isl_map_transitive_closure: break early if input map doesn't compose with itself
[platform/upstream/isl.git] / doc / implementation.tex
1 \section{Sets and Relations}
2
3 \begin{definition}[Polyhedral Set]
4 A {\em polyhedral set}\index{polyhedral set} $S$ is a finite union of basic sets
5 $S = \bigcup_i S_i$, each of which can be represented using affine
6 constraints
7 $$
8 S_i : \Q^n \to 2^{\Q^d} : \vec s \mapsto
9 S_i(\vec s) =
10 \{\, \vec x \in \Z^d \mid \exists \vec z \in \Z^e :
11 A \vec x + B \vec s + D \vec z + \vec c \geq \vec 0 \,\}
12 ,
13 $$
14 with $A \in \Z^{m \times d}$,
15 $B \in \Z^{m \times n}$,
16 $D \in \Z^{m \times e}$
17 and $\vec c \in \Z^m$.
18 \end{definition}
19
20 \begin{definition}[Parameter Domain of a Set]
21 Let $S \in \Q^n \to 2^{\Q^d}$ be a set.
22 The {\em parameter domain} of $S$ is the set
23 $$\pdom S \coloneqq \{\, \vec s \in \Z^n \mid S(\vec s) \ne \emptyset \,\}.$$
24 \end{definition}
25
26 \begin{definition}[Polyhedral Relation]
27 A {\em polyhedral relation}\index{polyhedral relation}
28 $R$ is a finite union of basic relations
29 $R = \bigcup_i R_i$ of type
30 $\Q^n \to 2^{\Q^{d_1+d_2}}$,
31 each of which can be represented using affine
32 constraints
33 $$
34 R_i = \vec s \mapsto
35 R_i(\vec s) =
36 \{\, \vec x_1 \to \vec x_2 \in \Z^{d_1} \times \Z^{d_2}
37 \mid \exists \vec z \in \Z^e :
38 A_1 \vec x_1 + A_2 \vec x_2 + B \vec s + D \vec z + \vec c \geq \vec 0 \,\}
39 ,
40 $$
41 with $A_i \in \Z^{m \times d_i}$,
42 $B \in \Z^{m \times n}$,
43 $D \in \Z^{m \times e}$
44 and $\vec c \in \Z^m$.
45 \end{definition}
46
47 \begin{definition}[Parameter Domain of a Relation]
48 Let $R \in \Q^n \to 2^{\Q^{d+d}}$ be a relation.
49 The {\em parameter domain} of $R$ is the set
50 $$\pdom R \coloneqq \{\, \vec s \in \Z^n \mid R(\vec s) \ne \emptyset \,\}.$$
51 \end{definition}
52
53 \begin{definition}[Domain of a Relation]
54 Let $R \in \Q^n \to 2^{\Q^{d+d}}$ be a relation.
55 The {\em domain} of $R$ is the polyhedral set
56 $$\domain R \coloneqq \vec s \mapsto
57 \{\, \vec x_1 \in \Z^{d_1} \mid \exists \vec x_2 \in \Z^{d_2} :
58 (\vec x_1, \vec x_2) \in R(\vec s) \,\}
59 .
60 $$
61 \end{definition}
62
63 \begin{definition}[Range of a Relation]
64 Let $R \in \Q^n \to 2^{\Q^{d+d}}$ be a relation.
65 The {\em range} of $R$ is the polyhedral set
66 $$
67 \range R \coloneqq \vec s \mapsto
68 \{\, \vec x_2 \in \Z^{d_2} \mid \exists \vec x_1 \in \Z^{d_1} :
69 (\vec x_1, \vec x_2) \in R(\vec s) \,\}
70 .
71 $$
72 \end{definition}
73
74 \begin{definition}[Composition of Relations]
75 Let $R \in \Q^n \to 2^{\Q^{d_1+d_2}}$ and
76 $S \in \Q^n \to 2^{\Q^{d_2+d_3}}$ be two relations,
77 then the composition of
78 $R$ and $S$ is defined as
79 $$
80 S \circ R \coloneqq
81 \vec s \mapsto
82 \{\, \vec x_1 \to \vec x_3 \in \Z^{d_1} \times \Z^{d_3}
83 \mid \exists \vec x_2 \in \Z^{d_2} :
84 \vec x_1 \to \vec x_2 \in R(\vec s) \wedge
85 \vec x_2 \to \vec x_3 \in S(\vec s)
86 \,\}
87 .
88 $$
89 \end{definition}
90
91 \begin{definition}[Difference Set of a Relation]
92 Let $R \in \Q^n \to 2^{\Q^{d+d}}$ be a relation.
93 The difference set ($\Delta \, R$) of $R$ is the set
94 of differences between image elements and the corresponding
95 domain elements,
96 $$
97 \Delta \, R \coloneqq
98 \vec s \mapsto
99 \{\, \vec \delta \in \Z^{d} \mid \exists \vec x \to \vec y \in R :
100 \vec \delta = \vec y - \vec x
101 \,\}
102 $$
103 \end{definition}
104
105 \section{Coalescing}\label{s:coalescing}
106
107 See \shortciteN{Verdoolaege2009isl}, for now.
108 More details will be added later.
109
110 \section{Transitive Closure}
111
112 \subsection{Introduction}
113
114 \begin{definition}[Power of a Relation]
115 Let $R \in \Q^n \to 2^{\Q^{d+d}}$ be a relation and
116 $k \in \Z_{\ge 1}$
117 a positive number, then power $k$ of relation $R$ is defined as
118 \begin{equation}
119 \label{eq:transitive:power}
120 R^k \coloneqq
121 \begin{cases}
122 R & \text{if $k = 1$}
123 \\
124 R \circ R^{k-1} & \text{if $k \ge 2$}
125 .
126 \end{cases}
127 \end{equation}
128 \end{definition}
129
130 \begin{definition}[Transitive Closure of a Relation]
131 Let $R \in \Q^n \to 2^{\Q^{d+d}}$ be a relation,
132 then the transitive closure $R^+$ of $R$ is the union
133 of all positive powers of $R$,
134 $$
135 R^+ \coloneqq \bigcup_{k \ge 1} R^k
136 .
137 $$
138 \end{definition}
139 Alternatively, the transitive closure may be defined
140 inductively as
141 \begin{equation}
142 \label{eq:transitive:inductive}
143 R^+ \coloneqq R \cup \left(R \circ R^+\right)
144 .
145 \end{equation}
146
147 Since the transitive closure of a polyhedral relation
148 may no longer be a polyhedral relation \shortcite{Kelly1996closure},
149 we can, in the general case, only compute an approximation
150 of the transitive closure.
151 Whereas \shortciteN{Kelly1996closure} compute underapproximations,
152 we, like \shortciteN{Beletska2009}, compute overapproximations.
153 That is, given a relation $R$, we will compute a relation $T$
154 such that $R^+ \subseteq T$.  Of course, we want this approximation
155 to be as close as possible to the actual transitive closure
156 $R^+$ and we want to detect the cases where the approximation is
157 exact, i.e., where $T = R^+$.
158
159 For computing an approximation of the transitive closure of $R$,
160 we follow the same general strategy as \shortciteN{Beletska2009}
161 and first compute an approximation of $R^k$ for $k \ge 1$ and then project
162 out the parameter $k$ from the resulting relation.
163
164 \begin{example}
165 As a trivial example, consider the relation
166 $R = \{\, x \to x + 1 \,\}$.  The $k$th power of this map
167 for arbitrary $k$ is
168 $$
169 R^k = k \mapsto \{\, x \to x + k \mid k \ge 1 \,\}
170 .
171 $$
172 The transitive closure is then
173 $$
174 \begin{aligned}
175 R^+ & = \{\, x \to y \mid \exists k \in \Z_{\ge 1} : y = x + k \,\}
176 \\
177 & = \{\, x \to y \mid y \ge x + 1 \,\}
178 .
179 \end{aligned}
180 $$
181 \end{example}
182
183 \subsection{Computing an Approximation of $R^k$}
184
185 There are some special cases where the computation of $R^k$ is very easy.
186 One such case is that where $R$ does not compose with itself,
187 i.e., $R \circ R = \emptyset$ or $\domain R \cap \range R = \emptyset$.
188 In this case, $R^k$ is only non-empty for $k=1$ where it is equal
189 to $R$ itself.
190
191 In general, it is impossible to construct a closed form
192 of $R^k$ as a polyhedral relation.
193 We will therefore need to make some approximations.
194 As a first approximations, we will consider each of the basic
195 relations in $R$ as simply adding one or more offsets to a domain element
196 to arrive at an image element and ignore the fact that some of these
197 offsets may only be applied to some of the domain elements.
198 That is, we will only consider the difference set $\Delta\,R$ of the relation.
199 In particular, we will first construct a collection $P$ of paths
200 that move through
201 a total of $k$ offsets and then intersect domain and range of this
202 collection with those of $R$.
203 That is, 
204 \begin{equation}
205 \label{eq:transitive:approx}
206 K = P \cap \left(\domain R \to \range R\right)
207 ,
208 \end{equation}
209 with
210 \begin{equation}
211 \label{eq:transitive:path}
212 P = \vec s \mapsto \{\, \vec x \to \vec y \mid
213 \exists k_i \in \Z_{\ge 0} :
214 \vec y = \vec x + \sum_i k_i \, \Delta_i(\vec s)
215 \wedge
216 \sum_i k_i = k > 0
217 \,\}
218 \end{equation}
219 and with $\Delta_i$ the basic sets that compose
220 the difference set $\Delta\,R$.
221 Note that the number of basic sets $\Delta_i$ need not be
222 the same as the number of basic relations in $R$.
223 Also note that since addition is commutative, it does not
224 matter in which order we add the offsets and so we are allowed
225 to group them as we did in \eqref{eq:transitive:path}.
226
227 If all the $\Delta_i$s are singleton sets
228 $\Delta_i = \{\, \vec \delta_i \,\}$ with $\vec \delta_i \in \Z^d$,
229 then \eqref{eq:transitive:path} simplifies to
230 \begin{equation}
231 \label{eq:transitive:singleton}
232 P = \{\, \vec x \to \vec y \mid
233 \exists k_i \in \Z_{\ge 0} :
234 \vec y = \vec x + \sum_i k_i \, \vec \delta_i
235 \wedge
236 \sum_i k_i = k > 0
237 \,\}
238 \end{equation}
239 and then the approximation computed in \eqref{eq:transitive:approx}
240 is essentially the same as that of \shortciteN{Beletska2009}.
241 If some of $\Delta_i$s are not singleton sets or if
242 some of $\vec \delta_i$s are parametric, then we need
243 to resort to further approximations.
244
245 To ease both the exposition and the implementation, we will for
246 the remainder of this section work with extended offsets
247 $\Delta_i' = \Delta_i \times \{\, 1 \,\}$.
248 That is, each offset is extended with an extra coordinate that is
249 set equal to one.  The paths constructed by summing such extended
250 offsets have the length encoded as the difference of their
251 final coordinates.  The path $P'$ can then be decomposed into
252 paths $P_i'$, one for each $\Delta_i$,
253 \begin{equation}
254 \label{eq:transitive:decompose}
255 P' = \left(
256 (P_m' \cup \identity) \circ \cdots \circ
257 (P_2' \cup \identity) \circ
258 (P_1' \cup \identity)
259 \right) \cap
260 \{\,
261 \vec x' \to \vec y' \mid y_{d+1} - x_{d+1} = k > 0
262 \,\}
263 ,
264 \end{equation}
265 with
266 $$
267 P_i' = \vec s \mapsto \{\, \vec x' \to \vec y' \mid
268 \exists k \in \Z_{\ge 1} :
269 \vec y' = \vec x' + k \, \Delta_i'(\vec s)
270 \,\}
271 .
272 $$
273 Note that each $P_i'$ contains paths of length at least one.
274 We therefore need to take the union with the identity relation
275 when composing the $P_i'$s to allow for paths that do not contain
276 any offsets from one or more $\Delta_i'$.
277 The path that consists of only identity relations is removed
278 by imposing the constraint $y_{d+1} - x_{d+1} > 0$.
279 Taking the union with the identity relation means that
280 that the relations we compose in \eqref{eq:transitive:decompose}
281 each consist of two basic relations.  If there are $m$
282 disjuncts in the input relation, then a direct application
283 of the composition operation may therefore result in a relation
284 with $2^m$ disjuncts, which is prohibitively expensive.
285 It is therefore crucial to apply coalescing (\autoref{s:coalescing})
286 after each composition.
287
288 Let us now consider how to compute an overapproximation of $P_i'$.
289 Those that correspond to singleton $\Delta_i$s are grouped together
290 and handled as in \eqref{eq:transitive:singleton}.
291 Note that this is just an optimization.  The procedure described
292 below would produce results that are at least as accurate.
293 For simplicity, we will assume that no constraint in $\Delta_i'$
294 involves any existentially quantified variables.  Dropping such
295 constraints results in a larger $\Delta_i'$.  An overapproximation
296 of the paths corresponding to this larger set will also be an
297 overapproximation of the paths corresponding to the original set.
298 Without existentially quantified variables, we can classify
299 the constraints of $\Delta_i'$ as follows
300 \begin{enumerate}
301 \item non-parametric constraints
302 \begin{equation}
303 \label{eq:transitive:non-parametric}
304 A_1 \vec x + \vec c_1 \geq \vec 0
305 \end{equation}
306 \item purely parametric constraints
307 \begin{equation}
308 \label{eq:transitive:parametric}
309 B_2 \vec s + \vec c_2 \geq \vec 0
310 \end{equation}
311 \item negative mixed constraints
312 \begin{equation}
313 \label{eq:transitive:mixed}
314 A_3 \vec x + B_3 \vec s + \vec c_3 \geq \vec 0
315 \end{equation}
316 such that for each row $j$ and for all $\vec s$,
317 $$
318 \Delta_i'(\vec s) \cap
319 \{\, \vec x' \to \vec y' \mid B_{3,j} \vec s + c_{3,j} > 0 \,\}
320 = \emptyset
321 $$
322 \item positive mixed constraints
323 $$
324 A_4 \vec x + B_4 \vec s + \vec c_4 \geq \vec 0
325 $$
326 such that for each row $j$, there is at least one $\vec s$ such that
327 $$
328 \Delta_i'(\vec s) \cap
329 \{\, \vec x' \to \vec y' \mid B_{4,j} \vec s + c_{4,j} > 0 \,\}
330 \ne \emptyset
331 $$
332 \end{enumerate}
333 We will use the following approximation $Q_i$ for $P_i'$:
334 \begin{equation}
335 \label{eq:transitive:Q}
336 \begin{aligned}
337 Q_i = \vec s \mapsto
338 \{\,
339 \vec x' \to \vec y'
340 \mid {} & \exists k \in \Z_{\ge 1}, \vec f \in \Z^d :
341 \vec y' = \vec x' + (\vec f, k)
342 \wedge {}
343 \\
344 &
345 A_1 \vec f + k \vec c_1 \geq \vec 0
346 \wedge
347 B_2 \vec s + \vec c_2 \geq \vec 0
348 \wedge
349 A_3 \vec f + B_3 \vec s + \vec c_3 \geq \vec 0
350 \,\}
351 .
352 \end{aligned}
353 \end{equation}
354 To prove that $Q_i$ is indeed an overapproximation of $P_i'$,
355 we need to show that for every $\vec s \in \Z^n$, for every
356 $k \in \Z_{\ge 1}$ and for every $\vec f \in k \, \Delta_i(\vec s)$
357 we have that
358 $(\vec f, k)$ satisfies the constraints in \eqref{eq:transitive:Q}.
359 If $\Delta_i(\vec s)$ is non-empty, then $\vec s$ must satisfy
360 the constraints in \eqref{eq:transitive:parametric}.
361 Each element $(\vec f, k) \in k \, \Delta_i'(\vec s)$ is a sum
362 of $k$ elements $(\vec f_j, 1)$ in $\Delta_i'(\vec s)$.
363 Each of these elements satisfies the constraints in
364 \eqref{eq:transitive:non-parametric}, i.e.,
365 $$
366 \left[
367 \begin{matrix}
368 A_1 & \vec c_1
369 \end{matrix}
370 \right]
371 \left[
372 \begin{matrix}
373 \vec f_j \\ 1
374 \end{matrix}
375 \right]
376 \ge \vec 0
377 .
378 $$
379 The sum of these elements therefore satisfies the same set of inequalities,
380 i.e., $A_1 \vec f + k \vec c_1 \geq \vec 0$.
381 Finally, the constraints in \eqref{eq:transitive:mixed} are such
382 that for any $\vec s$ in the parameter domain of $\Delta$,
383 we have $-\vec r(\vec s) \coloneqq B_3 \vec s + \vec c_3 \le \vec 0$,
384 i.e., $A_3 \vec f_j \ge \vec r(\vec s) \ge \vec 0$
385 and therefore also $A_3 \vec f \ge \vec r(\vec s)$.
386 Note that if there are no mixed constraints and if the
387 rational relaxation of $\Delta_i(\vec s)$, i.e.,
388 $\{\, \vec x \in \Q^d \mid A_1 \vec x + \vec c_1 \ge \vec 0\,\}$,
389 has integer vertices, then the approximation is exact, i.e.,
390 $Q_i = P_i'$.  In this case, the vertices of $\Delta'_i(\vec s)$
391 generate the rational cone
392 $\{\, \vec x' \in \Q^{d+1} \mid \left[
393 \begin{matrix}
394 A_1 & \vec c_1
395 \end{matrix}
396 \right] \vec x' \,\}$ and therefore $\Delta'_i(\vec s)$ is
397 a Hilbert basis of this cone \shortcite[Theorem~16.4]{Schrijver1986}.
398
399 The accurateness of the above approach
400 can be improved by also classifying the existentially
401 quantified variables into variables that are uniquely
402 determined by the parameters, variables that are independent
403 of the parameters and others.  The first set can be treated
404 as parameters and the second as variables.  Constraints involving
405 the other existentially quantified variables should continue to
406 be removed.
407
408 \subsection{Checking Exactness}
409
410 The approximation $T$ for the transitive closure $R^+$ can be obtained
411 by projecting out the parameter $k$ from the approximation $K$
412 \eqref{eq:transitive:approx} of the power $R^k$.
413 Since $K$ is an overapproximation of $R^k$, $T$ will also be an
414 overapproximation of $R^+$.
415 To check whether the results are exact, we need to consider two
416 cases depending on whether $R$ is {\em cyclic}, where $R$ is defined
417 to be cyclic if $R^+$ maps any element to itself, i.e.,
418 $R^+ \cap \identity \ne \emptyset$.
419 If $R$ is acyclic, then the inductive definition of
420 \eqref{eq:transitive:inductive} is equivalent to its completion,
421 i.e.,
422 $$
423 R^+ = R \cup \left(R \circ R^+\right)
424 $$
425 is a defining property.
426 Since $T$ is known to be an overapproximation, we only need to check
427 whether
428 $$
429 T \subseteq R \cup \left(R \circ T\right)
430 .
431 $$
432 This is essentially Theorem~5 of \shortciteN{Kelly1996closure}.
433 The only difference is that they only consider lexicographically
434 forward relations, a special case of acyclic relation.
435
436 If, on the other hand, $R$ is cyclic, then we have to resort
437 to checking whether the approximation $K$ of the power is exact.
438 Note that $T$ may be exact even if $K$ is not exact, so the check
439 is sound, but incomplete.
440 To check exactness of the power, we simply need to check
441 \eqref{eq:transitive:power}.  Since again $K$ is known
442 to be an overapproximation, we only need to check whether
443 $$
444 \begin{aligned}
445 K'|_{y_{d+1} - x_{d+1} = 1} & \subseteq R'
446 \\
447 K'|_{y_{d+1} - x_{d+1} \ge 2} & \subseteq R' \circ K'|_{y_{d+1} - x_{d+1} \ge 1}
448 ,
449 \end{aligned}
450 $$
451 where $R' = \{\, \vec x' \to \vec y' \mid \vec x \to \vec y \in R
452 \wedge y_{d+1} - x_{d+1} = 1\,\}$, i.e., $R$ extended with path
453 lengths equal to 1.
454
455 All that remains is to explain how to check the cyclicity of $R$.
456 Note that the exactness on the power is always sound, even
457 in the acyclic case, so we only need to be careful that we find
458 all cyclic cases.  Now, if $R$ is cyclic, i.e.,
459 $R^+ \cap \identity \ne \emptyset$, then, since $T$ is
460 an overapproximation of $R^+$, also
461 $T \cap \identity \ne \emptyset$.  This in turn means
462 that $\Delta \, K'$ contains a point whose first $d$ coordinates
463 are zero and whose final coordinate is positive.
464 In the implementation we currently perform this test on $P'$ instead of $K'$.
465 Note that if $R^+$ is acyclic and $T$ is not, then the approximation
466 is clearly not exact and the approximation of the power $K$
467 will not be exact either.
468
469 \subsection{Decomposing $R$ into strongly connected components}
470
471 If the input relation $R$ is a union of several basic relations
472 that can be partially ordered
473 then the accuracy of the approximation may be improved by computing
474 an approximation of each strongly connected components separately.
475 For example, if $R = R_1 \cup R_2$ and $R_1 \circ R_2 = \emptyset$,
476 then we know that any path that passes through $R_2$ cannot later
477 pass through $R_1$, i.e.,
478 $$
479 R^+ = R_1^+ \cup R_2^+ \cup \left(R_2^+ \circ R_1^+\right)
480 .
481 $$
482 We can therefore compute (approximations of) transitive closures
483 of $R_1$ and $R_2$ separately.
484 Note, however, that the condition $R_1 \circ R_2 = \emptyset$
485 is actually too strong.
486 If $R_1 \circ R_2$ is a subset of $R_2 \circ R_1$
487 then we can reorder the segments
488 in any path that moves through both $R_1$ and $R_2$ to
489 first move through $R_1$ and then through $R_2$.
490
491 This idea can be generalized to relations that are unions
492 of more than two basic relations by constructing the
493 strongly connected components in the graph with as vertices
494 the basic relations and an edge between two basic relations
495 $R_i$ and $R_j$ if $R_i$ needs to follow $R_j$ in some paths.
496 That is, there is an edge from $R_i$ to $R_j$ iff
497 \begin{equation}
498 \label{eq:transitive:edge}
499 R_i \circ R_j
500 \not\subseteq
501 R_j \circ R_i
502 .
503 \end{equation}
504 The components can be obtained from the graph by applying
505 Tarjan's algorithm \shortcite{Tarjan1972}.
506
507 In practice, we compute the (extended) powers $K_i'$ of each component
508 separately and then compose them as in \eqref{eq:transitive:decompose}.
509 Note, however, that in this case the order in which we apply them is
510 important and should correspond to a topological ordering of the
511 strongly connected components.  Simply applying Tarjan's
512 algorithm will produce topologically sorted strongly connected components.
513 The graph on which Tarjan's algorithm is applied is constructed on-the-fly.
514 That is, whenever the algorithm checks if there is an edge between
515 two vertices, we evaluate \eqref{eq:transitive:edge}.
516 The exactness check is performed on each component separately.
517 If the approximation turns out to be inexact for any of the components,
518 then the entire result is marked inexact and the exactness check
519 is skipped on the components that still need to be handled.
520
521 \begin{figure}
522 \begin{center}
523 \begin{tikzpicture}[x=0.5cm,y=0.5cm,>=stealth,shorten >=1pt]
524 \foreach \x in {1,...,10}{
525     \foreach \y in {1,...,10}{
526         \draw[->] (\x,\y) -- (\x,\y+1);
527     }
528 }
529 \foreach \x in {1,...,20}{
530     \foreach \y in {5,...,15}{
531         \draw[->] (\x,\y) -- (\x+1,\y);
532     }
533 }
534 \end{tikzpicture}
535 \end{center}
536 \caption{The relation from \autoref{ex:closure4}}
537 \label{f:closure4}
538 \end{figure}
539 \begin{example}
540 \label{ex:closure4}
541 Consider the relation in example {\tt closure4} that comes with
542 the Omega calculator~\shortcite{Omega_calc}, $R = R_1 \cup R_2$,
543 with
544 $$
545 \begin{aligned}
546 R_1 & = \{\, (x,y) \to (x,y+1) \mid 1 \le x,y \le 10 \,\}
547 \\
548 R_2 & = \{\, (x,y) \to (x+1,y) \mid 1 \le x \le 20 \wedge 5 \le y \le 15 \,\}
549 .
550 \end{aligned}
551 $$
552 This relation is shown graphically in \autoref{f:closure4}.
553 We have
554 $$
555 \begin{aligned}
556 R_1 \circ R_2 &=
557 \{\, (x,y) \to (x+1,y+1) \mid 1 \le x \le 9 \wedge 5 \le y \le 10 \,\}
558 \\
559 R_2 \circ R_1 &=
560 \{\, (x,y) \to (x+1,y+1) \mid 1 \le x \le 10 \wedge 4 \le y \le 10 \,\}
561 .
562 \end{aligned}
563 $$
564 Clearly, $R_1 \circ R_2 \subseteq R_2 \circ R_1$ and so
565 $$
566 \left(
567 R_1 \cup R_2
568 \right)^+
569 =
570 \left(R_2^+ \circ R_1^+\right)
571 \cup R_1^+
572 \cup R_2^+
573 .
574 $$
575 \end{example}
576
577 \begin{figure}
578 \newcounter{n}
579 \newcounter{t1}
580 \newcounter{t2}
581 \newcounter{t3}
582 \newcounter{t4}
583 \begin{center}
584 \begin{tikzpicture}[>=stealth,shorten >=1pt]
585 \setcounter{n}{7}
586 \foreach \i in {1,...,\value{n}}{
587     \foreach \j in {1,...,\value{n}}{
588         \setcounter{t1}{2 * \j - 4 - \i + 1}
589         \setcounter{t2}{\value{n} - 3 - \i + 1}
590         \setcounter{t3}{2 * \i - 1 - \j + 1}
591         \setcounter{t4}{\value{n} - \j + 1}
592         \ifnum\value{t1}>0\ifnum\value{t2}>0
593         \ifnum\value{t3}>0\ifnum\value{t4}>0
594             \draw[thick,->] (\i,\j) to[out=20] (\i+3,\j);
595         \fi\fi\fi\fi
596         \setcounter{t1}{2 * \j - 1 - \i + 1}
597         \setcounter{t2}{\value{n} - \i + 1}
598         \setcounter{t3}{2 * \i - 4 - \j + 1}
599         \setcounter{t4}{\value{n} - 3 - \j + 1}
600         \ifnum\value{t1}>0\ifnum\value{t2}>0
601         \ifnum\value{t3}>0\ifnum\value{t4}>0
602             \draw[thick,->] (\i,\j) to[in=-20,out=20] (\i,\j+3);
603         \fi\fi\fi\fi
604         \setcounter{t1}{2 * \j - 1 - \i + 1}
605         \setcounter{t2}{\value{n} - 1 - \i + 1}
606         \setcounter{t3}{2 * \i - 1 - \j + 1}
607         \setcounter{t4}{\value{n} - 1 - \j + 1}
608         \ifnum\value{t1}>0\ifnum\value{t2}>0
609         \ifnum\value{t3}>0\ifnum\value{t4}>0
610             \draw[thick,->] (\i,\j) to (\i+1,\j+1);
611         \fi\fi\fi\fi
612     }
613 }
614 \end{tikzpicture}
615 \end{center}
616 \caption{The relation from \autoref{ex:decomposition}}
617 \label{f:decomposition}
618 \end{figure}
619 \begin{example}
620 \label{ex:decomposition}
621 Consider the relation on the right of \shortciteN[Figure~2]{Beletska2009},
622 reproduced in \autoref{f:decomposition}.
623 The relation can be described as $R = R_1 \cup R_2 \cup R_3$,
624 with
625 $$
626 \begin{aligned}
627 R_1 &= n \mapsto \{\, (i,j) \to (i+3,j) \mid
628 i \le 2 j - 4 \wedge
629 i \le n - 3 \wedge
630 j \le 2 i - 1 \wedge
631 j \le n \,\}
632 \\
633 R_2 &= n \mapsto \{\, (i,j) \to (i,j+3) \mid
634 i \le 2 j - 1 \wedge
635 i \le n \wedge
636 j \le 2 i - 4 \wedge
637 j \le n - 3 \,\}
638 \\
639 R_3 &= n \mapsto \{\, (i,j) \to (i+1,j+1) \mid
640 i \le 2 j - 1 \wedge
641 i \le n - 1 \wedge
642 j \le 2 i - 1 \wedge
643 j \le n - 1\,\}
644 .
645 \end{aligned}
646 $$
647 The figure shows this relation for $n = 7$.
648 Both
649 $R_3 \circ R_1 \subseteq R_1 \circ R_3$
650 and
651 $R_3 \circ R_2 \subseteq R_2 \circ R_3$,
652 which the reader can verify using the {\tt iscc} calculator:
653 \begin{verbatim}
654 R1 := [n] -> { [i,j] -> [i+3,j] : i <= 2 j - 4 and i <= n - 3 and
655                                   j <= 2 i - 1 and j <= n };
656 R2 := [n] -> { [i,j] -> [i,j+3] : i <= 2 j - 1 and i <= n and
657                                   j <= 2 i - 4 and j <= n - 3 };
658 R3 := [n] -> { [i,j] -> [i+1,j+1] : i <= 2 j - 1 and i <= n - 1 and
659                                     j <= 2 i - 1 and j <= n - 1 };
660 (R1 . R3) - (R3 . R1);
661 (R2 . R3) - (R3 . R2);
662 \end{verbatim}
663 $R_3$ can therefore be moved forward in any path.
664 For the other two basic relations, we have both
665 $R_2 \circ R_1 \not\subseteq R_1 \circ R_2$
666 and
667 $R_1 \circ R_2 \not\subseteq R_2 \circ R_1$
668 and so $R_1$ and $R_2$ form a strongly connected component.
669 By computing the power of $R_3$ and $R_1 \cup R_2$ separately
670 and composing the results, the power of $R$ can be computed exactly
671 using \eqref{eq:transitive:singleton}.
672 As explained by \shortciteN{Beletska2009}, applying the same formula
673 to $R$ directly, without a decomposition, would result in
674 an overapproximation of the power.
675 \end{example}