
Tizen SDK Development Guide

Table of Contents

 1 Introduction

 2 Setup Build Environment

 2.1 Linux(Ubuntu)

 2.1.1 Install Tizen SDK

 2.1.2 Install Ruby

 2.1.3 Install Packages needed by DIBS

 2.1.4 Install Pre-Requisite Packages

 2.1.5 More

 2.2 Windows

 2.2.1 Install Tizen SDK

 2.2.2 Install Ruby

 2.2.3 Install rubyzip module

 2.2.4 Install Packages needed by DIBS

 2.2.5 Install MSYS GIT

 2.2.6 More

 3 Simple Local Build and Test

 3.1 Build Package

 3.2 Install Package

 3.3 Launch your own SDK

 4 Simple Remote Build and Test

 4.1 Download source code and modified and push to upstream

 4.2 Remote build command

 5 More DIBS commands

 5.1 List Up Available Packages

 5.2 Update Package List

 5.3 Upgrade Packages

 5.4 Install SDK

Introduction 

Tizen SDK is composed of many separate packages which have their own 

dependencies. And DIBS(Distributed Intelligent Build System) is the build 

system designed for building the kind of complexity needed. It provides various 

features.

 Has own packaging system and packaging interface



 Provides distributed package server/build Server

 Provides Automatic dependency checker/resolver

 Provides client/server tools which are easy to use

This guide will show how to build Tizen SDK packages using DIBS

Setup Build Environment 

Linux(Ubuntu) 

Install Tizen SDK 

 Install the SDK with “SDK Development Tools”

Install Ruby 

 To use DIBS, you have to install Ruby 1.8.7

sudo apt-get install ruby

 Higher version of Ruby is not tested yet!

Install Packages needed by DIBS 

sudo apt-get install wget zip unzip

Install Pre-Requisite Packages 

To build or develop SDK, you have to install the following packages

 For emulator development:

 bcc bison flex autoconf gcc libglu1-mesa-dev libsdl1.2-dev 

libgtk2.0-dev libsdl-image1.2-dev libsdl-gfx1.2-dev debhelper 

libxml2-dev libasound2-dev libx11-dev zlib1g-dev uuid-dev

libv4l-dev

 GDB 7.2

 quilt libncurses5-dev libexpat1-dev libreadline-dev mingw32(only 

for building windows version)



 GCC 4.5

 quilt texinfo bison flex mingw32(only for building windows version)

sudo apt-get install {pre-requisite packages}

More 

For your convenience, 

 Add DIBS path to $PATH in shell configuration file. ex) .bashrc

export PATH={SDK Install dir}/tools/dibs:$PATH

Windows 

Install Tizen SDK 

Install the SDK first

Install Ruby 

 You can download Ruby binary at..

ftp://ftp.ruby-lang.org/pub/ruby/binaries/mswin32/ruby-1.8.7-i386-mswin32.zip

http://rubyforge.org/frs/download.php/75679/rubyinstaller-1.8.7-p357.exe

Install rubyzip module 

 You should install ruby zip module after installing ruby

c:\Ruby187\bin> gem.bat install rubyzip

Install Packages needed by DIBS 

 Login MinGW provided by Tizen SDK. Execute following windows BAT file.

{ SDK Install dir}/tools/mingw/msys/1.0/msys.bat



 Execute the following commands on MinGW environment 

$ mingw-get.exe update

$ mingw-get.exe install msys-wget

$ mingw-get.exe install msys-zip

$ mingw-get.exe install msys-unzip

Install MSYS GIT 

 Download the MSYS binary

http://msysgit.googlecode.com/files/Git-1.7.9-preview20120201.exe

 Install it

More 

For your convenience, 

 Add "/usr/bin/ruby" shell script 

#!/bin/sh

{ruby install dir}/bin/ruby.exe $@

ex)

#!/bin/sh

/c/Ruby187/bin/ruby.exe $@

 Add "/usr/bin/git" shell script

#!/bin/sh

{MSYS GIT install dir}/bin/git.exe $@

ex)

#!/bin/sh

/c/Program\ Files/Git/bin/git.exe $@

 Add DIBS path to $PATH in shell configuration file. ex) /etc/profile



export PATH={SDK Install dir}/tools/dibs:$PATH

Simple Local Build and Test 

If you have downloaded an SDK source package and modified it, and you 

would want to build and apply it to the Tizen SDK, Please refer the following 

process.

Build Package

Building a SDK package is very simple. Here is the command for building the

package.

## pkg-build -u <package server url> [-o <os>] [-c] [-h] [-v]
## -u : Package server URL which contains binary and development packages.
        If ommited, it will use previous server URL.
## -o : Target OS(ubuntu-32/ubuntu-64/windows-32/windows-64/macos-64)
## -c : Clean build""
        If set, start build after downloading all dependent packages
        If not set, it will not download dependent packages if already downloaded
## -h : Display help

## -v : Display version

And Here are simple steps

1. Git clone and move to source directory

 ex) $> git clone review.tizen.org:sdk/ide/common-eplugin

 ex) $> cd common-eplugin

2. Type the command

 ex) $> pkg-build -u 

http://<package_server_address>/<package_server_name>/<distrib

ution_name>

3. Now you can see the package files( *.zip, *.tar.gz ) in your source 

directory

Install Package 

Installing a SDK package is also very simple. Here is the command for installing 

package files

## pkg-cli install-file -P <package file path> [-l <location>] [-u <package server url>] [--trace] [--force]
## -P : Binary package file(*.zip) path which you want to install
## -l : Install root location of target SDK



        If omitted, current working directory path will be set
## -u : Package server URL which contains binary and development packages.
##       If ommited, it will use previous server URL. 
##       ex) http://172.21.17.55/dibs/unstable
## --trace : Install the package with all dependent packages
## --force : Install the package by force
        This option will allow installing the package that has lower or equal version compare to installed 

Now let's assume that you have just finished building and have a Tizen SDK 

installation on '~/tizen-sdk'

1. Just type the command

 ex) $> pkg-cli install-file -P common-eplugin_0.20.6_linux.zip -l 

~/tizen-sdk

Launch your own SDK 

Now you can check your modifications. Launch your SDK!!

1. Type the following command or use the short-cut for launching Tizen

SDK. 

 ex) $> ~/tizen-sdk/ide/startup.sh

Simple Remote Build and Test 

If you want to modify the Tizen SDK source file and upload it to the package 

server using build server then using DIBS,here is the simple process to do it.

Download source code and modified and push to 

upstream 

 Tizen control source code using git.

1. Download Tizen source code using git command

2. Modified source code

3. Push to upstream using git command

 If source code change is accepted then you can build using 

build server

4. Execute remote build command 

 If source code builds successfully then upload the package 

file to the package server.

Remote build command 



Remote build command is simple. 

## build-cli build -N <project name> -d <server address> [-o <os>] [-w <password>] [--async]'
## -N : Project name. This should be set before through "build-svr add-prj" command
## -d : Build server address: 127.0.0.1:2224
## -o : Target operating system: ubuntu-32/ubuntu-64/windows-32/windows-64/macos-64
## -w : Password for managing project. If a password is set before through "build-svr add-prj" command, you 
should input the password 
## --async : asynchronous job

 You can request to build project to build server. After that, package will 

be uploaded to package server

 The project name should be set before through "build-svr add-prj" 

command

 Step

1. Request to build project to build server

 ex) $> build-cli build -N dibs -d 

<build_server_address>:<build_server_port_number>

More DIBS commands 

There are more useful commands provided

List Up Available Packages 

You can list up available packages of server.

## pkg-cli list-rpkg [-o <os>] [-u <package server url>]
## -o : Target OS(ubuntu-32/ubuntu-64/windows-32/windows-64/macos-64)
## -u : Package server URL which contains binary and development packages.
        If ommited, it will use previous server URL.

1. List up packages

 ex) $> pkg-cli update -u 

http://<package_server_address>/<package_server_name>/<distrib

ution_name>

 ex) $> pkg-cli list-rpkg

2. List up packages with updating



 ex) $> pkg-cli list-rpkg -u 

http://<package_server_address>/<package_server_name>/<distrib

ution_name>

You can list up packages of your install directory

## pkg-cli list-lpkg [-l <location>]
## -l : Install root location of target SDK
        If omitted, current working directory path will be set

1. List up packages

 ex) $> pkg-cli list-lpkg -l ~/tizen-sdk

Update Package List 

You should have package list of server in your host before listing, installing and 

downloading packages. So, if you want to install the latest package, then you 

should update your package list before installing.

## pkg-cli update [-u <package server url>]
## -u : Package server URL which contains binary and development packages.

        If ommited, it will use previous server URL.

1. Update package list from server

 ex) $> pkg-cli update -u 

http://<package_server_address>/<package_server_name>/<distrib

ution_name>

2. Install / download packages from server

 ex) $> pkg-cli install -P nativeapp-eplugin -l ~/tizen-sdk

 ex) $> pkg-cli install -P unittest-eplugin -l ~/tizen-sdk

 ex) $> pkg-cli download -P base-ide-product -l ~/downloads

3. If package is updated on server and you want to use is, you should 

update your package list. If you do not set the server url, it will be set 

previous server URL.

 ex) $> pkg-cli update

 ex) $> pkg-cli install -P nativeapp-eplugin -l ~/tizen-sdk

Upgrade Packages 

You can upgrade your installed packages from server.

## pkg-cli upgrade -l <location> -u <package server url>



## -u : Package server URL which contains binary and development packages.
##      If ommited, it will use previous server URL.
## -l : Install root location of target SDK
##      If omitted, current working directory path will be set

1. Check package for upgrading

 $> pkg-cli update -u 

http://<package_server_address>/<package_server_name>/<distrib

ution_name>

 $> pkg-cli check-upgrade -l ~/tizen-sdk

2. Upgrade packages

 $> pkg-cli upgrade -l ~/tizen-sdk

3. Upgrade packages with updating

 $> pkg-cli upgrade -l ~/tizen-sdk -u 

http://<package_server_address>/<package_server_name>/<distrib

ution_name>

4. If you want to upgrade specific package, you can upgrade it as installing

 $> pkg-cli install -P common-eplugin -l ~/tizen-sdk -u 

http://<package_server_address>/<package_server_name>/<distrib

ution_name>

Install SDK 

You can also install new SDK using the network install command. Basically this 

command is used for installing packages by network. But you can also set meta 

package as package name like TIZEN-IDE, EMULATOR-TOOLS and 

EMULATOR-IMAGE.

## pkg-cli install -P <package name> [-o <os>] [-u <package server url>] [-l <location>] [--trace] [--force]
## -P : Binary package name which you want to install
## -o : target OS: ubuntu-32/ubuntu-64/windows-32/windows-64/macos-64

If ommited, it will host os.
## -u : Package server URL which contains binary and development packages.
        If ommited, it will use previous server URL.
## -l : Install root location of target SDK
        If omitted, current working directory path will be set
## --trace : Install the package with all dependent packages
## --force : Install the package by force

        This option will allow installing the package that has lower or equal version compare to installed 

1. Install "TIZEN-IDE" by network to new location("~/tizen-sdk2")

 ex) $> pkg-cli install -P TYPICAL -l ~/tizen-sdk2 --trace \

2. Change Tizen SDK configuration



 ex) $> echo 

"TIZEN_SDK_INSTALLED_PATH=/home/{username}/tizen-sdk2" > 

~/tizen-sdk-data/tizensdkpath

3. Launch your SDK!

 ex) $> ~/tizen-sdk2/ide/startup.sh


