Merge branch 'maint'
[platform/upstream/isl.git] / doc / implementation.tex
1 \section{Sets and Relations}
2
3 \begin{definition}[Polyhedral Set]
4 A {\em polyhedral set}\index{polyhedral set} $S$ is a finite union of basic sets
5 $S = \bigcup_i S_i$, each of which can be represented using affine
6 constraints
7 $$
8 S_i : \Z^n \to 2^{\Z^d} : \vec s \mapsto
9 S_i(\vec s) =
10 \{\, \vec x \in \Z^d \mid \exists \vec z \in \Z^e :
11 A \vec x + B \vec s + D \vec z + \vec c \geq \vec 0 \,\}
12 ,
13 $$
14 with $A \in \Z^{m \times d}$,
15 $B \in \Z^{m \times n}$,
16 $D \in \Z^{m \times e}$
17 and $\vec c \in \Z^m$.
18 \end{definition}
19
20 \begin{definition}[Parameter Domain of a Set]
21 Let $S \in \Z^n \to 2^{\Z^d}$ be a set.
22 The {\em parameter domain} of $S$ is the set
23 $$\pdom S \coloneqq \{\, \vec s \in \Z^n \mid S(\vec s) \ne \emptyset \,\}.$$
24 \end{definition}
25
26 \begin{definition}[Polyhedral Relation]
27 A {\em polyhedral relation}\index{polyhedral relation}
28 $R$ is a finite union of basic relations
29 $R = \bigcup_i R_i$ of type
30 $\Z^n \to 2^{\Z^{d_1+d_2}}$,
31 each of which can be represented using affine
32 constraints
33 $$
34 R_i = \vec s \mapsto
35 R_i(\vec s) =
36 \{\, \vec x_1 \to \vec x_2 \in \Z^{d_1} \times \Z^{d_2}
37 \mid \exists \vec z \in \Z^e :
38 A_1 \vec x_1 + A_2 \vec x_2 + B \vec s + D \vec z + \vec c \geq \vec 0 \,\}
39 ,
40 $$
41 with $A_i \in \Z^{m \times d_i}$,
42 $B \in \Z^{m \times n}$,
43 $D \in \Z^{m \times e}$
44 and $\vec c \in \Z^m$.
45 \end{definition}
46
47 \begin{definition}[Parameter Domain of a Relation]
48 Let $R \in \Z^n \to 2^{\Z^{d+d}}$ be a relation.
49 The {\em parameter domain} of $R$ is the set
50 $$\pdom R \coloneqq \{\, \vec s \in \Z^n \mid R(\vec s) \ne \emptyset \,\}.$$
51 \end{definition}
52
53 \begin{definition}[Domain of a Relation]
54 Let $R \in \Z^n \to 2^{\Z^{d+d}}$ be a relation.
55 The {\em domain} of $R$ is the polyhedral set
56 $$\domain R \coloneqq \vec s \mapsto
57 \{\, \vec x_1 \in \Z^{d_1} \mid \exists \vec x_2 \in \Z^{d_2} :
58 (\vec x_1, \vec x_2) \in R(\vec s) \,\}
59 .
60 $$
61 \end{definition}
62
63 \begin{definition}[Range of a Relation]
64 Let $R \in \Z^n \to 2^{\Z^{d+d}}$ be a relation.
65 The {\em range} of $R$ is the polyhedral set
66 $$
67 \range R \coloneqq \vec s \mapsto
68 \{\, \vec x_2 \in \Z^{d_2} \mid \exists \vec x_1 \in \Z^{d_1} :
69 (\vec x_1, \vec x_2) \in R(\vec s) \,\}
70 .
71 $$
72 \end{definition}
73
74 \begin{definition}[Composition of Relations]
75 Let $R \in \Z^n \to 2^{\Z^{d_1+d_2}}$ and
76 $S \in \Z^n \to 2^{\Z^{d_2+d_3}}$ be two relations,
77 then the composition of
78 $R$ and $S$ is defined as
79 $$
80 S \circ R \coloneqq
81 \vec s \mapsto
82 \{\, \vec x_1 \to \vec x_3 \in \Z^{d_1} \times \Z^{d_3}
83 \mid \exists \vec x_2 \in \Z^{d_2} :
84 \vec x_1 \to \vec x_2 \in R(\vec s) \wedge
85 \vec x_2 \to \vec x_3 \in S(\vec s)
86 \,\}
87 .
88 $$
89 \end{definition}
90
91 \begin{definition}[Difference Set of a Relation]
92 Let $R \in \Z^n \to 2^{\Z^{d+d}}$ be a relation.
93 The difference set ($\Delta \, R$) of $R$ is the set
94 of differences between image elements and the corresponding
95 domain elements,
96 $$
97 \diff R \coloneqq
98 \vec s \mapsto
99 \{\, \vec \delta \in \Z^{d} \mid \exists \vec x \to \vec y \in R :
100 \vec \delta = \vec y - \vec x
101 \,\}
102 $$
103 \end{definition}
104
105 \section{Simple Hull}\label{s:simple hull}
106
107 It is sometimes useful to have a single
108 basic set or basic relation that contains a given set or relation.
109 For rational sets, the obvious choice would be to compute the
110 (rational) convex hull.  For integer sets, the obvious choice
111 would be the integer hull.
112 However, {\tt isl} currently does not support an integer hull operation
113 and even if it did, it would be fairly expensive to compute.
114 The convex hull operation is supported, but it is also fairly
115 expensive to compute given only an implicit representation.
116
117 Usually, it is not required to compute the exact integer hull,
118 and an overapproximation of this hull is sufficient.
119 The ``simple hull'' of a set is such an overapproximation
120 and it is defined as the (inclusion-wise) smallest basic set
121 that is described by constraints that are translates of
122 the constraints in the input set.
123 This means that the simple hull is relatively cheap to compute
124 and that the number of constraints in the simple hull is no
125 larger than the number of constraints in the input.
126 \begin{definition}[Simple Hull of a Set]
127 The {\em simple hull} of a set
128 $S = \bigcup_{1 \le i \le v} S_i$, with
129 $$
130 S : \Z^n \to 2^{\Z^d} : \vec s \mapsto
131 S(\vec s) =
132 \left\{\, \vec x \in \Z^d \mid \exists \vec z \in \Z^e :
133 \bigvee_{1 \le i \le v}
134 A_i \vec x + B_i \vec s + D_i \vec z + \vec c_i \geq \vec 0 \,\right\}
135 $$
136 is the set
137 $$
138 H : \Z^n \to 2^{\Z^d} : \vec s \mapsto
139 S(\vec s) =
140 \left\{\, \vec x \in \Z^d \mid \exists \vec z \in \Z^e :
141 \bigwedge_{1 \le i \le v}
142 A_i \vec x + B_i \vec s + D_i \vec z + \vec c_i + \vec K_i \geq \vec 0
143 \,\right\}
144 ,
145 $$
146 with $\vec K_i$ the (component-wise) smallest non-negative integer vectors
147 such that $S \subseteq H$.
148 \end{definition}
149 The $\vec K_i$ can be obtained by solving a number of
150 LP problems, one for each element of each $\vec K_i$.
151 If any LP problem is unbounded, then the corresponding constraint
152 is dropped.
153
154 \section{Coalescing}\label{s:coalescing}
155
156 See \shortciteN{Verdoolaege2009isl}, for now.
157 More details will be added later.
158
159 \section{Transitive Closure}
160
161 \subsection{Introduction}
162
163 \begin{definition}[Power of a Relation]
164 Let $R \in \Z^n \to 2^{\Z^{d+d}}$ be a relation and
165 $k \in \Z_{\ge 1}$
166 a positive number, then power $k$ of relation $R$ is defined as
167 \begin{equation}
168 \label{eq:transitive:power}
169 R^k \coloneqq
170 \begin{cases}
171 R & \text{if $k = 1$}
172 \\
173 R \circ R^{k-1} & \text{if $k \ge 2$}
174 .
175 \end{cases}
176 \end{equation}
177 \end{definition}
178
179 \begin{definition}[Transitive Closure of a Relation]
180 Let $R \in \Z^n \to 2^{\Z^{d+d}}$ be a relation,
181 then the transitive closure $R^+$ of $R$ is the union
182 of all positive powers of $R$,
183 $$
184 R^+ \coloneqq \bigcup_{k \ge 1} R^k
185 .
186 $$
187 \end{definition}
188 Alternatively, the transitive closure may be defined
189 inductively as
190 \begin{equation}
191 \label{eq:transitive:inductive}
192 R^+ \coloneqq R \cup \left(R \circ R^+\right)
193 .
194 \end{equation}
195
196 Since the transitive closure of a polyhedral relation
197 may no longer be a polyhedral relation \shortcite{Kelly1996closure},
198 we can, in the general case, only compute an approximation
199 of the transitive closure.
200 Whereas \shortciteN{Kelly1996closure} compute underapproximations,
201 we, like \shortciteN{Beletska2009}, compute overapproximations.
202 That is, given a relation $R$, we will compute a relation $T$
203 such that $R^+ \subseteq T$.  Of course, we want this approximation
204 to be as close as possible to the actual transitive closure
205 $R^+$ and we want to detect the cases where the approximation is
206 exact, i.e., where $T = R^+$.
207
208 For computing an approximation of the transitive closure of $R$,
209 we follow the same general strategy as \shortciteN{Beletska2009}
210 and first compute an approximation of $R^k$ for $k \ge 1$ and then project
211 out the parameter $k$ from the resulting relation.
212
213 \begin{example}
214 As a trivial example, consider the relation
215 $R = \{\, x \to x + 1 \,\}$.  The $k$th power of this map
216 for arbitrary $k$ is
217 $$
218 R^k = k \mapsto \{\, x \to x + k \mid k \ge 1 \,\}
219 .
220 $$
221 The transitive closure is then
222 $$
223 \begin{aligned}
224 R^+ & = \{\, x \to y \mid \exists k \in \Z_{\ge 1} : y = x + k \,\}
225 \\
226 & = \{\, x \to y \mid y \ge x + 1 \,\}
227 .
228 \end{aligned}
229 $$
230 \end{example}
231
232 \subsection{Computing an Approximation of $R^k$}
233 \label{s:power}
234
235 There are some special cases where the computation of $R^k$ is very easy.
236 One such case is that where $R$ does not compose with itself,
237 i.e., $R \circ R = \emptyset$ or $\domain R \cap \range R = \emptyset$.
238 In this case, $R^k$ is only non-empty for $k=1$ where it is equal
239 to $R$ itself.
240
241 In general, it is impossible to construct a closed form
242 of $R^k$ as a polyhedral relation.
243 We will therefore need to make some approximations.
244 As a first approximations, we will consider each of the basic
245 relations in $R$ as simply adding one or more offsets to a domain element
246 to arrive at an image element and ignore the fact that some of these
247 offsets may only be applied to some of the domain elements.
248 That is, we will only consider the difference set $\Delta\,R$ of the relation.
249 In particular, we will first construct a collection $P$ of paths
250 that move through
251 a total of $k$ offsets and then intersect domain and range of this
252 collection with those of $R$.
253 That is, 
254 \begin{equation}
255 \label{eq:transitive:approx}
256 K = P \cap \left(\domain R \to \range R\right)
257 ,
258 \end{equation}
259 with
260 \begin{equation}
261 \label{eq:transitive:path}
262 P = \vec s \mapsto \{\, \vec x \to \vec y \mid
263 \exists k_i \in \Z_{\ge 0}, \vec\delta_i \in k_i \, \Delta_i(\vec s) :
264 \vec y = \vec x + \sum_i \vec\delta_i
265 \wedge
266 \sum_i k_i = k > 0
267 \,\}
268 \end{equation}
269 and with $\Delta_i$ the basic sets that compose
270 the difference set $\Delta\,R$.
271 Note that the number of basic sets $\Delta_i$ need not be
272 the same as the number of basic relations in $R$.
273 Also note that since addition is commutative, it does not
274 matter in which order we add the offsets and so we are allowed
275 to group them as we did in \eqref{eq:transitive:path}.
276
277 If all the $\Delta_i$s are singleton sets
278 $\Delta_i = \{\, \vec \delta_i \,\}$ with $\vec \delta_i \in \Z^d$,
279 then \eqref{eq:transitive:path} simplifies to
280 \begin{equation}
281 \label{eq:transitive:singleton}
282 P = \{\, \vec x \to \vec y \mid
283 \exists k_i \in \Z_{\ge 0} :
284 \vec y = \vec x + \sum_i k_i \, \vec \delta_i
285 \wedge
286 \sum_i k_i = k > 0
287 \,\}
288 \end{equation}
289 and then the approximation computed in \eqref{eq:transitive:approx}
290 is essentially the same as that of \shortciteN{Beletska2009}.
291 If some of the $\Delta_i$s are not singleton sets or if
292 some of $\vec \delta_i$s are parametric, then we need
293 to resort to further approximations.
294
295 To ease both the exposition and the implementation, we will for
296 the remainder of this section work with extended offsets
297 $\Delta_i' = \Delta_i \times \{\, 1 \,\}$.
298 That is, each offset is extended with an extra coordinate that is
299 set equal to one.  The paths constructed by summing such extended
300 offsets have the length encoded as the difference of their
301 final coordinates.  The path $P'$ can then be decomposed into
302 paths $P_i'$, one for each $\Delta_i$,
303 \begin{equation}
304 \label{eq:transitive:decompose}
305 P' = \left(
306 (P_m' \cup \identity) \circ \cdots \circ
307 (P_2' \cup \identity) \circ
308 (P_1' \cup \identity)
309 \right) \cap
310 \{\,
311 \vec x' \to \vec y' \mid y_{d+1} - x_{d+1} = k > 0
312 \,\}
313 ,
314 \end{equation}
315 with
316 $$
317 P_i' = \vec s \mapsto \{\, \vec x' \to \vec y' \mid
318 \exists k \in \Z_{\ge 1}, \vec \delta \in k \, \Delta_i'(\vec s) :
319 \vec y' = \vec x' + \vec \delta
320 \,\}
321 .
322 $$
323 Note that each $P_i'$ contains paths of length at least one.
324 We therefore need to take the union with the identity relation
325 when composing the $P_i'$s to allow for paths that do not contain
326 any offsets from one or more $\Delta_i'$.
327 The path that consists of only identity relations is removed
328 by imposing the constraint $y_{d+1} - x_{d+1} > 0$.
329 Taking the union with the identity relation means that
330 that the relations we compose in \eqref{eq:transitive:decompose}
331 each consist of two basic relations.  If there are $m$
332 disjuncts in the input relation, then a direct application
333 of the composition operation may therefore result in a relation
334 with $2^m$ disjuncts, which is prohibitively expensive.
335 It is therefore crucial to apply coalescing (\autoref{s:coalescing})
336 after each composition.
337
338 Let us now consider how to compute an overapproximation of $P_i'$.
339 Those that correspond to singleton $\Delta_i$s are grouped together
340 and handled as in \eqref{eq:transitive:singleton}.
341 Note that this is just an optimization.  The procedure described
342 below would produce results that are at least as accurate.
343 For simplicity, we first assume that no constraint in $\Delta_i'$
344 involves any existentially quantified variables.
345 We will return to existentially quantified variables at the end
346 of this section.
347 Without existentially quantified variables, we can classify
348 the constraints of $\Delta_i'$ as follows
349 \begin{enumerate}
350 \item non-parametric constraints
351 \begin{equation}
352 \label{eq:transitive:non-parametric}
353 A_1 \vec x + \vec c_1 \geq \vec 0
354 \end{equation}
355 \item purely parametric constraints
356 \begin{equation}
357 \label{eq:transitive:parametric}
358 B_2 \vec s + \vec c_2 \geq \vec 0
359 \end{equation}
360 \item negative mixed constraints
361 \begin{equation}
362 \label{eq:transitive:mixed}
363 A_3 \vec x + B_3 \vec s + \vec c_3 \geq \vec 0
364 \end{equation}
365 such that for each row $j$ and for all $\vec s$,
366 $$
367 \Delta_i'(\vec s) \cap
368 \{\, \vec \delta' \mid B_{3,j} \vec s + c_{3,j} > 0 \,\}
369 = \emptyset
370 $$
371 \item positive mixed constraints
372 $$
373 A_4 \vec x + B_4 \vec s + \vec c_4 \geq \vec 0
374 $$
375 such that for each row $j$, there is at least one $\vec s$ such that
376 $$
377 \Delta_i'(\vec s) \cap
378 \{\, \vec \delta' \mid B_{4,j} \vec s + c_{4,j} > 0 \,\}
379 \ne \emptyset
380 $$
381 \end{enumerate}
382 We will use the following approximation $Q_i$ for $P_i'$:
383 \begin{equation}
384 \label{eq:transitive:Q}
385 \begin{aligned}
386 Q_i = \vec s \mapsto
387 \{\,
388 \vec x' \to \vec y'
389 \mid {} & \exists k \in \Z_{\ge 1}, \vec f \in \Z^d :
390 \vec y' = \vec x' + (\vec f, k)
391 \wedge {}
392 \\
393 &
394 A_1 \vec f + k \vec c_1 \geq \vec 0
395 \wedge
396 B_2 \vec s + \vec c_2 \geq \vec 0
397 \wedge
398 A_3 \vec f + B_3 \vec s + \vec c_3 \geq \vec 0
399 \,\}
400 .
401 \end{aligned}
402 \end{equation}
403 To prove that $Q_i$ is indeed an overapproximation of $P_i'$,
404 we need to show that for every $\vec s \in \Z^n$, for every
405 $k \in \Z_{\ge 1}$ and for every $\vec f \in k \, \Delta_i(\vec s)$
406 we have that
407 $(\vec f, k)$ satisfies the constraints in \eqref{eq:transitive:Q}.
408 If $\Delta_i(\vec s)$ is non-empty, then $\vec s$ must satisfy
409 the constraints in \eqref{eq:transitive:parametric}.
410 Each element $(\vec f, k) \in k \, \Delta_i'(\vec s)$ is a sum
411 of $k$ elements $(\vec f_j, 1)$ in $\Delta_i'(\vec s)$.
412 Each of these elements satisfies the constraints in
413 \eqref{eq:transitive:non-parametric}, i.e.,
414 $$
415 \left[
416 \begin{matrix}
417 A_1 & \vec c_1
418 \end{matrix}
419 \right]
420 \left[
421 \begin{matrix}
422 \vec f_j \\ 1
423 \end{matrix}
424 \right]
425 \ge \vec 0
426 .
427 $$
428 The sum of these elements therefore satisfies the same set of inequalities,
429 i.e., $A_1 \vec f + k \vec c_1 \geq \vec 0$.
430 Finally, the constraints in \eqref{eq:transitive:mixed} are such
431 that for any $\vec s$ in the parameter domain of $\Delta$,
432 we have $-\vec r(\vec s) \coloneqq B_3 \vec s + \vec c_3 \le \vec 0$,
433 i.e., $A_3 \vec f_j \ge \vec r(\vec s) \ge \vec 0$
434 and therefore also $A_3 \vec f \ge \vec r(\vec s)$.
435 Note that if there are no mixed constraints and if the
436 rational relaxation of $\Delta_i(\vec s)$, i.e.,
437 $\{\, \vec x \in \Q^d \mid A_1 \vec x + \vec c_1 \ge \vec 0\,\}$,
438 has integer vertices, then the approximation is exact, i.e.,
439 $Q_i = P_i'$.  In this case, the vertices of $\Delta'_i(\vec s)$
440 generate the rational cone
441 $\{\, \vec x' \in \Q^{d+1} \mid \left[
442 \begin{matrix}
443 A_1 & \vec c_1
444 \end{matrix}
445 \right] \vec x' \,\}$ and therefore $\Delta'_i(\vec s)$ is
446 a Hilbert basis of this cone \shortcite[Theorem~16.4]{Schrijver1986}.
447
448 Existentially quantified variables can be handled by
449 classifying them into variables that are uniquely
450 determined by the parameters, variables that are independent
451 of the parameters and others.  The first set can be treated
452 as parameters and the second as variables.  Constraints involving
453 the other existentially quantified variables are removed.
454
455 \begin{example}
456 Consider the relation
457 $$
458 R =
459 n \to \{\, x \to y \mid \exists \, \alpha_0, \alpha_1: 7\alpha_0 = -2 + n \wedge 5\alpha_1 = -1 - x + y \wedge y \ge 6 + x \,\}
460 .
461 $$
462 The difference set of this relation is
463 $$
464 \Delta = \Delta \, R =
465 n \to \{\, x \mid \exists \, \alpha_0, \alpha_1: 7\alpha_0 = -2 + n \wedge 5\alpha_1 = -1 + x \wedge x \ge 6 \,\}
466 .
467 $$
468 The existentially quantified variables can be defined in terms
469 of the parameters and variables as
470 $$
471 \alpha_0 = \floor{\frac{-2 + n}7}
472 \qquad
473 \text{and}
474 \qquad
475 \alpha_1 = \floor{\frac{-1 + x}5}
476 .
477 $$
478 $\alpha_0$ can therefore be treated as a parameter,
479 while $\alpha_1$ can be treated as a variable.
480 This in turn means that $7\alpha_0 = -2 + n$ can be treated as
481 a purely parametric constraint, while the other two constraints are
482 non-parametric.
483 The corresponding $Q$~\eqref{eq:transitive:Q} is therefore
484 $$
485 \begin{aligned}
486 n \to \{\, (x,z) \to (y,w) \mid
487 \exists\, \alpha_0, \alpha_1, k, f : {} &
488 k \ge 1 \wedge
489 y = x + f \wedge
490 w = z + k \wedge {} \\
491 &
492 7\alpha_0 = -2 + n \wedge
493 5\alpha_1 = -k + x \wedge
494 x \ge 6 k
495 \,\}
496 .
497 \end{aligned}
498 $$
499 Projecting out the final coordinates encoding the length of the paths,
500 results in the exact transitive closure
501 $$
502 R^+ =
503 n \to \{\, x \to y \mid \exists \, \alpha_0, \alpha_1: 7\alpha_1 = -2 + n \wedge 6\alpha_0 \ge -x + y \wedge 5\alpha_0 \le -1 - x + y \,\}
504 .
505 $$
506 \end{example}
507
508 The fact that we ignore some impure constraints clearly leads
509 to a loss of accuracy.  In some cases, some of this loss can be recovered
510 by not considering the parameters in a special way.
511 That is, instead of considering the set
512 $$
513 \Delta = \diff R =
514 \vec s \mapsto
515 \{\, \vec \delta \in \Z^{d} \mid \exists \vec x \to \vec y \in R :
516 \vec \delta = \vec y - \vec x
517 \,\}
518 $$
519 we consider the set
520 $$
521 \Delta' = \diff R' =
522 \{\, \vec \delta \in \Z^{n+d} \mid \exists
523 (\vec s, \vec x) \to (\vec s, \vec y) \in R' :
524 \vec \delta = (\vec s - \vec s, \vec y - \vec x)
525 \,\}
526 .
527 $$
528 The first $n$ coordinates of every element in $\Delta'$ are zero.
529 Projecting out these zero coordinates from $\Delta'$ is equivalent
530 to projecting out the parameters in $\Delta$.
531 The result is obviously a superset of $\Delta$, but all its constraints
532 are of type \eqref{eq:transitive:non-parametric} and they can therefore
533 all be used in the construction of $Q_i$.
534
535 \begin{example}
536 Consider the relation
537 $$
538 % [n] -> { [x, y] -> [1 + x, 1 - n + y] | n >= 2 }
539 R = n \to \{\, (x, y) \to (1 + x, 1 - n + y) \mid n \ge 2 \,\}
540 .
541 $$
542 We have
543 $$
544 \diff R = n \to \{\, (1, 1 - n) \mid n \ge 2 \,\}
545 $$
546 and so, by treating the parameters in a special way, we obtain
547 the following approximation for $R^+$:
548 $$
549 n \to \{\, (x, y) \to (x', y') \mid n \ge 2 \wedge y' \le 1 - n + y \wedge x' \ge 1 + x \,\}
550 .
551 $$
552 If we consider instead
553 $$
554 R' = \{\, (n, x, y) \to (n, 1 + x, 1 - n + y) \mid n \ge 2 \,\}
555 $$
556 then
557 $$
558 \diff R' = \{\, (0, 1, y) \mid y \le -1 \,\}
559 $$
560 and we obtain the approximation
561 $$
562 n \to \{\, (x, y) \to (x', y') \mid n \ge 2 \wedge x' \ge 1 + x \wedge y' \le x + y - x' \,\}
563 .
564 $$
565 If we consider both $\diff R$ and $\diff R'$, then we obtain
566 $$
567 n \to \{\, (x, y) \to (x', y') \mid n \ge 2 \wedge y' \le 1 - n + y \wedge x' \ge 1 + x \wedge y' \le x + y - x' \,\}
568 .
569 $$
570 Note, however, that this is not the most accurate affine approximation that
571 can be obtained.  That would be
572 $$
573 n \to \{\, (x, y) \to (x', y') \mid y' \le 2 - n + x + y - x' \wedge n \ge 2 \wedge x' \ge 1 + x \,\}
574 .
575 $$
576 \end{example}
577
578 \subsection{Checking Exactness}
579
580 The approximation $T$ for the transitive closure $R^+$ can be obtained
581 by projecting out the parameter $k$ from the approximation $K$
582 \eqref{eq:transitive:approx} of the power $R^k$.
583 Since $K$ is an overapproximation of $R^k$, $T$ will also be an
584 overapproximation of $R^+$.
585 To check whether the results are exact, we need to consider two
586 cases depending on whether $R$ is {\em cyclic}, where $R$ is defined
587 to be cyclic if $R^+$ maps any element to itself, i.e.,
588 $R^+ \cap \identity \ne \emptyset$.
589 If $R$ is acyclic, then the inductive definition of
590 \eqref{eq:transitive:inductive} is equivalent to its completion,
591 i.e.,
592 $$
593 R^+ = R \cup \left(R \circ R^+\right)
594 $$
595 is a defining property.
596 Since $T$ is known to be an overapproximation, we only need to check
597 whether
598 $$
599 T \subseteq R \cup \left(R \circ T\right)
600 .
601 $$
602 This is essentially Theorem~5 of \shortciteN{Kelly1996closure}.
603 The only difference is that they only consider lexicographically
604 forward relations, a special case of acyclic relations.
605
606 If, on the other hand, $R$ is cyclic, then we have to resort
607 to checking whether the approximation $K$ of the power is exact.
608 Note that $T$ may be exact even if $K$ is not exact, so the check
609 is sound, but incomplete.
610 To check exactness of the power, we simply need to check
611 \eqref{eq:transitive:power}.  Since again $K$ is known
612 to be an overapproximation, we only need to check whether
613 $$
614 \begin{aligned}
615 K'|_{y_{d+1} - x_{d+1} = 1} & \subseteq R'
616 \\
617 K'|_{y_{d+1} - x_{d+1} \ge 2} & \subseteq R' \circ K'|_{y_{d+1} - x_{d+1} \ge 1}
618 ,
619 \end{aligned}
620 $$
621 where $R' = \{\, \vec x' \to \vec y' \mid \vec x \to \vec y \in R
622 \wedge y_{d+1} - x_{d+1} = 1\,\}$, i.e., $R$ extended with path
623 lengths equal to 1.
624
625 All that remains is to explain how to check the cyclicity of $R$.
626 Note that the exactness on the power is always sound, even
627 in the acyclic case, so we only need to be careful that we find
628 all cyclic cases.  Now, if $R$ is cyclic, i.e.,
629 $R^+ \cap \identity \ne \emptyset$, then, since $T$ is
630 an overapproximation of $R^+$, also
631 $T \cap \identity \ne \emptyset$.  This in turn means
632 that $\Delta \, K'$ contains a point whose first $d$ coordinates
633 are zero and whose final coordinate is positive.
634 In the implementation we currently perform this test on $P'$ instead of $K'$.
635 Note that if $R^+$ is acyclic and $T$ is not, then the approximation
636 is clearly not exact and the approximation of the power $K$
637 will not be exact either.
638
639 \subsection{Decomposing $R$ into strongly connected components}
640
641 If the input relation $R$ is a union of several basic relations
642 that can be partially ordered
643 then the accuracy of the approximation may be improved by computing
644 an approximation of each strongly connected components separately.
645 For example, if $R = R_1 \cup R_2$ and $R_1 \circ R_2 = \emptyset$,
646 then we know that any path that passes through $R_2$ cannot later
647 pass through $R_1$, i.e.,
648 \begin{equation}
649 \label{eq:transitive:components}
650 R^+ = R_1^+ \cup R_2^+ \cup \left(R_2^+ \circ R_1^+\right)
651 .
652 \end{equation}
653 We can therefore compute (approximations of) transitive closures
654 of $R_1$ and $R_2$ separately.
655 Note, however, that the condition $R_1 \circ R_2 = \emptyset$
656 is actually too strong.
657 If $R_1 \circ R_2$ is a subset of $R_2 \circ R_1$
658 then we can reorder the segments
659 in any path that moves through both $R_1$ and $R_2$ to
660 first move through $R_1$ and then through $R_2$.
661
662 This idea can be generalized to relations that are unions
663 of more than two basic relations by constructing the
664 strongly connected components in the graph with as vertices
665 the basic relations and an edge between two basic relations
666 $R_i$ and $R_j$ if $R_i$ needs to follow $R_j$ in some paths.
667 That is, there is an edge from $R_i$ to $R_j$ iff
668 \begin{equation}
669 \label{eq:transitive:edge}
670 R_i \circ R_j
671 \not\subseteq
672 R_j \circ R_i
673 .
674 \end{equation}
675 The components can be obtained from the graph by applying
676 Tarjan's algorithm \shortcite{Tarjan1972}.
677
678 In practice, we compute the (extended) powers $K_i'$ of each component
679 separately and then compose them as in \eqref{eq:transitive:decompose}.
680 Note, however, that in this case the order in which we apply them is
681 important and should correspond to a topological ordering of the
682 strongly connected components.  Simply applying Tarjan's
683 algorithm will produce topologically sorted strongly connected components.
684 The graph on which Tarjan's algorithm is applied is constructed on-the-fly.
685 That is, whenever the algorithm checks if there is an edge between
686 two vertices, we evaluate \eqref{eq:transitive:edge}.
687 The exactness check is performed on each component separately.
688 If the approximation turns out to be inexact for any of the components,
689 then the entire result is marked inexact and the exactness check
690 is skipped on the components that still need to be handled.
691
692 It should be noted that \eqref{eq:transitive:components}
693 is only valid for exact transitive closures.
694 If overapproximations are computed in the right hand side, then the result will
695 still be an overapproximation of the left hand side, but this result
696 may not be transitively closed.  If we only separate components based
697 on the condition $R_i \circ R_j = \emptyset$, then there is no problem,
698 as this condition will still hold on the computed approximations
699 of the transitive closures.  If, however, we have exploited
700 \eqref{eq:transitive:edge} during the decomposition and if the
701 result turns out not to be exact, then we check whether
702 the result is transitively closed.  If not, we recompute
703 the transitive closure, skipping the decomposition.
704 Note that testing for transitive closedness on the result may
705 be fairly expensive, so we may want to make this check
706 configurable.
707
708 \begin{figure}
709 \begin{center}
710 \begin{tikzpicture}[x=0.5cm,y=0.5cm,>=stealth,shorten >=1pt]
711 \foreach \x in {1,...,10}{
712     \foreach \y in {1,...,10}{
713         \draw[->] (\x,\y) -- (\x,\y+1);
714     }
715 }
716 \foreach \x in {1,...,20}{
717     \foreach \y in {5,...,15}{
718         \draw[->] (\x,\y) -- (\x+1,\y);
719     }
720 }
721 \end{tikzpicture}
722 \end{center}
723 \caption{The relation from \autoref{ex:closure4}}
724 \label{f:closure4}
725 \end{figure}
726 \begin{example}
727 \label{ex:closure4}
728 Consider the relation in example {\tt closure4} that comes with
729 the Omega calculator~\shortcite{Omega_calc}, $R = R_1 \cup R_2$,
730 with
731 $$
732 \begin{aligned}
733 R_1 & = \{\, (x,y) \to (x,y+1) \mid 1 \le x,y \le 10 \,\}
734 \\
735 R_2 & = \{\, (x,y) \to (x+1,y) \mid 1 \le x \le 20 \wedge 5 \le y \le 15 \,\}
736 .
737 \end{aligned}
738 $$
739 This relation is shown graphically in \autoref{f:closure4}.
740 We have
741 $$
742 \begin{aligned}
743 R_1 \circ R_2 &=
744 \{\, (x,y) \to (x+1,y+1) \mid 1 \le x \le 9 \wedge 5 \le y \le 10 \,\}
745 \\
746 R_2 \circ R_1 &=
747 \{\, (x,y) \to (x+1,y+1) \mid 1 \le x \le 10 \wedge 4 \le y \le 10 \,\}
748 .
749 \end{aligned}
750 $$
751 Clearly, $R_1 \circ R_2 \subseteq R_2 \circ R_1$ and so
752 $$
753 \left(
754 R_1 \cup R_2
755 \right)^+
756 =
757 \left(R_2^+ \circ R_1^+\right)
758 \cup R_1^+
759 \cup R_2^+
760 .
761 $$
762 \end{example}
763
764 \begin{figure}
765 \newcounter{n}
766 \newcounter{t1}
767 \newcounter{t2}
768 \newcounter{t3}
769 \newcounter{t4}
770 \begin{center}
771 \begin{tikzpicture}[>=stealth,shorten >=1pt]
772 \setcounter{n}{7}
773 \foreach \i in {1,...,\value{n}}{
774     \foreach \j in {1,...,\value{n}}{
775         \setcounter{t1}{2 * \j - 4 - \i + 1}
776         \setcounter{t2}{\value{n} - 3 - \i + 1}
777         \setcounter{t3}{2 * \i - 1 - \j + 1}
778         \setcounter{t4}{\value{n} - \j + 1}
779         \ifnum\value{t1}>0\ifnum\value{t2}>0
780         \ifnum\value{t3}>0\ifnum\value{t4}>0
781             \draw[thick,->] (\i,\j) to[out=20] (\i+3,\j);
782         \fi\fi\fi\fi
783         \setcounter{t1}{2 * \j - 1 - \i + 1}
784         \setcounter{t2}{\value{n} - \i + 1}
785         \setcounter{t3}{2 * \i - 4 - \j + 1}
786         \setcounter{t4}{\value{n} - 3 - \j + 1}
787         \ifnum\value{t1}>0\ifnum\value{t2}>0
788         \ifnum\value{t3}>0\ifnum\value{t4}>0
789             \draw[thick,->] (\i,\j) to[in=-20,out=20] (\i,\j+3);
790         \fi\fi\fi\fi
791         \setcounter{t1}{2 * \j - 1 - \i + 1}
792         \setcounter{t2}{\value{n} - 1 - \i + 1}
793         \setcounter{t3}{2 * \i - 1 - \j + 1}
794         \setcounter{t4}{\value{n} - 1 - \j + 1}
795         \ifnum\value{t1}>0\ifnum\value{t2}>0
796         \ifnum\value{t3}>0\ifnum\value{t4}>0
797             \draw[thick,->] (\i,\j) to (\i+1,\j+1);
798         \fi\fi\fi\fi
799     }
800 }
801 \end{tikzpicture}
802 \end{center}
803 \caption{The relation from \autoref{ex:decomposition}}
804 \label{f:decomposition}
805 \end{figure}
806 \begin{example}
807 \label{ex:decomposition}
808 Consider the relation on the right of \shortciteN[Figure~2]{Beletska2009},
809 reproduced in \autoref{f:decomposition}.
810 The relation can be described as $R = R_1 \cup R_2 \cup R_3$,
811 with
812 $$
813 \begin{aligned}
814 R_1 &= n \mapsto \{\, (i,j) \to (i+3,j) \mid
815 i \le 2 j - 4 \wedge
816 i \le n - 3 \wedge
817 j \le 2 i - 1 \wedge
818 j \le n \,\}
819 \\
820 R_2 &= n \mapsto \{\, (i,j) \to (i,j+3) \mid
821 i \le 2 j - 1 \wedge
822 i \le n \wedge
823 j \le 2 i - 4 \wedge
824 j \le n - 3 \,\}
825 \\
826 R_3 &= n \mapsto \{\, (i,j) \to (i+1,j+1) \mid
827 i \le 2 j - 1 \wedge
828 i \le n - 1 \wedge
829 j \le 2 i - 1 \wedge
830 j \le n - 1\,\}
831 .
832 \end{aligned}
833 $$
834 The figure shows this relation for $n = 7$.
835 Both
836 $R_3 \circ R_1 \subseteq R_1 \circ R_3$
837 and
838 $R_3 \circ R_2 \subseteq R_2 \circ R_3$,
839 which the reader can verify using the {\tt iscc} calculator:
840 \begin{verbatim}
841 R1 := [n] -> { [i,j] -> [i+3,j] : i <= 2 j - 4 and i <= n - 3 and
842                                   j <= 2 i - 1 and j <= n };
843 R2 := [n] -> { [i,j] -> [i,j+3] : i <= 2 j - 1 and i <= n and
844                                   j <= 2 i - 4 and j <= n - 3 };
845 R3 := [n] -> { [i,j] -> [i+1,j+1] : i <= 2 j - 1 and i <= n - 1 and
846                                     j <= 2 i - 1 and j <= n - 1 };
847 (R1 . R3) - (R3 . R1);
848 (R2 . R3) - (R3 . R2);
849 \end{verbatim}
850 $R_3$ can therefore be moved forward in any path.
851 For the other two basic relations, we have both
852 $R_2 \circ R_1 \not\subseteq R_1 \circ R_2$
853 and
854 $R_1 \circ R_2 \not\subseteq R_2 \circ R_1$
855 and so $R_1$ and $R_2$ form a strongly connected component.
856 By computing the power of $R_3$ and $R_1 \cup R_2$ separately
857 and composing the results, the power of $R$ can be computed exactly
858 using \eqref{eq:transitive:singleton}.
859 As explained by \shortciteN{Beletska2009}, applying the same formula
860 to $R$ directly, without a decomposition, would result in
861 an overapproximation of the power.
862 \end{example}
863
864 \subsection{Partitioning the domains and ranges of $R$}
865
866 The algorithm of \autoref{s:power} assumes that the input relation $R$
867 can be treated as a union of translations.
868 This is a reasonable assumption if $R$ maps elements of a given
869 abstract domain to the same domain.
870 However, if $R$ is a union of relations that map between different
871 domains, then this assumption no longer holds.
872 In particular, when an entire dependence graph is encoded
873 in a single relation, as is done by, e.g.,
874 \shortciteN[Section~6.1]{Barthou2000MSE}, then it does not make
875 sense to look at differences between iterations of different domains.
876 Now, arguably, a modified Floyd-Warshall algorithm should
877 be applied to the dependence graph, as advocated by
878 \shortciteN{Kelly1996closure}, with the transitive closure operation
879 only being applied to relations from a given domain to itself.
880 However, it is also possible to detect disjoint domains and ranges
881 and to apply Floyd-Warshall internally.
882
883 \linesnumbered
884 \begin{algorithm}
885 \caption{The modified Floyd-Warshall algorithm of
886 \protect\shortciteN{Kelly1996closure}}
887 \label{a:Floyd}
888 \SetKwInput{Input}{Input}
889 \SetKwInput{Output}{Output}
890 \Input{Relations $R_{pq}$, $0 \le p, q < n$}
891 \Output{Updated relations $R_{pq}$ such that each relation
892 $R_{pq}$ contains all indirect paths from $p$ to $q$ in the input graph}
893 %
894 \BlankLine
895 \SetVline
896 \dontprintsemicolon
897 %
898 \For{$r \in [0, n-1]$}{
899     $R_{rr} \coloneqq R_{rr}^+$ \nllabel{l:Floyd:closure}\;
900     \For{$p \in [0, n-1]$}{
901         \For{$q \in [0, n-1]$}{
902             \If{$p \ne r$ or $q \ne r$}{
903                 $R_{pq} \coloneqq R_{pq} \cup \left(R_{rq} \circ R_{pr}\right)
904                              \cup \left(R_{rq} \circ R_{rr} \circ R_{pr}\right)$
905              \nllabel{l:Floyd:update}
906              }
907         }
908     }
909 }
910 \end{algorithm}
911
912 Let the input relation $R$ be a union of $m$ basic relations $R_i$.
913 Let $D_{2i}$ be the domains of $R_i$ and $D_{2i+1}$ the ranges of $R_i$.
914 The first step is to group overlapping $D_j$ until a partition is
915 obtained.  If the resulting partition consists of a single part,
916 then we continue with the algorithm of \autoref{s:power}.
917 Otherwise, we apply Floyd-Warshall on the graph with as vertices
918 the parts of the partition and as edges the $R_i$ attached to
919 the appropriate pairs of vertices.
920 In particular, let there be $n$ parts $P_k$ in the partition.
921 We construct $n^2$ relations
922 $$
923 R_{pq} \coloneqq \bigcup_{i \text{ s.t. } \domain R_i \subseteq P_p \wedge
924                                  \range R_i \subseteq P_q} R_i
925 ,
926 $$
927 apply \autoref{a:Floyd} and return the union of all resulting
928 $R_{pq}$ as the transitive closure of $R$.
929 Each iteration of the $r$-loop in \autoref{a:Floyd} updates
930 all relations $R_{pq}$ to include paths that go from $p$ to $r$,
931 possibly stay there for a while, and then go from $r$ to $q$.
932 Note that paths that ``stay in $r$'' include all paths that
933 pass through earlier vertices since $R_{rr}$ itself has been updated
934 accordingly in previous iterations of the outer loop.
935 In principle, it would be sufficient to use the $R_{pr}$
936 and $R_{rq}$ computed in the previous iteration of the
937 $r$-loop in Line~\ref{l:Floyd:update}.
938 However, from an implementation perspective, it is easier
939 to allow either or both of these to have been updated
940 in the same iteration of the $r$-loop.
941 This may result in duplicate paths, but these can usually
942 be removed by coalescing (\autoref{s:coalescing}) the result of the union
943 in Line~\ref{l:Floyd:update}, which should be done in any case.
944 The transitive closure in Line~\ref{l:Floyd:closure}
945 is performed using a recursive call.  This recursive call
946 includes the partitioning step, but the resulting partition will
947 usually be a singleton.
948 The result of the recursive call will either be exact or an
949 overapproximation.  The final result of Floyd-Warshall is therefore
950 also exact or an overapproximation.
951
952 \begin{figure}
953 \begin{center}
954 \begin{tikzpicture}[x=1cm,y=1cm,>=stealth,shorten >=3pt]
955 \foreach \x/\y in {0/0,1/1,3/2} {
956     \fill (\x,\y) circle (2pt);
957 }
958 \foreach \x/\y in {0/1,2/2,3/3} {
959     \draw (\x,\y) circle (2pt);
960 }
961 \draw[->] (0,0) -- (0,1);
962 \draw[->] (0,1) -- (1,1);
963 \draw[->] (2,2) -- (3,2);
964 \draw[->] (3,2) -- (3,3);
965 \draw[->,dashed] (2,2) -- (3,3);
966 \draw[->,dotted] (0,0) -- (1,1);
967 \end{tikzpicture}
968 \end{center}
969 \caption{The relation (solid arrows) on the right of Figure~1 of
970 \protect\shortciteN{Beletska2009} and its transitive closure}
971 \label{f:COCOA:1}
972 \end{figure}
973 \begin{example}
974 Consider the relation on the right of Figure~1 of
975 \shortciteN{Beletska2009},
976 reproduced in \autoref{f:COCOA:1}.
977 This relation can be described as
978 $$
979 \begin{aligned}
980 \{\, (x, y) \to (x_2, y_2) \mid {} & (3y = 2x \wedge x_2 = x \wedge 3y_2 = 3 + 2x \wedge x \ge 0 \wedge x \le 3) \vee {} \\
981 & (x_2 = 1 + x \wedge y_2 = y \wedge x \ge 0 \wedge 3y \ge 2 + 2x \wedge x \le 2 \wedge 3y \le 3 + 2x) \,\}
982 .
983 \end{aligned}
984 $$
985 Note that the domain of the upward relation overlaps with the range
986 of the rightward relation and vice versa, but that the domain
987 of neither relation overlaps with its own range or the domain of
988 the other relation.
989 The domains and ranges can therefore be partitioned into two parts,
990 $P_0$ and $P_1$, shown as the white and black dots in \autoref{f:COCOA:1},
991 respectively.
992 Initially, we have
993 $$
994 \begin{aligned}
995 R_{00} & = \emptyset
996 \\
997 R_{01} & = 
998 \{\, (x, y) \to (x+1, y) \mid 
999 (x \ge 0 \wedge 3y \ge 2 + 2x \wedge x \le 2 \wedge 3y \le 3 + 2x) \,\}
1000 \\
1001 R_{10} & =
1002 \{\, (x, y) \to (x_2, y_2) \mid (3y = 2x \wedge x_2 = x \wedge 3y_2 = 3 + 2x \wedge x \ge 0 \wedge x \le 3) \,\}
1003 \\
1004 R_{11} & = \emptyset
1005 .
1006 \end{aligned}
1007 $$
1008 In the first iteration, $R_{00}$ remains the same ($\emptyset^+ = \emptyset$).
1009 $R_{01}$ and $R_{10}$ are therefore also unaffected, but
1010 $R_{11}$ is updated to include $R_{01} \circ R_{10}$, i.e.,
1011 the dashed arrow in the figure.
1012 This new $R_{11}$ is obviously transitively closed, so it is not
1013 changed in the second iteration and it does not have an effect
1014 on $R_{01}$ and $R_{10}$.  However, $R_{00}$ is updated to
1015 include $R_{10} \circ R_{01}$, i.e., the dotted arrow in the figure.
1016 The transitive closure of the original relation is then equal to
1017 $R_{00} \cup R_{01} \cup R_{10} \cup R_{11}$.
1018 \end{example}
1019
1020 \subsection{Incremental Computation}
1021 \label{s:incremental}
1022
1023 In some cases it is possible and useful to compute the transitive closure
1024 of union of basic relations incrementally.  In particular,
1025 if $R$ is a union of $m$ basic maps,
1026 $$
1027 R = \bigcup_j R_j
1028 ,
1029 $$
1030 then we can pick some $R_i$ and compute the transitive closure of $R$ as
1031 \begin{equation}
1032 \label{eq:transitive:incremental}
1033 R^+ = R_i^+ \cup
1034 \left(
1035 \bigcup_{j \ne i}
1036 R_i^* \circ R_j \circ R_i^*
1037 \right)^+
1038 .
1039 \end{equation}
1040 For this approach to be successful, it is crucial that each
1041 of the disjuncts in the argument of the second transitive
1042 closure in \eqref{eq:transitive:incremental} be representable
1043 as a single basic relation, i.e., without a union.
1044 If this condition holds, then by using \eqref{eq:transitive:incremental},
1045 the number of disjuncts in the argument of the transitive closure
1046 can be reduced by one.
1047 Now, $R_i^* = R_i^+ \cup \identity$, but in some cases it is possible
1048 to relax the constraints of $R_i^+$ to include part of the identity relation,
1049 say on domain $D$.  We will use the notation
1050 ${\cal C}(R_i,D) = R_i^+ \cup \identity_D$ to represent
1051 this relaxed version of $R^+$.
1052 \shortciteN{Kelly1996closure} use the notation $R_i^?$.
1053 ${\cal C}(R_i,D)$ can be computed by allowing $k$ to attain
1054 the value $0$ in \eqref{eq:transitive:Q} and by using
1055 $$
1056 P \cap \left(D \to D\right)
1057 $$
1058 instead of \eqref{eq:transitive:approx}.
1059 Typically, $D$ will be a strict superset of both $\domain R_i$
1060 and $\range R_i$.  We therefore need to check that domain
1061 and range of the transitive closure are part of ${\cal C}(R_i,D)$,
1062 i.e., the part that results from the paths of positive length ($k \ge 1$),
1063 are equal to the domain and range of $R_i$.
1064 If not, then the incremental approach cannot be applied for
1065 the given choice of $R_i$ and $D$.
1066
1067 In order to be able to replace $R^*$ by ${\cal C}(R_i,D)$
1068 in \eqref{eq:transitive:incremental}, $D$ should be chosen
1069 to include both $\domain R$ and $\range R$, i.e., such
1070 that $\identity_D \circ R_j \circ \identity_D = R_j$ for all $j\ne i$.
1071 \shortciteN{Kelly1996closure} say that they use
1072 $D = \domain R_i \cup \range R_i$, but presumably they mean that
1073 they use $D = \domain R \cup \range R$.
1074 Now, this expression of $D$ contains a union, so it not directly usable.
1075 \shortciteN{Kelly1996closure} do not explain how they avoid this union.
1076 Apparently, in their implementation,
1077 they are using the convex hull of $\domain R \cup \range R$
1078 or at least an approximation of this convex hull.
1079 We use the simple hull (\autoref{s:simple hull}) of $\domain R \cup \range R$.
1080
1081 It is also possible to use a domain $D$ that does {\em not\/}
1082 include $\domain R \cup \range R$, but then we have to
1083 compose with ${\cal C}(R_i,D)$ more selectively.
1084 In particular, if we have
1085 \begin{equation}
1086 \label{eq:transitive:right}
1087 \text{for each $j \ne i$ either }
1088 \domain R_j \subseteq D \text{ or } \domain R_j \cap \range R_i = \emptyset
1089 \end{equation}
1090 and, similarly,
1091 \begin{equation}
1092 \label{eq:transitive:left}
1093 \text{for each $j \ne i$ either }
1094 \range R_j \subseteq D \text{ or } \range R_j \cap \domain R_i = \emptyset
1095 \end{equation}
1096 then we can refine \eqref{eq:transitive:incremental} to
1097 $$
1098 R_i^+ \cup
1099 \left(
1100 \left(
1101 \bigcup_{\shortstack{$\scriptstyle\domain R_j \subseteq D $\\
1102                      $\scriptstyle\range R_j \subseteq D$}}
1103 {\cal C} \circ R_j \circ {\cal C}
1104 \right)
1105 \cup
1106 \left(
1107 \bigcup_{\shortstack{$\scriptstyle\domain R_j \cap \range R_i = \emptyset$\\
1108                      $\scriptstyle\range R_j \subseteq D$}}
1109 \!\!\!\!\!
1110 {\cal C} \circ R_j
1111 \right)
1112 \cup
1113 \left(
1114 \bigcup_{\shortstack{$\scriptstyle\domain R_j \subseteq D $\\
1115                      $\scriptstyle\range R_j \cap \domain R_i = \emptyset$}}
1116 \!\!\!\!\!
1117 R_j \circ {\cal C}
1118 \right)
1119 \cup
1120 \left(
1121 \bigcup_{\shortstack{$\scriptstyle\domain R_j \cap \range R_i = \emptyset$\\
1122                      $\scriptstyle\range R_j \cap \domain R_i = \emptyset$}}
1123 \!\!\!\!\!
1124 R_j
1125 \right)
1126 \right)^+
1127 .
1128 $$
1129 If only property~\eqref{eq:transitive:right} holds,
1130 we can use
1131 $$
1132 R_i^+ \cup
1133 \left(
1134 \left(
1135 R_i^+ \cup \identity
1136 \right)
1137 \circ
1138 \left(
1139 \left(
1140 \bigcup_{\shortstack{$\scriptstyle\domain R_j \subseteq D $}}
1141 R_j \circ {\cal C}
1142 \right)
1143 \cup
1144 \left(
1145 \bigcup_{\shortstack{$\scriptstyle\domain R_j \cap \range R_i = \emptyset$}}
1146 \!\!\!\!\!
1147 R_j
1148 \right)
1149 \right)^+
1150 \right)
1151 ,
1152 $$
1153 while if only property~\eqref{eq:transitive:left} holds,
1154 we can use
1155 $$
1156 R_i^+ \cup
1157 \left(
1158 \left(
1159 \left(
1160 \bigcup_{\shortstack{$\scriptstyle\range R_j \subseteq D $}}
1161 {\cal C} \circ R_j
1162 \right)
1163 \cup
1164 \left(
1165 \bigcup_{\shortstack{$\scriptstyle\range R_j \cap \domain R_i = \emptyset$}}
1166 \!\!\!\!\!
1167 R_j
1168 \right)
1169 \right)^+
1170 \circ
1171 \left(
1172 R_i^+ \cup \identity
1173 \right)
1174 \right)
1175 .
1176 $$
1177
1178 It should be noted that if we want the result of the incremental
1179 approach to be transitively closed, then we can only apply it
1180 if all of the transitive closure operations involved are exact.
1181 If, say, the second transitive closure in \eqref{eq:transitive:incremental}
1182 contains extra elements, then the result does not necessarily contain
1183 the composition of these extra elements with powers of $R_i$.
1184
1185 \subsection{An {\tt Omega}-like implementation}
1186
1187 While the main algorithm of \shortciteN{Kelly1996closure} is
1188 designed to compute and underapproximation of the transitive closure,
1189 the authors mention that they could also compute overapproximations.
1190 In this section, we describe our implementation of an algorithm
1191 that is based on their ideas.
1192 Note that the {\tt Omega} library computes underapproximations
1193 \shortcite[Section 6.4]{Omega_lib}.
1194
1195 The main tool is Equation~(2) of \shortciteN{Kelly1996closure}.
1196 The input relation $R$ is first overapproximated by a ``d-form'' relation
1197 $$
1198 \{\, \vec i \to \vec j \mid \exists \vec \alpha :
1199 \vec L \le \vec j - \vec i \le \vec U
1200 \wedge
1201 (\forall p : j_p - i_p = M_p \alpha_p)
1202 \,\}
1203 ,
1204 $$
1205 where $p$ ranges over the dimensions and $\vec L$, $\vec U$ and
1206 $\vec M$ are constant integer vectors.  The elements of $\vec U$
1207 may be $\infty$, meaning that there is no upper bound corresponding
1208 to that element, and similarly for $\vec L$.
1209 Such an overapproximation can be obtained by computing strides,
1210 lower and upper bounds on the difference set $\Delta \, R$.
1211 The transitive closure of such a ``d-form'' relation is
1212 \begin{equation}
1213 \label{eq:omega}
1214 \{\, \vec i \to \vec j \mid \exists \vec \alpha, k :
1215 k \ge 1 \wedge
1216 k \, \vec L \le \vec j - \vec i \le k \, \vec U
1217 \wedge
1218 (\forall p : j_p - i_p = M_p \alpha_p)
1219 \,\}
1220 .
1221 \end{equation}
1222 The domain and range of this transitive closure are then
1223 intersected with those of the input relation.
1224 This is a special case of the algorithm in \autoref{s:power}.
1225
1226 In their algorithm for computing lower bounds, the authors
1227 use the above algorithm as a substep on the disjuncts in the relation.
1228 At the end, they say
1229 \begin{quote}
1230 If an upper bound is required, it can be calculated in a manner
1231 similar to that of a single conjunct [sic] relation.
1232 \end{quote}
1233 Presumably, the authors mean that a ``d-form'' approximation
1234 of the whole input relation should be used.
1235 However, the accuracy can be improved by also trying to
1236 apply the incremental technique from the same paper,
1237 which is explained in more detail in \autoref{s:incremental}.
1238 In this case, ${\cal C}(R_i,D)$ can be obtained by
1239 allowing the value zero for $k$ in \eqref{eq:omega},
1240 i.e., by computing
1241 $$
1242 \{\, \vec i \to \vec j \mid \exists \vec \alpha, k :
1243 k \ge 0 \wedge
1244 k \, \vec L \le \vec j - \vec i \le k \, \vec U
1245 \wedge
1246 (\forall p : j_p - i_p = M_p \alpha_p)
1247 \,\}
1248 .
1249 $$
1250 In our implementation we take as $D$ the simple hull
1251 (\autoref{s:simple hull}) of $\domain R \cup \range R$.
1252 To determine whether it is safe to use ${\cal C}(R_i,D)$,
1253 we check the following conditions, as proposed by
1254 \shortciteN{Kelly1996closure}:
1255 ${\cal C}(R_i,D) - R_i^+$ is not a union and for each $j \ne i$
1256 the condition
1257 $$
1258 \left({\cal C}(R_i,D) - R_i^+\right)
1259 \circ
1260 R_j
1261 \circ
1262 \left({\cal C}(R_i,D) - R_i^+\right)
1263 =
1264 R_j
1265 $$
1266 holds.