
Tizen SDK Package Guide

Table of Contents

 1 Introduction

 2 package/pkginfo.manifest

 2.1 Section and Field

 2.1.1 Section

 2.1.2 Field

 2.2 Common Section

 2.3 Package Section

 2.4 package/pkginfo.manifest.local

 3 build.{BUILD HOST OS}

 3.1 clean()

 3.2 build()

 3.3 install()

 4 {Package Name}.install.{TARGET_OS}, {Package 

Name}.remove.{TARGET_OS}

Introduction 

 New packaging format has been implemented for the development of 

Tizen SDK.

 This guide provides the format/description of files required to generate 

Tizen SDK packages.

 There four kinds of files

 package/pkginfo.manifest : Package Information

 build.{BUILD HOST OS} : build script

 {package name}.install.{TARGET OS} : post install script

 {package name}.remove.{TARGET OS} : post remove script

package/pkginfo.manifest 

 This file defines various information that are required for packaging

 This file consists of several sections, and each section defines several 

fields



Section and Field 

Section 

 Section means group of fields that is separated by two newline 

characters ("\n\n").

 There are two kinds of sections: common section and package section

 Common Section

 It has information of all the files in this package.

 Available fields : Source Name(Source), Version Info(Version), 

Maintainer's name/email(Maintainer)

 Package Section

 It has information for each package.

 Available fields: Package name(Package), Target OS(OS), Build 

OS(Build-host-os), Install dependent packages(Install-

dependency), Build dependent packages(Build-dependency), 

Source dependent(Source-dependency), Attribute, Description

 Common section must be at the top of the sections list

Field 

 The field includes details for each package.

 “Field” format is like this : {field name} : {field value} [, {field value}]...

 Most of fields are separated by a newline characters ("\n").

 Description field can have multi line

 Some fields are optional and can be skipped

Common Section 

Source (Required)

 It describes a source project name.

 Ex. Source:nativecommon-eplugin

Version (Required)

 It describes the version information of the package.

 Format : {major}.{minor}.{patch level}

 {major}, {minor}, {patch level} are integers

 Version must be increased for Tizen SDK Package when it is uploaded

to Package-server.

 Ex. Version: 0.14.32



Maintainer (Required)

 It describes a maintainer's name and email information.

 It consists of "{name} <{email}>" and could be described by more than 

one maintainers using comma separator.

 Ex. Maintainer: JongHwan Park <jonghwan2.park@samsung.com>

Package Section 

 Information for each package

 The file name of generated package has the following format: 

{Package}_{Version}_{OS}.zip

Package (Required)

 It describes the package name.

 The first character must be an alphabet. And allowed characters are: 

Alphabets(a-z), digits(0-9), and dash(-)

 Ex. Package: native-ide

OS (Required)

 It describes the name of the OS required to install the package.

 Allowed OS names : ubuntu-32, ubuntu-64, windows-32, windows-64, 

macos-64

 You can specify compatibility over various OSs by describing several OSs 

separated by comma.

 Ex. OS: ubuntu-32

 Ex. OS: ubuntu-32, ubuntu-64

Build-host-os (Required)

 It describes the name of Host-OS on which the package is built.

 Allowed OS names : ubuntu-32, ubuntu-64, windows-32, windows-64, 

macos-64

 You can specify a name of the OS.

 If you want additional Build-Host, you can use "pkginfo.manifest.local"

 Ex. Build-host-os: ubuntu-32

Install-dependency (Option)

 It describes the dependent packages that are needed to install this 

package.

 Format : Package name(Version condition)



 The described packages must have same OS.

 “Version condition” is composed of operators and versions in 

parentheses.

 Allowed Version condition operators are : "<<", "<=", "=", ">=", ">>"

 Version condition may be omitted, which means that there is no 

condition.

 Multiple packages can be specified by separating them with comma(,)

 Ex. Install-dependency: CodeCoverage (>= 0.3.0), rootstrap-slp-

device-1.0

Build-dependency (Option)

 Describes the dependent packages that are needed to build this package.

 Format : Package name(Version condition)[OS]

 “Version condition” is composed of operators and versions in 

parentheses.

 Allowed Version condition operators : "<<", "<=", "=", ">=", ">>"

 Version condition may be omitted, which means that there is no 

condition.

 If OS is specified, the packages of the target OS are needed. It need not

be same as its target OS.

 Allowed Os names : ubuntu-32, ubuntu-64, windows-32, windows-64, 

macos-64

 Multiple packages can be specified by separating them with commas(,)

 Ex. Build-dependency: CodeCoverage (>= 0.3.0) [ubuntu-32], 

rootstrap-slp-device-1.0

Source-dependency (Option)

 It describes the archived source file and list for build packages.

 When you build the package, the source file list is downloaded from 

Package-server.

 It can be used when packages do not have any modifications in the 

source code.

 Format : Source-dependency : {source} [, {source}]...

 EX. Source-dependency: gcc-linaro4.5-2012.01.tar.gz2, gmp-

5.0.1.tar.gz, mpc-0.9.tar.gz, mpfr-3.0.1.tar.gz, binutils-2.22.tar.gz

Attribute (Option)

 Specify additional attributes

 Attribute

 root : it shows install package list of installer.

 install : it shows install type of installer.



 public : it shows install package list of public installer.

 partner : it shows install package list of partner installer.binary : 

package Does not build on the build server.

 EX. Attribute : binary

 EX. Attribute : root

Label (Option)

 This text is displayed in the installer 

 text can include space

 EX. Label : Native IDE

Description (Option)

 It is package description 

 Only this field has multi line value

 Ex. Description : Install native ide

package/pkginfo.manifest.local 

 This file is for supporting local build on other build host OS.

 And it is valid only for "pkg-build" command.

 it can specify various BUILD_HOST_OS at a time 

EX. Build-host-os : ubuntu-64, macos-64

 To use pkginfo.manifest.local you must generate the build.{other BUILD 

HOST OS} 

Include

 includes other file 

 It is usually used to include pkginfo.manifest in pkginfo.manifest.local file

EX. Include : pkginfo.manifest

build.{BUILD HOST OS} 

 This file contains the build and packaging script on {BUILD HOST OS}

 You can use {OS Category}(linux, winodws, macos) instead of {BUILD 

HOST OS}



 this script is based on bash shell script 

 You must implement some required functions

 clean() : clean job before build 

 build() : build job

 install() : make Tizen SDK folder structure using Build result

 You can use some built-in environment variables 

 SRCDIR : source dir path

 ROOTDIR : path dependent package will be installed

 TARGET_OS : OS name to be installed

 TARGET_OS_CATEGORY : OS category name to be installed

 VERSION : package version

clean() 

 This function specifies the code to clear the various files that are 

generated during the build.

 temporary file

 result package file: *_*_*.zip

 if build uses Makefile then type "make clean"

EX. rm -rf ${SRCDIR}/*.zip

EX. make clean

build() 

 Defines the tasks that generates the various files to be included in the 

package.

 If there is a Source-Dependency defined in pkginfo.manifest file then

you can unzip that file too.

EX. tar xvf ${ROOTDIR}/gcc-linary-4.5-2012.01.tar.gz2

 Set build environments and build 

 If build uses Makefile then call "make" here

EX. make

install() 

 Define copying of the various files generated by the build process into 

their designated position in Tizen SDK directory structure.

 You need to create the package root directory of Each package

 Package root directory : package/{package

name}.package.{TARGET_OS}/data



 Package root directory is mapped to actual Tizen SDK install 

directory

EX. mkdir -p ${SRCDIR}/package/cross-arm-gcc-

4.5.package.${TARGET_OS}/data

 Copy all the files to be included in the package.

EX. mkdir -p ${SRCDIR}/package/cross-arm-gcc-

4.5.package.${TARGET_OS}/data/tools/gcc-4.5

EX. mv ${SRCDIR}/bin/* ${SRCDIR}/package/cross-arm-gcc-

4.5.package.${TARGET_OS}/data/tools/gcc-4.5

 If you use "makefile" to build your packages, then use "make install" here 

in general

EX. make install --prefix=${PKG_INSTALL_DIR}

{Package Name}.install.{TARGET_OS}, 

{Package Name}.remove.{TARGET_OS} 

 *.install.* : Describes the additional actions required after files have been 

copied to the installation location, when the package is installed

 *.remove.* : Describes the additional actions after files have been 

removed from the installation location, when the package is uninstalled.

 It is not required to create these files. 

 You can use {OS Category} instead of {TARGET_OS}

 EX. pkg-a.install.linux

 Supports batch script for windows and bash shell script for other os

 You can use environment variable : INSTALLED_PATH 

 INSTALLED_PATH : TIZEN SDK Install directory

 for windows (batch script)

 EX. SET PATH=%INSTALLED_PATH%\tools\smart-build-

interface\bin;%PATH% 

 for linux (shell script)

 EX. PATH=${INSTALLED_PATH}/tools/smart-build-interface/bin:${PATH}

 Installer determines script’s success or failure, using exit code of the

script 

 0 : all the work is successfully completed.

 1 ~ 9 : A few minor errors, but you can ignore.



 else : Critical error occurs, the installation does not proceed further.

 EX. exit 1


