Persistence

Inhalt

Persistence as a black box from application point of VIEWcoooiiiiiiiiiiieieeee e 3
The responsibility of Persistence in the system CONtEXt......cciiiiiiiiiiiiiii i 4
ApPPlIication POINT OF VIEW coiiiiiiiiie e s e e st reeeeeeeeeeaeaaeaeeeeeas 4
INFrastruCture POINT Of VIBW ...vvuuieiie et e e e e e e e e e e ar et e e e eeeeeeeeeseab b e eeeeesaeseeennes 4
DF | NY=T o LT | o] o (O PP 5
Y S [(=Y g Lol =l @] g ol =Y o PP PPPPN 6
Level 1 10gical VIeW Of PerSiStENCEiiiii it e e e e e s e e aa e aeeees 6
ReSPONSIDility DESCIIPLION c.ceeviiiitiiieee e e e e e e e e e e e e e te bt e eeeeeeesseeeenteananeeaeaeaeeeennens 7
Persistence Management: Key-Value Management -> Shared data management...........cccccevvvnnenen. 7
Persistence Management: Key-Value Management -> Local data management............ccceeevvvvvvnnnnnnn. 7
Persistence Management: Key-Value Management -> Specific data management.......ccccccceveeeennnnn. 7
Persistence Management: File and folder management -> Local and shared file management......... 7

Persistence Management: User and Shared data management -> Persistence Administration and

HEAIEN e e e s 7
(0fo] o Tol=T ol 1Y/ -] a1 T] U U 9
] o =Y VA oo T 13 U ot o o PPN 9
Overview of the solution for the different types of persistence data.........c.cccccvviviririieeiieeieeiieeeeeeenn. 10
PersistenCe INTEITACE CONCEPT....ccci ettt e et e e eeeeeeeeeeeeee e st e s aabrabaseabaatbssbrsbaasesesaeaaasaaaeeeseesnans 11
Key - Value Access INterface CoONCEPL ...iviiii i e e e e e e e e e e e e e e e e s e e s e s s s aaarnees 11
INEEITACE PrOTOLYPEeeeiie ettt ettt ettt ettt e a e e b b e e shte e sbeeebe e e ate et mbeesneeesbbeenns 12

APL USAJE EXAIMPIES ...ooiiiiiiiecii ettt ettt ettt e e sttt st e e sre e e steestae e srteesteeessseessseesseeessnseesssenes 13
Persistence Resource Configuration table example (PRC-table)ccccccovvveevvenieevieeveennne, 14

File / Folder Access INterface CONCEPLoovviivieiiiie ettt sree v s s re e s e sneees 15
DLt ol g1 Tr4= 1 4 [o] o AN 16
Format for Installation Configuration Table...........cooo oo 17
INtErface DEfiNITION ...coeeiie et e st e e e s bt e st e e e sbe e e s sabee e snreeenae 18
Client Library INterface OVEIVIEWuuiuiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeseeeseecttasrssbresssaasbaassrasaesaeesaaaaaaeaseenaens 18
ClientLibrary APl - fil@ @CCESS ...iiiiiccciriiiiiiiiitite ettt e e e e e e e e es e s s s st a et et e e e rrereeeeeaeaaeaeeeeseanans 19
ClentLibrary APl - KEY-VAlUE........ccoeeiiiiiii e e e e e e e e e e e e e et e e e e e e ae e teta e eeeeeeeeseesreseenrnnnn 21
Persistence Administration Service Interface OVerVIEWccccevviiiiiiiiieiiiiicieee e 23

[T Y Y [TR I Y=T V(o <IN 23

Persistence as a black box from application point of view

The following figure shows the interfaces of Persistence to the rest of the system. The provided interfaces
which can be used by applicationsor others and the requested interfaces which has be either fulfilled or
stubbed by the product development.

Additionally Persistence will be dependent on the subdomain Log&Trace.

* Manages and distinguishes between:
* Shared and application data
* Node and user data
* Write-trough and cached data
* Availability and size
« Change notification of shared data

{ * Read / Write of key and group * Read/ Write of file \
of keys transaction safe transaction safe
* Backup and checksumsupport

<<SubDomain>>
* Provide node

p—s Per5|5tence C fi state information
onfig) _ onfig (degraded
<<SubsubDomain>> Y <<SubsubDomain>: g mode,...)

Persistence Management Partition Mgmt * Controls startup
and shutdown
Key-Value Pair File & Folder
User Mgmt, Lifecycle, SW Management Management <<SubDomain>>
update and diagnostics: \

« Ctrluser data (create, copy
and delete user, set userto User Data Shared Data L_\ © Node State Management
default)

* Import and export user, Management Management

node, shared and appl. Data

on persistence managed \ Lifecycle
level (backup & restore)

* Move data (between DBs) <<SubsubDomain>>

* Install configuration .
i File Systems and Storages

Flash ESs HDD ESs LCPersistence 5 | systemd
Plug-in .

Flash Partition Storage * Knows status of FSs
\ Driver Driver / » Trigger error
\ recoveryof FS
N partitions

*) Blocks with gray font are currently not in scope of the concept.

The responsibility of Persistence in the system context

Application point of view

1.
2.
3.

Noa

Read / write data items / key-values fast and reliable
Read / write files fast and reliable
Provide data storage for local data items and files (means no other application can access this
data)

a. Change notification is not needed for these data items

b. No central/system wide data management required (means data items are not visible as

an managed interface)

Provided data storage for shared data items and files (means a group of application or all can
access this data)

a. Change notification is needed for these data items

b. The configuration of the data need to be managed as an interface
Committed write (write-through) and cached write shall be possible
User data and non-user (node) data are separated by hidden organization
Re-deployment / merging of processes shall be supported without having large impact on the
organization and application code
Default data are managed separately and cannot be modified by the running application (for user
and node data)
Configurable default data shall be supported (means the original default data is copied and
changed)

Infrastructure point of view

1.

The physical storage / partition for data items / group of item / files can be configured central and
system-wide
Shared data need to be system-wide registered
Committed write (write-through) configured data items need to be system-wide registered
a. To get control on flash write activities
User and non-user related data can be found easily
a. For backup and restore reason (in ECU)
b. For export and import reason (cross ECU)
Data items can be set back to default in case of unexpected behavior of the application.

DataSeparation

Access and grouping of the persistence data

The concept is to use the POSIX rights management for user access rights in order to provide data
separation/security betweenapplications or/and groups of applications.

Note one or more applications can be started with the same POSIX UID.

<N
Key / Files/
Values Folders

Data separation/ public data

A A A
5
> Key / Files/
Values Folders
Data separation/ group data
uid = 12 uid =17 uid =17 T uid = 24
Application 1 Appl 2 Appl 4 Application 3
3 i 3
Key / Files/ Key / Files/ Key / Files/
Values Folders Values Folders Values Folders

Data separation/ local data

PersistenceConcept

Level 1 logical view of Persistence

The first-level structure definition:
¢ Clear separation between administration activities and Persistence users (application SW)
e Best performance including reduction of layering
¢ Reuse of existing open source solutions
« Meet application SW expectations
« Offering GENIVI SW platform interfaces to abstract from the chosen solution
« Extendable with product/customer specifics

The following figure presents the level 1 logical view of the concept for Persistence (only what is in scope

currently!).

Persistence
Administration

Persistence Client Library

Shared data Local data Local and shared Specific data and Health
management management file mgmt management
R J J P, 7/
Read/ Read/ Read/
write Write Write
Specific FSs
VFS |
J
NAND flash
management
stack

Responsibility Description

Persistence Management: Key-Value Management -> Shared data management

Abstract:

Synchronized data write support

Maximum on read performance

Data change notification

Access policy support

Write policy support and configuration

Hide user and node data items organization
For small data size only (kByte size)

Persistence Management: Key-Value Management -> Local data management

Abstract:

Ensures data isolation (only accessible by the owned application)

Write policy support and configuration only for committed write requests
Hide user and node data items organization

Maximum on read and write performance

For small data size only (kByte size)

Persistence Management: Key-Value Management -> Specific data management

Abstract:
This opportunity can extend the concept for custom solution for early, secure, factory settings a.s.o storages / databases.

Persistence Management: File and folder management -> Local and shared file management

Abstract:

Simplify posix file system operations

Manage error conditions

Ensure reliable data write activities

Abstracts the write policies and knows about configured committed write operations per file
Hide user and node file organization

Does not care about access policy of the file(s) (is the responsibility of the file system and be
setup by the administration)

Persistence Management: User and Shared data management -> Persistence Administration
and Health

Abstract:

Create default application folder structure including links to shared data and deploy the default
content (provided by the installation

process)

Create the configured local database for each application

Create the configured shared databases

Provide application specific links to shared databases (group/ public)
Setup of application file system access policies

Delete, copy, backup and restore files (files and databases)

Manage partitions and volumes

Handles mount issues

Handles full files system partitions

» Observing usage of file systems?

File Systems and Storages: Persistence Management plug-ins -> NAND flash management stack

Abstract:
* Read / write of files
» Offers cached-write and write-through
» Offers lock for write-back and write-through
» Offers different mount points with different policies at the same time (access rights and write
method)
e Transaction safe operations on files
e Statistics of file system usage
» Access policy support
e Volume / quota support
e Support of raw NAND chips
« Itis currently open if there can also be combined solution for NAND and managed-NAND.

File Systems and Storages: Persistence Management plug-ins -> Specific filesystems

Abstract:

» If the NAND management stack (filesystem and more) does not support the required features a
custom FS has to cover the gap:

» Offers cached-write and write-through

» Offers lock for write-back and write-through

» Offers different mount points with different policies at the same time (access rights and write
method)

» Transaction safe operations on files

» Statistics of file system usage

* Volume / quota support

» Physical abstraction of raw NAND and managed NAND

« Additionally the possibility of a custom FS enables:

» Extensions of the concept for custom solution for early, secure, factory settings a.s.o file systems

Concept Manifest

The following figure presents the refinement of the concept for Persistence.

Persistence
Administration
Service

(Persistence Client Library

Shared key -value data Local key- value data Local and shared files

Filesystem
Client Library
R

Custom
Client Uibraries

Persistence

Custom FSs
(e.g. Implemented Health

Monitor

with FUSE)

Customer
Drivers

Library construction

The persistence client library provides a plugin API to load the other libraries shown in the image above
with dlopen:

e Itzam/C library

» filesystem client library

» different custom client libraries
The "sub”-libraries (custom client libraries and custom filesystem libraries) will be loaded only when they
are needed, for example, to provide a fast start-up.
Itzam/C is the standard client library which will be loaded by default and is needed to read the client
configuration data (later named as persistence resource table).

Overview of the solution for the different types of persistence data
Here we are, the answer of the white cells:

Node User ”
Custom Client Lib | Custom Client Lib** gvdb*® Custom Client Lib | Custom Client Lib** gvdb*® WT
Application Custom Client Lib | Custom Client Lib** gvdb* Custom Client Lib | Custom Client Lib** gvdb* C KeyValue
Custom FS Custom FS** UBI_FS Custom FS Custom FS** UBI_FS WT
Custom FS Custom F§** UBI_FS Custom FS Custom F5** UBI_FS € File
Custom Client Lib | Custom Client Lib** dconf Custom Client Lib | Custom Client Lib** dconf WT
) Custom Client Lib | Custom Client Lib** deconf Custom Client Lib | Custom Client Lib** dconf C KeyValue
UBI_FS/RO UBI_FS/WR** UBI_FS UBI_FS/RO UBI_FS/WR** UBI_FS WT
UBI_FS/RO UBI_FS/WR** UBI_FS UBI_FS/RO UBI_FS/WR** UBI_FS G File
RO RW RO RW
Secured Normal Secured Normal

*) This will change perhaps, because gvdb has no good write performance which was not expected by
experts at the concept creation phase, which is needed for local application data. A new proposal is in
work which should solve this issue. Currently we are aiming to replace gvdb/dconf by Itzam/C

**) Within a software loading or diagnostics session those data items can be written only by authorized
application.

UBI_FS: UBI file system (http://www.linux-mtd.infradead.org/doc/ubifs.html)
dconf: allow the notification (https://live.gnome.org/dconf)
gvdb: possibility of cached and uncached granularity is limited to 4 kB page.

Persistence Interface Concept

Key - Value Access Interface Concept
Access level overview

folder local to an application which is containing merged application(s). The
incubated application accesses the local application

data environment where by the key are preceded by a prefix corresponding to the
merged logical database identifier.

folder which can be accessed by every applications in the system

File system access overview

FSEntry point

___local |
applicationl

local merged

application2+3

Prefix added to the key to access

- Represent a folder in file system, where the POSIX ACL right are applied.

The application SW have to deal with the following function parameters:

Logical DB ID Resource
(visibility / name space / location) ID User No Seat No
single
persistence multiple persistence client
client
smgl!e ' LOCAL group string unsigned int |unsigned int
app; |_cr|:\ ion [path +
multiple local merge PUBLIC key]
application
Defines for LOCAL and PUBLIC data, for local merge and group the node = 0x00 |no set =
group ID will be used (no user) 0x00

Rational
The resource ID is system-wide not unique in general. The resource ID must be unique only for shared
data. That means a namespace is needed.
Additional the available/chosen database:

e Does not support write-through / cached write on data item level

e Does not support right policy management
Therefore an identifier is needed which is called "logical DB-ID".
Inside the persistence client library (hidden) the data is stored in different locations -> location
management is needed. The following table shows the different write policies and storage types as an
example:

Write Policy Storage Type
Cache Early
Write Through Normal
ReadOnly

Custome 1 (Secure)
Custome 2 (Emergency)
Custome 3 (HW Info)

*) The custom 1,2,3 and just further examples.
The different storage type will be registered to Persistence client library.

Interface prototype

Interface definition for key-value and file access will follow on next pages.

/1 return value positive: Contains the size

[l return val ue negative: Error code

| ong get _size (unsigned int Idbid, char* resource_id, unsigned char user_no, unsigned
char seat_no, |ong* prc_handle)

/1 return value positive: Contains the size valid data in buffer

/1 return val ue negative: Error code

| ong read_data (unsigned int |dbid, char* resource_id, unsigned char user_no, unsigned
char seat_no, long* prc_handl e, unsigned char* buffer, unsigned |ong buffer_size) |NTI32

APl usage examples

The following table gives you examples about the parameters usage in different locations of the key-value

management.

0,
"/language/country_code
".0,0

OxFF, "/pos/last
position", 0, 0

0,
"/language/current_lang
uage", 3,0

OXFF,
"/status/open_document"
, 3,2

0, "/last_play_time", 0, 0

20,
"/address/home_address
" 4,0

OXFF, "/pos/last
satellites”, 0, 0

0x84, "/links/last link", 2,
0

OXFF
"/media/mediaDB.db", 1,
1

Persistence lib (from
client resource table)
DB-1D="/sys/Secure"

DB-ID="/Data/mnt-
c/Appl-1/cached.itz"
DB-ID="/Data/mnt-
wt/Shared/Public/wt.itz"

DB-ID="/Data/mnt-
c/Appl-1/cached.itz"

DB-1D="/sys/emergency"

DB_ID="/Data/mnt-
c/Shared/Group/20/cach
ed.itz"
DB-ID="/Data/mnt-
wt/Appl-1/wt.itz"
DB-1D="/Data/mnt-
wt/Appl-2/wt.itz"
DB-ID="/Data/mnt-
c/Appl-1/"

data base "input"

Secure:
"/language/country_code" or
may a hash

Itzam/C: “/Node/pos/last
position"

Itzam/C:
"/User/3/language/current_langu
age"

Itzam/C:
"/User/3/Seat/2/status/open_doc
ument"

Emergency: "hash"

Iltzam/C:
"/User/4/address/home_address
Iltzam/C: "/Node/pos/last
satellites”

Itzam/C: "/84/User/2/links/last
link"

file:
"/User/1/Seat/1/mediaDb.db"

Comment

public shared
value
(country_code)
local value (last
position)

public shared
user value
(current_langu
age)

local user seat
value
(open_docume
nt)

(public, shared)
(last play time)
group shared
user value (
home address)
local value (last
satellites)

local value (last
link)

local file

Persistence Resource Configuration table example (PRC-table)

The following table is the corresponding resource table for this configuration example above for one
application.

Logi Resource 1D LDBID+RI DB-ID (path+name) Acces (Moun
cal D hash S t point
DB rights info)
ID
0 “/language/country_code" hash “/sys/Secure" RO NA
0 "/language/current_languag hash "/Data/mnt- RO WT
e" wt/Shared/Public/wt.itz"
0 “/last_play_time" hash “/sys/emergency" RW NA
0x20 "/address/home_address" hash "/Data/mnt- RO Cache
- c/Shared/Group/20/cached.it
"
OXFF "/pos/last satellites" hash "/Data/mnt-wt/Appl-1/wt.itz" RW WT
I 0x84 “/links/last link" hash "/Data/mnt-wt/Appl-2/wt.itz" RW WT
7 TBD example for direct file
access
“ TBD example for direct file
access
- OXFF “/pos/last position" hash “/Data/mnt-c/Appl- RW Cache
1/cached.itz"
- OXFF "“/status/open_document" hash "/Data/mnt-c/Appl- RW Cache
1/cached.itz"

Note the last two entries in this table won't in that table finally, because this is the default and uncritical
case. Therefore this does not need to be managed. This is just here to get a better understanding of the
entire concept.

The responsibility of these resource tables are the following:

e Mapping of "Logical DB-ID + Resource ID" to the "DB-ID"

» Definition of the access rights

e Supports pre-compiled hash for a fast find/match

e Supports of fix position management within one Lifecycle for a fast find/match.

The runtime resource table is physical a set of tables! The following picture shows a typical table setup:

Persistence Client Library

* * * *

Local DB Group 20 DB Group 25 DB Public DB
resource table resource table | | resource table resource table
Local databases: Group databases: Public database:
« Contains the write « Contains all items which are « Contains all items which are
through items only! shared between the members of shared between applications
this group incl. RO/WR incl. RO/WR definition!
definition!

*)The logicto find/ to know where are the differentresource table are located is implemented inthe Persistence ClientLibrary.

File / Folder Access Interface Concept

As the key-value interface is only to handle small data (kByte) the file / folder access interface concept
offers the possibility to handle larger data (MByte).
It also allows applications to organize the data itself instead to store the data by key-value.

The entire "/Data" tree is twice mounted:
0 As "Committed write" / "Write-Through"
0 As "Write-back" / "Cached-Write"

« Only write-through required files are listed in the resource tables.

« May be only one resource table for each type of table can be used (means a local resource table
contains the list of the key-values and the file).

« No further redirection needed because the setup of the folder structure with the applied right
policies organizes the visible of data to applications.

e Partial read of the file is possible

« Seeking within files is possible

« A backup of a file will not be created automatically, either there is an entry in the backup file list or

the users triggers the backup creation.

For details see section "Data organization" below.

Data organization

|cenfigurebieDefoultData)

etous,
oot
Al
RN
a

| [default-dataitz |

ery—

contg

fault-dataitz |

| ‘:“ cached.itz |
| (witz |

node

 defaultData,

i“

| [gy

t /al

<

 \szource bleclyiz)

‘ | default-dataitz |

\contia

Hle-def .,..inl

‘ ‘:‘1 cachediitz |

s
1 I

' BackupFileList.info |

‘| default-data.itz |

| configurable-default-data.itz

[cached.itz |

“| wt.itz |

Simplification of the data structure

In the context of the design of the Persistence
Administrator a simplification of the structure
was identified:

- minimize the size of the default data, the
default data is only available once in the
system also in case of user data

- remove the merge default data databases
(wt / cache) to a single default database for
the key values

Colors
Brown:
The brown colored items are folders.

Green:

Green refers to Itzam/C databases to store the
path of the resource (key-value database, file
store, local database, ...)

Turquoise:

Turquoise is a ltzam/C key-value database
used to store shared data. This means
different applications have access to this
database.

Yellow:

Yellow is a Itzam/C key-value database to store
applications data (only this application has
access to this database)

Purple:

Purple are the links to shared persistence data
the application has access to. There are public
shared data (ever application has access)

and shared group data (only a defined group
has access)

Folders
data:
Persistent data will stored here.

sys:

Special persistent data will be stored here, like
HW information, early data, secure data,
emergency data. This folder can be extended
to customer needs.

mnt_cached:
This folder will contain the cached persistent
data.

mnt_write_through:
This folder will contain persistent data that will
be directly written to memory device.

shared:

Here are the shared data, public (everyone has
access) and group (only a special group of
applications has access).

appl:
Each application has it's onw folder to stare
persistent data.

Format for Installation Configuration Table

In the intention to get the configuration manageable outside of the persistence environment of the target a
portable format has to be selected.

In the first place the XML format may fulfill the requirements configurable, readable and version support.
A preferred format should be JSON where the same requirements are assumed but the footprint of the
format is less.

Over the format the application, version and key are identified.

Presentation Configuration Definition for Persistence Administrator

=

/* name of the application */

Mo Fe - -1 " Ml s ~ares m Tarfmaymn
config appl : "ApplicationPlatform”,

/* version, string XX.XX.Xx */

Nyyayraimm™ « WA 9 L
.

/* name of the entry */
Eﬂ "ERG WICONTAINER 1234" : {

/* policy: cached, wrtite through, NA */

/* permission: RW. RO */

LS
-

/* storage: local,... ¥/

arymi=

w

S A m - nRW"

r

/* type: key-value, file ¥/

av—wualina®
Y . -y valil ’

m =

Nemma®™ o Mo

/* unite: byte per user */

Moo =3

m . mIoN
. <

/* name of the responsible */

/* hash key to access data */

"

"customlD : "Ox84

Interface Definition

Client Library Interface Overview

deployment Interfaces

User spcae

GDraftPackage::
Application

ClientLibraryAPI file access (L

ClientLibraryAP| file access

(L ClientLibraryAP| key-value

ClientLibraryAP| key-value

ClientLibrary API - file access

/**

* @rief close the given PCSI X file descriptor

@aramfd the file descriptor to close

* % F X

@eturn zero on success. On error, -1 is returned, and errno is set
appropriately
*/

int pclFileC ose(int fd);

* %

@rief get the size of the file given by the file descriptor
@aramfd the POSIX file descriptor

@eturn positive value. On error, -1 is returned, and errno is set appropriately

EEE I R I
~

int pclFileGetSize(int fd);

/**

* @rief map a file into the nenory

* @aram addr if NULL, kernel chooses address

* @aramsize the size in bytes to map into the nenory

* @aramoffset inthe file to map

* @aramfd the POSIX file descriptor of the file to map

*

* @eturn a pointer to the mapped area, or on error the value MAP_FAI LED
*

voi d* pcl Fi | eMapDat a(voi d* addr, long size, long offset, int fd);

*
*

@rief open a file

@aram | dbid | ogi cal database ID
@aramresource_id the resource ID
@ar am user_no the user |ID

@ar am seat _no the seat nunber

E I I T

@eturn positive value: the PCSIX file descriptor; negative value: Error code

*/

int pclFileOpen(unsigned int |dbid, const char* resource_id, unsigned int user_no,
unsi gned int seat_no);

*
*

@rief read persistent data froma file
@aram fd POSI X file descriptor

@aram buffer buffer to read the data

@ar am buffer_size the size buffer for reading

@eturn positive value: the size read; negative value: error code

EE I I T
~

int pclFileReadData(int fd, void * buffer, unsigned | ong buffer_size);

/**

* @rief renmpve the file

*

* @aram | dbid | ogical database ID
* @aramresource_id the resource |ID
* @aram user_no the user 1D

* @aram seat _no the seat nunber

*
*
*
*
i

@eturn positive value: success; negative value: error code

nt pcl Fil eRenove(unsi gned int [dbid, const char* resource_id, unsigned int

user_no, unsigned int seat_no);

* %

@rief reposition the file descriptor

@aramfd the POSI X file descriptor
@aram of fset the reposition offset
* @ar am whence the direction to reposition

L I

SEEK_SET

The offset is set to offset bytes.

SEEK_CUR

The offset is set to its current location plus offset bytes.
SEEK _END

The offset is set to the size of the file plus offset bytes.

*

* @eturn positive value: resulting offset |ocation; negative value: error code
*/

int pclFileSeek(int fd, off_t offset, int whence);

* %

@rief unmap the file fromthe nenory

@ar am address the address to unnmap
@aram size the size in bytes to unnmap

@eturn on success 0; negative value: error code

* % X %k Xk X T~

int pcl FileUnmapDat a(voi d* address, |ong size);

*
*

@rief wite persistent data to file

@aram fd the POSI X file descriptor
@aram buffer the buffer to wite
@ar am buffer_size the size of the buffer to wite in bytes

* % %k ¥ X ¥ F ¥ T~

@eturn positive value: bytes witten; negative value: error code

int pclFilewWiteData(int fd, const void * buffer, unsigned |ong buffer_size);

ClientLibrary API - key-value

/11 function callback definition for change notifications
typedef (*changeNotifyCall back_t) (void*)

/**

@rief delete persistent data

@aram | dbid | ogi cal database ID
@aramresource_id the resource ID
@ar am user _no the user |ID

@ar am seat _no the seat nunber

* % O X X X

* @eturn positive value: success; negative value: error code

*/

int pcl KeyDel ete(unsi gned int |dbid, const char* resource_id, unsigned int user_no,
unsi gned i nt seat_no);

*
*

@rief gets the size of persistent data in bytes

@aram | dbid | ogi cal database ID
@aram resource_id the resource ID
@ar am user_no the user ID

@ar am seat _no the seat nunber

EE I B I I

*

@eturn positive value: the size; negative value: error code

*/

int pcl KeyGet Si ze(unsigned int |Idbid, const char* resource_id, unsigned int
user_no, unsigned int seat_no);

*

@rief close the access to a key-value identified by key handl e

/*
*
*
* @ar am key_handl e key val ue handl e return by key_handl e_open()
*

* @eturn positive value: success; negative value: error code

int pcl KeyHandl eC ose(int key_handl e);

* %

@rief gets the size of persistent data in bytes identified by key handl e
@ar am key_handl e key val ue handl e return by key_handl e_open()

@eturn positive value: the size; negative value: error code

* % %k ¥ X ¥ T~
~

int pcl KeyHandl eGet Si ze(int key_handl e);

*
*

@rief open a key-val ue

@aram | dbid | ogi cal database ID
@aramresource_id the resource ID
@ar am user _no the user ID

@ar am seat _no the seat nunber

* % X kX k¥ T~

* @eturn positive value: the key handle to access the val ue; negative val ue:
Error code

*/

i nt pcl KeyHandl eOpen(unsigned int Idbid, const char* resource_id, unsigned int
user_no, unsigned int seat_no);

*
*

@rief reads persistent data identified by key handl e

@ar am key_handl e key val ue handl e return by key_handl e_open()
@aram buffer the buffer for persistent data

@ar am buffer_size size of buffer for reading

@eturn positive value: the bytes read; negative value: error code

E I I T
~

i nt pcl KeyHandl eReadDat a(i nt key_handl e, unsi gned char* buffer, unsigned |ong
buf fer_size);

*
*

@rief register a change notification for persistent data

@ar am key_handl e key val ue handl e return by key_handl e_open()
@aramif a key will be changed, the passed function callback will be called.

E I I I

@eturn positive value: registration OK negative value: error code

i nt pcl KeyHandl eRegi st er Noti f yOnChange(i nt key_handl e, changeNoti fyCal |l back_t
cal | back);

*
*

@rief wites persistent data identified by key handl e

@ar am key_handl e key val ue handl e return by key_handl e_open()
@aram buffer the buffer containing the persistent data to wite
@ar am buf fer_si ze the nunber of bytes to wite

@eturn positive value: the bytes witten; negative value: error code

* %k Ok kX kX kT~

int pcl KeyHandl eWiteData(int key_handl e, unsigned char* buffer, unsigned |ong
buf fer _si ze);

*
*

@rief reads persistent data identified by |dbid and resource_id

@aram | dbi d | ogi cal database ID

@aram resource_id the resource ID

@ar am user_no the user ID

@ar am seat _no the seat nunber

@aram buffer the buffer to read the persistent data
@ar am buffer_size size of buffer for reading

EE I I I T

*

@eturn positive value: the bytes read; negative value: error code

*/

i nt pcl KeyReadDat a(unsi gned int |dbid, const char* resource_id, unsigned int

user _no, unsigned int seat_no, unsigned char* buffer, unsigned |ong buffer_size);

*
*

@rief register a change notification for persistent data

@aram | dbid | ogi cal database ID of the resource to nonitor
@aramresource_id the resource ID

@ar am user _no the user ID

@ar am seat _no the seat nunber

@aramif a key will be changed, the passed function callback will be called.

* % ok ¥ X ¥ F ¥ T~

*

@eturn positive value: registration OK, negative value: error code

*/

int pcl KeyRegi st er Noti f yOnChange(unsi gned int |dbid, const char* resource_id,
unsigned int user_no, unsigned int seat_no, changeNotifyCallback_t call back);

*
*

@rief wites persistent data identified by |dbid and resource_id

@aram | dbi d | ogi cal database |ID

@aram resource_id the resource ID

@ar am user_no the user ID

@ar am seat _no the seat nunber

@aram buffer the buffer containing the persistent data to wite
@ar am buffer_size the nunber of bytes to wite

L I I I S

*

@eturn positive value: the bytes witten; negative value: error code
*/
int plugin_handl e_get_size(int handle);

Persistence Administration Service Interface Overview

PersAdminService

/** Modul e version

The lower significant byte is equal O for rel eased version only

*

/

#defi ne PERSI ST_ADM NSERVI CE_| NTERFACE_VERSI ON (0x02010000U)

/** \def group PAS_RETURNS persAdnin Return Val ues

* 1:PAS SUCCESS, ::PAS ERROR CCDE, ::PAS FAI LURE | NVALI D PARAMVETER

* These defines are used to define the return values of the given |ow | evel access
functions

* - ::PAS_SUCCESS: the function call succeded

* - ::PAS ERROR CODE..::PAS FAILURE: the function call failed
*\{

*/

/** Error code return by the SW Package, related to SW Packagel D. */
#def i ne PAS _PACKAGEI D 0x013 /**<
Sof twar e package identifier, use for return val ue base */
#defi ne PAS_BASERETURN_CODE (PAS_PACKAGEI D << 16) /**<
Basis of the return value containing SWPackagel D */
#defi ne PAS_SUCCESS 0x00000000 /**< the function call
succeded */
#defi ne PAS_ERROR _CODE (- (PAS_BASERETURN CCDE)) /**<
basis of the error (negative values) */
#defi ne PAS_FAI LURE | NVALI D_PARAMETER (PAS_ERROR CODE - 1) /**<
Invalid parameter in the APl call */
#defi ne PAS_FAI LURE_BUFFER TOO SMALL (PAS_ERROR CODE - 2) /**< The
provi ded buffer can not accommpdate the avail able data size */
#defi ne PAS_FAI LURE_OUT_OF MEMCRY (PAS ERROR CODE - 3) /**< not
enough nmermory, malloc failed, no handl er available */
#defi ne PAS_FAI LURE_| NVALI D_FORMAT (PAS_ERROR CODE - 4) /[**<
format of the inport source is not as expected (internal |ayout, type, etc) */
#defi ne PAS_FAI LURE_NOT_FOUND (PAS ERRCR CODE - 5) /**< one
of the following resource file, folder or key not found */
#defi ne PAS_FAI LURE_| NCOWPLETE_OPERATI ON (PAS_ERROR CCDE - 6) /**<
operation not conpleted due to shut-down notification */
#defi ne PAS_FAI LURE_ACCESS DENI ED (PAS ERROR CODE - 7) /**<
tried to access a file without having the right */
#defi ne PAS_FAI LURE_DBUS_| SSUE (PAS ERROR CODE - 8) /**<
related to DBUS */
#defi ne PAS_FAI LURE_OS_RESOURCE_ACCESS (PAS_ERROR CODE - 9) /**<
related to mutex, queues, threads, etc.*/
#defi ne PAS_FAI LURE (PAS _ERROR CODE - OxFFFF) /[**<
shoul d be the max. value for error */
#defi ne PAS WARNI NG_CODE (PAS_BASERETURN CCODE) /**<
?asif}of/the warning (positive values) */
* % *
/*: \ def group PERS_ADM N_HELPER Confi gurati on paraneter

*/

#defi ne PERSI ST_SELECT_ALL_USERS (OxFFFFFFFF) /**< 32bit val ue used

to allow access to all users */

#defi ne PERSI ST_SELECT_ALL_SEATS (OxFFFFFFFF) /**< 32bit val ue used

to allow access to all seats */

/** enunmerator used to identify the type of selected data for backup, inport,
export */

typedef enum _PersASSel ecti onType_e

Per sASSel ecti onType_All =0, /**< select all data/files
(node+user) - >(appl i cati ontshared) */

Per sASSel ecti onType_User = 1, /**< sel ect user data/files
(user)->(applicationtshared) */

Per sASSel ecti onType_Application = 2, /**< select application data/files:
(appl i cation)->(node+user) */

/** insert new entries here ... */

Per sASSel ecti onType_LastEntry /**< | ast entry */

} PersASSel ecti onType_e;

/** enumerator used to identify the type of selected data for backup, inport,
export

* \since V2.1.0

*/

t ypedef enum _Per sASDef aul t Source_e

Per sADef aul t Source_Factory = 0, /**< select fromfactory definition */

Per sADef aul t Sour ce_Configurable= 1, /**< select fromuser factory or configurable
default if exist */

/** insert new entries here ... */

Per sADef aul t Source_LastEntry /**< [ast entry */

} Per sADef aul t Sour ce_e;

[x* \} */

/**

* \brief Allow creation of a backup on different |evel (application, user or
conpl et e)

\param type represent the quality of the data to backup: all, application, user
\ par am backup_name name of the backup to allow identification

\ param applicationl D the application identifier

\ param user_no the user ID

\ param seat _no the seat nunmber (seat 0 to 3)

% O X X X F X

\return positive value: number of bytes witten; negative value: error code
(\ref PAS_RETURNS)
*/

| ong per sAdmi nDat aBackupCr eat e(Per sASSel ecti onType_e type, const char* backup_nane,
const char* applicationlD, unsigned int user_no, unsigned int seat_no);

/**

* \brief Allow recovery of from backup on different |evel (application, user or
conpl et e)

\param type represent the quality of the data to backup: all, application, user
\ par am backup_nane nanme of the backup to allow identification

\ param applicationl D the application identifier

\ param user_no the user ID

\ param seat _no the seat nunber (seat 0 to 3)

EEE R R

\return positive value: nunmber of bytes restored; negative value: error code
(\ref PAS_RETURNS)
*/

| ong per sAdmi nDat aBackupRecover y(Per sASSel ecti onType_e type, const char*
backup_name, const char* applicationl D, unsigned int user_no, unsigned int

seat _no);

/**

* \brief Allowto identify and prepare the data to allow an export from system

* \paramtype represent the quality of the data to backup: all, application, user
* \param dst _fol der nane of the destination folder for the data

*

* \return positive value: nunber of bytes witten; negative value: error code
(\ref PAS_RETURNS)

*/

| ong per sAdm nDat aFol der Export (Per sASSel ecti onType_e type, const char* dst_fol der);
/**

* \brief Allow the inport of data fromspecified folder to the systemrespecting
different level (application, user or conplete)

*

* \param type represent the quality of the data to backup: all, application, user
* \param src_fol der name of the source folder of the data

*

\return positive value: number of bytes inported; negative value: error code
(\ref PAS_RETURNS)

*/

| ong per sAdmi nDat aFol der | nport (Per sASSel ecti onType_e type, const char* src_fol der);
/**

* \brief Allowto extend the configuration for persistency of data from specified

| evel (application, user).

* Used during new persistency entry installation

\param resource_file name of the persistency resource configuration to integrate

E I

\return positive value: nunber of nodified entries in the resource

configuration; negative value: error code (\ref PAS_RETURNS)
*/

| ong per sAdm nResour ceConfi gAdd(const char* resource_file);
/**

* \brief Allow the nodification of the resource properties fromdata (key-val ues
and files)

* \paramresource_file nane of the persistency resource configuration to integrate
*

* \return positive value: nunber of nodified properties in the resource
configuration; negative value: error code (\ref PAS_RETURNS)
*/

| ong per sAdm nResour ceConfi gChangeProperti es(const char* resource_file);
* %

* \brief Allow the copy of user related data between different users

\ param src_user_no the user ID source

\ param src_seat _no the seat nunber source (seat 0 to 3)

\ param dest _user_no the user |D destination
\ param dest _seat _no the seat nunber destination (seat 0 to 3)

* % Ok F X X

* \return positive value: nunber of bytes copied; negative value: error code (\ref
PAS_RETURNS)

*/

| ong per sAdmi nUser Dat aCopy(unsi gned i nt src_user_no, unsigned int src_seat_no,
unsigned int dest_user_no, unsigned int dest_seat_no);

/**

* \brief Delete the user related data from persi stency containers

\ param user_no the user ID
\ param seat _no the seat nunber (seat 0 to 3)

*
*
* \return positive value: nunber of bytes del eted; negative value: error code
(\ref PAS_RETURNS)

*/

lo

ng per sAdm nUser Dat aDel et e(unsi gned int user_no, unsigned int seat_no);
*

~

* \brief Allowrestore of values fromdefault on different level (application, user
or conpl ete)
*

\ param type represents the data to restore: all, application, user
\ param def aul t Source source of the default to allow reset

\ param applicationl D the application identifier

\ param user_no the user ID

\ param seat _no the seat nunber (seat 0 to 3)

\return positive value: nunmber of bytes restored; negative value: error code
\ref PAS_RETURNS)

\since V2.1.0

EEE I e N R I

I ong per sAdm nDat aRest or e(Per sASSel ecti onType_e type, PersASDef aul t Source_e
def aul t Sour ce,

const char* applicationlD, unsigned int

user_no, unsigned int seat_no);

