disable UNW_ARM_METHOD_FRAME routine
[external/libunwind.git] / doc / libunwind-dynamic.tex
1 \documentclass{article}
2 \usepackage[fancyhdr,pdf]{latex2man}
3
4 \input{common.tex}
5
6 \begin{document}
7
8 \begin{Name}{3}{libunwind-dynamic}{David Mosberger-Tang}{Programming Library}{Introduction to dynamic unwind-info}libunwind-dynamic -- libunwind-support for runtime-generated code
9 \end{Name}
10
11 \section{Introduction}
12
13 For \Prog{libunwind} to do its job, it needs to be able to reconstruct
14 the \emph{frame state} of each frame in a call-chain.  The frame state
15 describes the subset of the machine-state that consists of the
16 \emph{frame registers} (typically the instruction-pointer and the
17 stack-pointer) and all callee-saved registers (preserved registers).
18 The frame state describes each register either by providing its
19 current value (for frame registers) or by providing the location at
20 which the current value is stored (callee-saved registers).
21
22 For statically generated code, the compiler normally takes care of
23 emitting \emph{unwind-info} which provides the minimum amount of
24 information needed to reconstruct the frame-state for each instruction
25 in a procedure.  For dynamically generated code, the runtime code
26 generator must use the dynamic unwind-info interface provided by
27 \Prog{libunwind} to supply the equivalent information.  This manual
28 page describes the format of this information in detail.
29
30 For the purpose of this discussion, a \emph{procedure} is defined to
31 be an arbitrary piece of \emph{contiguous} code.  Normally, each
32 procedure directly corresponds to a function in the source-language
33 but this is not strictly required.  For example, a runtime
34 code-generator could translate a given function into two separate
35 (discontiguous) procedures: one for frequently-executed (hot) code and
36 one for rarely-executed (cold) code.  Similarly, simple
37 source-language functions (usually leaf functions) may get translated
38 into code for which the default unwind-conventions apply and for such
39 code, it is not strictly necessary to register dynamic unwind-info.
40
41 A procedure logically consists of a sequence of \emph{regions}.
42 Regions are nested in the sense that the frame state at the end of one
43 region is, by default, assumed to be the frame state for the next
44 region.  Each region is thought of as being divided into a
45 \emph{prologue}, a \emph{body}, and an \emph{epilogue}.  Each of them
46 can be empty.  If non-empty, the prologue sets up the frame state for
47 the body.  For example, the prologue may need to allocate some space
48 on the stack and save certain callee-saved registers.  The body
49 performs the actual work of the procedure but does not change the
50 frame state in any way.  If non-empty, the epilogue restores the
51 previous frame state and as such it undoes or cancels the effect of
52 the prologue.  In fact, a single epilogue may undo the effect of the
53 prologues of several (nested) regions.
54
55 We should point out that even though the prologue, body, and epilogue
56 are logically separate entities, optimizing code-generators will
57 generally interleave instructions from all three entities.  For this
58 reason, the dynamic unwind-info interface of \Prog{libunwind} makes no
59 distinction whatsoever between prologue and body.  Similarly, the
60 exact set of instructions that make up an epilogue is also irrelevant.
61 The only point in the epilogue that needs to be described explicitly
62 by the dynamic unwind-info is the point at which the stack-pointer
63 gets restored.  The reason this point needs to be described is that
64 once the stack-pointer is restored, all values saved in the
65 deallocated portion of the stack frame become invalid and hence
66 \Prog{libunwind} needs to know about it.  The portion of the frame
67 state not saved on the stack is assume to remain valid through the end
68 of the region.  For this reason, there is usually no need to describe
69 instructions which restore the contents of callee-saved registers.
70
71 Within a region, each instruction that affects the frame state in some
72 fashion needs to be described with an operation descriptor.  For this
73 purpose, each instruction in the region is assigned a unique index.
74 Exactly how this index is derived depends on the architecture.  For
75 example, on RISC and EPIC-style architecture, instructions have a
76 fixed size so it's possible to simply number the instructions.  In
77 contrast, most CISC use variable-length instruction encodings, so it
78 is usually necessary to use a byte-offset as the index.  Given the
79 instruction index, the operation descriptor specifies the effect of
80 the instruction in an abstract manner.  For example, it might express
81 that the instruction stores calle-saved register \Var{r1} at offset 16
82 in the stack frame.
83
84 \section{Procedures}
85
86 A runtime code-generator registers the dynamic unwind-info of a
87 procedure by setting up a structure of type \Type{unw\_dyn\_info\_t}
88 and calling \Func{\_U\_dyn\_register}(), passing the address of the
89 structure as the sole argument.  The members of the
90 \Type{unw\_dyn\_info\_t} structure are described below:
91 \begin{itemize}
92 \item[\Type{void~*}next] Private to \Prog{libunwind}.  Must not be used
93   by the application.
94 \item[\Type{void~*}prev] Private to \Prog{libunwind}.  Must not be used
95   by the application.
96 \item[\Type{unw\_word\_t} \Var{start\_ip}] The start-address of the
97   instructions of the procedure (remember: procedure are defined to be
98   contiguous pieces of code, so a single code-range is sufficient).
99 \item[\Type{unw\_word\_t} \Var{end\_ip}] The end-address of the
100   instructions of the procedure (non-inclusive, that is,
101   \Var{end\_ip}-\Var{start\_ip} is the size of the procedure in
102   bytes).
103 \item[\Type{unw\_word\_t} \Var{gp}] The global-pointer value in use
104   for this procedure.  The exact meaing of the global-pointer is
105   architecture-specific and on some architecture, it is not used at
106   all.
107 \item[\Type{int32\_t} \Var{format}] The format of the unwind-info.
108   This member can be one of \Const{UNW\_INFO\_FORMAT\_DYNAMIC},
109   \Const{UNW\_INFO\_FORMAT\_TABLE}, or
110   \Const{UNW\_INFO\_FORMAT\_REMOTE\_TABLE}.
111 \item[\Type{union} \Var{u}] This union contains one sub-member
112   structure for every possible unwind-info format:
113   \begin{description}
114   \item[\Type{unw\_dyn\_proc\_info\_t} \Var{pi}] This member is used
115     for format \Const{UNW\_INFO\_FORMAT\_DYNAMIC}.
116   \item[\Type{unw\_dyn\_table\_info\_t} \Var{ti}] This member is used
117     for format \Const{UNW\_INFO\_FORMAT\_TABLE}.
118   \item[\Type{unw\_dyn\_remote\_table\_info\_t} \Var{rti}] This member
119     is used for format \Const{UNW\_INFO\_FORMAT\_REMOTE\_TABLE}.
120   \end{description}\
121   The format of these sub-members is described in detail below.
122 \end{itemize}
123
124 \subsection{Proc-info format}
125
126 This is the preferred dynamic unwind-info format and it is generally
127 the one used by full-blown runtime code-generators.  In this format,
128 the details of a procedure are described by a structure of type
129 \Type{unw\_dyn\_proc\_info\_t}.  This structure contains the following
130 members:
131 \begin{description}
132
133 \item[\Type{unw\_word\_t} \Var{name\_ptr}] The address of a
134   (human-readable) name of the procedure or 0 if no such name is
135   available.  If non-zero, The string stored at this address must be
136   ASCII NUL terminated.  For source languages that use name-mangling
137   (such as C++ or Java) the string stored at this address should be
138   the \emph{demangled} version of the name.
139
140 \item[\Type{unw\_word\_t} \Var{handler}] The address of the
141   personality-routine for this procedure.  Personality-routines are
142   used in conjunction with exception handling.  See the C++ ABI draft
143   (http://www.codesourcery.com/cxx-abi/) for an overview and a
144   description of the personality routine.  If the procedure has no
145   personality routine, \Var{handler} must be set to 0.
146
147 \item[\Type{uint32\_t} \Var{flags}] A bitmask of flags.  At the
148   moment, no flags have been defined and this member must be
149   set to 0.
150
151 \item[\Type{unw\_dyn\_region\_info\_t~*}\Var{regions}] A NULL-terminated
152   linked list of region-descriptors.  See section ``Region
153   descriptors'' below for more details.
154
155 \end{description}
156
157 \subsection{Table-info format}
158
159 This format is generally used when the dynamically generated code was
160 derived from static code and the unwind-info for the dynamic and the
161 static versions is identical.  For example, this format can be useful
162 when loading statically-generated code into an address-space in a
163 non-standard fashion (i.e., through some means other than
164 \Func{dlopen}()).  In this format, the details of a group of procedures
165 is described by a structure of type \Type{unw\_dyn\_table\_info}.
166 This structure contains the following members:
167 \begin{description}
168
169 \item[\Type{unw\_word\_t} \Var{name\_ptr}] The address of a
170   (human-readable) name of the procedure or 0 if no such name is
171   available.  If non-zero, The string stored at this address must be
172   ASCII NUL terminated.  For source languages that use name-mangling
173   (such as C++ or Java) the string stored at this address should be
174   the \emph{demangled} version of the name.
175
176 \item[\Type{unw\_word\_t} \Var{segbase}] The segment-base value
177   that needs to be added to the segment-relative values stored in the
178   unwind-info.  The exact meaning of this value is
179   architecture-specific.
180
181 \item[\Type{unw\_word\_t} \Var{table\_len}] The length of the
182   unwind-info (\Var{table\_data}) counted in units of words
183   (\Type{unw\_word\_t}).
184
185 \item[\Type{unw\_word\_t} \Var{table\_data}] A pointer to the actual
186   data encoding the unwind-info.  The exact format is
187   architecture-specific (see architecture-specific sections below).
188
189 \end{description}
190
191 \subsection{Remote table-info format}
192
193 The remote table-info format has the same basic purpose as the regular
194 table-info format.  The only difference is that when \Prog{libunwind}
195 uses the unwind-info, it will keep the table data in the target
196 address-space (which may be remote).  Consequently, the type of the
197 \Var{table\_data} member is \Type{unw\_word\_t} rather than a pointer.
198 This implies that \Prog{libunwind} will have to access the table-data
199 via the address-space's \Func{access\_mem}() call-back, rather than
200 through a direct memory reference.
201
202 From the point of view of a runtime-code generator, the remote
203 table-info format offers no advantage and it is expected that such
204 generators will describe their procedures either with the proc-info
205 format or the normal table-info format.  The main reason that the
206 remote table-info format exists is to enable the
207 address-space-specific \Func{find\_proc\_info}() callback (see
208 \SeeAlso{unw\_create\_addr\_space}(3)) to return unwind tables whose
209 data remains in remote memory.  This can speed up unwinding (e.g., for
210 a debugger) because it reduces the amount of data that needs to be
211 loaded from remote memory.
212
213 \section{Regions descriptors}
214
215 A region descriptor is a variable length structure that describes how
216 each instruction in the region affects the frame state.  Of course,
217 most instructions in a region usualy do not change the frame state and
218 for those, nothing needs to be recorded in the region descriptor.  A
219 region descriptor is a structure of type
220 \Type{unw\_dyn\_region\_info\_t} and has the following members:
221 \begin{description}
222 \item[\Type{unw\_dyn\_region\_info\_t~*}\Var{next}] A pointer to the
223   next region.  If this is the last region, \Var{next} is \Const{NULL}.
224 \item[\Type{int32\_t} \Var{insn\_count}] The length of the region in
225   instructions.  Each instruction is assumed to have a fixed size (see
226   architecture-specific sections for details).  The value of
227   \Var{insn\_count} may be negative in the last region of a procedure
228   (i.e., it may be negative only if \Var{next} is \Const{NULL}).  A
229   negative value indicates that the region covers the last \emph{N}
230   instructions of the procedure, where \emph{N} is the absolute value
231   of \Var{insn\_count}.
232 \item[\Type{uint32\_t} \Var{op\_count}] The (allocated) length of
233   the \Var{op\_count} array.
234 \item[\Type{unw\_dyn\_op\_t} \Var{op}] An array of dynamic unwind
235   directives.  See Section ``Dynamic unwind directives'' for a
236   description of the directives.
237 \end{description}
238 A region descriptor with an \Var{insn\_count} of zero is an
239 \emph{empty region} and such regions are perfectly legal.  In fact,
240 empty regions can be useful to establish a particular frame state
241 before the start of another region.
242
243 A single region list can be shared across multiple procedures provided
244 those procedures share a common prologue and epilogue (their bodies
245 may differ, of course).  Normally, such procedures consist of a canned
246 prologue, the body, and a canned epilogue.  This could be described by
247 two regions: one covering the prologue and one covering the epilogue.
248 Since the body length is variable, the latter region would need to
249 specify a negative value in \Var{insn\_count} such that
250 \Prog{libunwind} knows that the region covers the end of the procedure
251 (up to the address specified by \Var{end\_ip}).
252
253 The region descriptor is a variable length structure to make it
254 possible to allocate all the necessary memory with a single
255 memory-allocation request.  To facilitate the allocation of a region
256 descriptors \Prog{libunwind} provides a helper routine with the
257 following synopsis:
258
259 \noindent
260 \Type{size\_t} \Func{\_U\_dyn\_region\_size}(\Type{int} \Var{op\_count});
261
262 This routine returns the number of bytes needed to hold a region
263 descriptor with space for \Var{op\_count} unwind directives.  Note
264 that the length of the \Var{op} array does not have to match exactly
265 with the number of directives in a region.  Instead, it is sufficient
266 if the \Var{op} array contains at least as many entries as there are
267 directives, since the end of the directives can always be indicated
268 with the \Const{UNW\_DYN\_STOP} directive.
269
270 \section{Dynamic unwind directives}
271
272 A dynamic unwind directive describes how the frame state changes
273 at a particular point within a region.  The description is in
274 the form of a structure of type \Type{unw\_dyn\_op\_t}.  This
275 structure has the following members:
276 \begin{description}
277 \item[\Type{int8\_t} \Var{tag}] The operation tag.  Must be one
278   of the \Type{unw\_dyn\_operation\_t} values described below.
279 \item[\Type{int8\_t} \Var{qp}] The qualifying predicate that controls
280   whether or not this directive is active.  This is useful for
281   predicated architecturs such as IA-64 or ARM, where the contents of
282   another (callee-saved) register determines whether or not an
283   instruction is executed (takes effect).  If the directive is always
284   active, this member should be set to the manifest constant
285   \Const{\_U\_QP\_TRUE} (this constant is defined for all
286   architectures, predicated or not).
287 \item[\Type{int16\_t} \Var{reg}] The number of the register affected
288   by the instruction.
289 \item[\Type{int32\_t} \Var{when}] The region-relative number of
290   the instruction to which this directive applies.  For example,
291   a value of 0 means that the effect described by this directive
292   has taken place once the first instruction in the region has
293   executed.
294 \item[\Type{unw\_word\_t} \Var{val}] The value to be applied by the
295   operation tag.  The exact meaning of this value varies by tag.  See
296   Section ``Operation tags'' below.
297 \end{description}
298 It is perfectly legitimate to specify multiple dynamic unwind
299 directives with the same \Var{when} value, if a particular instruction
300 has a complex effect on the frame state.
301
302 Empty regions by definition contain no actual instructions and as such
303 the directives are not tied to a particular instruction.  By
304 convention, the \Var{when} member should be set to 0, however.
305
306 There is no need for the dynamic unwind directives to appear
307 in order of increasing \Var{when} values.  If the directives happen to
308 be sorted in that order, it may result in slightly faster execution,
309 but a runtime code-generator should not go to extra lengths just to
310 ensure that the directives are sorted.
311
312 IMPLEMENTATION NOTE: should \Prog{libunwind} implementations for
313 certain architectures prefer the list of unwind directives to be
314 sorted, it is recommended that such implementations first check
315 whether the list happens to be sorted already and, if not, sort the
316 directives explicitly before the first use.  With this approach, the
317 overhead of explicit sorting is only paid when there is a real benefit
318 and if the runtime code-generator happens to generated sorted lists
319 naturally, the performance penalty is limited to a simple O(N) check.
320
321 \subsection{Operations tags}
322
323 The possible operation tags are defined by enumeration type
324 \Type{unw\_dyn\_operation\_t} which defines the following
325 values:
326 \begin{description}
327
328 \item[\Const{UNW\_DYN\_STOP}] Marks the end of the dynamic unwind
329   directive list.  All remaining entries in the \Var{op} array of the
330   region-descriptor are ignored.  This tag is guaranteed to have a
331   value of 0.
332
333 \item[\Const{UNW\_DYN\_SAVE\_REG}] Marks an instruction which saves
334   register \Var{reg} to register \Var{val}.
335
336 \item[\Const{UNW\_DYN\_SPILL\_FP\_REL}] Marks an instruction which
337   spills register \Var{reg} to a frame-pointer-relative location.  The
338   frame-pointer-relative offset is given by the value stored in member
339   \Var{val}.  See the architecture-specific sections for a description
340   of the stack frame layout.
341
342 \item[\Const{UNW\_DYN\_SPILL\_SP\_REL}] Marks an instruction which
343   spills register \Var{reg} to a stack-pointer-relative location.  The
344   stack-pointer-relative offset is given by the value stored in member
345   \Var{val}.  See the architecture-specific sections for a description
346   of the stack frame layout.
347
348 \item[\Const{UNW\_DYN\_ADD}] Marks an instruction which adds
349   the constant value \Var{val} to register \Var{reg}.  To add subtract
350   a constant value, store the two's-complement of the value in
351   \Var{val}.  The set of registers that can be specified for this tag
352   is described in the architecture-specific sections below.
353
354 \item[\Const{UNW\_DYN\_POP\_FRAMES}]
355
356 \item[\Const{UNW\_DYN\_LABEL\_STATE}]
357
358 \item[\Const{UNW\_DYN\_COPY\_STATE}]
359
360 \item[\Const{UNW\_DYN\_ALIAS}]
361
362 \end{description}
363
364 unw\_dyn\_op\_t
365
366 \_U\_dyn\_op\_save\_reg();
367 \_U\_dyn\_op\_spill\_fp\_rel();
368 \_U\_dyn\_op\_spill\_sp\_rel();
369 \_U\_dyn\_op\_add();
370 \_U\_dyn\_op\_pop\_frames();
371 \_U\_dyn\_op\_label\_state();
372 \_U\_dyn\_op\_copy\_state();
373 \_U\_dyn\_op\_alias();
374 \_U\_dyn\_op\_stop();
375
376 \section{IA-64 specifics}
377
378 - meaning of segbase member in table-info/table-remote-info format
379 - format of table\_data in table-info/table-remote-info format
380 - instruction size: each bundle is counted as 3 instructions, regardless
381   of template (MLX)
382 - describe stack-frame layout, especially with regards to sp-relative
383   and fp-relative addressing
384 - UNW\_DYN\_ADD can only add to ``sp'' (always a negative value); use
385   POP\_FRAMES otherwise
386
387 \section{See Also}
388
389 \SeeAlso{libunwind(3)},
390 \SeeAlso{\_U\_dyn\_register(3)},
391 \SeeAlso{\_U\_dyn\_cancel(3)}
392
393 \section{Author}
394
395 \noindent
396 David Mosberger-Tang\\
397 Email: \Email{dmosberger@gmail.com}\\
398 WWW: \URL{http://www.nongnu.org/libunwind/}.
399 \LatexManEnd
400
401 \end{document}