cmd: unzip: use correct format code
[platform/kernel/u-boot.git] / doc / README.xtensa
1 U-Boot for the Xtensa Architecture
2 ==================================
3
4 Xtensa Architecture and Diamond Cores
5 -------------------------------------
6
7 Xtensa is a configurable processor architecture from Tensilica, Inc.
8 Diamond Cores are pre-configured instances available for license and
9 SoC cores in the same manner as ARM, MIPS, etc.
10
11 Xtensa licensees create their own Xtensa cores with selected features
12 and custom instructions, registers and co-processors. The custom core
13 is configured with Tensilica tools and built with Tensilica's Xtensa
14 Processor Generator.
15
16 There are an effectively infinite number of CPUs in the Xtensa
17 architecture family. It is, however, not feasible to support individual
18 Xtensa CPUs in U-Boot. Therefore, there is only a single 'xtensa' CPU
19 in the cpu tree of U-Boot.
20
21 In the same manner as the Linux port to Xtensa, U-Boot adapts to an
22 individual Xtensa core configuration using a set of macros provided with
23 the particular core. This is part of what is known as the hardware
24 abstraction layer (HAL). For the purpose of U-Boot, the HAL consists only
25 of a few header files. These provide CPP macros that customize sources,
26 Makefiles, and the linker script.
27
28
29 Adding support for an additional processor configuration
30 --------------------------------------------------------
31
32 The header files for one particular processor configuration are inside
33 a variant-specific directory located in the arch/xtensa/include/asm
34 directory. The name of that directory starts with 'arch-' followed by
35 the name for the processor configuration, for example, arch-dc233c for
36 the Diamond DC233 processor.
37
38     core.h      Definitions for the core itself.
39
40 The following files are part of the overlay but not used by U-Boot.
41
42     tie.h       Co-processors and custom extensions defined
43                 in the Tensilica Instruction Extension (TIE)
44                 language.
45     tie-asm.h   Assembly macros to access custom-defined registers
46                 and states.
47
48
49 Global Data Pointer, Exported Function Stubs, and the ABI
50 ---------------------------------------------------------
51
52 To support standalone applications launched with the "go" command,
53 U-Boot provides a jump table of entrypoints to exported functions
54 (grep for EXPORT_FUNC). The implementation for Xtensa depends on
55 which ABI (or function calling convention) is used.
56
57 Windowed ABI presents unique difficulties with the approach based on
58 keeping global data pointer in dedicated register. Because the register
59 window rotates during a call, there is no register that is constantly
60 available for the gd pointer. Therefore, on xtensa gd is a simple
61 global variable. Another difficulty arises from the requirement to have
62 an 'entry' at the beginning of a function, which rotates the register
63 file and reserves a stack frame. This is an integral part of the
64 windowed ABI implemented in hardware. It makes using a jump table to an
65 arbitrary (separately compiled) function a bit tricky. Use of a simple
66 wrapper is also very tedious due to the need to move all possible
67 register arguments and adjust the stack to handle arguments that cannot
68 be passed in registers. The most efficient approach is to have the jump
69 table perform the 'entry' so as to pretend it's the start of the real
70 function. This requires decoding the target function's 'entry'
71 instruction to determine the stack frame size, and adjusting the stack
72 pointer accordingly, then jumping into the target function just after
73 the 'entry'. Decoding depends on the processor's endianness so uses the
74 HAL. The implementation (12 instructions) is in examples/stubs.c.
75
76
77 Access to Invalid Memory Addresses
78 ----------------------------------
79
80 U-Boot does not check if memory addresses given as arguments to commands
81 such as "md" are valid. There are two possible types of invalid
82 addresses: an area of physical address space may not be mapped to RAM
83 or peripherals, or in the presence of MMU an area of virtual address
84 space may not be mapped to physical addresses.
85
86 Accessing first type of invalid addresses may result in hardware lockup,
87 reading of meaningless data, written data being ignored or an exception,
88 depending on the CPU wiring to the system. Accessing second type of
89 invalid addresses always ends with an exception.
90
91 U-Boot for Xtensa provides a special memory exception handler that
92 reports such access attempts and resets the board.
93
94
95 ------------------------------------------------------------------------------
96 Chris Zankel
97 Ross Morley