U McAfee

An Intel Company

Tizen Content Screening

Test Specification

Document version 1.0.4

-

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

Copyright (c) 2013, McAfee, Inc.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided

that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the

following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of conditions and

the following disclaimer in the documentation and/or other materials provided with the distribution.

Neither the name of McAfee, Inc. nor the names of its contributors may be used to endorse or

promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

1 Contents

4

Contents 4
1.1 DOCUMENE HISTOTY ..ottt ettt ettt e s bt et e bttt e s bt bt et e sate e abe et ebe e beenbeesbee s 6
1.2 RETEIEICES ...ttt e e e e ettt e e e e e etaaee e e e ttaeeeeeaseeeeseasasaeeeetaaeeeeeareseeeantasaeeeenteeeeeanes 6
1.3 G1OSSArY AN AETINTHIONSeeuteeiiieiiiet ettt ettt ettt e s bt et e bt b e s bt st e e s besabe e abeeabe e beebeesbeenbeens 6

Purpose and Scope 7

Component Description 8

Test Environment Description 10

Test Cases Specifications 11
5.1 Test Case TC_SEC_CS_TCSLibraryOpen_0001cccuecuerirrierieniineeieienenie et cee et este e siesieessesee e eiees 11
5.2 Test Case TC_SEC_CS_TCSLibraryOpen_0002ccc.couteiiiuianiieiieniieniie sttt seeeseeeseeesreeseeenne 11
53 Test Case TC_SEC_CS_TCSLibraryOpen_0003cocueiiiiiiiiiaiiaiieniieniie sttt esreeseeesreeseeenne 12
54 Test Case TC_SEC_CS_TCSLibraryOpen_0004cc..ooiiiiiiiiaiiateniteniie ettt e esreeseeesreeseeenae 12
55 Test Case TC_SEC_CS_TCSGetLastError_0001..........ooooiiiiiiiieiiiiieeeeeeeeee et e e eeeeeeeaaaaeeaees 13
5.6 Test Case TC_SEC_CS_TCSLibraryClose_0001cocueeiiiiiiiiaiieiienieniie sttt esee e sree e 15
5.7 Test Case TC_SEC_CS_TCSScanData_000Tcc.eeeeeeirieeeiiiiieeeeeieeeeeeeiree e e e eeeeveeeeeearaeeeeeaaeeeeeennneeees 16
5.8 Test Case TC_SEC_CS_TCSScanData_0002c..oooeevuieeeiiiiiieeeeeiieeeeeeeirie e e cereeeeeeereeeeeearaeeeeenneeeeeennseeens 17
5.9 Test Case TC_SEC_CS_TCSScanData_0003ouuiiiieiieieiieeeiieiiiiieiie e e e e eeeeeeeeeceaaeraae e e e e eeeeeeeeeeennnnreaees 18
5.10 Test Case TC_SEC_CS_TCSScanData_0004ccooiuriiiieeiieieeeeeiiee e e eeeeteeeeeeetatee e e eeveeeeeeeareseeeeesssaeeenes 19
5.11 Test Case TC_SEC_CS_TCSScanData_0005c.coeeeeirieeeiiiiieeeeeiireeee e ettt eere e eeeeeeeeeearaeeeeeaaeeeeeennneeeas 20
5.12 Test Case TC_SEC_CS_TCSScanData_0000ccovveriieeirieeeeeiirieeeeeiiieeeeeeiereeeeeeetareeeeeeveeseeeereseeeeessseeeenns 21
5.13 Test Case TC_SEC_CS_TCSScanData_0007uuveeiiiiieeeieeeeiieiiiiiieeeee e eeeeeeeceaaeraeeeeeeeeeeeeeeeeeennnneeaees 22
5.14 Test Case TC_SEC_CS_TCSScanData_0008ccooveiieieiiieeeeeeiiieeeeiieeeeeeereeeeeeetaeeeeeeeveeeeeeereeeeeeesseeeeenes 23
5.15 Test Case TC_SEC_CS_TCSScanData_0009cooiriiiieiiriieeeeeiiiee et e et e e eettree e eeree e e eeereeeeeeeareaeeenes 24
5.16 Test Case TC_SEC_CS_TCSScanData_0010oceeoiiuiiiiieiiriiieeeeiiee et eeeteeeeeeetaree e e eeaveeeeeeeareeeeeeesseeeeenes 25
5.17 Test Case TC_SEC_CS_TCSScanData_00T11cc..ooeiiiiiiiieeeiiiie ettt e eeaeee e e et eearee e e eeaaaeeeenn 26
5.18 Test Case TC_SEC_CS_TCSScanData_0012oceeeiiuriiiieiiieieeeeieeeeeecieeeeeeereeeeeeetareeeeeeareeeeeeeareeeeeeessseeeenns 27
5.19 Test Case TC_SEC_CS_TCSScanData_0013oooooiiiiiiieiiiiieeeeieie et eeeteee e e eetatee e e eavee e e eereeeeeeeareeeeeaes 28
520 Test Case TC_SEC_CS_TCSScanData_0014oooeiiiuiiiieeeieeee e eeciee e eeeveeeeeeetaree e e eeaveeseeeereeeeeeesneeeeenes 29
5.21 Test Case TC_SEC_CS_TCSScanData_0015c..oveiiiirriieieeieie ettt ettt eeeee e e eaae e eeaae e e e ennneee s 30
522 Test Case TC_SEC_CS_TCSScanData_0016cccooiuriiiieeirieieeeeiiieeeecieeeeeeeeeeeeeeetteeeeeeereeeeeeereeeeeeesseeeeenes 31
523 Test Case TC_SEC_CS_TCSScanData_0017c..oeeeeiiuiiiieeeieeeeeeeiiee et eeeveeeeeeetatee e e eeaveeseeeeareseeeeesseeeeeaes 32
5.24 Test Case TC_SEC_CS_TCSScanData_0018ccoiiiiiiiiiiiiieeeeiiiee et eecteeeeeeetareeeeeereeeeeeeareseeeeesreeeeenes 33
5.25 Test Case TC_SEC_CS_TCSScanData_0019oooooimiiiioiiiiiieeeeeee ettt et e eeaaaeeeean 34
526 Test Case TC_SEC_CS_TCSScanData_0020ccooiriiieeiirieeeeeeiieeeeecieeeeeeereeeeeeetvreeeeeeveeseeenreeeeeeessseeeenns 35
5.27 Test Case TC_SEC_CS_TCSScanData_0021ccooiiuriiiiiiiriiieeeeiiie e eeereeeeeeetveee e e eereeseeeeareeeeeeesseaeeeaes 36
5.28 Test Case TC_SEC_CS_TCSScanData_0022cccooirieieeeirieieeeeiieeeeecieeeeeeeireeeeeeetareeeeeeveeseeenseseeesesrsneeenns 37
5.29 Test Case TC_SEC_CS_TCSScanData_0023ccooiiiiiiiiiiriieeeeeieieeeecieeeeeeceeeeeeeetareeeeeeareeseeeereseeeeesneaeeenes 38
5.30 Test Case TC_SEC_CS_TCSScanData_0024ccoooriiiieeiriieeeeeieee e eecieeeeeeeereeeeeeetaeae e e eeteeseeeeareseeeeesrseeeenes 39
5.31 Test Case TC_SEC_CS_TCSScanData_0025c.ooeieeeiiieeeeiiieeeeeeeeeee e ettt et eeeeree e e earae e e eeaaeeeeeennnaee s 39
5.32 Test Case TC_SEC_CS_TCSScanData_0026ccoovvirieeiirieieeeeiieeeeeiieeeeeeeereeeeeeetareeeeeiaveeseeeeseseeeeesnseeeenes 41
5.33 Test Case TC_SEC_CS_TCSScanData_0027oceeeiiuriiieeiiieieeeeieeeeeecieeeeeeeereeeeeeetaaeeeeeeaveeseeeereseeseesrseeeenes 42
5.34 Test Case TC_SEC_CS_TCSScanData_0028cccoviiieeiirieieeeeiieeeeecieeeeeeecreeeeeeetareeeeeiaveeeeeeereeeeeeessseeeenns 43
5.35 Test Case TC_SEC_CS_TCSScanData_0029ccooiriiiiiiiiiee et eeeteeeeeeetatee e eetee s eeeeraeeeeeeareeeeeaes 44
536 Test Case TC_SEC_CS_TCSScanData_0030coooiiuiiiiiiiiriiieeeeiiieeeecieeeeeeeiveeeeeeetareeeeeeareeseeeeareseeeeesseeeeenes 45
5.37 Test Case TC_SEC_CS_TCSScanData_0031ocoeoiiuiiiieiiiiieeeeeiiee et eeeeeeeeeeetvtee e e eeveeeeeeereeeeeeesreeeeenes 46
5.38 Test Case TC_SEC_CS_TCSScanData_0032ccooiiuriiieeiiriiieeeeiieeeeecieeeeeeereeeeeeetaeeeeeeeareeseeeeareseeseessseeeenes 47
5.39 Test Case TC_SEC_CS_TCSScanData_0033cooiiiiiiiieiieiee et eeeveeeeeeetaeee e e eereeeeeeeareeeeeeesreeeeenes 48
5.40 Test Case TC_SEC_CS_TCSScanData_0034cooooiuriiiieeieiieeeeiee et eeeeeeeeeeetaeee e e et seeeereeeeeeeaaeeeeenns 49
541 Test Case TC_SEC_CS_TCSScanData_0035oovieeiiieeeiciiieee et ettt eeeeee e e earae e e eenaeeeeeenaneee s 50

Tizen Content Screening Test Specification

Copyright © 2012 McAfee, Inc. All Rights Reserved.

6

7

5.42 Test Case TC_SEC_CS_TCSScanData_0030ccoooiuriiieeiiieiieeeeieieeeeeeeeeeeeeeee e e eetaeee e eeaaeeeeeeenreeeeeesavneeeenns 51
5.43 Test Case TC_SEC_CS_TCSScanData_0037uuuruiiiiieieeeieeeeeeeciieiiie e eeeeeeeeeaeraae e e e e e e e e e e e eeeenanneeaees 52
5.44 Test Case TC_SEC_CS_TCSScanData_0038ouuuiiiiiiieieiiieeiieiiiieiie e eeeeeeeececae e e e e e e e e e e e e eeenaaneaaees 53
5.45 Test Case TC_SEC_CS_TCSScanData_0039ooooiuiiiiieeiiiieeeeieee et eetaeee e et eeree e e eeaaaeeeenn 54
546 Test Case TC_SEC_CS_TCSScanData_0040oooooiuiiiiieeiieieeeeieee et eeeeeee e e eetaaee e et e e enreeeeeeeaaaeeeenns 55
5.47 Test Case TC_SEC_CS_TCSScanData_0041ooooouiiiieeeiieie e eeeeee e eeeeee e e eetatee e et e e eree e e e eeaaaeeeean 56
5.48 Test Case TC_SEC_CS_TCSScanData_0042uuueeiiieiieeeieeeeeeeciiie ettt e e e e e e e e e e e eeeaaaneaaees 57
5.49 Test Case TC_SEC_CS_TCSScanData_0043oureiiiieiieeeeeeeeeeeeieeeeeee e eeeeeeeeeeecee e e e e e e e e e e e e eeennareeaees 58
5.50 Test Case TC_SEC_CS_TCSScanData_0044dcoooueiiieeeieieeeeeee et eeeeee e e eetaeee e e e eeaee e e eeaaaeeeenns 59
5.51 Test Case TC_SEC_CS_TCSScanData_0045ooeeeeirieeeeeiieeeeeeeceeee ettt eeeeeree e e etae e e eeaaeeeeeennneee s 60
5.52 Test Case TC_SEC_CS_TCSScanData_0040ccooooueiiieeeieeeieeeeieie et eeeeeee e e eetaeee e eeaaeeeeeeearee e e esaaaeeeenns 60
5.53 Test Case TC_SEC_CS_TCSScanData_0047ooeeooueeeieeeieeie oo eeeieeeeeeeeee e e eetatee et s e eareeeeeeeaaaeeeenns 61
5.54 Test Case TC_SEC_CS_TCSScanData_0048coooueiiiieeiieie e et eeeeeee e e eetaeee e et e e eeaeeeeeeeavaeeeenns 62
5.55 Test Case TC_SEC_CS_TCSScanData_0049oooooouiiiioeiiieie et eeete e eetatee e e e e eereee e e eeaneeeeeae 63
5.56 Test Case TC_SEC_CS_TCSScanData_0050ooooiiuiiiiiiiiieieeeeieie et eeeeeee e e eetaeee e e et e s eeeeareeeeeeeaaneeeenns 63
5.57 Test Case TC_SEC_CS_TCSScanData_0051oooioiuiiiiieiiieieeeeieee et eeetaeee e e e e eree e e eeaaaeeeenn 64
5.58 Test Case TC_SEC_CS_TCSScanData_0052ooeeeiueiiiiieieeieeeeeee e et eeeeee e e eetaeee e eaae e s eeseareeeeeeeaveeeeenns 65
5.59 Test Case TC_SEC_CS_TCSScanFile_0001oceiiiiuiiiieeiiieie et eeetee e e eetaeee e eeavee e e eeareeeeeeeaseeeeeaes 66
5.60 Test Case TC_SEC_CS_TCSScanFile_0002..........oooooiuiiiieeiieiieeeeeie ettt e eeeee e e eetaeee e eeaaeeeeeeenreeeeeesavaeeeenns 67
5.61 Test Case TC_SEC_CS_TCSScanFile_0003.......cccuueiiieiiieeeeieee ettt eeeae e e eaaae e e eeaaeeeeeenaneeeas 68
5.62 Test Case TC_SEC_CS_TCSScanFile_0004ooeiooueiiieeeieeie e eeeee e eeeeee e e eeaatee e et e e eereeeeeeeaaaeeeenns 69
5.63 Test Case TC_SEC_CS_TCSScanFile_0005..........ooiiiiiiiiieeiieiee e eecee e eeeteee e e eetaaee e eearee s e eereeeeeeesnseeeeaes 70
5.64 Test Case TC_SEC_CS_TCSScanFile_0000............ccooruiiiiieeiieiieeeeieeeeeeeieeeeeeeeeeeeeeetatee e eeaaeeeeesenree e e esaaneeeenns 71
5.65 Test Case TC_SEC_CS_TCSScanFile_0007c.uueieioiueiiieeeiieie e eetee e eeeeee e et s eeaae s eeenaeeeeeeeavaeeeenns 72
5.66 Test Case TC_SEC_CS_TCSScanFile_0008...........ccoooiuiiiiiiiiieieeeeieee ettt eeeeee e e eetatee e et e e e eeenreeeeeesavaeeeenns 73
5.67 Test Case TC_SEC_CS_TCSScanFile_0009..........occooiiuiiiiiiiiiiie ettt eeeeeee e e eetaeee e eevee s e eereeeeeeeaneaeeenes 74
5.68 Test Case TC_SEC_CS_TCSScanFile_00T0......c.uuiiiiiiiiiieeiiieie ettt e eetetee e e e e eree e e eeaaaeeeenns 75
5.69 Test Case TC_SEC_CS_TCSScanFile_ Q011ccouuuiiiiiiiiiieeeieeie ettt eeaae e e e eeaaaeeeeans 76
570 Test Case TC_SEC_CS_TCSScanFile_0012.......c..uuiiiiiiiiiieeeteiie et eeeeee e e et eeaae e eeaaee e e eeavaeeeenns 77
5.71 Test Case TC_SEC_CS_TCSScanFile_0013.......cccvviiieeiiiee ettt ee e e e et e e e e aneee s 78
5.72 Test Case TC_SEC_CS_TCSScanFile_ Q014uuiiioieeiiieeeieeie et eeae e e eree e e eeaaaeeeeans 79
5.73 Test Case TC_SEC_CS_TCSScanFile_Q015......cuuuiiiiiiiieeeeeee et ettt e e eeaaaee e 80
5.74 Test Case TC_SEC_CS_TCSScanFile_Q016..........ooeiiiuiiiieeeiieieeeeeee et eeeee e eetatee e et e e enree e e eeaaaeeeenns 81
575 Test Case TC_SEC_CS_TCSScanFile_ 0017ccuuuiiiiiiiieeeeeeeeie ettt eeae e eeaee e e eeavaeeeeans 82
576 Test Case TC_SEC_CS_TCSScanFile_ Q018ooiiiiuiiiiieiiieieeeeieee et eeeee e e et eeaae e e eaee e e eeaaaeeeenns 83
5.77 Test Case TC_SEC_CS_TCSScanFile_0019.........ooiiiiiiiiiiieeieeie ettt e eeteee et e e e e eaaaee e 84
5.78 Test Case TC_SEC_CS_TCSScanFile_0020..........ooiiiiuiiiiieiieeieeeeieee et eeeeee e e eetaeee e et e e enreeeeeeeavaeeeenns 85
579 Test Case TC_SEC_CS_TCSScanFile_ 0021c.uuuiiiiiiiiiieeeieeie ettt et eeaae e eeaee e e eeaaaeeeenn 86
5.80 Test Case TC_SEC_CS_TCSScanFile_0022.........oooiiiouiiiiieeieeie et eeeeee e e eetatee e eeae s e eearee e e e eeaaaeeeenns 87
5.81 Test Case TC_SEC_CS_TCSScanFile_0023.........oooiiiiiiiiiieieeie et eeeeee e e eetaeee e et s e earee e e e eeaaneeeenns 88
5.82 Test Case TC_SEC_CS_TCSScanFile_0024oooieiouiiiieeeieeieeeeeee et eeeeee e et eeae e e e e e esavaeeeenns 89
5.83 Test Case TC_SEC_CS_TCSScanFile_0025.......uuui oottt eeree e e eaaaeeeenns 90
5.84 Test Case TC_SEC_CS_TCSScanFile_0026..........ooeioouiiiieeiiieie e eeeieee e eeeeee e e eetaeae e et eeeeeree e e esaaaeeeenns 91
5.85 Test Case TC_SEC_CS_TCSScanFIle_0027cuuuiiioieieeeeeeeeee et eeeee e et s e eree e e eeaaaeeeenns 92
5.86 Test Case TC_SEC_CS_TCSScanFile_0028..........oooiiiuiiiiieeieeie et eeeeee e e eetatee e et eeeeree e e eeavaeeeenns 92
5.87 Test Case TC_SEC_CS_TCSScanFile_0029.........oooiiiouiiiiieeieeie et eeeee e e et eeae e e e eeeaaaeeeenn 94
5.88 Test Case TC_SEC_CS_TCSScanFile_0030.......c..uuoiiiiuiiiieeeieeie e et eeetee e e eeaatee e eeaae s eeeenreeeeeeeavaeeeenns 94
5.80 Test Case TC_SEC_CS_TCSScanFile_ 0031c.uuuiiiiiiiiiieeeeeie ettt e eetatee e et e e eree e e eeaaaeeeenns 96
590 Test Case TC_SEC_CS_TCSScanFile_0032........ouuiiiiiiiiiiieiiieie et eeeeee e e eetatee e eeae e eeareeeeeeeaaaeeeenns 96
591 Test Case TC_SEC_CS_TCSScanFile_0033........oouiiiiiiiiiiieiieie et eeeeee e e et eeaae e eeree e e e eeaaaeeeenns 97
5.92 Test Case TC_SEC_CS_TCSScanFile_0034........uuuiiiioieieieeeieeieeeeeee et e ettt eettae e et e e enree e e e eeaaaeeeenn 98

Test Guide 100

Test Contents 101

Tizen Content Screening Test Specification

Copyright © 2012 McAfee, Inc. All Rights Reserved.

1.1 Document History

Version Date Reason
1.0.0 11/05/2012 First draft from McAfee
1.0.1 11/07/2012 Added more test cases for stub funtions
1.0.2 11/08/2012 Correct some test statement and wording
1.0.3 11/12/2012 Add library replacement test cases, add test contents and test guide.
1.0.4 01/26/2013 Add license

1.2 References

Ref Document Issue Title
Tizen Content
[1] | Screening API 1.0.2 Tizen Content Screening API Specification
Specification

1.3 Glossary and definitions
APl Application Programming Interface

TCS Tizen Content Screening

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

2 Purpose and Scope

The overall purpose of this document is to describe the conformance test cases for the Tizen
Content Screening framework.

This document shall include:
1. Tizen Content Screening Test Configuration

2. Test Case procedures

The scope of this document is the Tizen Content Screening Foundation API functions that are
common to all Content Screening implementations. Specific functions of the Content Screening
plug-in are not tested. All TCS implementations must include and meet the test cases defined in
this document.

TCS validation plug-in

e A security plug-in for Tizen Content Screening Framework validation. Includes the
functionalities required for the validation, including scanning, and conforms to the TCS
framework API specification.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

3 Component Description

K Content Screening subsystem \

TCS
Content)
Calling
Source -
Application

1@ S Framework API

Tizen Content Screening Test user interface which is
. Source of test contents. Framework to be tested. response for user interaction,
report generation, etc.

. o Test resources required by TC Tizen Content Screenin
TCS test calling application plug-in e.g. configuration files, o > 9
Validation plug-in
database, etc.

Figure 1: Tiezn Content Screening Architecture

The TCS framework (here on will be referenced as “tizen content screening library”, “TCS library”)
works (interacts) with the calling application through an interface identified as one of the main
elements to be tested in this test specification.

TCS plug-in is the content screening function implementation interfacing the TCS framework via
Tizen Content screening Framework API functions.

“TCS Test Resources” is the resource data used by the TCS plug-in for test purposes (e.g.
configurations, signatures for test content, etc.).

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

For testing purposes, the TCS library can be interchanged with a test tool. Rather than using
software to analyze the content from the calling application and return the result of the scanning, a
test tool is used to return the desired result matching the input content and the test case under
execution. The test tool should also analyze the request from the calling application
implementation to check that the process and the implementation is successful in both of the
following ways:

1. The input content received from the calling application triggers the scanning process
according to the content type (the request to the engine/test tool could be different if the
content is an e-mail, a HTML document, a binary file, etc.).

2. The result of the scanning APls must be understood by the calling application which should
take an action with the received content:

a) Do nothing if the content is correct, or

b) Request more information from the TCS library (by the test tool).

This test tool can generate a log file with the result of the performed tests for checking purposes.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

4 Test Environment Description

The test environment used is on Tizen platform.
The following requirements apply to all test cases defined in this document:

1. Any resources required by Tizen Content Screening subsystem in runtime should be
installed in the test environment.

2. Test samples required by test suite should be installed in the test environment.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5 Test Cases Specifications
5.1 Test Case TC_SEC_CS_TCSLibraryOpen_0001

TC_SEC_CS_TCSLibraryOpen_0001 TCS library interface initialization test.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the calling application can correctly initialize the TCS library handle.

Test pre-conditions:

validation plug-in

Test Procedure:
1. Call TCSLibraryOpen ().

2. Verify the APIreturn value.

Test PASS Condition:

Step 2 should return valid TCSLIB_HANDLE instead of INVALID_TCSLIB_HANDLE.

Test Clean-up procedure:

Call TCSLibraryClose() with the TCS library handle returned by TCSLibraryOpen().

5.2 Test Case TC_SEC_CS_TCSLibraryOpen_0002

TC_SEC_CS_TCSLibraryOpen_0002 TCS library interface initialization test.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

Test Objectives:

This test case verifies that the calling application can get proper error when there is no TCS plugin found in system.

Test pre-conditions:

Stub functions

Test Procedure:
1. Call TCSLibraryOpen ().

2. Verify it returns INVALID_TCSLIB_HANDLE.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

TC_SEC_CS_TCSLibraryOpen_0002 TCS library interface initialization test.

Test PASS Condition:

Step 2 should return valid INVALID_TCSLIB_HANDLE.

Test Clean-up procedure:

None.

5.3 Test Case TC_SEC_CS_TCSLibraryOpen_0003

TC_SEC_CS_TCSLibraryOpen_0003 TCS library replacement test.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSLibraryClose(void);

Test Objectives:

This test case verifies that the calling application can get always get the latest TCS library API call after close/open.

Test pre-conditions:

Stub functions

Test Procedure:
1. Call TCSLibraryOpen ().

2. Verify it returns INVALID_TCSLIB_HANDLE.

3. Copy validation plug-in to “/opt/ust/share/sec_plugin”
4., Call TCSLibraryOpen ().
5. Verify it returns valid TCS library handle.

6. Call TCSLibraryClose().

Test PASS Condition:
Step 2 should pass.
Step 5 should pass.

Test Clean-up procedure:

None.

5.4 Test Case TC_SEC_CS_TCSLibraryOpen_0004

TC_SEC_CS_TCSLibraryOpen_0004 TCS library replacement test.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

TC_SEC_CS_TCSLibraryOpen_0004 TCS library replacement test.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void) ;

int TCSLibraryClose(void);

Test Objectives:

This test case verifies that the calling application can get always get the latest TCS library API call after close/open.

Test pre-conditions:

validation plug-in

Test Procedure:
1. Call TCSLibraryOpen ().
2. Verify it returns valid TCS library handle.
3. Delete validation plug-in from “/opt/usr/share/sec_plugin”
4, Call TCSLibraryClose().
5. Call TCSLibraryOpen ().

6. Verify it returns INVALID_TCSLIB_HANDLE.

Test PASS Condition:

Step 2 should pass.
Step 6 should pass.

Test Clean-up procedure:

None.

5.5 Test Case TC_SEC CS TCSGetLastError 0001

TC_SEC_CS_TCSGetLastError_0001 Stub TCS function error return.

API Function(s) covered:

int TCSGetLastError (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the calling application can get proper error code from TCS stub functions.

Test pre-conditions:

Stub functions

Test Procedure:

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

TC_SEC_CS_TCSGetLastError_0001 Stub TCS function error return.

1. Call TCSGetLastError () with INVALID_TCSLIB_HANDLE.

2. Verify it returns TCS_ERROR_NOT_IMPLEMENTED.

Test PASS Condition:

Step 2 should passed.

Test Clean-up procedure:

None.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.6 Test Case TC_SEC_CS_TCSLibraryClose 0001

TC_SEC_CS_TCSLibraryClose_0001

TCS library interface finalization.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void) ;

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the calling application can close the TCS library handle.

Test pre-conditions:

validation plug-in.

Test Procedure:

1. Call TCSLibraryOpen ().

2. Verify that the API returns valid TCSLIB_HANDLE instead of INVALID_TCSLIB_HANDLE.

3. Call TCSLibraryClose () with the TCS library handle returned by TCSLibraryOpen ().

4. Verify that the return value of the TCSLibraryClose () is 0.

Test PASS Condition:

Step 2 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.7 Test Case TC_SEC CS TCSScanData 0001

TC_SEC_CS_TCSScanData_0001 Call TCS interface to scan benign content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void) ;
int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case tests the scan request interface and verifies that the TCS interface returns the expected return value in the
case of benign content data.

Test pre-conditions:

validation plug-in.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled with benign data, TCS_SA_SCANONLY as the scan action ID,
TCS_DTYPE_UNKNOWN as the data type identifier and set pfCallback to NULL.

3. Verify that the return value of TCSScanData () is 0.
4. Verify that the number of the detected malware is 0.
5. CallpfFreeResult () to release the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:
Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.8 Test Case TC_SEC CS TCSScanData 0002

TC_SEC_CS_TCSScanData_0002 Call TCS interface to scan benign content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void) ;
int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case tests the scan request interface and verifies that the TCS interface returns the expected return value in the
case of benign content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled with benign, TCS_SA_SCANONLY as the scan action ID,
TCS_DTYPE_UNKNOWN as the data type identifier and p£Callback is not NULL.

3. Verify that the pfCallback is not called.

4. Verify that the return value of TCSScanData () is 0.

5. Verify that the number of the detected malware is 0.

6. CallpfFreeResult () torelease the resource returned by TCS library.

7. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:
Step 3 should pass verification.
Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.9 Test Case TC_SEC CS TCSScanData 0003

TC_SEC_CS_TCSScanData_0003 Call TCS interface to scan infected content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void) ;

int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,

TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the TCS interface is called to scan infected
content data

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled with infected data, TCS_SA__SCANONLY as the scan action ID,
TCS_DTYPE_UNKNOWN as the data type identifier and set pfCallback to NULL.

3. Verify that the return value of TCSScanData () is 0.

4. Verify that the number of the detected malware is as expected, the malware name or variant name is as
expected and the severity/behaviour is as expected.

5. CallpfFreeResult () to release the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.10Test Case TC_SEC _CS TCSScanData 0004

TC_SEC_CS_TCSScanData_0004 Call TCS interface to scan infected content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void) ;

int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,

TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the TCS interface is called to scan infected
content data

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1.
2.

6.
7.

Call TCSLibraryOpen ().

Call TCSScanData () with a buffer filled with infected data, TCS_SA__SCANONLY as the scan action ID,
TCS_DTYPE_UNKNOWN as the data type identifier and where pfCallback is not NULL.

Verify that pfCallback is called and that the malware name or variant name is as expected and the
severity/behaviour is as expected.

Verify that the return value of TCSScanData () is O.

Verify that the number of the detected malware is as expected, the malware name or variant name is as
expected and the severity/behaviour is as expected.

Call pfFreeResult () to release the resource returned by TCS library.

Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.11Test Case TC_SEC _CS TCSScanData 0005

TC_SEC_CS_TCSScanData_0005 Call TCS interface to scan benign HTML formatted
content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);
int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the TCS interface returns the expected return value when it is called to scan benign HTML
formatted content data

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled with benign HTML formatted data, TCS_SA__SCANONLY as the
scan action ID, and TCS_DTYPE_HTML as the data type identifier. Set pfCallback to NULL.

3. Verify that the return value of TCSScanData () is 0.
4. Verify that the number of the detected malware is 0.
5. CallpfFreeResult () to release the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:
Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.12Test Case TC_SEC _CS TCSScanData 0006

TC_SEC_CS_TCSScanData_0006 | Call TCS interface to scan benign HTML formatted
content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);
int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the TCS interface returns the expected return value when it is called to scan benign HTML
formatted content data

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled with benign HTML formatted data, TCS_SA__SCANONLY as the
scan action ID, TCS_DTYPE_HTML as the data type identifier and pfCallback is not NULL.

3. Verify that pfCallback is not called.

4. Verify that the return value of TCSScanData () is 0.

5. Verify that the number of the detected malware is 0.

6. Call pfFreeResult () to release the resource returned by TCS library.

7. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.
Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.13Test Case TC_SEC CS TCSScanData_ 0007

TC_SEC_CS_TCSScanData_0007 Call TCS interface to scan infected HTML
formatted content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);
int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the TCS interface is called to scan infected HTML
formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled with infected HTML formatted data, TCS_SA_SCANONLY as the
scan action ID, TCS_DTYPE_HTML as the data type identifier and set pfCallback to NULL.

3. Verify that the return value of TCSScanData () is 0.

4. Verify that the number of the detected malware is as expected, the malware name or variant name is as
expected and the severity/behaviour is as expected.

5. Call pfFreeResult () torelease the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.14Test Case TC_SEC _CS TCSScanData 0008

TC_SEC_CS_TCSScanData_0008 Call TCS interface to scan infected HTML formatted
content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);
int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the TCS interface is called to scan infected HTML
formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled with infected HTML formatted data, TCS_SA_SCANONLY as the
scan action ID, TCS_DTYPE_HTML as the data type identifier and where pfCallback is not NULL.

3. Verify that pfCallback is called, the malware name or variant name is as expected and the severity/behaviour
is as expected.

4. Verify that the return value of TCSScanData () is 0.

5. Verify that the number of the detected malware is as expected, the malware name or variant name is as expected
and the severity/behaviour is as expected.

6. Call pfFreeResult () torelease the resource returned by TCS library.

7. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.
Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.15Test Case TC_SEC _CS TCSScanData 0009

TC_SEC_CS_TCSScanData_0009 Call TCS interface to scan benign URL formatted

content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,

TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected value is returned from the interface when it is called to scan benign URL
formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1.

Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled with benign URL formatted data, TCS_SA_SCANONLY as the
scan action ID, and TCS_DTYPE_URL as the data type identifier. Set pfCallback to NULL.
3. Verify that the return value of TCSScanData () is 0.
4. Verify that the number of the detected malware is 0.
5. CallpfFreeResult () to release the resource returned by TCS library.
6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().
Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.16 Test Case TC_SEC _CS TCSScanData 0010

TC_SEC_CS_TCSScanData_0010 Call TCS interface to scan benign URL formatted

content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,

TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected value is returned from the interface when it is called to scan benign URL
formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1.

Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled with benign URL formatted data, TCS_SA_SCANONLY as the
scan action ID, TCS_DTYPE_URL as the data type identifier and where pfCallback is not NULL.
3. Verify that pfCallback is not called.
4. Verify that the return value of TCSScanData () is 0.
5. Verify that the number of the detected malware is 0.
6. Call pfFreeResult () torelease the resource returned by TCS library.
7. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().
Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.17Test Case TC_SEC CS TCSScanData 0011

TC_SEC_CS_TCSScanData_0011 Call TCS interface to scan infected URL formatted

content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,

TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan infected URL
formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled with infected URL formatted data, TCS_SA__SCANONLY as the
scan action ID, and TCS_DTYPE_URL as the data type identifier. Set pfCallback to NULL.

3. Verify that the return value of TCSScanData () is 0.

4. Verify that the number of the detected malware is as expected, the malware name or variant name is as
expected and the severity/behaviour is as expected.

5. Call pfFreeResult () to release the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.18Test Case TC_SEC CS TCSScanData 0012

TC_SEC_CS_TCSScanData_0012 | Call TCS interface to scan infected URL formatted

content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,

TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan infected URL
formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled with infected URL formatted data, TCS_SA__SCANONLY as the
scan action ID, TCS_DTYPE_URL as the data type identifier and where pfCallback is not NULL.

3. Verify that pfCallback is called, the malware name or variant name is as expected and the
severity/behaviour is as expected.

4. Verify that the return value of TCSScanData () is 0.

5. Verify that the number of the detected malware is as expected, the malware name or variant name is as
expected and the severity/behaviour is as expected.

6. Call pfFreeResult () to release the resource returned by TCS library.

7. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.19Test Case TC_SEC _CS TCSScanData 0013

TC_SEC_CS_TCSScanData_0013 Call TCS interface to scan benign Email
formatted content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);
int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan benign Email
formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled with benign Email formatted data, TCS_SA__SCANONLY as the
scan action ID, and TCS_DTYPE_EMATIL as the data type identifier. Set pfCallback to NULL.

3. Verify that the return value of TCSScanData () is 0.
4. Verify that the number of the detected malware is 0.
5. CallpfFreeResult () to release the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:
Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.20Test Case TC_SEC _CS TCSScanData 0014

TC_SEC_CS_TCSScanData_0014 Call TCS interface to scan benign Email
formatted content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);
int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan benign Email
formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled with benign Email formatted data, TCS_SA__SCANONLY as the
scan action ID, TCS_DTYPE_EMAIL as the data type identifier and where pfCallback is not NULL.

3. Verify that pfCallback is not called.

4. Verify that the return value of TCSScanData () is 0.

5. Verify that the number of the detected malware is 0.

6. Call pfFreeResult () to release the resource returned by TCS library.

7. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.
Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.21Test Case TC_SEC _CS TCSScanData 0015

TC_SEC_CS_TCSScanData_0015 Call TCS interface to scan infected Email
formatted content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);
int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan infected Email
formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled with infected Email formatted data, TCS_SA_SCANONLY as the
scan action ID, and TCS_DTYPE_EMATIL as the data type identifier. Set pfCallback to NULL.

3. Verify that the return value of TCSScanData () is 0.

4. Verify that the number of the detected malware is as expected, the malware name or variant name is as
expected and the severity/behaviour is as expected.

5. Call pfFreeResult () torelease the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.22Test Case TC_SEC _CS TCSScanData 0016

TC_SEC_CS_TCSScanData_0016 Call TCS interface to scan infected Email
formatted content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);
int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan infected Email
formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled with infected Email formatted data, TCS_SA_SCANONLY as the
scan action ID, TCS_DTYPE_EMAIL as the data type identifier and where pfCallback is not NULL.

3. Verify that pfCallback is called, the malware name or variant name is as expected and the
severity/behaviour is as expected.

4. Verify that the return value of TCSScanData () is 0.

5. Verify that the number of the detected malware is as expected, the malware name or variant name is as
expected and the severity/behaviour is as expected.

6. Call pfFreeResult () torelease the resource returned by TCS library.

7. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.
Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.23Test Case TC_SEC CS TCSScanData 0017

TC_SEC_CS_TCSScanData_0017 Call TCS interface to scan benign phone number
formatted content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);
int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan benign phone
number formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled with benign phone number formatted data, TCS_SA_SCANONLY
as the scan action ID, and TCS_DTYPE_PHONE as the data type identifier. Set pfCallback to NULL.

3. Verify that the return value of TCSScanData () is 0.
4. Verify that the number of the detected malware is 0.
5. CallpfFreeResult () to release the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:
Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.24Test Case TC_SEC _CS TCSScanData 0018

TC_SEC_CS_TCSScanData_0018 Call TCS interface to scan benign phone number
formatted content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);
int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan benign phone
number formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled with benign phone number formatted data, TCS_SA_SCANONLY
as the scan action ID, TCS_DTYPE_PHONE as the data type identifier and where pfCallback is not NULL.

3. Verify that pfCallback is not called.

4. Verify that the return value of TCSScanData () is 0.

5. Verify that the number of the detected malware is 0.

6. Call pfFreeResult () to release the resource returned by TCS library.

7. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.
Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.25Test Case TC_SEC _CS TCSScanData 0019

TC_SEC_CS_TCSScanData_0019 Call TCS interface to scan infected phone
number formatted content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);
int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected value is returned when the interface is called to scan infected phone number
formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled with infected phone number formatted data, TCS_SA_SCANONLY
as the scan action ID, and TCS_DTYPE_PHONE as the data type identifier. Set pfCallback to NULL.

3. Verify that the return value of TCSScanData () is 0.

4. Verify that the number of the detected malware is as expected, the malware name or variant name is as
expected and the severity/behaviour is as expected.

5. Call pfFreeResult () torelease the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.26 Test Case TC_SEC _CS TCSScanData 0020

TC_SEC_CS_TCSScanData_0020 Call TCS interface to scan infected phone
number formatted content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);
int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected value is returned when the interface is called to scan infected phone number
formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled with infected phone number formatted data, TCS_SA_SCANONLY
as the scan action ID, TCS_DTYPE_PHONE as the data type identifier and where pfCallback is not NULL.

3. Verify that pfCallback is called, the malware name or variant name is as expected and the
severity/behaviour is as expected.

4. Verify that the return value of TCSScanData () is 0.

5. Verify that the number of the detected malware is as expected, the malware name or variant name is as
expected and the severity/behaviour is as expected.

6. Call pfFreeResult () torelease the resource returned by TCS library.

7. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.
Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.27Test Case TC_SEC CS TCSScanData 0021

TC_SEC_CS_TCSScanData_0021 Call TCS interface to scan benign Java code
formatted content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);
int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan benign Java code
formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled with benign Java code formatted data, TCS_SA__SCANONLY as
the scan action ID, and TCS_DTYPE_JAVA as the data type identifier. Set pfCallback to NULL.

3. Verify that the return value of TCSScanData () is 0.
4. Verify that the number of the detected malware is 0.
5. CallpfFreeResult () to release the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:
Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.28Test Case TC_SEC _CS TCSScanData 0022

TC_SEC_CS_TCSScanData_0022 Call TCS interface to scan benign Java code
formatted content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);
int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan benign Java code
formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled with benign Java code formatted data, TCS_SA__SCANONLY as
the scan action ID, TCS_DTYPE_JAVA as the data type identifier and where pfCallback is not NULL.

3. Verify that pfCallback is not called.

4. Verify that the return value of TCSScanData () is 0.

5. Verify that the number of the detected malware is 0.

6. Call pfFreeResult () to release the resource returned by TCS library.

7. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.
Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.29Test Case TC_SEC CS TCSScanData 0023

TC_SEC_CS_TCSScanData_0023 Call TCS interface to scan infected Java code
formatted content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);
int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected value is returned when the interface is called to scan infected Java code
formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled with infected Java code formatted data, TCS_SA_SCANONLY as
the scan action ID, and TCS_DTYPE_JAVA as the data type identifier. Set pfCallback to NULL.

3. Verify that the return value of TCSScanData () is 0.

4. Verify that the number of the detected malware is as expected, the malware name or variant name is as
expected and the severity/behaviour is as expected.

5. Call pfFreeResult () torelease the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.30Test Case TC_SEC _CS TCSScanData 0024

TC_SEC_CS_TCSScanData_0024 Call TCS interface to scan infected Java code
formatted content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);
int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected value is returned when the interface is called to scan infected Java code
formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled with infected Java code formatted data, TCS_SA_SCANONLY as
the scan action ID, TCS_DTYPE_JAVA as the data type identifier and where pfCallback is not NULL.

3. Verify that pfCallback is called, the malware name or variant name is as expected and the
severity/behaviour is as expected.

4. Verify that the return value of TCSScanData () is 0.

5. Verify that the number of the detected malware is as expected, the malware name or variant name is as
expected and the severity/behaviour is as expected.

6. Call pfFreeResult () torelease the resource returned by TCS library.

7. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.
Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

5.31Test Case TC_SEC _CS TCSScanData 0025

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

TC_SEC_CS_TCSScanData_0025 Call TCS interface to scan benign JavaScript
code formatted content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);
int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan benign JavaScript
code formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled with benign JavaScript code formatted data,
TCS_SA_SCANONLY as the scan action ID, and TCS_DTYPE_JAVAS as the data type identifier. Set
pfCallback to NULL.

3. Verify that the return value of TCSScanData () is 0.
4. Verify that the number of the detected malware is 0.
5. CallpfFreeResult () to release the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:
Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.32Test Case TC_SEC _CS TCSScanData 0026

TC_SEC_CS_TCSScanData_0026 Call TCS interface to scan benign JavaScript
code formatted content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);
int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan benign JavaScript
code formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled with benign Java code formatted data, TCS_SA_SCANONLY as
the scan action ID, TCS_DTYPE_JAVAS as the data type identifier and where pfCallback is not NULL.

3. Verify that pfCallback is not called.

4. Verify that the return value of TCSScanData () is 0.

5. Verify that the number of the detected malware is 0.

6. Call pfFreeResult () to release the resource returned by TCS library.

7. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.
Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.33Test Case TC_SEC CS TCSScanData_ 0027

TC_SEC_CS_TCSScanData_0027 Call TCS interface to scan infected JavaScript
code formatted content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);
int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected value is returned when the interface is called to scan infected JavaScript code
formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled with infected JavaScript code formatted data,
TCS_SA_SCANONLY as the scan action ID, and TCS_DTYPE_JAVAS as the data type identifier. Set
pfCallback to NULL.

3. Verify that the return value of TCSScanData () is 0.

4. Verify that the number of the detected malware is as expected, the malware name or variant name is as
expected and the severity/behaviour is as expected.

5. CallpfFreeResult () to release the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.34Test Case TC_SEC _CS TCSScanData 0028

TC_SEC_CS_TCSScanData_0028 Call TCS interface to scan infected JavaScript
code formatted content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);
int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected value is returned when the interface is called to scan infected JavaScript code
formatted content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled with infected JavaScript code formatted data,
TCS_SA_SCANONLY as the scan action ID, TCS_DTYPE_JAVAS as the data type identifier and where
pfCallback is not NULL.

3. Verify that pfCallback is called, the malware name or variant name is as expected and the
severity/behaviour is as expected.

4. Verify that the return value of TCSScanData () is 0.

5. Verify that the number of the detected malware is as expected, the malware name or variant name is as
expected and the severity/behaviour is as expected.

6. Call pfFreeResult () torelease the resource returned by TCS library.

7. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.
Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.35Test Case TC_SEC _CS TCSScanData 0029

TC_SEC_CS_TCSScanData_0029 Call TCS interface to scan benign text content
data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);
int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when interface is called to scan benign text content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled with benign text data, TCS_SA_SCANONLY as the scan action ID,
and TCS_DTYPE_TEXT as the data type identifier. Set pfCallback to NULL.

3. Verify that the return value of TCSScanData () is 0.
4. Verify that the number of the detected malware is 0.
5. Call pfFreeResult () to release the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.36 Test Case TC_SEC _CS TCSScanData 0030

TC_SEC_CS_TCSScanData_0030 Call TCS interface to scan benign text content
data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);
int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when interface is called to scan benign text content data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled with benign text data, TCS_SA_SCANONLY as the scan action ID,
TCS_DTYPE_TEXT as the data type identifier and where pfCallback is not NULL.

3. Verify that pfCallback is not called.

4. Verify that the return value of TCSScanData () is 0.

5. Verify that the number of the detected malware is 0.

6. Call pfFreeResult () to release the resource returned by TCS library.

7. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.
Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.37Test Case TC_SEC _CS TCSScanData 0031

TC_SEC_CS_TCSScanData_0031 Call TCS interface to scan infected text content
data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);
int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan infected text content
data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled with infected text data, TCS_SA_SCANONLY as the scan action
ID, and TCS_DTYPE_TEXT as the data type identifier. Set pfCallback to NULL.

3. Verify that the return value of TCSScanData () is 0.

4. Verify that the number of the detected malware is as expected, the malware name or variant name is as
expected and the severity/behaviour is as expected.

5. Call pfFreeResult () torelease the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.38Test Case TC_SEC _CS TCSScanData 0032

TC_SEC_CS_TCSScanData_0032 Call TCS interface to scan infected text content
data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);
int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan infected text content
data.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled with infected text data, TCS_SA_SCANONLY as the scan action
ID, TCS_DTYPE_TEXT as the data type identifier and where pfCallback is not NULL.

3. Verify that pfCallback is called. The malware name or variant name is as expected and the
severity/behaviour is as expected.

4. Verify that the return value of TCSScanData () is 0.

5. Verify that the number of the detected malware is as expected, the malware name or variant name is as
expected and the severity/behaviour is as expected.

6. Call pfFreeResult () torelease the resource returned by TCS library.

7. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.
Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.39Test Case TC_SEC _CS TCSScanData 0033

TC_SEC_CS_TCSScanData_0033 Call TCS interface to scan content data infected
by multiple malware.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);
int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan content data infected
by multiple malware.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled with data infected by multiple malwares, TCS_SA_SCANONLY as
the scan action ID, and TCS_DTYPE_UNKNOWN as the data type identifier. Set pfCallback to NULL.

3. Verify that the return value of TCSScanData () is 0.

4. Verify that the number of the detected malware is as expected, the malware name or variant name is as
expected and the severity/behaviour is as expected.

5. Call pfFreeResult () torelease the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.40Test Case TC_SEC CS TCSScanData 0034

TC_SEC_CS_TCSScanData_0034 Call TCS interface to scan content data infected
by multiple malware.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);
int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan content data infected
by multiple malware.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled with data infected by multiple malwares, TCS_SA_SCANONLY as
the scan action ID, TCS_DTYPE_UNKNOWN as the data type identifier and where pfCallback is not NULL.

3. Verify that pfCallback is called, the malware name or variant name is as expected and the
severity/behaviour is as expected.

4. Verify that the return value of TCSScanData () is 0.

5. Verify that the number of the detected malware is as expected, the malware name or variant name is as
expected and the severity/behaviour is as expected.

6. Call pfFreeResult () torelease the resource returned by TCS library.

7. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.
Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.41Test Case TC_SEC _CS TCSScanData 0035

TC_SEC_CS_TCSScanData_0035 Call TCS interface to repair infected content
data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);
int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies the expected return value is returned when TCS interface is called to repair infected content data

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:
1. Call TCSLibraryOpen().

2. Call TCSScanData () with a buffer filled with infected data, TCS_SA_SCANREPAIR as the scan action ID
and TCS_DTYPE_UNKNOWN as the data type identifier.

3. Verify that the return value of TCSScanData () is 0.
4. Verify that the content data is repaired by comparing with prepared clean data.
5. CallpfFreeResult () to release the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:
Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.42Test Case TC_SEC _CS TCSScanData 0036

TC_SEC_CS_TCSScanData_0036 Call TCS interface to repair infected HTML
formatted content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);
int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the TCS interface is called to repair infected HTML
formatted content data.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled with infected HTML formatted data, TCS_SA_SCANREPAIR as the
scan action ID and TCS_DTYPE_HTML as the data type identifier.

3. Verify that the return value of TCSScanData () is 0.
4. Verify that the content data is repaired by comparing with prepared clean data.
5. CallpfFreeResult () to release the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.43Test Case TC_SEC CS TCSScanData 0037

TC_SEC_CS_TCSScanData_0037 Call TCS interface to repair infected URL formatted
content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);
int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to repair infected URL
formatted content data.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled with infected URL formatted data, TCS_SA_SCANREPAIR as the
scan action ID and TCS_DTYPE_ URL as the data type identifier.

3. Verify that the return value of TCSScanData () is 0.
4. Verify that the content data is repaired by comparing with prepared clean data.
5. CallpfFreeResult () to release the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.44Test Case TC_SEC _CS TCSScanData 0038

TC_SEC_CS_TCSScanData_0038 Call TCS interface to repair infected Email
formatted content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);
int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to repair infected Email
formatted content data.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled with infected Email formatted data, TCS_SA_SCANREPAIR as
the scan action ID and TCS_DTYPE_EMATIL as the data type identifier.

3. Verify that the return value of TCSScanData () is 0.
4. Verify that the content data is repaired by comparing with prepared clean data.
5. CallpfFreeResult () to release the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.45Test Case TC_SEC CS TCSScanData 0039

TC_SEC_CS_TCSScanData_0039 Call TCS interface to repair infected phone
number formatted content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);
int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected value is returned when the interface is called to repair infected phone number
formatted content data.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled with infected phone number formatted data,
TCS_SA_SCANREPAIR as the scan action ID and TCS_DTYPE_PHONE as the data type identifier.

3. Verify that the return value of TCSScanData () is 0.
4. Verify that the content data is repaired by comparing with prepared clean data.
5. CallpfFreeResult () to release the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.46Test Case TC_SEC CS TCSScanData 0040

TC_SEC_CS_TCSScanData_0040 Call TCS interface to repair infected Java code
formatted content data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);
int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected value is returned when the interface is called to repair infected Java code
formatted content data.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled with infected Java code formatted data, TCS_SA_SCANREPAIR
as the scan action ID and TCS_DTYPE_JAVA as the data type identifier.

3. Verify that the return value of TCSScanData () is 0.
4. Verify that the content data is repaired by comparing with prepared clean data.
5. CallpfFreeResult () to release the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.47Test Case TC_SEC CS TCSScanData 0041

TC_SEC_CS_TCSScanData_0041 Call TCS interface to repair infected text content

data.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);
int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to repair infected text
content data.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled with infected text data, TCS_SA_SCANREPAIR as the scan
action ID and TCS_DTYPE_TEXT as the data type identifier.

3. Verify that the return value of TCSScanData () is 0.
4. Verify that the content data is repaired by comparing with prepared clean data.
5. CallpfFreeResult () to release the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.48Test Case TC_SEC CS TCSScanData 0042

TC_SEC_CS_TCSScanData_0042 Call TCS interface to repair content data
infected by multiple malware.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);
int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to repair content data
infected by multiple malware.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled with test multiple malware data, TCS_SA_SCANREPAIR as the
scan action ID and TCS_DTYPE_UNKNOWN as the data type identifier.

3. Verify that the return value of TCSScanData () is 0.
4. Verify that the content data is repaired by comparing with prepared clean data.
5. CallpfFreeResult () to release the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.49Test Case TC_SEC CS TCSScanData 0043

TC_SEC_CS_TCSScanData_0043 Return -1 in pfCallback.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void) ;

int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,

TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when pfCallback returns -1 to the TCS library.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1.

Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled with test malware data, TCS_SA_SCANONLY as the scan action
ID, TCS_DTYPE_UNKNOWN as the data type identifier and where pfCallback is not NULL.
3. Return -1 in pfCallback when the detection notify occurrs.
4. Verify that the return value of TCSScanData () is —1.
5. Call TCSGetLastError ().
6. Verify that the error code returned from TCSGetLastError () is TCS_ERROR_CANCELLED.
7. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().
Test PASS Condition:

Step 4 should pass verification.

Step 6 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.50Test Case TC_SEC CS TCSScanData 0044

TC_SEC_CS_TCSScanData_0044 Call TCS interface to repair infected content
data when repair functionality is not
implemented in TCS library.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen (void) ;
int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when calling the TCS interface to repair infected content
data where the repair functionality is not implemented in the TCS library.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required to be not implemented in validation plug-in for this test case.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled with infected data, TCS_SA_SCANREPAIR as the scan action ID,
TCS_DTYPE_UNKNOWN as the data type identifier.

3. Verify that the return value of TCSScanData () is —1.
4. Call TCSGetLastError () to get error code.
5. Verify that the error code returned by TCSGetLastError () is TCS_ERROR_NOT_IMPLEMENTED.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.51Test Case TC_SEC _CS TCSScanData 0045

TC_SEC_CS_TCSScanData_0045

Call TCS data scan interface with invalid library
instance handle.

API Function(s) covered:

int TCSScanData (TCSLIB_HANDLE hLib,

TCSScanParam *pParam,

TCSScanResult *pResult);

Test Objectives:

This test case verifies that —1 is returned when an invalid scanner instance handle is passed to data scan interface.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSScanData () with an invalid library instance handle INVALID_TCSLIB_HANDLE.

2. Verify that the return value of TCSScanData () is —1.

Test PASS Condition:

Step 2 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

5.52Test Case TC_SEC _CS TCSScanData 0046

TC_SEC_CS_TCSScanData_0046

Concurrency TCS data scan test.

API Function(s) covered:

int TCSScanData (TCSSCAN_HANDLE hScan, TCSScanParam *pParam,

TCSScanResult *pResult);

Test Objectives:

This test case verifies that TCSScanData () can be correctly handled by multiple scanner instance handles in multiple

threads.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Create multiple threads to execute from 2 to 10.

2. Call TCSLibraryOpen().

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

TC_SEC_CS_TCSScanData_0046

Concurrency TCS data scan test.

3. Call TCSScanData () with an infected buffer with test malware data, TCS_SA_SCANONLY as the scan
action ID, TCS_DTYPE_UNKNOWN as the data type identifier.

4. Verify that the return value of TCSScanData () is 0.

5. Verify that the number of the detected malware is as expected, the malware name or variant name is as
expected and the severity/behaviour is as expected.

6. Call pfFreeResult () torelease the resource returned by TCS library.

7. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

8. Repeat 2 ~ 9 with different parameter for TCSScanData (), other test samples: (html, url, email, phone
number, Java code, text) and respective data type identifier.

Test PASS Condition:
Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

5.53Test Case TC_SEC CS TCSScanData 0047

TC_SEC_CS_TCSScanData_0047

Concurrency TCS data clean test.

API Function(s) covered:

int TCSScanData (TCSSCAN_HANDLE hScan, TCSScanParam *pParam,

TCSScanResult *pResult);

Test Objectives:

This test case verifies that TCSScanData () can be correctly handled by multiple scanner instance handles in multiple

threads.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:

1. Create multiple threads to execute from 2 to 10.

2. Call TCSLibraryOpen ().

3. Call TCSScanData () with an infected buffer with test malware data, TCS_SA_SCANREPAIR as the scan
action ID, TCS_DTYPE_UNKNOWN as the data type identifier.

4. Verify that the return value of TCSScanData () is 0.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

TC_SEC_CS_TCSScanData_0047 Concurrency TCS data clean test.

5. Verify that the infected data is repaired by comparing with the respective clean buffer data if the input data is
supposed to be infected.
6. CallpfFreeResult () to release the resource returned by TCS library.
7. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().
8. Repeat 2 ~ 9 with different parameter for TCSScanData (), other test samples: (html, url, email, phone
number, java code, text) and respective data type identifier.
Test PASS Condition:

Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

5.54Test Case TC_SEC CS TCSScanData 0048

TC_SEC_CS_TCSScanData_0048 Compress flag TCS data clean test.

API Function(s) covered:

int TCSScanData (TCSSCAN_HANDLE hScan, TCSScanParam *pParam,

TCSScanResult *pResult);

Test Objectives:

This test case verifies that TCSScanData () can correctly scan clean data with compress flag enabled.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:

1. Call TCSLibraryOpen ().
2. Call TCSScanData () with a buffer filled by clean data, TCS_SA__SCANONLY as the scan action ID,
TCS_DTYPE_UNKNOWN as the data type identifier, set compress flag to 1.
3. Verify that the return value of TCSScanData () is 0.
4. Verify that the no malware found.
5. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().
Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

TC_SEC_CS_TCSScanData_0048 Compress flag TCS data clean test.

Test Clean-up procedure:

No specific cleanup required.

5.55Test Case TC_SEC _CS TCSScanData 0049

TC_SEC_CS_TCSScanData_0049 Compress flag TCS data clean test.

API Function(s) covered:

int TCSScanData (TCSSCAN_HANDLE hScan, TCSScanParam *pParam,

TCSScanResult *pResult);

Test Objectives:

This test case verifies that TCSScanData () can correctly scan clean data with compress flag disabled.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled by clean data, TCS_SA_SCANONLY as the scan action ID,
TCS_DTYPE_UNKNOWN as the data type identifier, set compress flag to 0.

3. Verify that the return value of TCSScanData () is 0.
4. Verify that the no malware found.

5. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

5.56Test Case TC_SEC_CS TCSScanData 0050

TC_SEC_CS_TCSScanData_0050 Compress flag TCS data test.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

TC_SEC_CS_TCSScanData_0050 Compress flag TCS data test.

API Function(s) covered:

int TCSScanData (TCSSCAN_HANDLE hScan, TCSScanParam *pParam,

TCSScanResult *pResult);

Test Objectives:

This test case verifies that TCSScanData () can correctly detect malware with compress flag enabled.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled by test malware, TCS_SA_SCANONLY as the scan action ID,
TCS_DTYPE_UNKNOWN as the data type identifier, set compress flag to 1.

3. Verify that the return value of TCSScanData () is 0.

4. Verify that the infected data is repaired by comparing with the respective clean buffer data if the input data is
supposed to be infected.

5. Call pfFreeResult () torelease the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

5.57Test Case TC_SEC CS TCSScanData 0051

TC_SEC_CS_TCSScanData_0051 Compress flag TCS data test.

API Function(s) covered:

int TCSScanData (TCSSCAN_HANDLE hScan, TCSScanParam *pParam,

TCSScanResult *pResult);

Test Objectives:

This test case verifies that TCSScanData () cannot correctly detect malware without compress flag enabled.

Test pre-conditions:

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

TC_SEC_CS_TCSScanData_0051 Compress flag TCS data test.

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanData () with a buffer filled by test malware, TCS_SA_SCANONLY as the scan action ID,
TCS_DTYPE_UNKNOWN as the data type identifier, set compress flag to 0.

3. Verify that the return value of TCSScanData () is 0.
4. Verify that no malware found.

5. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:
Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

5.58Test Case TC_SEC CS TCSScanData 0052

TC_SEC_CSSTUB_TCSScanData_0052 | Stub TCS function error return.

API Function(s) covered:

int TCSScanData (TCSLIB_HANDLE hLib, TCSScanParam *pParam,

TCSScanResult *pResult);

Test Objectives:

This test case verifies that the calling application can get proper error code from TCS stub functions.

Test pre-conditions:

Stub functions

Test Procedure:
1. Call TCSScanData () with INVALID_TCSLIB_HANDLE.

2. Verify it returns -1.

Test PASS Condition:

Step 2 should passed.

Test Clean-up procedure:

None.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.59Test Case TC_SEC _CS TCSScanFile 0001

TC_SEC_CS_TCSScanFile_0001 Call TCS interface to scan a benign file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void) ;

int TCSScanFile (TCSLIB_HANDLE hLib, char const *pszFileName,
int iDataType, int iAction, int iCompressFlag,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case tests the scan request interface and verifies that the TCS interface returns the expected return value in the
case of a benign file.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanFile () with a benign file path, TCS_SA_SCANONLY as the scan action ID and
TCS_DTYPE_UNKNOWN as the data type identifier.

3. Verify that the return value of TCSScanFile () is 0.
4. Verify that the number of the detected malware is 0.
5. Call pfFreeResult () to release the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.60Test Case TC_SEC_CS TCSScanFile 0002

TC_SEC_CS_TCSScanFile_0002 Call TCS interface to scan an infected file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void) ;

int TCSScanFile (TCSLIB_HANDLE hLib, char const *pszFileName,
int iDataType, int iAction, int iCompressFlag,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the TCS interface is called to scan an infected file.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanFile () with an infected file, TCS_SA_SCANONLY as the scan action ID and
TCS_DTYPE_UNKNOWN as the data type identifier.

3. Verify that the return value of TCSScanFile () is 0.

4. Verify that the number of the detected malware is as expected, the malware name or variant name is as
expected and the severity/behaviour is as expected.

5. CallpfFreeResult () to release the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.61Test Case TC_SEC_CS TCSScanFile 0003

TC_SEC_CS_TCSScanFile_0003 Call TCS interface to scan a benign HTML file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void) ;

int TCSScanFile (TCSLIB_HANDLE hLib, char const *pszFileName,
int iDataType, int iAction, int iCompressFlag,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the TCS interface returns the expected return value when it is called to scan a benign HTML
file.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanFile () with a benign HTML file path, TCS_SA_SCANONLY as the scan action ID and
TCS_DTYPE_HTML as the data type identifier.

3. Verify that the return value of TCSScanFile () is 0.
4. Verify that the number of the detected malware is 0.
5. Call pfFreeResult () to release the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.62Test Case TC_SEC_CS TCSScanFile 0004

TC_SEC_CS_TCSScanData_0004 Call TCS interface to scan an infected HTML file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void) ;

int TCSScanFile (TCSLIB_HANDLE hLib, char const *pszFileName,
int iDataType, int iAction, int iCompressFlag,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the TCS interface is called to scan an infected
HTML file.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanFile () with an infected HTML file path, TCS_SA_SCANONLY as the scan action ID and
TCS_DTYPE_HTML as the data type identifier.

3. Verify that the return value of TCSScanFile () is 0.

4. Verify that the number of the detected malware is as expected, the malware name or variant name is as expected
and the severity/behaviour is as expected.

5. Call pfFreeResult () torelease the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.63Test Case TC_SEC_CS TCSScanFile 0005

TC_SEC_CS_TCSScanFile_0005 Call TCS interface to scan a benign URL within a
file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile (TCSLIB_HANDLE hLib, char const *pszFileName,
int iDataType, int iAction, int iCompressFlag,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected value is returned from the interface when it is called to scan a benign URL
within a file.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanFile () with a benign URL file path, TCS_SA_SCANONLY as the scan action ID and
TCS_DTYPE_URL as the data type identifier.

3. Verify that the return value of TCSScanFile () is 0.
4. Verify that the number of the detected malware is O.
5. CallpfFreeResult () to release the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.64Test Case TC_SEC _CS TCSScanFile 0006

TC_SEC_CS_TCSScanFile_0006 Call TCS interface to scan an infected URL within a
file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile (TCSLIB_HANDLE hLib, char const *pszFileName,
int iDataType, int iAction, int iCompressFlag,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan an infected URL
within a file.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanFile () with an infected URL file path, TCS_SA_SCANONLY as the scan action ID and
TCS_DTYPE_URL as the data type identifier.

3. Verify that the return value of TCSScanFile () is 0.

4. Verify that the number of the detected malware is as expected, the malware name or variant name is as
expected and the severity/behaviour is as expected.

5. Call pfFreeResult () torelease the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.65Test Case TC_SEC _CS TCSScanFile 0007

TC_SEC_CS_TCSScanFile_0007 Call TCS interface to scan a benign Email file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void) ;

int TCSScanFile (TCSLIB_HANDLE hLib, char const *pszFileName,
int iDataType, int iAction, int iCompressFlag,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan a benign Email file.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanFile () with a benign Email file path, TCS_SA_SCANONLY as the scan action ID and
TCS_DTYPE_EMAIL as the data type identifier.

3. Verify that the return value of TCSScanFile () is 0.
4. Verify that the number of the detected malware is 0.
5. CallpfFreeResult () torelease the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:
Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.66 Test Case TC_SEC _CS TCSScanFile 0008

TC_SEC_CS_TCSScanFile_0008 Call TCS interface to scan an infected Email file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void) ;

int TCSScanFile (TCSLIB_HANDLE hLib, char const *pszFileName,
int iDataType, int iAction, int iCompressFlag,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan an infected Email
file.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanFile () with an infected Email file path, TCS_SA_SCANONLY as the scan action ID and
TCS_DTYPE_EMATIL as the data type identifier.

3. Verify that the return value of TCSScanFile () is 0.

4. Verify that the number of the detected malware is as expected, the malware name or variant name is as
expected and the severity/behaviour is as expected.

5. Call pfFreeResult () torelease the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.67Test Case TC_SEC_CS TCSScanFile 0009

TC_SEC_CS_TCSScanFile_0009 Call TCS interface to scan a benign phone
number within a file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile (TCSLIB_HANDLE hLib, char const *pszFileName,
int iDataType, int iAction, int iCompressFlag,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan a benign phone
number within a file.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanFile () with a benign phone number file path, TCS_SA_SCANONLY as the scan action ID
and TCS_DTYPE_PHONE as the data type identifier.

3. Verify that the return value of TCSScanFile () is 0.
4. Verify that the number of the detected malware is 0.
5. CallpfFreeResult () to release the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.68Test Case TC_SEC _CS TCSScanFile 0010

TC_SEC_CS_TCSScanFile_0010 Call TCS interface to scan an infected phone
number within a file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile (TCSLIB_HANDLE hLib, char const *pszFileName,
int iDataType, int iAction, int iCompressFlag,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected value is returned when the interface is called to scan an infected phone number
within a file.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanFile () with an infected phone number file path, TCS_SA_SCANONLY as the scan action ID
and TCS_DTYPE_PHONE as the data type identifier.

3. Verify that the return value of TCSScanFile () is 0.

4. Verify that the number of the detected malware is as expected, the malware name or variant name is as
expected and the severity/behaviour is as expected.

5. Call pfFreeResult () torelease the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.69Test Case TC_SEC _CS TCSScanFile 0011

TC_SEC_CS_TCSScanFile_0011 Call TCS interface to scan a benign Java file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void) ;

int TCSScanFile (TCSLIB_HANDLE hLib, char const *pszFileName,
int iDataType, int iAction, int iCompressFlag,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan a benign Java file.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanFile () with a benign Java file path, TCS_SA_SCANONLY as the scan action ID and
TCS_DTYPE_JAVA as the data type identifier.

3. Verify that the return value of TCSScanFile () is 0.
4. Verify that the number of the detected malware is 0.
5. CallpfFreeResult () to release the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:
Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.70Test Case TC_SEC_CS TCSScanFile 0012

TC_SEC_CS_TCSScanFile_0012 Call TCS interface to scan an infected Java file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void) ;

int TCSScanFile (TCSLIB_HANDLE hLib, char const *pszFileName,
int iDataType, int iAction, int iCompressFlag,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected value is returned when the interface is called to scan an infected Java file.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanFile () with an infected Java file path, TCS_SA_SCANONLY as the scan action ID and
TCS_DTYPE_JAVA as the data type identifier.

3. Verify that the return value of TCSScanFile () is 0.

4. Verify that the number of the detected malware is as expected, the malware name or variant name is as
expected and the severity/behaviour is as expected.

5. CallpfFreeResult () to release the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.71Test Case TC_SEC_CS TCSScanFile 0013

TC_SEC_CS_TCSScanFile_0013 Call TCS interface to scan a benign text file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void) ;

int TCSScanFile (TCSLIB_HANDLE hLib, char const *pszFileName,
int iDataType, int iAction, int iCompressFlag,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when interface is called to scan a benign text file.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanFile () with a benign text file path, TCS_SA_SCANONLY as the scan action ID and
TCS_DTYPE_TEXT as the data type identifier.

3. Verify that the return value of TCSScanFile () is 0.
4. Verify that the number of the detected malware is 0.
5. CallpfFreeResult () to release the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:
Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.72Test Case TC_SEC_CS TCSScanFile 0014

TC_SEC_CS_TCSScanFile_0014 Call TCS interface to scan an infected text file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void) ;

int TCSScanFile (TCSLIB_HANDLE hLib, char const *pszFileName,
int iDataType, int iAction, int iCompressFlag,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan an infected text file.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen () .

2. Call TCSScanFile () with an infected text file path, TCS_SA_SCANONLY as the scan action ID and
TCS_DTYPE_TEXT as the data type identifier.

3. Verify that the return value of TCSScanFile () is 0.

4. Verify that the number of the detected malware is as expected, the malware name or variant name is as
expected and the severity/behaviour is as expected.

5. CallpfFreeResult () to release the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.73Test Case TC_SEC_CS TCSScanFile 0015

TC_SEC_CS_TCSScanFile_0015 Call TCS interface to scan a file infected by
multiple malware.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile (TCSLIB_HANDLE hLib, char const *pszFileName,
int iDataType, int iAction, int iCompressFlag,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan a file infected by
multiple malware.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanFile () with a file path of a file infected by multiple malware, TCS_SA_SCANONLY as the
scan action ID and TCS_DTYPE_UNKNOWN as the data type identifier.

3. Verify that the return value of TCSScanFile () is 0.

4. Verify that the number of the detected malware is as expected, the malware name or variant name is as
expected and the severity/behaviour is as expected.

5. Call pfFreeResult () torelease the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.74Test Case TC_SEC_CS TCSScanFile 0016

TC_SEC_CS_TCSScanFile_0016 Call TCS interface to repair an infected file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void) ;

int TCSScanFile (TCSLIB_HANDLE hLib, char const *pszFileName,
int iDataType, int iAction, int iCompressFlag,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the TCS interface is called to repair an infected
file.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanFile () with an infected file path, TCS_SA_SCANREPAIR as the scan action ID and
TCS_DTYPE_UNKNOWN as the data type identifier.

3. Verify that the return value of TCSScanFile () is 0.
4. Verify that the content file is repaired by comparing with prepared clean file.
5. CallpfFreeResult () to release the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:
Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.75Test Case TC_SEC _CS TCSScanFile 0017

TC_SEC_CS_TCSScanFile_0017 Call TCS interface to repair an infected HTML file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void) ;

int TCSScanFile (TCSLIB_HANDLE hLib, char const *pszFileName,
int iDataType, int iAction, int iCompressFlag,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the TCS interface is called to repair an infected
HTML file.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanFile () with an infected HTML file path, TCS_SA_SCANREPAIR as the scan action ID and
TCS_DTYPE_HTML as the data type identifier.

3. Verify that the return value of TCSScanFile () is 0.
4. Verify that the content file is repaired by comparing with prepared clean file.
5. CallpfFreeResult () to release the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:
Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.76 Test Case TC_SEC_CS TCSScanFile 0018

TC_SEC_CS_TCSScanFile_0018 Call TCS interface to repair an infected URL within
a file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile (TCSLIB_HANDLE hLib, char const *pszFileName,
int iDataType, int iAction, int iCompressFlag,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to repair an infected URL
within a file.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanFile () with an infected URL file path, TCS_SA_SCANREPAIR as the scan action ID and
TCS_DTYPE_URL as the data type identifier.

3. Verify that the return value of TCSScanFile () is 0.
4. Verify that the content file is repaired by comparing with prepared clean file.
5. Call pfFreeResult () to release the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.77Test Case TC_SEC_CS TCSScanFile 0019

TC_SEC_CS_TCSScanFile_0019 Call TCS interface to repair an infected Email file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void) ;

int TCSScanFile (TCSLIB_HANDLE hLib, char const *pszFileName,
int iDataType, int iAction, int iCompressFlag,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to repair an infected Email
file.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanFile () with an infected Email file path, TCS_SA_SCANREPAIR as the scan action ID and
TCS_DTYPE_EMATIL as the data type identifier.

3. Verify that the return value of TCSScanFile () is 0.
4. Verify that the content file is repaired by comparing with prepared clean file.
5. CallpfFreeResult () to release the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:
Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.78Test Case TC_SEC _CS TCSScanFile 0020

TC_SEC_CS_TCSScanFile_0020 Call TCS interface to repair an infected phone
number within a file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile (TCSLIB_HANDLE hLib, char const *pszFileName,
int iDataType, int iAction, int iCompressFlag,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected value is returned when the interface is called to repair an infected phone number
within a file.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanFile () with an infected phone number file path, TCS_SA_SCANREPAIR as the scan action
ID and TCS_DTYPE_PHONE as the data type identifier.

3. Verify that the return value of TCSScanFile () is 0.
4. Verify that the content file is repaired by comparing with prepared clean file.
5. Call pfFreeResult () to release the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.79Test Case TC_SEC _CS TCSScanFile 0021

TC_SEC_CS_TCSScanFile_0021 Call TCS interface to repair an infected Java file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void) ;

int TCSScanFile (TCSLIB_HANDLE hLib, char const *pszFileName,
int iDataType, int iAction, int iCompressFlag,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected value is returned when the interface is called to repair an infected Java file.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanFile () with an infected Java file path, TCS_SA_SCANREPAIR as the scan action ID and
TCS_DTYPE_JAVA as the data type identifier.

3. Verify that the return value of TCSScanFile () is 0.
4. Verify that the content file is repaired by comparing with prepared clean file.
5. Call pfFreeResult () to release the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.80Test Case TC_SEC_CS TCSScanFile 0022

TC_SEC_CS_TCSScanFile_0022 Call TCS interface to repair an infected text file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void) ;

int TCSScanFile (TCSLIB_HANDLE hLib, char const *pszFileName,
int iDataType, int iAction, int iCompressFlag,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to repair an infected text
file.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanFile () with an infected text file path, TCS_SA_SCANREPAIR as the scan action ID and
TCS_DTYPE_TEXT as the data type identifier.

3. Verify that the return value of TCSScanFile () is 0.
4. Verify that the content file is repaired by comparing with prepared clean file.
5. CallpfFreeResult () to release the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:
Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.81Test Case TC_SEC_CS TCSScanFile 0023

TC_SEC_CS_TCSScanFile_0023 Call TCS interface to repair a file infected by
multiple malware.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile (TCSLIB_HANDLE hLib, char const *pszFileName,
int iDataType, int iAction, int iCompressFlag,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to repair a file infected by
multiple malware.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanFile () with an infected file path of the file infected by multiple malware,
TCS_SA_SCANREPAIR as the scan action ID and TCS_DTYPE_UNKNOWN as the data type identifier.

3. Verify that the return value of TCSScanFile () is 0.
4. Verify that the content file is repaired by comparing with prepared clean file.
5. Call pfFreeResult () to release the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.82Test Case TC_SEC _CS TCSScanFile 0024

TC_SEC_CS_TCSScanFile_0024 Call TCS interface to repair an infected file
where the repair functionality is not
implemented in the TCS library.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen (void) ;

int TCSScanFile (TCSLIB_HANDLE hLib, char const *pszFileName,
int iDataType, int iAction, int iCompressFlag,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when calling the TCS interface to repair an infected file

where the repair functionality is not implemented in the TCS library.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required to be not implemented in validation plug-in for this test case.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanFile () with an infected file path and TCS_DTYPE_TEXT as the data type identifier, and
TCS_SA_SCANREPAIR as the scan action ID.

3. Verify that the return value of TCSScanFile () is —1.
4. Call TCSGetLastError () to geterror code.
5. Verify that the error code returned by TCSGetLastError () is TCS_ERROR_NOT_IMPLEMENTED.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.83Test Case TC_SEC_CS TCSScanFile 0025

TC_SEC_CS_TCSScanFile_0025 Call TCS file scan interface with an invalid
library instance handle.

API Function(s) covered:

int TCSScanFile (TCSLIB_HANDLE hLib, char const *pszFileName,
int iDataType, int iAction, int iCompressFlag,

TCSScanResult *pResult);

Test Objectives:

This test case verifies that —1 is returned when an invalid scanner instance handle is passed to the TCS file scan
interface.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSScanFile () with an invalid TCS scanner instance handle INVALID_TCSLIB_HANDLE.

2. Verify that the return value of TCSScanFile () is —1.

Test PASS Condition:

Step 2 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.84Test Case TC_SEC _CS TCSScanFile 0026

TC_SEC_CS_TCSScanFile_0026 Concurrency TCS file scan test.

API Function(s) covered:

int TCSScanFile (TCSLIB_HANDLE hLib, char const *pszFileName,
int iDataType, int iAction, int iCompressFlag,

TCSScanResult *pResult);

Test Objectives:

This test case verifies that TCSScanFile () can be correctly handled by multiple scanner instance handles in
multiple threads.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Create multiple threads to execute from 2 to 10.
2. Call TCSLibraryOpen().

3. Call TCSScanFile () with an infected file, TCS_SA_SCANONLY as the scan action ID,
TCS_DTYPE_UNKNOWN as the data type identifier.

4. Verify that the return value of TCSScanFile () is 0.

5. Verify that the number of the detected malware is as expected, the malware name or variant name is as
expected and the severity/behaviour is as expected.

6. CallpfFreeResult () torelease the resource returned by TCS library.
7. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

8. Repeat 2 ~ 9 with different parameter for TCSScanFile (), other test samples: (html, url, email, phone
number, Java code, text) and respective data type identifier.

Test PASS Condition:

Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.85Test Case TC_SEC _CS TCSScanFile 0027

TC_SEC_CS_TCSScanFile_0027 Concurrency TCS file clean test.

API Function(s) covered:

int TCSScanFile (TCSLIB_HANDLE hLib, char const *pszFileName,
int iDataType, int iAction, int iCompressFlag,

TCSScanResult *pResult);

Test Objectives:

This test case verifies that TCSScanFile () can be correctly handled by multiple scanner instance handles in
multiple threads.

Test pre-conditions:

For validation plug-in only.

Repairing functionality is required in validation plug-in.

Test Procedure:
1. Create multiple threads to execute from 2 to 10.
2. Call TCSLibraryOpen ().

3. Call TCSScanFile () with an infected file, TCS_SA_SCANREPAIR as the scan action ID,
TCS_DTYPE_UNKNOWN as the data type identifier.

4. Verify that the return value of TCSScanFile () is 0.

5. Verify that the file is repaired by comparing with the respective clean file if the input file is supposed to be
infected.

6. Call pfFreeResult () torelease the resource returned by TCS library.
7. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

8. Repeat 2 ~ 9 with different parameter for TCSScanFile (), other test samples: (html, url, email, phone
number, java code, text) and respective data type identifier.

Test PASS Condition:

Step 4 should pass verification.

Step 5 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

5.86Test Case TC_SEC_CS TCSScanFile 0028

TC_SEC_CS_TCSScanFile_0028 Call TCS interface to scan a benign JavaScript
file.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

TC_SEC_CS_TCSScanFile_0028 Call TCS interface to scan a benign JavaScript

file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile (TCSLIB_HANDLE hLib, char const *pszFileName,

int iDataType, int iAction, int iCompressFlag,

TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan a benign JavaScript

file.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen ().
2. Call TCSScanFile () with a benign Java file path, TCS_SA_SCANONLY as the scan action ID and
TCS_DTYPE_JAVAS as the data type identifier.

3. Verify that the return value of TCSScanFile () is 0.

4. Verify that the number of the detected malware is 0.

5. Call pfFreeResult () to release the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().
Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.87Test Case TC_SEC_CS TCSScanFile 0029

TC_SEC_CS_TCSScanFile_0029 Call TCS interface to scan an infected JavaScript
file.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile (TCSLIB_HANDLE hLib, char const *pszFileName,
int iDataType, int iAction, int iCompressFlag,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected value is returned when the interface is called to scan an infected JavaScript file.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanFile () with an infected Java file path, TCS_SA_SCANONLY as the scan action ID and
TCS_DTYPE_JAVAS as the data type identifier.

3. Verify that the return value of TCSScanFile () is 0.

4. Verify that the number of the detected malware is as expected, the malware name or variant name is as
expected and the severity/behaviour is as expected.

5. Call pfFreeResult () torelease the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

5.88Test Case TC_SEC CS TCSScanFile 0030

TC_SEC_CS_TCSScanFile_0030 Call TCS interface to scan a benign file with
compress flag.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

TC_SEC_CS_TCSScanFile_0030 Call TCS interface to scan a benign file with

compress flag.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile (TCSLIB_HANDLE hLib, char const *pszFileName,

int iDataType, int iAction, int iCompressFlag,

TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan a benign file.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1. Call TCSLibraryOpen ().
2. Call TCSScanFile () with a benign Java file path, TCS_SA_SCANONLY as the scan action ID and
TCS_DTYPE_UNKOWN as the data type identifier, and compress flag to 1.

3. Verify that the return value of TCSScanFile () is 0.

4. Verify that the number of the detected malware is 0.

5. Call pfFreeResult () to release the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().
Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

5.89Test Case TC_SEC CS TCSScanFile 0031

TC_SEC_CS_TCSScanFile_0031 Call TCS interface to scan an infected file with

compress flag.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile (TCSLIB_HANDLE hLib, char const *pszFileName,

int iDataType, int iAction, int iCompressFlag,

TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected value is returned when the interface is called to scan an infected file.

Test pre-conditions:

For validation plug-in only.

Test Procedure:

1.

Call TCSLibraryOpen ().

2. Call TCSScanFile () with an infected Java file path, TCS_SA_SCANONLY as the scan action ID and
TCS_DTYPE_UNKNOWN as the data type identifier, and compress flag to 1.

3. Verify that the return value of TCSScanFile () is 0.

4. Verify that the number of the detected malware is as expected, the malware name or variant name is as
expected and the severity/behaviour is as expected.

5. Call pfFreeResult () to release the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

5.90Test Case TC_SEC CS TCSScanFile 0032

TC_SEC_CS_TCSScanFile_0032 Call TCS interface to scan a benign file with

compress flag.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

TC_SEC_CS_TCSScanFile_0032 Call TCS interface to scan a benign file with
compress flag.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen(void);

int TCSScanFile (TCSLIB_HANDLE hLib, char const *pszFileName,
int iDataType, int iAction, int iCompressFlag,
TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan a benign file.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanFile () with a benign Java file path, TCS_SA_SCANONLY as the scan action ID and
TCS_DTYPE_UNKOWN as the data type identifier, and compress flag to 0.

3. Verify that the return value of TCSScanFile () is 0.
4. Verify that the number of the detected malware is 0.
5. Call pfFreeResult () to release the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

5.91Test Case TC_SEC CS TCSScanFile 0033

TC_SEC_CS_TCSScanFile_0033 Call TCS interface to scan an infected file with

compress flag.

API Function(s) covered:

TCSLIB_HANDLE TCSLibraryOpen (void) ;
int TCSScanFile (TCSLIB_HANDLE hLib, char const *pszFileName,

int iDataType, int iAction, int iCompressFlag,

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

TC_SEC_CS_TCSScanFile_0033 Call TCS interface to scan an infected file with
compress flag.

TCSScanResult *pResult);

int TCSLibraryClose (TCSLIB_HANDLE hLib);

Test Objectives:

This test case verifies that the expected return value is returned when the interface is called to scan a infected file.

Test pre-conditions:

For validation plug-in only.

Test Procedure:
1. Call TCSLibraryOpen ().

2. Call TCSScanFile () with a benign Java file path, TCS_SA_SCANONLY as the scan action ID and
TCS_DTYPE_UNKOWN as the data type identifier, and compress flag to 0.

3. Verify that the return value of TCSScanFile () is 0.
4. Verify that the number of the detected malware is 0.
5. Call pfFreeResult () to release the resource returned by TCS library.

6. Call TCSLibraryClose () with the TCS library handle returned by the TCSLibraryOpen ().

Test PASS Condition:

Step 3 should pass verification.

Step 4 should pass verification.

Test Clean-up procedure:

No specific cleanup required.

5.92Test Case TC_SEC _CS TCSScanFile 0034

TC_SEC_CS_TCSScanFile_0034 Stub TCS function error return.

API Function(s) covered:

int TCSScanFile (TCSLIB_HANDLE hLib, char const *pszFileName,
int iDataType, int iAction, int iCompressFlag,

TCSScanResult *pResult);

Test Objectives:

This test case verifies that the calling application can get proper error code from TCS stub functions.

Test pre-conditions:

Stub functions

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

TC_SEC_CS_TCSScanFile_0034 Stub TCS function error return.

Test Procedure:
1. Call TcSScanFile () with INVALID_TCSLIB_HANDLE.

2. Verify it returns -1.

Test PASS Condition:

Step 2 should passed.

Test Clean-up procedure:

None.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

6 Test Guide

To run test cases, we need to have:
- TGS plug-in for test purpose
- Test contents
- Testcases
- TCS security framework

Test cases need to be compiled with TCS security framework. A TCS plug-in need to be created
which can detect the test contents as expected. All test contents, test cases and test TCS plug-in
will be provided as a test suite along with accordinate script file which will automate the test
process.

Tizen Content Screening Test Specification Copyright © 2012 McAfee, Inc. All Rights Reserved.

7 Test Contents

Status Malware Variant Severity Class Behavior Class
Name Name
tcs-testfile- | clean Unknown n/a n/a n/a n/a
0.buf
tcs-testfile- | clean Java n/a n/a n/a n/a
0.class
tcs-testfile- | clean Email n/a n/a n/a n/a
0.email
tcs-testfile- | clean HTML n/a n/a n/a n/a
0.html
tcs-testfile- | clean JavaScript n/a n/a n/a n/a
0.js
tcs-testfile- | clean Phone n/a n/a n/a n/a
0.phone Number
tcs-testfile- | clean Text n/a n/a n/a n/a
0.txt
tcs-testfile- | clean URL n/a n/a n/a n/a
0.url
tcs-testfile- | clean Archived n/a n/a n/a n/a
0.z
tcs-testfile- | clean Unknown n/a n/a n/a n/a
0.multiple
tcs-testfile- | infected unknown Malware- Variant- TCS SC _USER TCS BC LEVEL1
1.buf fortest- fortest-
1.6.0 1.6.0
tcs-testfile- | infected Java Malware- Variant- TCS_SC_USER TCS_BC_LEVELO
1.class fortest- fortest-
1.7.0 1.7.0
tcs-testfile- | infected Email Malware- Variant- TCS_SC_TERMINAL TCS_BC_LEVEL2
1.email fortest- fortest-
1.2.0 1.2.0
tcs-testfile- | infected HTML Malware- Variant- TCS_SC_USER TCS_BC_LEVELO
1.html fortest- fortest-
1.0.0 1.0.0
tcs-testfile- | infected JavaScript Malware- Variant- TCS SC _USER TCS BC LEVEL2
1.js fortest- fortest-
1.8.0 1.8.0
tcs-testfile- | infected Phone Malware- Variant- TCS _SC_TERMINAL TCS BC LEVELS
1.phone Number fortest- fortest-
1.3.0 1.3.0
tcs-testfile- | infected Text Malware- Variant- TCS _SC_TERMINAL TCS BC LEVEL4
1.txt fortest- fortest-
1.4.0 1.4.0
tcs-testfile- | infected URL Malware- Variant- TCS SC _USER TCS BC LEVELT1
1.url fortest- fortest-

Tizen Content Screening Test Specification

Copyright © 2012 McAfee, Inc. All Rights Reserved.

1.1.0 1.1.0
tcs-testfile- | infected Archived Malware- Variant- TCS_SC_USER TCS_BC_LEVEL2
1.z fortest- fortest-

1.9.0 1.9.0
tcs-testfile- | infected Unknown Malware- Variant- TCS SC _USER TCS BC LEVEL1
1.multiple fortest- fortest-

1.6.0 1.6.0

Malware- Variant- TCS_SC_USER TCS_BC_LEVELO

fortest- fortest-

1.5.0 1.5.0

Tizen Content Screening Test Specification

Copyright © 2012 McAfee, Inc. All Rights Reserved.

