Tizen SDK Package Guide

Table of Contents

= 1 Introduction
= 2 package/pkginfo.manifest
= 2.1 Section and Field
= 2.1.1 Section
= 2.1.2 Field
= 2.2 Common Section
= 2.3 Package Section
= 2.4 package/pkginfo.manifest.local
= 3 build.{BUILD HOST OS}

= 3.1 clean()
= 3.2 build()
= 3.3 install()

= 4 {Package Name}.instal.{TARGET_OS}, {Package
Name}.remove.{TARGET_OS}

Introduction

= New packaging format has been implemented for the development of
Tizen SDK.
= This guide provides the format/description of files required to generate
Tizen SDK packages.
= There four kinds of files
= package/pkginfo.manifest : Package Information
= build.{BUILD HOST OS} : build script
= {package name}.install.{TARGET OS} : post install script
= {package name}.remove.{TARGET OS} : post remove script

package/pkginfo.manifest

= This file defines various information that are required for packaging
» This file consists of several sections, and each section defines several
fields

Section and Field

Section

= Section means group of fields that is separated by two newline
characters ("\n\n").
= There are two kinds of sections: common section and package section
= Common Section
= It has information of all the files in this package.
= Available fields : Source Name(Source), Version Info(Version),
Maintainer's name/email(Maintainer)
= Package Section
= It has information for each package.
= Available fields: Package name(Package), Target OS(OS), Build
OS(Build-host-0s), Install dependent packages(Install-
dependency), Build dependent packages(Build-dependency),
Source dependent(Source-dependency), Attribute, Description
= Common section must be at the top of the sections list

Field

The field includes details for each package.
“Field” format is like this : {field name} : {field value} [, {field value}]...
Most of fields are separated by a newline characters ("\n").
= Description field can have multi line
Some fields are optional and can be skipped

Common Section

Source (Required)

= It describes a source project name.
= Ex. Source:nativecommon-eplugin

Version (Required)

= It describes the version information of the package.
= Format : {major}.{minor}.{patch level}
= {major}, {minor}, {patch level} are integers
= Version must be increased for Tizen SDK Package when it is uploaded
to Package-server.
= Ex. Version: 0.14.32

Maintainer (Required)

It describes a maintainer's name and email information.

It consists of "{name} <{email}>" and could be described by more than
one maintainers using comma separator.

Ex. Maintainer: JongHwan Park <jonghwan2.park@samsung.com>

Package Section

Information for each package
The file name of generated package has the following format:
{Package} {Version} {OS}.zip

Package (Required)

It describes the package name.

The first character must be an alphabet. And allowed characters are:
Alphabets(a-z), digits(0-9), and dash(-)

Ex. Package: native-ide

OS (Required)

It describes the name of the OS required to install the package.

Allowed OS names : ubuntu-32, ubuntu-64, windows-32, windows-64,
macos-64

You can specify compatibility over various OSs by describing several OSs
separated by comma.

Ex. OS: ubuntu-32

Ex. OS: ubuntu-32, ubuntu-64

Build-host-os (Required)

It describes the name of Host-OS on which the package is built.
Allowed OS names : ubuntu-32, ubuntu-64, windows-32, windows-64,
macos-64

You can specify a name of the OS.

If you want additional Build-Host, you can use "pkginfo.manifest.local"
Ex. Build-host-os: ubuntu-32

Install-dependency (Option)

It describes the dependent packages that are needed to install this
package.
Format : Package name(Version condition)

The described packages must have same OS.

“Version condition” is composed of operators and versions in
parentheses.

Allowed Version condition operators are : "<<", "<=" "=" ">=" ">>"
Version condition may be omitted, which means that there is no
condition.

Multiple packages can be specified by separating them with commay,)
Ex. Install-dependency: CodeCoverage (>= 0.3.0), rootstrap-slp-
device-1.0

Build-dependency (Option)

Describes the dependent packages that are needed to build this package.
Format : Package name(Version condition)[OS]

“Version condition” is composed of operators and versions in
parentheses.

Allowed Version condition operators : "<<", "<=" "=" ">=" ">>"

Version condition may be omitted, which means that there is no
condition.

If OS is specified, the packages of the target OS are needed. It need not
be same as its target OS.

Allowed Os names : ubuntu-32, ubuntu-64, windows-32, windows-64,
macos-64

Multiple packages can be specified by separating them with commas(,)
Ex. Build-dependency: CodeCoverage (>= 0.3.0) [ubuntu-32],
rootstrap-slp-device-1.0

Source-dependency (Option)

It describes the archived source file and list for build packages.
When you build the package, the source file list is downloaded from
Package-server.

It can be used when packages do not have any modifications in the
source code.

Format : Source-dependency : {source} [, {source}]...

EX. Source-dependency: gcc-linaro4.5-2012.01.tar.gz2, gmp-
5.0.1.tar.gz, mpc-0.9.tar.gz, mpfr-3.0.1.tar.gz, binutils-2.22.tar.gz

Attribute (Option)

Specify additional attributes

Attribute
= root : it shows install package list of installer.
= install : it shows install type of installer.

= public : it shows install package list of public installer.
= partner : it shows install package list of partner installer.binary :
package Does not build on the build server.
EX. Attribute : binary
EX. Attribute : root

Label (Option)

This text is displayed in the installer
text can include space
EX. Label : Native IDE

Description (Option)

It is package description
Only this field has multi line value
Ex. Description : Install native ide

package/pkginfo.manifest.local

This file is for supporting local build on other build host OS.
And it is valid only for "pkg-build" command.
it can specify various BUILD_HOST_OS at a time

EX. Build-host-o0s : ubuntu-64, macos-64

To use pkginfo.manifest.local you must generate the build.{other BUILD
HOST OS}

Include

includes other file
It is usually used to include pkginfo.manifest in pkginfo.manifest.local file

EX. Include : pkginfo.manifest

build.{BUILD HOST OS}

This file contains the build and packaging script on {BUILD HOST OS}
You can use {OS Category}(linux, winodws, macos) instead of {BUILD
HOST OS}

= this script is based on bash shell script
= You must implement some required functions
= clean() : clean job before build
= build() : build job
= install() : make Tizen SDK folder structure using Build result
= You can use some built-in environment variables
= SRCDIR : source dir path
= ROOTDIR : path dependent package will be installed
= TARGET_OS : OS name to be installed
= TARGET_OS_CATEGORY : OS category name to be installed
= VERSION : package version

clean()

= This function specifies the code to clear the various files that are
generated during the build.
= temporary file
= result package file: *_*_*.zip
= if build uses Makefile then type "make clean”

EX. rm -rf ${SRCDIR}/*.zip
EX. make clean

build()

= Defines the tasks that generates the various files to be included in the
package.

= If there is a Source-Dependency defined in pkginfo.manifest file then
you can unzip that file too.

EX. tar xvf ${ROOTDIR}/gcc-linary-4.5-2012.01.tar.gz2

» Set build environments and build
» |f build uses Makefile then call "make" here

EX. make
install()

= Define copying of the various files generated by the build process into
their designated position in Tizen SDK directory structure.
= You need to create the package root directory of Each package
= Package root directory : package/{package
name}.package.{TARGET OS}/data

= Package root directory is mapped to actual Tizen SDK install
directory

EX. mkdir -p ${SRCDIR}/package/cross-arm-gcc-
4.5.package.${TARGET_OS}/data

= Copy all the files to be included in the package.

EX. mkdir -p ${SRCDIR}/package/cross-arm-gcc-
4.5.package.${TARGET_OS}/data/tools/gcc-4.5

EX. mv ${SRCDIR}/bin/* ${SRCDIR}/package/cross-arm-gcc-
4.5.package.${TARGET_OS}/data/tools/gcc-4.5

= If you use "makefile" to build your packages, then use "make install" here
in general

EX. make install -—prefix=${PKG_INSTALL_DIR}

{Package Name}.install.{TARGET OS},
{Package Name}.remove.{TARGET_OS}

.install. : Describes the additional actions required after files have been
copied to the installation location, when the package is installed
= *.remove.* : Describes the additional actions after files have been
removed from the installation location, when the package is uninstalled.
= It is not required to create these files.
= You can use {OS Category} instead of {TARGET_0OS}
= EX. pkg-a.install.linux
= Supports batch script for windows and bash shell script for other os
= You can use environment variable : INSTALLED PATH
= INSTALLED_PATH : TIZEN SDK Install directory
= for windows (batch script)
= EX. SET PATH=%INSTALLED_PATH%\tools\smart-build-
interface\.bin;%PATH%
= for linux (shell script)
= EX. PATH=${INSTALLED_PATH}/tools/smart-build-interface/bin:${PATH}
= Installer determines script’s success or failure, using exit code of the
script
= 0 : all the work is successfully completed.
= 1~ 9: A few minor errors, but you can ignore.

= else : Critical error occurs, the installation does not proceed further.

» EX.exitl

