASM archive, and the DOS archive which includes sources,
5692 both contain an \I{rdoff subdirectory}\c{rdoff} subdirectory holding
5693 a set of RDOFF utilities: an RDF linker, an \c{RDF} static-library
5694 manager, an RDF file dump utility, and a program which will load and
5695 execute an RDF executable under Linux.
5697 \c{rdf} supports only the \i{standard section names} \i\c{.text},
5698 \i\c{.data} and \i\c{.bss}.
5701 \S{rdflib} Requiring a Library: The \i\c{LIBRARY} Directive
5703 \c{RDOFF} contains a mechanism for an object file to demand a given
5704 library to be linked to the module, either at load time or run time.
5705 This is done by the \c{LIBRARY} directive, which takes one argument
5706 which is the name of the module:
5708 \c library mylib.rdl
5711 \S{rdfmod} Specifying a Module Name: The \i\c{MODULE} Directive
5713 Special \c{RDOFF} header record is used to store the name of the module.
5714 It can be used, for example, by run-time loader to perform dynamic
5715 linking. \c{MODULE} directive takes one argument which is the name
5720 Note that when you statically link modules and tell linker to strip
5721 the symbols from output file, all module names will be stripped too.
5722 To avoid it, you should start module names with \I{$, prefix}\c{$}, like:
5724 \c module $kernel.core
5727 \S{rdfglob} \c{rdf} Extensions to the \c{GLOBAL} Directive\I{GLOBAL,
5730 \c{RDOFF} global symbols can contain additional information needed by
5731 the static linker. You can mark a global symbol as exported, thus
5732 telling the linker do not strip it from target executable or library
5733 file. Like in \c{ELF}, you can also specify whether an exported symbol
5734 is a procedure (function) or data object.
5736 Suffixing the name with a colon and the word \i\c{export} you make the
5739 \c global sys_open:export
5741 To specify that exported symbol is a procedure (function), you add the
5742 word \i\c{proc} or \i\c{function} after declaration:
5744 \c global sys_open:export proc
5746 Similarly, to specify exported data object, add the word \i\c{data}
5747 or \i\c{object} to the directive:
5749 \c global kernel_ticks:export data
5752 \S{rdfimpt} \c{rdf} Extensions to the \c{EXTERN} Directive\I{EXTERN,
5755 By default the \c{EXTERN} directive in \c{RDOFF} declares a "pure external"
5756 symbol (i.e. the static linker will complain if such a symbol is not resolved).
5757 To declare an "imported" symbol, which must be resolved later during a dynamic
5758 linking phase, \c{RDOFF} offers an additional \c{import} modifier. As in
5759 \c{GLOBAL}, you can also specify whether an imported symbol is a procedure
5760 (function) or data object. For example:
5763 \c extern _open:import
5764 \c extern _printf:import proc
5765 \c extern _errno:import data
5767 Here the directive \c{LIBRARY} is also included, which gives the dynamic linker
5768 a hint as to where to find requested symbols.
5771 \H{dbgfmt} \i\c{dbg}: Debugging Format
5773 The \c{dbg} output format is not built into NASM in the default
5774 configuration. If you are building your own NASM executable from the
5775 sources, you can define \i\c{OF_DBG} in \c{output/outform.h} or on the
5776 compiler command line, and obtain the \c{dbg} output format.
5778 The \c{dbg} format does not output an object file as such; instead,
5779 it outputs a text file which contains a complete list of all the
5780 transactions between the main body of NASM and the output-format
5781 back end module. It is primarily intended to aid people who want to
5782 write their own output drivers, so that they can get a clearer idea
5783 of the various requests the main program makes of the output driver,
5784 and in what order they happen.
5786 For simple files, one can easily use the \c{dbg} format like this:
5788 \c nasm -f dbg filename.asm
5790 which will generate a diagnostic file called \c{filename.dbg}.
5791 However, this will not work well on files which were designed for a
5792 different object format, because each object format defines its own
5793 macros (usually user-level forms of directives), and those macros
5794 will not be defined in the \c{dbg} format. Therefore it can be
5795 useful to run NASM twice, in order to do the preprocessing with the
5796 native object format selected:
5798 \c nasm -e -f rdf -o rdfprog.i rdfprog.asm
5799 \c nasm -a -f dbg rdfprog.i
5801 This preprocesses \c{rdfprog.asm} into \c{rdfprog.i}, keeping the
5802 \c{rdf} object format selected in order to make sure RDF special
5803 directives are converted into primitive form correctly. Then the
5804 preprocessed source is fed through the \c{dbg} format to generate
5805 the final diagnostic output.
5807 This workaround will still typically not work for programs intended
5808 for \c{obj} format, because the \c{obj} \c{SEGMENT} and \c{GROUP}
5809 directives have side effects of defining the segment and group names
5810 as symbols; \c{dbg} will not do this, so the program will not
5811 assemble. You will have to work around that by defining the symbols
5812 yourself (using \c{EXTERN}, for example) if you really need to get a
5813 \c{dbg} trace of an \c{obj}-specific source file.
5815 \c{dbg} accepts any section name and any directives at all, and logs
5816 them all to its output file.
5819 \C{16bit} Writing 16-bit Code (DOS, Windows 3/3.1)
5821 This chapter attempts to cover some of the common issues encountered
5822 when writing 16-bit code to run under \c{MS-DOS} or \c{Windows 3.x}. It
5823 covers how to link programs to produce \c{.EXE} or \c{.COM} files,
5824 how to write \c{.SYS} device drivers, and how to interface assembly
5825 language code with 16-bit C compilers and with Borland Pascal.
5828 \H{exefiles} Producing \i\c{.EXE} Files
5830 Any large program written under DOS needs to be built as a \c{.EXE}
5831 file: only \c{.EXE} files have the necessary internal structure
5832 required to span more than one 64K segment. \i{Windows} programs,
5833 also, have to be built as \c{.EXE} files, since Windows does not
5834 support the \c{.COM} format.
5836 In general, you generate \c{.EXE} files by using the \c{obj} output
5837 format to produce one or more \i\c{.OBJ} files, and then linking
5838 them together using a linker. However, NASM also supports the direct
5839 generation of simple DOS \c{.EXE} files using the \c{bin} output
5840 format (by using \c{DB} and \c{DW} to construct the \c{.EXE} file
5841 header), and a macro package is supplied to do this. Thanks to
5842 Yann Guidon for contributing the code for this.
5844 NASM may also support \c{.EXE} natively as another output format in
5848 \S{objexe} Using the \c{obj} Format To Generate \c{.EXE} Files
5850 This section describes the usual method of generating \c{.EXE} files
5851 by linking \c{.OBJ} files together.
5853 Most 16-bit programming language packages come with a suitable
5854 linker; if you have none of these, there is a free linker called
5855 \i{VAL}\I{linker, free}, available in \c{LZH} archive format from
5856 \W{ftp://x2ftp.oulu.fi/pub/msdos/programming/lang/}\i\c{x2ftp.oulu.fi}.
5857 An LZH archiver can be found at
5858 \W{ftp://ftp.simtel.net/pub/simtelnet/msdos/arcers}\i\c{ftp.simtel.net}.
5859 There is another `free' linker (though this one doesn't come with
5860 sources) called \i{FREELINK}, available from
5861 \W{http://www.pcorner.com/tpc/old/3-101.html}\i\c{www.pcorner.com}.
5862 A third, \i\c{djlink}, written by DJ Delorie, is available at
5863 \W{http://www.delorie.com/djgpp/16bit/djlink/}\i\c{www.delorie.com}.
5864 A fourth linker, \i\c{ALINK}, written by Anthony A.J. Williams, is
5865 available at \W{http://alink.sourceforge.net}\i\c{alink.sourceforge.net}.
5867 When linking several \c{.OBJ} files into a \c{.EXE} file, you should
5868 ensure that exactly one of them has a start point defined (using the
5869 \I{program entry point}\i\c{..start} special symbol defined by the
5870 \c{obj} format: see \k{dotdotstart}). If no module defines a start
5871 point, the linker will not know what value to give the entry-point
5872 field in the output file header; if more than one defines a start
5873 point, the linker will not know \e{which} value to use.
5875 An example of a NASM source file which can be assembled to a
5876 \c{.OBJ} file and linked on its own to a \c{.EXE} is given here. It
5877 demonstrates the basic principles of defining a stack, initialising
5878 the segment registers, and declaring a start point. This file is
5879 also provided in the \I{test subdirectory}\c{test} subdirectory of
5880 the NASM archives, under the name \c{objexe.asm}.
5891 This initial piece of code sets up \c{DS} to point to the data
5892 segment, and initializes \c{SS} and \c{SP} to point to the top of
5893 the provided stack. Notice that interrupts are implicitly disabled
5894 for one instruction after a move into \c{SS}, precisely for this
5895 situation, so that there's no chance of an interrupt occurring
5896 between the loads of \c{SS} and \c{SP} and not having a stack to
5899 Note also that the special symbol \c{..start} is defined at the
5900 beginning of this code, which means that will be the entry point
5901 into the resulting executable file.
5907 The above is the main program: load \c{DS:DX} with a pointer to the
5908 greeting message (\c{hello} is implicitly relative to the segment
5909 \c{data}, which was loaded into \c{DS} in the setup code, so the
5910 full pointer is valid), and call the DOS print-string function.
5915 This terminates the program using another DOS system call.
5919 \c hello: db 'hello, world', 13, 10, '$'
5921 The data segment contains the string we want to display.
5923 \c segment stack stack
5927 The above code declares a stack segment containing 64 bytes of
5928 uninitialized stack space, and points \c{stacktop} at the top of it.
5929 The directive \c{segment stack stack} defines a segment \e{called}
5930 \c{stack}, and also of \e{type} \c{STACK}. The latter is not
5931 necessary to the correct running of the program, but linkers are
5932 likely to issue warnings or errors if your program has no segment of
5935 The above file, when assembled into a \c{.OBJ} file, will link on
5936 its own to a valid \c{.EXE} file, which when run will print `hello,
5937 world' and then exit.
5940 \S{binexe} Using the \c{bin} Format To Generate \c{.EXE} Files
5942 The \c{.EXE} file format is simple enough that it's possible to
5943 build a \c{.EXE} file by writing a pure-binary program and sticking
5944 a 32-byte header on the front. This header is simple enough that it
5945 can be generated using \c{DB} and \c{DW} commands by NASM itself, so
5946 that you can use the \c{bin} output format to directly generate
5949 Included in the NASM archives, in the \I{misc subdirectory}\c{misc}
5950 subdirectory, is a file \i\c{exebin.mac} of macros. It defines three
5951 macros: \i\c{EXE_begin}, \i\c{EXE_stack} and \i\c{EXE_end}.
5953 To produce a \c{.EXE} file using this method, you should start by
5954 using \c{%include} to load the \c{exebin.mac} macro package into
5955 your source file. You should then issue the \c{EXE_begin} macro call
5956 (which takes no arguments) to generate the file header data. Then
5957 write code as normal for the \c{bin} format - you can use all three
5958 standard sections \c{.text}, \c{.data} and \c{.bss}. At the end of
5959 the file you should call the \c{EXE_end} macro (again, no arguments),
5960 which defines some symbols to mark section sizes, and these symbols
5961 are referred to in the header code generated by \c{EXE_begin}.
5963 In this model, the code you end up writing starts at \c{0x100}, just
5964 like a \c{.COM} file - in fact, if you strip off the 32-byte header
5965 from the resulting \c{.EXE} file, you will have a valid \c{.COM}
5966 program. All the segment bases are the same, so you are limited to a
5967 64K program, again just like a \c{.COM} file. Note that an \c{ORG}
5968 directive is issued by the \c{EXE_begin} macro, so you should not
5969 explicitly issue one of your own.
5971 You can't directly refer to your segment base value, unfortunately,
5972 since this would require a relocation in the header, and things
5973 would get a lot more complicated. So you should get your segment
5974 base by copying it out of \c{CS} instead.
5976 On entry to your \c{.EXE} file, \c{SS:SP} are already set up to
5977 point to the top of a 2Kb stack. You can adjust the default stack
5978 size of 2Kb by calling the \c{EXE_stack} macro. For example, to
5979 change the stack size of your program to 64 bytes, you would call
5982 A sample program which generates a \c{.EXE} file in this way is
5983 given in the \c{test} subdirectory of the NASM archive, as
5987 \H{comfiles} Producing \i\c{.COM} Files
5989 While large DOS programs must be written as \c{.EXE} files, small
5990 ones are often better written as \c{.COM} files. \c{.COM} files are
5991 pure binary, and therefore most easily produced using the \c{bin}
5995 \S{combinfmt} Using the \c{bin} Format To Generate \c{.COM} Files
5997 \c{.COM} files expect to be loaded at offset \c{100h} into their
5998 segment (though the segment may change). Execution then begins at
5999 \I\c{ORG}\c{100h}, i.e. right at the start of the program. So to
6000 write a \c{.COM} program, you would create a source file looking
6008 \c ; put your code here
6012 \c ; put data items here
6016 \c ; put uninitialized data here
6018 The \c{bin} format puts the \c{.text} section first in the file, so
6019 you can declare data or BSS items before beginning to write code if
6020 you want to and the code will still end up at the front of the file
6023 The BSS (uninitialized data) section does not take up space in the
6024 \c{.COM} file itself: instead, addresses of BSS items are resolved
6025 to point at space beyond the end of the file, on the grounds that
6026 this will be free memory when the program is run. Therefore you
6027 should not rely on your BSS being initialized to all zeros when you
6030 To assemble the above program, you should use a command line like
6032 \c nasm myprog.asm -fbin -o myprog.com
6034 The \c{bin} format would produce a file called \c{myprog} if no
6035 explicit output file name were specified, so you have to override it
6036 and give the desired file name.
6039 \S{comobjfmt} Using the \c{obj} Format To Generate \c{.COM} Files
6041 If you are writing a \c{.COM} program as more than one module, you
6042 may wish to assemble several \c{.OBJ} files and link them together
6043 into a \c{.COM} program. You can do this, provided you have a linker
6044 capable of outputting \c{.COM} files directly (\i{TLINK} does this),
6045 or alternatively a converter program such as \i\c{EXE2BIN} to
6046 transform the \c{.EXE} file output from the linker into a \c{.COM}
6049 If you do this, you need to take care of several things:
6051 \b The first object file containing code should start its code
6052 segment with a line like \c{RESB 100h}. This is to ensure that the
6053 code begins at offset \c{100h} relative to the beginning of the code
6054 segment, so that the linker or converter program does not have to
6055 adjust address references within the file when generating the
6056 \c{.COM} file. Other assemblers use an \i\c{ORG} directive for this
6057 purpose, but \c{ORG} in NASM is a format-specific directive to the
6058 \c{bin} output format, and does not mean the same thing as it does
6059 in MASM-compatible assemblers.
6061 \b You don't need to define a stack segment.
6063 \b All your segments should be in the same group, so that every time
6064 your code or data references a symbol offset, all offsets are
6065 relative to the same segment base. This is because, when a \c{.COM}
6066 file is loaded, all the segment registers contain the same value.
6069 \H{sysfiles} Producing \i\c{.SYS} Files
6071 \i{MS-DOS device drivers} - \c{.SYS} files - are pure binary files,
6072 similar to \c{.COM} files, except that they start at origin zero
6073 rather than \c{100h}. Therefore, if you are writing a device driver
6074 using the \c{bin} format, you do not need the \c{ORG} directive,
6075 since the default origin for \c{bin} is zero. Similarly, if you are
6076 using \c{obj}, you do not need the \c{RESB 100h} at the start of
6079 \c{.SYS} files start with a header structure, containing pointers to
6080 the various routines inside the driver which do the work. This
6081 structure should be defined at the start of the code segment, even
6082 though it is not actually code.
6084 For more information on the format of \c{.SYS} files, and the data
6085 which has to go in the header structure, a list of books is given in
6086 the Frequently Asked Questions list for the newsgroup
6087 \W{news:comp.os.msdos.programmer}\i\c{comp.os.msdos.programmer}.
6090 \H{16c} Interfacing to 16-bit C Programs
6092 This section covers the basics of writing assembly routines that
6093 call, or are called from, C programs. To do this, you would
6094 typically write an assembly module as a \c{.OBJ} file, and link it
6095 with your C modules to produce a \i{mixed-language program}.
6098 \S{16cunder} External Symbol Names
6100 \I{C symbol names}\I{underscore, in C symbols}C compilers have the
6101 convention that the names of all global symbols (functions or data)
6102 they define are formed by prefixing an underscore to the name as it
6103 appears in the C program. So, for example, the function a C
6104 programmer thinks of as \c{printf} appears to an assembly language
6105 programmer as \c{_printf}. This means that in your assembly
6106 programs, you can define symbols without a leading underscore, and
6107 not have to worry about name clashes with C symbols.
6109 If you find the underscores inconvenient, you can define macros to
6110 replace the \c{GLOBAL} and \c{EXTERN} directives as follows:
6126 (These forms of the macros only take one argument at a time; a
6127 \c{%rep} construct could solve this.)
6129 If you then declare an external like this:
6133 then the macro will expand it as
6136 \c %define printf _printf
6138 Thereafter, you can reference \c{printf} as if it was a symbol, and
6139 the preprocessor will put the leading underscore on where necessary.
6141 The \c{cglobal} macro works similarly. You must use \c{cglobal}
6142 before defining the symbol in question, but you would have had to do
6143 that anyway if you used \c{GLOBAL}.
6145 Also see \k{opt-pfix}.
6147 \S{16cmodels} \i{Memory Models}
6149 NASM contains no mechanism to support the various C memory models
6150 directly; you have to keep track yourself of which one you are
6151 writing for. This means you have to keep track of the following
6154 \b In models using a single code segment (tiny, small and compact),
6155 functions are near. This means that function pointers, when stored
6156 in data segments or pushed on the stack as function arguments, are
6157 16 bits long and contain only an offset field (the \c{CS} register
6158 never changes its value, and always gives the segment part of the
6159 full function address), and that functions are called using ordinary
6160 near \c{CALL} instructions and return using \c{RETN} (which, in
6161 NASM, is synonymous with \c{RET} anyway). This means both that you
6162 should write your own routines to return with \c{RETN}, and that you
6163 should call external C routines with near \c{CALL} instructions.
6165 \b In models using more than one code segment (medium, large and
6166 huge), functions are far. This means that function pointers are 32
6167 bits long (consisting of a 16-bit offset followed by a 16-bit
6168 segment), and that functions are called using \c{CALL FAR} (or
6169 \c{CALL seg:offset}) and return using \c{RETF}. Again, you should
6170 therefore write your own routines to return with \c{RETF} and use
6171 \c{CALL FAR} to call external routines.
6173 \b In models using a single data segment (tiny, small and medium),
6174 data pointers are 16 bits long, containing only an offset field (the
6175 \c{DS} register doesn't change its value, and always gives the
6176 segment part of the full data item address).
6178 \b In models using more than one data segment (compact, large and
6179 huge), data pointers are 32 bits long, consisting of a 16-bit offset
6180 followed by a 16-bit segment. You should still be careful not to
6181 modify \c{DS} in your routines without restoring it afterwards, but
6182 \c{ES} is free for you to use to access the contents of 32-bit data
6183 pointers you are passed.
6185 \b The huge memory model allows single data items to exceed 64K in
6186 size. In all other memory models, you can access the whole of a data
6187 item just by doing arithmetic on the offset field of the pointer you
6188 are given, whether a segment field is present or not; in huge model,
6189 you have to be more careful of your pointer arithmetic.
6191 \b In most memory models, there is a \e{default} data segment, whose
6192 segment address is kept in \c{DS} throughout the program. This data
6193 segment is typically the same segment as the stack, kept in \c{SS},
6194 so that functions' local variables (which are stored on the stack)
6195 and global data items can both be accessed easily without changing
6196 \c{DS}. Particularly large data items are typically stored in other
6197 segments. However, some memory models (though not the standard
6198 ones, usually) allow the assumption that \c{SS} and \c{DS} hold the
6199 same value to be removed. Be careful about functions' local
6200 variables in this latter case.
6202 In models with a single code segment, the segment is called
6203 \i\c{_TEXT}, so your code segment must also go by this name in order
6204 to be linked into the same place as the main code segment. In models
6205 with a single data segment, or with a default data segment, it is
6209 \S{16cfunc} Function Definitions and Function Calls
6211 \I{functions, C calling convention}The \i{C calling convention} in
6212 16-bit programs is as follows. In the following description, the
6213 words \e{caller} and \e{callee} are used to denote the function
6214 doing the calling and the function which gets called.
6216 \b The caller pushes the function's parameters on the stack, one
6217 after another, in reverse order (right to left, so that the first
6218 argument specified to the function is pushed last).
6220 \b The caller then executes a \c{CALL} instruction to pass control
6221 to the callee. This \c{CALL} is either near or far depending on the
6224 \b The callee receives control, and typically (although this is not
6225 actually necessary, in functions which do not need to access their
6226 parameters) starts by saving the value of \c{SP} in \c{BP} so as to
6227 be able to use \c{BP} as a base pointer to find its parameters on
6228 the stack. However, the caller was probably doing this too, so part
6229 of the calling convention states that \c{BP} must be preserved by
6230 any C function. Hence the callee, if it is going to set up \c{BP} as
6231 a \i\e{frame pointer}, must push the previous value first.
6233 \b The callee may then access its parameters relative to \c{BP}.
6234 The word at \c{[BP]} holds the previous value of \c{BP} as it was
6235 pushed; the next word, at \c{[BP+2]}, holds the offset part of the
6236 return address, pushed implicitly by \c{CALL}. In a small-model
6237 (near) function, the parameters start after that, at \c{[BP+4]}; in
6238 a large-model (far) function, the segment part of the return address
6239 lives at \c{[BP+4]}, and the parameters begin at \c{[BP+6]}. The
6240 leftmost parameter of the function, since it was pushed last, is
6241 accessible at this offset from \c{BP}; the others follow, at
6242 successively greater offsets. Thus, in a function such as \c{printf}
6243 which takes a variable number of parameters, the pushing of the
6244 parameters in reverse order means that the function knows where to
6245 find its first parameter, which tells it the number and type of the
6248 \b The callee may also wish to decrease \c{SP} further, so as to
6249 allocate space on the stack for local variables, which will then be
6250 accessible at negative offsets from \c{BP}.
6252 \b The callee, if it wishes to return a value to the caller, should
6253 leave the value in \c{AL}, \c{AX} or \c{DX:AX} depending on the size
6254 of the value. Floating-point results are sometimes (depending on the
6255 compiler) returned in \c{ST0}.
6257 \b Once the callee has finished processing, it restores \c{SP} from
6258 \c{BP} if it had allocated local stack space, then pops the previous
6259 value of \c{BP}, and returns via \c{RETN} or \c{RETF} depending on
6262 \b When the caller regains control from the callee, the function
6263 parameters are still on the stack, so it typically adds an immediate
6264 constant to \c{SP} to remove them (instead of executing a number of
6265 slow \c{POP} instructions). Thus, if a function is accidentally
6266 called with the wrong number of parameters due to a prototype
6267 mismatch, the stack will still be returned to a sensible state since
6268 the caller, which \e{knows} how many parameters it pushed, does the
6271 It is instructive to compare this calling convention with that for
6272 Pascal programs (described in \k{16bpfunc}). Pascal has a simpler
6273 convention, since no functions have variable numbers of parameters.
6274 Therefore the callee knows how many parameters it should have been
6275 passed, and is able to deallocate them from the stack itself by
6276 passing an immediate argument to the \c{RET} or \c{RETF}
6277 instruction, so the caller does not have to do it. Also, the
6278 parameters are pushed in left-to-right order, not right-to-left,
6279 which means that a compiler can give better guarantees about
6280 sequence points without performance suffering.
6282 Thus, you would define a function in C style in the following way.
6283 The following example is for small model:
6290 \c sub sp,0x40 ; 64 bytes of local stack space
6291 \c mov bx,[bp+4] ; first parameter to function
6295 \c mov sp,bp ; undo "sub sp,0x40" above
6299 For a large-model function, you would replace \c{RET} by \c{RETF},
6300 and look for the first parameter at \c{[BP+6]} instead of
6301 \c{[BP+4]}. Of course, if one of the parameters is a pointer, then
6302 the offsets of \e{subsequent} parameters will change depending on
6303 the memory model as well: far pointers take up four bytes on the
6304 stack when passed as a parameter, whereas near pointers take up two.
6306 At the other end of the process, to call a C function from your
6307 assembly code, you would do something like this:
6311 \c ; and then, further down...
6313 \c push word [myint] ; one of my integer variables
6314 \c push word mystring ; pointer into my data segment
6316 \c add sp,byte 4 ; `byte' saves space
6318 \c ; then those data items...
6323 \c mystring db 'This number -> %d <- should be 1234',10,0
6325 This piece of code is the small-model assembly equivalent of the C
6328 \c int myint = 1234;
6329 \c printf("This number -> %d <- should be 1234\n", myint);
6331 In large model, the function-call code might look more like this. In
6332 this example, it is assumed that \c{DS} already holds the segment
6333 base of the segment \c{_DATA}. If not, you would have to initialize
6336 \c push word [myint]
6337 \c push word seg mystring ; Now push the segment, and...
6338 \c push word mystring ; ... offset of "mystring"
6342 The integer value still takes up one word on the stack, since large
6343 model does not affect the size of the \c{int} data type. The first
6344 argument (pushed last) to \c{printf}, however, is a data pointer,
6345 and therefore has to contain a segment and offset part. The segment
6346 should be stored second in memory, and therefore must be pushed
6347 first. (Of course, \c{PUSH DS} would have been a shorter instruction
6348 than \c{PUSH WORD SEG mystring}, if \c{DS} was set up as the above
6349 example assumed.) Then the actual call becomes a far call, since
6350 functions expect far calls in large model; and \c{SP} has to be
6351 increased by 6 rather than 4 afterwards to make up for the extra
6355 \S{16cdata} Accessing Data Items
6357 To get at the contents of C variables, or to declare variables which
6358 C can access, you need only declare the names as \c{GLOBAL} or
6359 \c{EXTERN}. (Again, the names require leading underscores, as stated
6360 in \k{16cunder}.) Thus, a C variable declared as \c{int i} can be
6361 accessed from assembler as
6367 And to declare your own integer variable which C programs can access
6368 as \c{extern int j}, you do this (making sure you are assembling in
6369 the \c{_DATA} segment, if necessary):
6375 To access a C array, you need to know the size of the components of
6376 the array. For example, \c{int} variables are two bytes long, so if
6377 a C program declares an array as \c{int a[10]}, you can access
6378 \c{a[3]} by coding \c{mov ax,[_a+6]}. (The byte offset 6 is obtained
6379 by multiplying the desired array index, 3, by the size of the array
6380 element, 2.) The sizes of the C base types in 16-bit compilers are:
6381 1 for \c{char}, 2 for \c{short} and \c{int}, 4 for \c{long} and
6382 \c{float}, and 8 for \c{double}.
6384 To access a C \i{data structure}, you need to know the offset from
6385 the base of the structure to the field you are interested in. You
6386 can either do this by converting the C structure definition into a
6387 NASM structure definition (using \i\c{STRUC}), or by calculating the
6388 one offset and using just that.
6390 To do either of these, you should read your C compiler's manual to
6391 find out how it organizes data structures. NASM gives no special
6392 alignment to structure members in its own \c{STRUC} macro, so you
6393 have to specify alignment yourself if the C compiler generates it.
6394 Typically, you might find that a structure like
6401 might be four bytes long rather than three, since the \c{int} field
6402 would be aligned to a two-byte boundary. However, this sort of
6403 feature tends to be a configurable option in the C compiler, either
6404 using command-line options or \c{#pragma} lines, so you have to find
6405 out how your own compiler does it.
6408 \S{16cmacro} \i\c{c16.mac}: Helper Macros for the 16-bit C Interface
6410 Included in the NASM archives, in the \I{misc subdirectory}\c{misc}
6411 directory, is a file \c{c16.mac} of macros. It defines three macros:
6412 \i\c{proc}, \i\c{arg} and \i\c{endproc}. These are intended to be
6413 used for C-style procedure definitions, and they automate a lot of
6414 the work involved in keeping track of the calling convention.
6416 (An alternative, TASM compatible form of \c{arg} is also now built
6417 into NASM's preprocessor. See \k{stackrel} for details.)
6419 An example of an assembly function using the macro set is given
6426 \c mov ax,[bp + %$i]
6427 \c mov bx,[bp + %$j]
6432 This defines \c{_nearproc} to be a procedure taking two arguments,
6433 the first (\c{i}) an integer and the second (\c{j}) a pointer to an
6434 integer. It returns \c{i + *j}.
6436 Note that the \c{arg} macro has an \c{EQU} as the first line of its
6437 expansion, and since the label before the macro call gets prepended
6438 to the first line of the expanded macro, the \c{EQU} works, defining
6439 \c{%$i} to be an offset from \c{BP}. A context-local variable is
6440 used, local to the context pushed by the \c{proc} macro and popped
6441 by the \c{endproc} macro, so that the same argument name can be used
6442 in later procedures. Of course, you don't \e{have} to do that.
6444 The macro set produces code for near functions (tiny, small and
6445 compact-model code) by default. You can have it generate far
6446 functions (medium, large and huge-model code) by means of coding
6447 \I\c{FARCODE}\c{%define FARCODE}. This changes the kind of return
6448 instruction generated by \c{endproc}, and also changes the starting
6449 point for the argument offsets. The macro set contains no intrinsic
6450 dependency on whether data pointers are far or not.
6452 \c{arg} can take an optional parameter, giving the size of the
6453 argument. If no size is given, 2 is assumed, since it is likely that
6454 many function parameters will be of type \c{int}.
6456 The large-model equivalent of the above function would look like this:
6464 \c mov ax,[bp + %$i]
6465 \c mov bx,[bp + %$j]
6466 \c mov es,[bp + %$j + 2]
6471 This makes use of the argument to the \c{arg} macro to define a
6472 parameter of size 4, because \c{j} is now a far pointer. When we
6473 load from \c{j}, we must load a segment and an offset.
6476 \H{16bp} Interfacing to \i{Borland Pascal} Programs
6478 Interfacing to Borland Pascal programs is similar in concept to
6479 interfacing to 16-bit C programs. The differences are:
6481 \b The leading underscore required for interfacing to C programs is
6482 not required for Pascal.
6484 \b The memory model is always large: functions are far, data
6485 pointers are far, and no data item can be more than 64K long.
6486 (Actually, some functions are near, but only those functions that
6487 are local to a Pascal unit and never called from outside it. All
6488 assembly functions that Pascal calls, and all Pascal functions that
6489 assembly routines are able to call, are far.) However, all static
6490 data declared in a Pascal program goes into the default data
6491 segment, which is the one whose segment address will be in \c{DS}
6492 when control is passed to your assembly code. The only things that
6493 do not live in the default data segment are local variables (they
6494 live in the stack segment) and dynamically allocated variables. All
6495 data \e{pointers}, however, are far.
6497 \b The function calling convention is different - described below.
6499 \b Some data types, such as strings, are stored differently.
6501 \b There are restrictions on the segment names you are allowed to
6502 use - Borland Pascal will ignore code or data declared in a segment
6503 it doesn't like the name of. The restrictions are described below.
6506 \S{16bpfunc} The Pascal Calling Convention
6508 \I{functions, Pascal calling convention}\I{Pascal calling
6509 convention}The 16-bit Pascal calling convention is as follows. In
6510 the following description, the words \e{caller} and \e{callee} are
6511 used to denote the function doing the calling and the function which
6514 \b The caller pushes the function's parameters on the stack, one
6515 after another, in normal order (left to right, so that the first
6516 argument specified to the function is pushed first).
6518 \b The caller then executes a far \c{CALL} instruction to pass
6519 control to the callee.
6521 \b The callee receives control, and typically (although this is not
6522 actually necessary, in functions which do not need to access their
6523 parameters) starts by saving the value of \c{SP} in \c{BP} so as to
6524 be able to use \c{BP} as a base pointer to find its parameters on
6525 the stack. However, the caller was probably doing this too, so part
6526 of the calling convention states that \c{BP} must be preserved by
6527 any function. Hence the callee, if it is going to set up \c{BP} as a
6528 \i{frame pointer}, must push the previous value first.
6530 \b The callee may then access its parameters relative to \c{BP}.
6531 The word at \c{[BP]} holds the previous value of \c{BP} as it was
6532 pushed. The next word, at \c{[BP+2]}, holds the offset part of the
6533 return address, and the next one at \c{[BP+4]} the segment part. The
6534 parameters begin at \c{[BP+6]}. The rightmost parameter of the
6535 function, since it was pushed last, is accessible at this offset
6536 from \c{BP}; the others follow, at successively greater offsets.
6538 \b The callee may also wish to decrease \c{SP} further, so as to
6539 allocate space on the stack for local variables, which will then be
6540 accessible at negative offsets from \c{BP}.
6542 \b The callee, if it wishes to return a value to the caller, should
6543 leave the value in \c{AL}, \c{AX} or \c{DX:AX} depending on the size
6544 of the value. Floating-point results are returned in \c{ST0}.
6545 Results of type \c{Real} (Borland's own custom floating-point data
6546 type, not handled directly by the FPU) are returned in \c{DX:BX:AX}.
6547 To return a result of type \c{String}, the caller pushes a pointer
6548 to a temporary string before pushing the parameters, and the callee
6549 places the returned string value at that location. The pointer is
6550 not a parameter, and should not be removed from the stack by the
6551 \c{RETF} instruction.
6553 \b Once the callee has finished processing, it restores \c{SP} from
6554 \c{BP} if it had allocated local stack space, then pops the previous
6555 value of \c{BP}, and returns via \c{RETF}. It uses the form of
6556 \c{RETF} with an immediate parameter, giving the number of bytes
6557 taken up by the parameters on the stack. This causes the parameters
6558 to be removed from the stack as a side effect of the return
6561 \b When the caller regains control from the callee, the function
6562 parameters have already been removed from the stack, so it needs to
6565 Thus, you would define a function in Pascal style, taking two
6566 \c{Integer}-type parameters, in the following way:
6572 \c sub sp,0x40 ; 64 bytes of local stack space
6573 \c mov bx,[bp+8] ; first parameter to function
6574 \c mov bx,[bp+6] ; second parameter to function
6578 \c mov sp,bp ; undo "sub sp,0x40" above
6580 \c retf 4 ; total size of params is 4
6582 At the other end of the process, to call a Pascal function from your
6583 assembly code, you would do something like this:
6587 \c ; and then, further down...
6589 \c push word seg mystring ; Now push the segment, and...
6590 \c push word mystring ; ... offset of "mystring"
6591 \c push word [myint] ; one of my variables
6592 \c call far SomeFunc
6594 This is equivalent to the Pascal code
6596 \c procedure SomeFunc(String: PChar; Int: Integer);
6597 \c SomeFunc(@mystring, myint);
6600 \S{16bpseg} Borland Pascal \I{segment names, Borland Pascal}Segment
6603 Since Borland Pascal's internal unit file format is completely
6604 different from \c{OBJ}, it only makes a very sketchy job of actually
6605 reading and understanding the various information contained in a
6606 real \c{OBJ} file when it links that in. Therefore an object file
6607 intended to be linked to a Pascal program must obey a number of
6610 \b Procedures and functions must be in a segment whose name is
6611 either \c{CODE}, \c{CSEG}, or something ending in \c{_TEXT}.
6613 \b initialized data must be in a segment whose name is either
6614 \c{CONST} or something ending in \c{_DATA}.
6616 \b Uninitialized data must be in a segment whose name is either
6617 \c{DATA}, \c{DSEG}, or something ending in \c{_BSS}.
6619 \b Any other segments in the object file are completely ignored.
6620 \c{GROUP} directives and segment attributes are also ignored.
6623 \S{16bpmacro} Using \i\c{c16.mac} With Pascal Programs
6625 The \c{c16.mac} macro package, described in \k{16cmacro}, can also
6626 be used to simplify writing functions to be called from Pascal
6627 programs, if you code \I\c{PASCAL}\c{%define PASCAL}. This
6628 definition ensures that functions are far (it implies
6629 \i\c{FARCODE}), and also causes procedure return instructions to be
6630 generated with an operand.
6632 Defining \c{PASCAL} does not change the code which calculates the
6633 argument offsets; you must declare your function's arguments in
6634 reverse order. For example:
6642 \c mov ax,[bp + %$i]
6643 \c mov bx,[bp + %$j]
6644 \c mov es,[bp + %$j + 2]
6649 This defines the same routine, conceptually, as the example in
6650 \k{16cmacro}: it defines a function taking two arguments, an integer
6651 and a pointer to an integer, which returns the sum of the integer
6652 and the contents of the pointer. The only difference between this
6653 code and the large-model C version is that \c{PASCAL} is defined
6654 instead of \c{FARCODE}, and that the arguments are declared in
6658 \C{32bit} Writing 32-bit Code (Unix, Win32, DJGPP)
6660 This chapter attempts to cover some of the common issues involved
6661 when writing 32-bit code, to run under \i{Win32} or Unix, or to be
6662 linked with C code generated by a Unix-style C compiler such as
6663 \i{DJGPP}. It covers how to write assembly code to interface with
6664 32-bit C routines, and how to write position-independent code for
6667 Almost all 32-bit code, and in particular all code running under
6668 \c{Win32}, \c{DJGPP} or any of the PC Unix variants, runs in \I{flat
6669 memory model}\e{flat} memory model. This means that the segment registers
6670 and paging have already been set up to give you the same 32-bit 4Gb
6671 address space no matter what segment you work relative to, and that
6672 you should ignore all segment registers completely. When writing
6673 flat-model application code, you never need to use a segment
6674 override or modify any segment register, and the code-section
6675 addresses you pass to \c{CALL} and \c{JMP} live in the same address
6676 space as the data-section addresses you access your variables by and
6677 the stack-section addresses you access local variables and procedure
6678 parameters by. Every address is 32 bits long and contains only an
6682 \H{32c} Interfacing to 32-bit C Programs
6684 A lot of the discussion in \k{16c}, about interfacing to 16-bit C
6685 programs, still applies when working in 32 bits. The absence of
6686 memory models or segmentation worries simplifies things a lot.
6689 \S{32cunder} External Symbol Names
6691 Most 32-bit C compilers share the convention used by 16-bit
6692 compilers, that the names of all global symbols (functions or data)
6693 they define are formed by prefixing an underscore to the name as it
6694 appears in the C program. However, not all of them do: the \c{ELF}
6695 specification states that C symbols do \e{not} have a leading
6696 underscore on their assembly-language names.
6698 The older Linux \c{a.out} C compiler, all \c{Win32} compilers,
6699 \c{DJGPP}, and \c{NetBSD} and \c{FreeBSD}, all use the leading
6700 underscore; for these compilers, the macros \c{cextern} and
6701 \c{cglobal}, as given in \k{16cunder}, will still work. For \c{ELF},
6702 though, the leading underscore should not be used.
6704 See also \k{opt-pfix}.
6706 \S{32cfunc} Function Definitions and Function Calls
6708 \I{functions, C calling convention}The \i{C calling convention}
6709 in 32-bit programs is as follows. In the following description,
6710 the words \e{caller} and \e{callee} are used to denote
6711 the function doing the calling and the function which gets called.
6713 \b The caller pushes the function's parameters on the stack, one
6714 after another, in reverse order (right to left, so that the first
6715 argument specified to the function is pushed last).
6717 \b The caller then executes a near \c{CALL} instruction to pass
6718 control to the callee.
6720 \b The callee receives control, and typically (although this is not
6721 actually necessary, in functions which do not need to access their
6722 parameters) starts by saving the value of \c{ESP} in \c{EBP} so as
6723 to be able to use \c{EBP} as a base pointer to find its parameters
6724 on the stack. However, the caller was probably doing this too, so
6725 part of the calling convention states that \c{EBP} must be preserved
6726 by any C function. Hence the callee, if it is going to set up
6727 \c{EBP} as a \i{frame pointer}, must push the previous value first.
6729 \b The callee may then access its parameters relative to \c{EBP}.
6730 The doubleword at \c{[EBP]} holds the previous value of \c{EBP} as
6731 it was pushed; the next doubleword, at \c{[EBP+4]}, holds the return
6732 address, pushed implicitly by \c{CALL}. The parameters start after
6733 that, at \c{[EBP+8]}. The leftmost parameter of the function, since
6734 it was pushed last, is accessible at this offset from \c{EBP}; the
6735 others follow, at successively greater offsets. Thus, in a function
6736 such as \c{printf} which takes a variable number of parameters, the
6737 pushing of the parameters in reverse order means that the function
6738 knows where to find its first parameter, which tells it the number
6739 and type of the remaining ones.
6741 \b The callee may also wish to decrease \c{ESP} further, so as to
6742 allocate space on the stack for local variables, which will then be
6743 accessible at negative offsets from \c{EBP}.
6745 \b The callee, if it wishes to return a value to the caller, should
6746 leave the value in \c{AL}, \c{AX} or \c{EAX} depending on the size
6747 of the value. Floating-point results are typically returned in
6750 \b Once the callee has finished processing, it restores \c{ESP} from
6751 \c{EBP} if it had allocated local stack space, then pops the previous
6752 value of \c{EBP}, and returns via \c{RET} (equivalently, \c{RETN}).
6754 \b When the caller regains control from the callee, the function
6755 parameters are still on the stack, so it typically adds an immediate
6756 constant to \c{ESP} to remove them (instead of executing a number of
6757 slow \c{POP} instructions). Thus, if a function is accidentally
6758 called with the wrong number of parameters due to a prototype
6759 mismatch, the stack will still be returned to a sensible state since
6760 the caller, which \e{knows} how many parameters it pushed, does the
6763 There is an alternative calling convention used by Win32 programs
6764 for Windows API calls, and also for functions called \e{by} the
6765 Windows API such as window procedures: they follow what Microsoft
6766 calls the \c{__stdcall} convention. This is slightly closer to the
6767 Pascal convention, in that the callee clears the stack by passing a
6768 parameter to the \c{RET} instruction. However, the parameters are
6769 still pushed in right-to-left order.
6771 Thus, you would define a function in C style in the following way:
6778 \c sub esp,0x40 ; 64 bytes of local stack space
6779 \c mov ebx,[ebp+8] ; first parameter to function
6783 \c leave ; mov esp,ebp / pop ebp
6786 At the other end of the process, to call a C function from your
6787 assembly code, you would do something like this:
6791 \c ; and then, further down...
6793 \c push dword [myint] ; one of my integer variables
6794 \c push dword mystring ; pointer into my data segment
6796 \c add esp,byte 8 ; `byte' saves space
6798 \c ; then those data items...
6803 \c mystring db 'This number -> %d <- should be 1234',10,0
6805 This piece of code is the assembly equivalent of the C code
6807 \c int myint = 1234;
6808 \c printf("This number -> %d <- should be 1234\n", myint);
6811 \S{32cdata} Accessing Data Items
6813 To get at the contents of C variables, or to declare variables which
6814 C can access, you need only declare the names as \c{GLOBAL} or
6815 \c{EXTERN}. (Again, the names require leading underscores, as stated
6816 in \k{32cunder}.) Thus, a C variable declared as \c{int i} can be
6817 accessed from assembler as
6822 And to declare your own integer variable which C programs can access
6823 as \c{extern int j}, you do this (making sure you are assembling in
6824 the \c{_DATA} segment, if necessary):
6829 To access a C array, you need to know the size of the components of
6830 the array. For example, \c{int} variables are four bytes long, so if
6831 a C program declares an array as \c{int a[10]}, you can access
6832 \c{a[3]} by coding \c{mov ax,[_a+12]}. (The byte offset 12 is obtained
6833 by multiplying the desired array index, 3, by the size of the array
6834 element, 4.) The sizes of the C base types in 32-bit compilers are:
6835 1 for \c{char}, 2 for \c{short}, 4 for \c{int}, \c{long} and
6836 \c{float}, and 8 for \c{double}. Pointers, being 32-bit addresses,
6837 are also 4 bytes long.
6839 To access a C \i{data structure}, you need to know the offset from
6840 the base of the structure to the field you are interested in. You
6841 can either do this by converting the C structure definition into a
6842 NASM structure definition (using \c{STRUC}), or by calculating the
6843 one offset and using just that.
6845 To do either of these, you should read your C compiler's manual to
6846 find out how it organizes data structures. NASM gives no special
6847 alignment to structure members in its own \i\c{STRUC} macro, so you
6848 have to specify alignment yourself if the C compiler generates it.
6849 Typically, you might find that a structure like
6856 might be eight bytes long rather than five, since the \c{int} field
6857 would be aligned to a four-byte boundary. However, this sort of
6858 feature is sometimes a configurable option in the C compiler, either
6859 using command-line options or \c{#pragma} lines, so you have to find
6860 out how your own compiler does it.
6863 \S{32cmacro} \i\c{c32.mac}: Helper Macros for the 32-bit C Interface
6865 Included in the NASM archives, in the \I{misc directory}\c{misc}
6866 directory, is a file \c{c32.mac} of macros. It defines three macros:
6867 \i\c{proc}, \i\c{arg} and \i\c{endproc}. These are intended to be
6868 used for C-style procedure definitions, and they automate a lot of
6869 the work involved in keeping track of the calling convention.
6871 An example of an assembly function using the macro set is given
6878 \c mov eax,[ebp + %$i]
6879 \c mov ebx,[ebp + %$j]
6884 This defines \c{_proc32} to be a procedure taking two arguments, the
6885 first (\c{i}) an integer and the second (\c{j}) a pointer to an
6886 integer. It returns \c{i + *j}.
6888 Note that the \c{arg} macro has an \c{EQU} as the first line of its
6889 expansion, and since the label before the macro call gets prepended
6890 to the first line of the expanded macro, the \c{EQU} works, defining
6891 \c{%$i} to be an offset from \c{BP}. A context-local variable is
6892 used, local to the context pushed by the \c{proc} macro and popped
6893 by the \c{endproc} macro, so that the same argument name can be used
6894 in later procedures. Of course, you don't \e{have} to do that.
6896 \c{arg} can take an optional parameter, giving the size of the
6897 argument. If no size is given, 4 is assumed, since it is likely that
6898 many function parameters will be of type \c{int} or pointers.
6901 \H{picdll} Writing NetBSD/FreeBSD/OpenBSD and Linux/ELF \i{Shared
6904 \c{ELF} replaced the older \c{a.out} object file format under Linux
6905 because it contains support for \i{position-independent code}
6906 (\i{PIC}), which makes writing shared libraries much easier. NASM
6907 supports the \c{ELF} position-independent code features, so you can
6908 write Linux \c{ELF} shared libraries in NASM.
6910 \i{NetBSD}, and its close cousins \i{FreeBSD} and \i{OpenBSD}, take
6911 a different approach by hacking PIC support into the \c{a.out}
6912 format. NASM supports this as the \i\c{aoutb} output format, so you
6913 can write \i{BSD} shared libraries in NASM too.
6915 The operating system loads a PIC shared library by memory-mapping
6916 the library file at an arbitrarily chosen point in the address space
6917 of the running process. The contents of the library's code section
6918 must therefore not depend on where it is loaded in memory.
6920 Therefore, you cannot get at your variables by writing code like
6923 \c mov eax,[myvar] ; WRONG
6925 Instead, the linker provides an area of memory called the
6926 \i\e{global offset table}, or \i{GOT}; the GOT is situated at a
6927 constant distance from your library's code, so if you can find out
6928 where your library is loaded (which is typically done using a
6929 \c{CALL} and \c{POP} combination), you can obtain the address of the
6930 GOT, and you can then load the addresses of your variables out of
6931 linker-generated entries in the GOT.
6933 The \e{data} section of a PIC shared library does not have these
6934 restrictions: since the data section is writable, it has to be
6935 copied into memory anyway rather than just paged in from the library
6936 file, so as long as it's being copied it can be relocated too. So
6937 you can put ordinary types of relocation in the data section without
6938 too much worry (but see \k{picglobal} for a caveat).
6941 \S{picgot} Obtaining the Address of the GOT
6943 Each code module in your shared library should define the GOT as an
6946 \c extern _GLOBAL_OFFSET_TABLE_ ; in ELF
6947 \c extern __GLOBAL_OFFSET_TABLE_ ; in BSD a.out
6949 At the beginning of any function in your shared library which plans
6950 to access your data or BSS sections, you must first calculate the
6951 address of the GOT. This is typically done by writing the function
6960 \c add ebx,_GLOBAL_OFFSET_TABLE_+$$-.get_GOT wrt ..gotpc
6962 \c ; the function body comes here
6969 (For BSD, again, the symbol \c{_GLOBAL_OFFSET_TABLE} requires a
6970 second leading underscore.)
6972 The first two lines of this function are simply the standard C
6973 prologue to set up a stack frame, and the last three lines are
6974 standard C function epilogue. The third line, and the fourth to last
6975 line, save and restore the \c{EBX} register, because PIC shared
6976 libraries use this register to store the address of the GOT.
6978 The interesting bit is the \c{CALL} instruction and the following
6979 two lines. The \c{CALL} and \c{POP} combination obtains the address
6980 of the label \c{.get_GOT}, without having to know in advance where
6981 the program was loaded (since the \c{CALL} instruction is encoded
6982 relative to the current position). The \c{ADD} instruction makes use
6983 of one of the special PIC relocation types: \i{GOTPC relocation}.
6984 With the \i\c{WRT ..gotpc} qualifier specified, the symbol
6985 referenced (here \c{_GLOBAL_OFFSET_TABLE_}, the special symbol
6986 assigned to the GOT) is given as an offset from the beginning of the
6987 section. (Actually, \c{ELF} encodes it as the offset from the operand
6988 field of the \c{ADD} instruction, but NASM simplifies this
6989 deliberately, so you do things the same way for both \c{ELF} and
6990 \c{BSD}.) So the instruction then \e{adds} the beginning of the section,
6991 to get the real address of the GOT, and subtracts the value of
6992 \c{.get_GOT} which it knows is in \c{EBX}. Therefore, by the time
6993 that instruction has finished, \c{EBX} contains the address of the GOT.
6995 If you didn't follow that, don't worry: it's never necessary to
6996 obtain the address of the GOT by any other means, so you can put
6997 those three instructions into a macro and safely ignore them:
7004 \c add ebx,_GLOBAL_OFFSET_TABLE_+$$-%%getgot wrt ..gotpc
7008 \S{piclocal} Finding Your Local Data Items
7010 Having got the GOT, you can then use it to obtain the addresses of
7011 your data items. Most variables will reside in the sections you have
7012 declared; they can be accessed using the \I{GOTOFF
7013 relocation}\c{..gotoff} special \I\c{WRT ..gotoff}\c{WRT} type. The
7014 way this works is like this:
7016 \c lea eax,[ebx+myvar wrt ..gotoff]
7018 The expression \c{myvar wrt ..gotoff} is calculated, when the shared
7019 library is linked, to be the offset to the local variable \c{myvar}
7020 from the beginning of the GOT. Therefore, adding it to \c{EBX} as
7021 above will place the real address of \c{myvar} in \c{EAX}.
7023 If you declare variables as \c{GLOBAL} without specifying a size for
7024 them, they are shared between code modules in the library, but do
7025 not get exported from the library to the program that loaded it.
7026 They will still be in your ordinary data and BSS sections, so you
7027 can access them in the same way as local variables, using the above
7028 \c{..gotoff} mechanism.
7030 Note that due to a peculiarity of the way BSD \c{a.out} format
7031 handles this relocation type, there must be at least one non-local
7032 symbol in the same section as the address you're trying to access.
7035 \S{picextern} Finding External and Common Data Items
7037 If your library needs to get at an external variable (external to
7038 the \e{library}, not just to one of the modules within it), you must
7039 use the \I{GOT relocations}\I\c{WRT ..got}\c{..got} type to get at
7040 it. The \c{..got} type, instead of giving you the offset from the
7041 GOT base to the variable, gives you the offset from the GOT base to
7042 a GOT \e{entry} containing the address of the variable. The linker
7043 will set up this GOT entry when it builds the library, and the
7044 dynamic linker will place the correct address in it at load time. So
7045 to obtain the address of an external variable \c{extvar} in \c{EAX},
7048 \c mov eax,[ebx+extvar wrt ..got]
7050 This loads the address of \c{extvar} out of an entry in the GOT. The
7051 linker, when it builds the shared library, collects together every
7052 relocation of type \c{..got}, and builds the GOT so as to ensure it
7053 has every necessary entry present.
7055 Common variables must also be accessed in this way.
7058 \S{picglobal} Exporting Symbols to the Library User
7060 If you want to export symbols to the user of the library, you have
7061 to declare whether they are functions or data, and if they are data,
7062 you have to give the size of the data item. This is because the
7063 dynamic linker has to build \I{PLT}\i{procedure linkage table}
7064 entries for any exported functions, and also moves exported data
7065 items away from the library's data section in which they were
7068 So to export a function to users of the library, you must use
7070 \c global func:function ; declare it as a function
7076 And to export a data item such as an array, you would have to code
7078 \c global array:data array.end-array ; give the size too
7083 Be careful: If you export a variable to the library user, by
7084 declaring it as \c{GLOBAL} and supplying a size, the variable will
7085 end up living in the data section of the main program, rather than
7086 in your library's data section, where you declared it. So you will
7087 have to access your own global variable with the \c{..got} mechanism
7088 rather than \c{..gotoff}, as if it were external (which,
7089 effectively, it has become).
7091 Equally, if you need to store the address of an exported global in
7092 one of your data sections, you can't do it by means of the standard
7095 \c dataptr: dd global_data_item ; WRONG
7097 NASM will interpret this code as an ordinary relocation, in which
7098 \c{global_data_item} is merely an offset from the beginning of the
7099 \c{.data} section (or whatever); so this reference will end up
7100 pointing at your data section instead of at the exported global
7101 which resides elsewhere.
7103 Instead of the above code, then, you must write
7105 \c dataptr: dd global_data_item wrt ..sym
7107 which makes use of the special \c{WRT} type \I\c{WRT ..sym}\c{..sym}
7108 to instruct NASM to search the symbol table for a particular symbol
7109 at that address, rather than just relocating by section base.
7111 Either method will work for functions: referring to one of your
7112 functions by means of
7114 \c funcptr: dd my_function
7116 will give the user the address of the code you wrote, whereas
7118 \c funcptr: dd my_function wrt .sym
7120 will give the address of the procedure linkage table for the
7121 function, which is where the calling program will \e{believe} the
7122 function lives. Either address is a valid way to call the function.
7125 \S{picproc} Calling Procedures Outside the Library
7127 Calling procedures outside your shared library has to be done by
7128 means of a \i\e{procedure linkage table}, or \i{PLT}. The PLT is
7129 placed at a known offset from where the library is loaded, so the
7130 library code can make calls to the PLT in a position-independent
7131 way. Within the PLT there is code to jump to offsets contained in
7132 the GOT, so function calls to other shared libraries or to routines
7133 in the main program can be transparently passed off to their real
7136 To call an external routine, you must use another special PIC
7137 relocation type, \I{PLT relocations}\i\c{WRT ..plt}. This is much
7138 easier than the GOT-based ones: you simply replace calls such as
7139 \c{CALL printf} with the PLT-relative version \c{CALL printf WRT
7143 \S{link} Generating the Library File
7145 Having written some code modules and assembled them to \c{.o} files,
7146 you then generate your shared library with a command such as
7148 \c ld -shared -o library.so module1.o module2.o # for ELF
7149 \c ld -Bshareable -o library.so module1.o module2.o # for BSD
7151 For ELF, if your shared library is going to reside in system
7152 directories such as \c{/usr/lib} or \c{/lib}, it is usually worth
7153 using the \i\c{-soname} flag to the linker, to store the final
7154 library file name, with a version number, into the library:
7156 \c ld -shared -soname library.so.1 -o library.so.1.2 *.o
7158 You would then copy \c{library.so.1.2} into the library directory,
7159 and create \c{library.so.1} as a symbolic link to it.
7162 \C{mixsize} Mixing 16 and 32 Bit Code
7164 This chapter tries to cover some of the issues, largely related to
7165 unusual forms of addressing and jump instructions, encountered when
7166 writing operating system code such as protected-mode initialisation
7167 routines, which require code that operates in mixed segment sizes,
7168 such as code in a 16-bit segment trying to modify data in a 32-bit
7169 one, or jumps between different-size segments.
7172 \H{mixjump} Mixed-Size Jumps\I{jumps, mixed-size}
7174 \I{operating system, writing}\I{writing operating systems}The most
7175 common form of \i{mixed-size instruction} is the one used when
7176 writing a 32-bit OS: having done your setup in 16-bit mode, such as
7177 loading the kernel, you then have to boot it by switching into
7178 protected mode and jumping to the 32-bit kernel start address. In a
7179 fully 32-bit OS, this tends to be the \e{only} mixed-size
7180 instruction you need, since everything before it can be done in pure
7181 16-bit code, and everything after it can be pure 32-bit.
7183 This jump must specify a 48-bit far address, since the target
7184 segment is a 32-bit one. However, it must be assembled in a 16-bit
7185 segment, so just coding, for example,
7187 \c jmp 0x1234:0x56789ABC ; wrong!
7189 will not work, since the offset part of the address will be
7190 truncated to \c{0x9ABC} and the jump will be an ordinary 16-bit far
7193 The Linux kernel setup code gets round the inability of \c{as86} to
7194 generate the required instruction by coding it manually, using
7195 \c{DB} instructions. NASM can go one better than that, by actually
7196 generating the right instruction itself. Here's how to do it right:
7198 \c jmp dword 0x1234:0x56789ABC ; right
7200 \I\c{JMP DWORD}The \c{DWORD} prefix (strictly speaking, it should
7201 come \e{after} the colon, since it is declaring the \e{offset} field
7202 to be a doubleword; but NASM will accept either form, since both are
7203 unambiguous) forces the offset part to be treated as far, in the
7204 assumption that you are deliberately writing a jump from a 16-bit
7205 segment to a 32-bit one.
7207 You can do the reverse operation, jumping from a 32-bit segment to a
7208 16-bit one, by means of the \c{WORD} prefix:
7210 \c jmp word 0x8765:0x4321 ; 32 to 16 bit
7212 If the \c{WORD} prefix is specified in 16-bit mode, or the \c{DWORD}
7213 prefix in 32-bit mode, they will be ignored, since each is
7214 explicitly forcing NASM into a mode it was in anyway.
7217 \H{mixaddr} Addressing Between Different-Size Segments\I{addressing,
7218 mixed-size}\I{mixed-size addressing}
7220 If your OS is mixed 16 and 32-bit, or if you are writing a DOS
7221 extender, you are likely to have to deal with some 16-bit segments
7222 and some 32-bit ones. At some point, you will probably end up
7223 writing code in a 16-bit segment which has to access data in a
7224 32-bit segment, or vice versa.
7226 If the data you are trying to access in a 32-bit segment lies within
7227 the first 64K of the segment, you may be able to get away with using
7228 an ordinary 16-bit addressing operation for the purpose; but sooner
7229 or later, you will want to do 32-bit addressing from 16-bit mode.
7231 The easiest way to do this is to make sure you use a register for
7232 the address, since any effective address containing a 32-bit
7233 register is forced to be a 32-bit address. So you can do
7235 \c mov eax,offset_into_32_bit_segment_specified_by_fs
7236 \c mov dword [fs:eax],0x11223344
7238 This is fine, but slightly cumbersome (since it wastes an
7239 instruction and a register) if you already know the precise offset
7240 you are aiming at. The x86 architecture does allow 32-bit effective
7241 addresses to specify nothing but a 4-byte offset, so why shouldn't
7242 NASM be able to generate the best instruction for the purpose?
7244 It can. As in \k{mixjump}, you need only prefix the address with the
7245 \c{DWORD} keyword, and it will be forced to be a 32-bit address:
7247 \c mov dword [fs:dword my_offset],0x11223344
7249 Also as in \k{mixjump}, NASM is not fussy about whether the
7250 \c{DWORD} prefix comes before or after the segment override, so
7251 arguably a nicer-looking way to code the above instruction is
7253 \c mov dword [dword fs:my_offset],0x11223344
7255 Don't confuse the \c{DWORD} prefix \e{outside} the square brackets,
7256 which controls the size of the data stored at the address, with the
7257 one \c{inside} the square brackets which controls the length of the
7258 address itself. The two can quite easily be different:
7260 \c mov word [dword 0x12345678],0x9ABC
7262 This moves 16 bits of data to an address specified by a 32-bit
7265 You can also specify \c{WORD} or \c{DWORD} prefixes along with the
7266 \c{FAR} prefix to indirect far jumps or calls. For example:
7268 \c call dword far [fs:word 0x4321]
7270 This instruction contains an address specified by a 16-bit offset;
7271 it loads a 48-bit far pointer from that (16-bit segment and 32-bit
7272 offset), and calls that address.
7275 \H{mixother} Other Mixed-Size Instructions
7277 The other way you might want to access data might be using the
7278 string instructions (\c{LODSx}, \c{STOSx} and so on) or the
7279 \c{XLATB} instruction. These instructions, since they take no
7280 parameters, might seem to have no easy way to make them perform
7281 32-bit addressing when assembled in a 16-bit segment.
7283 This is the purpose of NASM's \i\c{a16}, \i\c{a32} and \i\c{a64} prefixes. If
7284 you are coding \c{LODSB} in a 16-bit segment but it is supposed to
7285 be accessing a string in a 32-bit segment, you should load the
7286 desired address into \c{ESI} and then code
7290 The prefix forces the addressing size to 32 bits, meaning that
7291 \c{LODSB} loads from \c{[DS:ESI]} instead of \c{[DS:SI]}. To access
7292 a string in a 16-bit segment when coding in a 32-bit one, the
7293 corresponding \c{a16} prefix can be used.
7295 The \c{a16}, \c{a32} and \c{a64} prefixes can be applied to any instruction
7296 in NASM's instruction table, but most of them can generate all the
7297 useful forms without them. The prefixes are necessary only for
7298 instructions with implicit addressing:
7299 \# \c{CMPSx} (\k{insCMPSB}),
7300 \# \c{SCASx} (\k{insSCASB}), \c{LODSx} (\k{insLODSB}), \c{STOSx}
7301 \# (\k{insSTOSB}), \c{MOVSx} (\k{insMOVSB}), \c{INSx} (\k{insINSB}),
7302 \# \c{OUTSx} (\k{insOUTSB}), and \c{XLATB} (\k{insXLATB}).
7303 \c{CMPSx}, \c{SCASx}, \c{LODSx}, \c{STOSx}, \c{MOVSx}, \c{INSx},
7304 \c{OUTSx}, and \c{XLATB}.
7306 various push and pop instructions (\c{PUSHA} and \c{POPF} as well as
7307 the more usual \c{PUSH} and \c{POP}) can accept \c{a16}, \c{a32} or \c{a64}
7308 prefixes to force a particular one of \c{SP}, \c{ESP} or \c{RSP} to be used
7309 as a stack pointer, in case the stack segment in use is a different
7310 size from the code segment.
7312 \c{PUSH} and \c{POP}, when applied to segment registers in 32-bit
7313 mode, also have the slightly odd behaviour that they push and pop 4
7314 bytes at a time, of which the top two are ignored and the bottom two
7315 give the value of the segment register being manipulated. To force
7316 the 16-bit behaviour of segment-register push and pop instructions,
7317 you can use the operand-size prefix \i\c{o16}:
7322 This code saves a doubleword of stack space by fitting two segment
7323 registers into the space which would normally be consumed by pushing
7326 (You can also use the \i\c{o32} prefix to force the 32-bit behaviour
7327 when in 16-bit mode, but this seems less useful.)
7330 \C{64bit} Writing 64-bit Code (Unix, Win64)
7332 This chapter attempts to cover some of the common issues involved when
7333 writing 64-bit code, to run under \i{Win64} or Unix. It covers how to
7334 write assembly code to interface with 64-bit C routines, and how to
7335 write position-independent code for shared libraries.
7337 All 64-bit code uses a flat memory model, since segmentation is not
7338 available in 64-bit mode. The one exception is the \c{FS} and \c{GS}
7339 registers, which still add their bases.
7341 Position independence in 64-bit mode is significantly simpler, since
7342 the processor supports \c{RIP}-relative addressing directly; see the
7343 \c{REL} keyword (\k{effaddr}). On most 64-bit platforms, it is
7344 probably desirable to make that the default, using the directive
7345 \c{DEFAULT REL} (\k{default}).
7347 64-bit programming is relatively similar to 32-bit programming, but
7348 of course pointers are 64 bits long; additionally, all existing
7349 platforms pass arguments in registers rather than on the stack.
7350 Furthermore, 64-bit platforms use SSE2 by default for floating point.
7351 Please see the ABI documentation for your platform.
7353 64-bit platforms differ in the sizes of the fundamental datatypes, not
7354 just from 32-bit platforms but from each other. If a specific size
7355 data type is desired, it is probably best to use the types defined in
7356 the Standard C header \c{<inttypes.h>}.
7358 In 64-bit mode, the default instruction size is still 32 bits. When
7359 loading a value into a 32-bit register (but not an 8- or 16-bit
7360 register), the upper 32 bits of the corresponding 64-bit register are
7363 \H{reg64} Register Names in 64-bit Mode
7365 NASM uses the following names for general-purpose registers in 64-bit
7366 mode, for 8-, 16-, 32- and 64-bit references, respecitively:
7368 \c AL/AH, CL/CH, DL/DH, BL/BH, SPL, BPL, SIL, DIL, R8B-R15B
7369 \c AX, CX, DX, BX, SP, BP, SI, DI, R8W-R15W
7370 \c EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI, R8D-R15D
7371 \c RAX, RCX, RDX, RBX, RSP, RBP, RSI, RDI, R8-R15
7373 This is consistent with the AMD documentation and most other
7374 assemblers. The Intel documentation, however, uses the names
7375 \c{R8L-R15L} for 8-bit references to the higher registers. It is
7376 possible to use those names by definiting them as macros; similarly,
7377 if one wants to use numeric names for the low 8 registers, define them
7378 as macros. The standard macro package \c{altreg} (see \k{pkg_altreg})
7379 can be used for this purpose.
7381 \H{id64} Immediates and Displacements in 64-bit Mode
7383 In 64-bit mode, immediates and displacements are generally only 32
7384 bits wide. NASM will therefore truncate most displacements and
7385 immediates to 32 bits.
7387 The only instruction which takes a full \i{64-bit immediate} is:
7391 NASM will produce this instruction whenever the programmer uses
7392 \c{MOV} with an immediate into a 64-bit register. If this is not
7393 desirable, simply specify the equivalent 32-bit register, which will
7394 be automatically zero-extended by the processor, or specify the
7395 immediate as \c{DWORD}:
7397 \c mov rax,foo ; 64-bit immediate
7398 \c mov rax,qword foo ; (identical)
7399 \c mov eax,foo ; 32-bit immediate, zero-extended
7400 \c mov rax,dword foo ; 32-bit immediate, sign-extended
7402 The length of these instructions are 10, 5 and 7 bytes, respectively.
7404 The only instructions which take a full \I{64-bit displacement}64-bit
7405 \e{displacement} is loading or storing, using \c{MOV}, \c{AL}, \c{AX},
7406 \c{EAX} or \c{RAX} (but no other registers) to an absolute 64-bit address.
7407 Since this is a relatively rarely used instruction (64-bit code generally uses
7408 relative addressing), the programmer has to explicitly declare the
7409 displacement size as \c{QWORD}:
7413 \c mov eax,[foo] ; 32-bit absolute disp, sign-extended
7414 \c mov eax,[a32 foo] ; 32-bit absolute disp, zero-extended
7415 \c mov eax,[qword foo] ; 64-bit absolute disp
7419 \c mov eax,[foo] ; 32-bit relative disp
7420 \c mov eax,[a32 foo] ; d:o, address truncated to 32 bits(!)
7421 \c mov eax,[qword foo] ; error
7422 \c mov eax,[abs qword foo] ; 64-bit absolute disp
7424 A sign-extended absolute displacement can access from -2 GB to +2 GB;
7425 a zero-extended absolute displacement can access from 0 to 4 GB.
7427 \H{unix64} Interfacing to 64-bit C Programs (Unix)
7429 On Unix, the 64-bit ABI is defined by the document:
7431 \W{http://www.x86-64.org/documentation/abi.pdf}\c{http://www.x86-64.org/documentation/abi.pdf}
7433 Although written for AT&T-syntax assembly, the concepts apply equally
7434 well for NASM-style assembly. What follows is a simplified summary.
7436 The first six integer arguments (from the left) are passed in \c{RDI},
7437 \c{RSI}, \c{RDX}, \c{RCX}, \c{R8}, and \c{R9}, in that order.
7438 Additional integer arguments are passed on the stack. These
7439 registers, plus \c{RAX}, \c{R10} and \c{R11} are destroyed by function
7440 calls, and thus are available for use by the function without saving.
7442 Integer return values are passed in \c{RAX} and \c{RDX}, in that order.
7444 Floating point is done using SSE registers, except for \c{long
7445 double}. Floating-point arguments are passed in \c{XMM0} to \c{XMM7};
7446 return is \c{XMM0} and \c{XMM1}. \c{long double} are passed on the
7447 stack, and returned in \c{ST0} and \c{ST1}.
7449 All SSE and x87 registers are destroyed by function calls.
7451 On 64-bit Unix, \c{long} is 64 bits.
7453 Integer and SSE register arguments are counted separately, so for the case of
7455 \c void foo(long a, double b, int c)
7457 \c{a} is passed in \c{RDI}, \c{b} in \c{XMM0}, and \c{c} in \c{ESI}.
7459 \H{win64} Interfacing to 64-bit C Programs (Win64)
7461 The Win64 ABI is described at:
7463 \W{http://msdn2.microsoft.com/en-gb/library/ms794533.aspx}\c{http://msdn2.microsoft.com/en-gb/library/ms794533.aspx}
7465 What follows is a simplified summary.
7467 The first four integer arguments are passed in \c{RCX}, \c{RDX},
7468 \c{R8} and \c{R9}, in that order. Additional integer arguments are
7469 passed on the stack. These registers, plus \c{RAX}, \c{R10} and
7470 \c{R11} are destroyed by function calls, and thus are available for
7471 use by the function without saving.
7473 Integer return values are passed in \c{RAX} only.
7475 Floating point is done using SSE registers, except for \c{long
7476 double}. Floating-point arguments are passed in \c{XMM0} to \c{XMM3};
7477 return is \c{XMM0} only.
7479 On Win64, \c{long} is 32 bits; \c{long long} or \c{_int64} is 64 bits.
7481 Integer and SSE register arguments are counted together, so for the case of
7483 \c void foo(long long a, double b, int c)
7485 \c{a} is passed in \c{RCX}, \c{b} in \c{XMM1}, and \c{c} in \c{R8D}.
7487 \C{trouble} Troubleshooting
7489 This chapter describes some of the common problems that users have
7490 been known to encounter with NASM, and answers them. It also gives
7491 instructions for reporting bugs in NASM if you find a difficulty
7492 that isn't listed here.
7495 \H{problems} Common Problems
7497 \S{inefficient} NASM Generates \i{Inefficient Code}
7499 We sometimes get `bug' reports about NASM generating inefficient, or
7500 even `wrong', code on instructions such as \c{ADD ESP,8}. This is a
7501 deliberate design feature, connected to predictability of output:
7502 NASM, on seeing \c{ADD ESP,8}, will generate the form of the
7503 instruction which leaves room for a 32-bit offset. You need to code
7504 \I\c{BYTE}\c{ADD ESP,BYTE 8} if you want the space-efficient form of
7505 the instruction. This isn't a bug, it's user error: if you prefer to
7506 have NASM produce the more efficient code automatically enable
7507 optimization with the \c{-O} option (see \k{opt-O}).
7510 \S{jmprange} My Jumps are Out of Range\I{out of range, jumps}
7512 Similarly, people complain that when they issue \i{conditional
7513 jumps} (which are \c{SHORT} by default) that try to jump too far,
7514 NASM reports `short jump out of range' instead of making the jumps
7517 This, again, is partly a predictability issue, but in fact has a
7518 more practical reason as well. NASM has no means of being told what
7519 type of processor the code it is generating will be run on; so it
7520 cannot decide for itself that it should generate \i\c{Jcc NEAR} type
7521 instructions, because it doesn't know that it's working for a 386 or
7522 above. Alternatively, it could replace the out-of-range short
7523 \c{JNE} instruction with a very short \c{JE} instruction that jumps
7524 over a \c{JMP NEAR}; this is a sensible solution for processors
7525 below a 386, but hardly efficient on processors which have good
7526 branch prediction \e{and} could have used \c{JNE NEAR} instead. So,
7527 once again, it's up to the user, not the assembler, to decide what
7528 instructions should be generated. See \k{opt-O}.
7531 \S{proborg} \i\c{ORG} Doesn't Work
7533 People writing \i{boot sector} programs in the \c{bin} format often
7534 complain that \c{ORG} doesn't work the way they'd like: in order to
7535 place the \c{0xAA55} signature word at the end of a 512-byte boot
7536 sector, people who are used to MASM tend to code
7540 \c ; some boot sector code
7545 This is not the intended use of the \c{ORG} directive in NASM, and
7546 will not work. The correct way to solve this problem in NASM is to
7547 use the \i\c{TIMES} directive, like this:
7551 \c ; some boot sector code
7553 \c TIMES 510-($-$$) DB 0
7556 The \c{TIMES} directive will insert exactly enough zero bytes into
7557 the output to move the assembly point up to 510. This method also
7558 has the advantage that if you accidentally fill your boot sector too
7559 full, NASM will catch the problem at assembly time and report it, so
7560 you won't end up with a boot sector that you have to disassemble to
7561 find out what's wrong with it.
7564 \S{probtimes} \i\c{TIMES} Doesn't Work
7566 The other common problem with the above code is people who write the
7571 by reasoning that \c{$} should be a pure number, just like 510, so
7572 the difference between them is also a pure number and can happily be
7575 NASM is a \e{modular} assembler: the various component parts are
7576 designed to be easily separable for re-use, so they don't exchange
7577 information unnecessarily. In consequence, the \c{bin} output
7578 format, even though it has been told by the \c{ORG} directive that
7579 the \c{.text} section should start at 0, does not pass that
7580 information back to the expression evaluator. So from the
7581 evaluator's point of view, \c{$} isn't a pure number: it's an offset
7582 from a section base. Therefore the difference between \c{$} and 510
7583 is also not a pure number, but involves a section base. Values
7584 involving section bases cannot be passed as arguments to \c{TIMES}.
7586 The solution, as in the previous section, is to code the \c{TIMES}
7589 \c TIMES 510-($-$$) DB 0
7591 in which \c{$} and \c{$$} are offsets from the same section base,
7592 and so their difference is a pure number. This will solve the
7593 problem and generate sensible code.
7596 \H{bugs} \i{Bugs}\I{reporting bugs}
7598 We have never yet released a version of NASM with any \e{known}
7599 bugs. That doesn't usually stop there being plenty we didn't know
7600 about, though. Any that you find should be reported firstly via the
7602 \W{https://sourceforge.net/projects/nasm/}\c{https://sourceforge.net/projects/nasm/}
7603 (click on "Bugs"), or if that fails then through one of the
7604 contacts in \k{contact}.
7606 Please read \k{qstart} first, and don't report the bug if it's
7607 listed in there as a deliberate feature. (If you think the feature
7608 is badly thought out, feel free to send us reasons why you think it
7609 should be changed, but don't just send us mail saying `This is a
7610 bug' if the documentation says we did it on purpose.) Then read
7611 \k{problems}, and don't bother reporting the bug if it's listed
7614 If you do report a bug, \e{please} give us all of the following
7617 \b What operating system you're running NASM under. DOS, Linux,
7618 NetBSD, Win16, Win32, VMS (I'd be impressed), whatever.
7620 \b If you're running NASM under DOS or Win32, tell us whether you've
7621 compiled your own executable from the DOS source archive, or whether
7622 you were using the standard distribution binaries out of the
7623 archive. If you were using a locally built executable, try to
7624 reproduce the problem using one of the standard binaries, as this
7625 will make it easier for us to reproduce your problem prior to fixing
7628 \b Which version of NASM you're using, and exactly how you invoked
7629 it. Give us the precise command line, and the contents of the
7630 \c{NASMENV} environment variable if any.
7632 \b Which versions of any supplementary programs you're using, and
7633 how you invoked them. If the problem only becomes visible at link
7634 time, tell us what linker you're using, what version of it you've
7635 got, and the exact linker command line. If the problem involves
7636 linking against object files generated by a compiler, tell us what
7637 compiler, what version, and what command line or options you used.
7638 (If you're compiling in an IDE, please try to reproduce the problem
7639 with the command-line version of the compiler.)
7641 \b If at all possible, send us a NASM source file which exhibits the
7642 problem. If this causes copyright problems (e.g. you can only
7643 reproduce the bug in restricted-distribution code) then bear in mind
7644 the following two points: firstly, we guarantee that any source code
7645 sent to us for the purposes of debugging NASM will be used \e{only}
7646 for the purposes of debugging NASM, and that we will delete all our
7647 copies of it as soon as we have found and fixed the bug or bugs in
7648 question; and secondly, we would prefer \e{not} to be mailed large
7649 chunks of code anyway. The smaller the file, the better. A
7650 three-line sample file that does nothing useful \e{except}
7651 demonstrate the problem is much easier to work with than a
7652 fully fledged ten-thousand-line program. (Of course, some errors
7653 \e{do} only crop up in large files, so this may not be possible.)
7655 \b A description of what the problem actually \e{is}. `It doesn't
7656 work' is \e{not} a helpful description! Please describe exactly what
7657 is happening that shouldn't be, or what isn't happening that should.
7658 Examples might be: `NASM generates an error message saying Line 3
7659 for an error that's actually on Line 5'; `NASM generates an error
7660 message that I believe it shouldn't be generating at all'; `NASM
7661 fails to generate an error message that I believe it \e{should} be
7662 generating'; `the object file produced from this source code crashes
7663 my linker'; `the ninth byte of the output file is 66 and I think it
7664 should be 77 instead'.
7666 \b If you believe the output file from NASM to be faulty, send it to
7667 us. That allows us to determine whether our own copy of NASM
7668 generates the same file, or whether the problem is related to
7669 portability issues between our development platforms and yours. We
7670 can handle binary files mailed to us as MIME attachments, uuencoded,
7671 and even BinHex. Alternatively, we may be able to provide an FTP
7672 site you can upload the suspect files to; but mailing them is easier
7675 \b Any other information or data files that might be helpful. If,
7676 for example, the problem involves NASM failing to generate an object
7677 file while TASM can generate an equivalent file without trouble,
7678 then send us \e{both} object files, so we can see what TASM is doing
7679 differently from us.
7682 \A{ndisasm} \i{Ndisasm}
7684 The Netwide Disassembler, NDISASM
7686 \H{ndisintro} Introduction
7689 The Netwide Disassembler is a small companion program to the Netwide
7690 Assembler, NASM. It seemed a shame to have an x86 assembler,
7691 complete with a full instruction table, and not make as much use of
7692 it as possible, so here's a disassembler which shares the
7693 instruction table (and some other bits of code) with NASM.
7695 The Netwide Disassembler does nothing except to produce
7696 disassemblies of \e{binary} source files. NDISASM does not have any
7697 understanding of object file formats, like \c{objdump}, and it will
7698 not understand \c{DOS .EXE} files like \c{debug} will. It just
7702 \H{ndisstart} Getting Started: Installation
7704 See \k{install} for installation instructions. NDISASM, like NASM,
7705 has a \c{man page} which you may want to put somewhere useful, if you
7706 are on a Unix system.
7709 \H{ndisrun} Running NDISASM
7711 To disassemble a file, you will typically use a command of the form
7713 \c ndisasm -b {16|32|64} filename
7715 NDISASM can disassemble 16-, 32- or 64-bit code equally easily,
7716 provided of course that you remember to specify which it is to work
7717 with. If no \i\c{-b} switch is present, NDISASM works in 16-bit mode
7718 by default. The \i\c{-u} switch (for USE32) also invokes 32-bit mode.
7720 Two more command line options are \i\c{-r} which reports the version
7721 number of NDISASM you are running, and \i\c{-h} which gives a short
7722 summary of command line options.
7725 \S{ndiscom} COM Files: Specifying an Origin
7727 To disassemble a \c{DOS .COM} file correctly, a disassembler must assume
7728 that the first instruction in the file is loaded at address \c{0x100},
7729 rather than at zero. NDISASM, which assumes by default that any file
7730 you give it is loaded at zero, will therefore need to be informed of
7733 The \i\c{-o} option allows you to declare a different origin for the
7734 file you are disassembling. Its argument may be expressed in any of
7735 the NASM numeric formats: decimal by default, if it begins with `\c{$}'
7736 or `\c{0x}' or ends in `\c{H}' it's \c{hex}, if it ends in `\c{Q}' it's
7737 \c{octal}, and if it ends in `\c{B}' it's \c{binary}.
7739 Hence, to disassemble a \c{.COM} file:
7741 \c ndisasm -o100h filename.com
7746 \S{ndissync} Code Following Data: Synchronisation
7748 Suppose you are disassembling a file which contains some data which
7749 isn't machine code, and \e{then} contains some machine code. NDISASM
7750 will faithfully plough through the data section, producing machine
7751 instructions wherever it can (although most of them will look
7752 bizarre, and some may have unusual prefixes, e.g. `\c{FS OR AX,0x240A}'),
7753 and generating `DB' instructions ever so often if it's totally stumped.
7754 Then it will reach the code section.
7756 Supposing NDISASM has just finished generating a strange machine
7757 instruction from part of the data section, and its file position is
7758 now one byte \e{before} the beginning of the code section. It's
7759 entirely possible that another spurious instruction will get
7760 generated, starting with the final byte of the data section, and
7761 then the correct first instruction in the code section will not be
7762 seen because the starting point skipped over it. This isn't really
7765 To avoid this, you can specify a `\i\c{synchronisation}' point, or indeed
7766 as many synchronisation points as you like (although NDISASM can
7767 only handle 8192 sync points internally). The definition of a sync
7768 point is this: NDISASM guarantees to hit sync points exactly during
7769 disassembly. If it is thinking about generating an instruction which
7770 would cause it to jump over a sync point, it will discard that
7771 instruction and output a `\c{db}' instead. So it \e{will} start
7772 disassembly exactly from the sync point, and so you \e{will} see all
7773 the instructions in your code section.
7775 Sync points are specified using the \i\c{-s} option: they are measured
7776 in terms of the program origin, not the file position. So if you
7777 want to synchronize after 32 bytes of a \c{.COM} file, you would have to
7780 \c ndisasm -o100h -s120h file.com
7784 \c ndisasm -o100h -s20h file.com
7786 As stated above, you can specify multiple sync markers if you need
7787 to, just by repeating the \c{-s} option.
7790 \S{ndisisync} Mixed Code and Data: Automatic (Intelligent) Synchronisation
7793 Suppose you are disassembling the boot sector of a \c{DOS} floppy (maybe
7794 it has a virus, and you need to understand the virus so that you
7795 know what kinds of damage it might have done you). Typically, this
7796 will contain a \c{JMP} instruction, then some data, then the rest of the
7797 code. So there is a very good chance of NDISASM being \e{misaligned}
7798 when the data ends and the code begins. Hence a sync point is
7801 On the other hand, why should you have to specify the sync point
7802 manually? What you'd do in order to find where the sync point would
7803 be, surely, would be to read the \c{JMP} instruction, and then to use
7804 its target address as a sync point. So can NDISASM do that for you?
7806 The answer, of course, is yes: using either of the synonymous
7807 switches \i\c{-a} (for automatic sync) or \i\c{-i} (for intelligent
7808 sync) will enable \c{auto-sync} mode. Auto-sync mode automatically
7809 generates a sync point for any forward-referring PC-relative jump or
7810 call instruction that NDISASM encounters. (Since NDISASM is one-pass,
7811 if it encounters a PC-relative jump whose target has already been
7812 processed, there isn't much it can do about it...)
7814 Only PC-relative jumps are processed, since an absolute jump is
7815 either through a register (in which case NDISASM doesn't know what
7816 the register contains) or involves a segment address (in which case
7817 the target code isn't in the same segment that NDISASM is working
7818 in, and so the sync point can't be placed anywhere useful).
7820 For some kinds of file, this mechanism will automatically put sync
7821 points in all the right places, and save you from having to place
7822 any sync points manually. However, it should be stressed that
7823 auto-sync mode is \e{not} guaranteed to catch all the sync points, and
7824 you may still have to place some manually.
7826 Auto-sync mode doesn't prevent you from declaring manual sync
7827 points: it just adds automatically generated ones to the ones you
7828 provide. It's perfectly feasible to specify \c{-i} \e{and} some \c{-s}
7831 Another caveat with auto-sync mode is that if, by some unpleasant
7832 fluke, something in your data section should disassemble to a
7833 PC-relative call or jump instruction, NDISASM may obediently place a
7834 sync point in a totally random place, for example in the middle of
7835 one of the instructions in your code section. So you may end up with
7836 a wrong disassembly even if you use auto-sync. Again, there isn't
7837 much I can do about this. If you have problems, you'll have to use
7838 manual sync points, or use the \c{-k} option (documented below) to
7839 suppress disassembly of the data area.
7842 \S{ndisother} Other Options
7844 The \i\c{-e} option skips a header on the file, by ignoring the first N
7845 bytes. This means that the header is \e{not} counted towards the
7846 disassembly offset: if you give \c{-e10 -o10}, disassembly will start
7847 at byte 10 in the file, and this will be given offset 10, not 20.
7849 The \i\c{-k} option is provided with two comma-separated numeric
7850 arguments, the first of which is an assembly offset and the second
7851 is a number of bytes to skip. This \e{will} count the skipped bytes
7852 towards the assembly offset: its use is to suppress disassembly of a
7853 data section which wouldn't contain anything you wanted to see
7857 \H{ndisbugs} Bugs and Improvements
7859 There are no known bugs. However, any you find, with patches if
7860 possible, should be sent to
7861 \W{mailto:nasm-bugs@lists.sourceforge.net}\c{nasm-bugs@lists.sourceforge.net}, or to the
7863 \W{https://sourceforge.net/projects/nasm/}\c{https://sourceforge.net/projects/nasm/}
7864 and we'll try to fix them. Feel free to send contributions and
7865 new features as well.
7867 \A{inslist} \i{Instruction List}
7869 \H{inslistintro} Introduction
7871 The following sections show the instructions which NASM currently supports. For each
7872 instruction, there is a separate entry for each supported addressing mode. The third
7873 column shows the processor type in which the instruction was introduced and,
7874 when appropriate, one or more usage flags.
7878 \A{changelog} \i{NASM Version History}