
Tizen SDK Package Guide

Table of Contents

 1 Introduction

 2 package/pkginfo.manifest

 2.1 Section and Field

 2.1.1 Section

 2.1.2 Field

 2.2 Common Section

 2.3 Package Section

 2.4 package/pkginfo.manifest.local

 3 build.{BUILD HOST OS}

 3.1 clean()

 3.2 build()

 3.3 install()

 4 {Package Name}.install.{TARGET_OS}, {Package 

Name}.remove.{TARGET_OS}

Introduction 

 New packaging format has been implemented for the development of 

Tizen SDK.

 This guide provides the format/description of files required to generate 

Tizen SDK packages.

 There four kinds of files

 package/pkginfo.manifest : Package Information

 build.{BUILD HOST OS} : build script

 {package name}.install.{TARGET OS} : post install script

 {package name}.remove.{TARGET OS} : post remove script

package/pkginfo.manifest 

 This file defines various information that are required for packaging

 This file consists of several sections, and each section defines several 

fields



Section and Field 

Section 

 Section means group of fields that is separated by two newline 

characters ("\n\n").

 There are two kinds of sections: common section and package section

 Common Section

 It has information of all the files in this package.

 Available fields : Source Name(Source), Version Info(Version), 

Maintainer's name/email(Maintainer)

 Package Section

 It has information for each package.

 Available fields: Package name(Package), Target OS(OS), Build 

OS(Build-host-os), Install dependent packages(Install-

dependency), Build dependent packages(Build-dependency), 

Source dependent(Source-dependency), Attribute, Description

 Common section must be at the top of the sections list

Field 

 The field includes details for each package.

 “Field” format is like this : {field name} : {field value} [, {field value}]...

 Most of fields are separated by a newline characters ("\n").

 Description field can have multi line

 Some fields are optional and can be skipped

Common Section 

Source (Required)

 It describes a source project name.

 Ex. Source:nativecommon-eplugin

Version (Required)

 It describes the version information of the package.

 Format : {major}.{minor}.{patch level}

 {major}, {minor}, {patch level} are integers

 Version must be increased for Tizen SDK Package when it is uploaded

to Package-server.

 Ex. Version: 0.14.32



Maintainer (Required)

 It describes a maintainer's name and email information.

 It consists of "{name} <{email}>" and could be described by more than 

one maintainers using comma separator.

 Ex. Maintainer: JongHwan Park <jonghwan2.park@samsung.com>

Package Section 

 Information for each package

 The file name of generated package has the following format: 

{Package}_{Version}_{OS}.zip

Package (Required)

 It describes the package name.

 The first character must be an alphabet. And allowed characters are: 

Alphabets(a-z), digits(0-9), and dash(-)

 Ex. Package: native-ide

OS (Required)

 It describes the name of the OS required to install the package.

 Allowed OS names : ubuntu-32, ubuntu-64, windows-32, windows-64, 

macos-64

 You can specify compatibility over various OSs by describing several OSs 

separated by comma.

 Ex. OS: ubuntu-32

 Ex. OS: ubuntu-32, ubuntu-64

Build-host-os (Required)

 It describes the name of Host-OS on which the package is built.

 Allowed OS names : ubuntu-32, ubuntu-64, windows-32, windows-64, 

macos-64

 You can specify a name of the OS.

 If you want additional Build-Host, you can use "pkginfo.manifest.local"

 Ex. Build-host-os: ubuntu-32

Install-dependency (Option)

 It describes the dependent packages that are needed to install this 

package.

 Format : Package name(Version condition)



 The described packages must have same OS.

 “Version condition” is composed of operators and versions in 

parentheses.

 Allowed Version condition operators are : "<<", "<=", "=", ">=", ">>"

 Version condition may be omitted, which means that there is no 

condition.

 Multiple packages can be specified by separating them with comma(,)

 Ex. Install-dependency: CodeCoverage (>= 0.3.0), rootstrap-slp-

device-1.0

Build-dependency (Option)

 Describes the dependent packages that are needed to build this package.

 Format : Package name(Version condition)[OS]

 “Version condition” is composed of operators and versions in 

parentheses.

 Allowed Version condition operators : "<<", "<=", "=", ">=", ">>"

 Version condition may be omitted, which means that there is no 

condition.

 If OS is specified, the packages of the target OS are needed. It need not

be same as its target OS.

 Allowed Os names : ubuntu-32, ubuntu-64, windows-32, windows-64, 

macos-64

 Multiple packages can be specified by separating them with commas(,)

 Ex. Build-dependency: CodeCoverage (>= 0.3.0) [ubuntu-32], 

rootstrap-slp-device-1.0

Source-dependency (Option)

 It describes the archived source file and list for build packages.

 When you build the package, the source file list is downloaded from 

Package-server.

 It can be used when packages do not have any modifications in the 

source code.

 Format : Source-dependency : {source} [, {source}]...

 EX. Source-dependency: gcc-linaro4.5-2012.01.tar.gz2, gmp-

5.0.1.tar.gz, mpc-0.9.tar.gz, mpfr-3.0.1.tar.gz, binutils-2.22.tar.gz

Attribute (Option)

 Specify additional attributes

 Attribute

 root : it shows install package list of installer.

 install : it shows install type of installer.



 public : it shows install package list of public installer.

 partner : it shows install package list of partner installer.binary : 

package Does not build on the build server.

 EX. Attribute : binary

 EX. Attribute : root

Label (Option)

 This text is displayed in the installer 

 text can include space

 EX. Label : Native IDE

Description (Option)

 It is package description 

 Only this field has multi line value

 Ex. Description : Install native ide

package/pkginfo.manifest.local 

 This file is for supporting local build on other build host OS.

 And it is valid only for "pkg-build" command.

 it can specify various BUILD_HOST_OS at a time 

EX. Build-host-os : ubuntu-64, macos-64

 To use pkginfo.manifest.local you must generate the build.{other BUILD 

HOST OS} 

Include

 includes other file 

 It is usually used to include pkginfo.manifest in pkginfo.manifest.local file

EX. Include : pkginfo.manifest

build.{BUILD HOST OS} 

 This file contains the build and packaging script on {BUILD HOST OS}

 You can use {OS Category}(linux, winodws, macos) instead of {BUILD 

HOST OS}



 this script is based on bash shell script 

 You must implement some required functions

 clean() : clean job before build 

 build() : build job

 install() : make Tizen SDK folder structure using Build result

 You can use some built-in environment variables 

 SRCDIR : source dir path

 ROOTDIR : path dependent package will be installed

 TARGET_OS : OS name to be installed

 TARGET_OS_CATEGORY : OS category name to be installed

 VERSION : package version

clean() 

 This function specifies the code to clear the various files that are 

generated during the build.

 temporary file

 result package file: *_*_*.zip

 if build uses Makefile then type "make clean"

EX. rm -rf ${SRCDIR}/*.zip

EX. make clean

build() 

 Defines the tasks that generates the various files to be included in the 

package.

 If there is a Source-Dependency defined in pkginfo.manifest file then

you can unzip that file too.

EX. tar xvf ${ROOTDIR}/gcc-linary-4.5-2012.01.tar.gz2

 Set build environments and build 

 If build uses Makefile then call "make" here

EX. make

install() 

 Define copying of the various files generated by the build process into 

their designated position in Tizen SDK directory structure.

 You need to create the package root directory of Each package

 Package root directory : package/{package

name}.package.{TARGET_OS}/data



 Package root directory is mapped to actual Tizen SDK install 

directory

EX. mkdir -p ${SRCDIR}/package/cross-arm-gcc-

4.5.package.${TARGET_OS}/data

 Copy all the files to be included in the package.

EX. mkdir -p ${SRCDIR}/package/cross-arm-gcc-

4.5.package.${TARGET_OS}/data/tools/gcc-4.5

EX. mv ${SRCDIR}/bin/* ${SRCDIR}/package/cross-arm-gcc-

4.5.package.${TARGET_OS}/data/tools/gcc-4.5

 If you use "makefile" to build your packages, then use "make install" here 

in general

EX. make install --prefix=${PKG_INSTALL_DIR}

{Package Name}.install.{TARGET_OS}, 

{Package Name}.remove.{TARGET_OS} 

 *.install.* : Describes the additional actions required after files have been 

copied to the installation location, when the package is installed

 *.remove.* : Describes the additional actions after files have been 

removed from the installation location, when the package is uninstalled.

 It is not required to create these files. 

 You can use {OS Category} instead of {TARGET_OS}

 EX. pkg-a.install.linux

 Supports batch script for windows and bash shell script for other os

 You can use environment variable : INSTALLED_PATH 

 INSTALLED_PATH : TIZEN SDK Install directory

 for windows (batch script)

 EX. SET PATH=%INSTALLED_PATH%\tools\smart-build-

interface\bin;%PATH% 

 for linux (shell script)

 EX. PATH=${INSTALLED_PATH}/tools/smart-build-interface/bin:${PATH}

 Installer determines script’s success or failure, using exit code of the

script 

 0 : all the work is successfully completed.

 1 ~ 9 : A few minor errors, but you can ignore.



 else : Critical error occurs, the installation does not proceed further.

 EX. exit 1


