Update vorbisfile source copyright
[platform/upstream/libvorbis.git] / doc / 02-bitpacking.tex
1 % -*- mode: latex; TeX-master: "Vorbis_I_spec"; -*-
2 %!TEX root = Vorbis_I_spec.tex
3 % $Id$
4 \section{Bitpacking Convention} \label{vorbis:spec:bitpacking}
5
6 \subsection{Overview}
7
8 The Vorbis codec uses relatively unstructured raw packets containing
9 arbitrary-width binary integer fields.  Logically, these packets are a
10 bitstream in which bits are coded one-by-one by the encoder and then
11 read one-by-one in the same monotonically increasing order by the
12 decoder.  Most current binary storage arrangements group bits into a
13 native word size of eight bits (octets), sixteen bits, thirty-two bits
14 or, less commonly other fixed word sizes.  The Vorbis bitpacking
15 convention specifies the correct mapping of the logical packet
16 bitstream into an actual representation in fixed-width words.
17
18
19 \subsubsection{octets, bytes and words}
20
21 In most contemporary architectures, a 'byte' is synonymous with an
22 'octet', that is, eight bits.  This has not always been the case;
23 seven, ten, eleven and sixteen bit 'bytes' have been used.  For
24 purposes of the bitpacking convention, a byte implies the native,
25 smallest integer storage representation offered by a platform.  On
26 modern platforms, this is generally assumed to be eight bits (not
27 necessarily because of the processor but because of the
28 filesystem/memory architecture.  Modern filesystems invariably offer
29 bytes as the fundamental atom of storage).  A 'word' is an integer
30 size that is a grouped multiple of this smallest size.
31
32 The most ubiquitous architectures today consider a 'byte' to be an
33 octet (eight bits) and a word to be a group of two, four or eight
34 bytes (16, 32 or 64 bits).  Note however that the Vorbis bitpacking
35 convention is still well defined for any native byte size; Vorbis uses
36 the native bit-width of a given storage system. This document assumes
37 that a byte is one octet for purposes of example.
38
39 \subsubsection{bit order}
40
41 A byte has a well-defined 'least significant' bit (LSb), which is the
42 only bit set when the byte is storing the two's complement integer
43 value +1.  A byte's 'most significant' bit (MSb) is at the opposite
44 end of the byte. Bits in a byte are numbered from zero at the LSb to
45 $n$ ($n=7$ in an octet) for the
46 MSb.
47
48
49
50 \subsubsection{byte order}
51
52 Words are native groupings of multiple bytes.  Several byte orderings
53 are possible in a word; the common ones are 3-2-1-0 ('big endian' or
54 'most significant byte first' in which the highest-valued byte comes
55 first), 0-1-2-3 ('little endian' or 'least significant byte first' in
56 which the lowest value byte comes first) and less commonly 3-1-2-0 and
57 0-2-1-3 ('mixed endian').
58
59 The Vorbis bitpacking convention specifies storage and bitstream
60 manipulation at the byte, not word, level, thus host word ordering is
61 of a concern only during optimization when writing high performance
62 code that operates on a word of storage at a time rather than by byte.
63 Logically, bytes are always coded and decoded in order from byte zero
64 through byte $n$.
65
66
67
68 \subsubsection{coding bits into byte sequences}
69
70 The Vorbis codec has need to code arbitrary bit-width integers, from
71 zero to 32 bits wide, into packets.  These integer fields are not
72 aligned to the boundaries of the byte representation; the next field
73 is written at the bit position at which the previous field ends.
74
75 The encoder logically packs integers by writing the LSb of a binary
76 integer to the logical bitstream first, followed by next least
77 significant bit, etc, until the requested number of bits have been
78 coded.  When packing the bits into bytes, the encoder begins by
79 placing the LSb of the integer to be written into the least
80 significant unused bit position of the destination byte, followed by
81 the next-least significant bit of the source integer and so on up to
82 the requested number of bits.  When all bits of the destination byte
83 have been filled, encoding continues by zeroing all bits of the next
84 byte and writing the next bit into the bit position 0 of that byte.
85 Decoding follows the same process as encoding, but by reading bits
86 from the byte stream and reassembling them into integers.
87
88
89
90 \subsubsection{signedness}
91
92 The signedness of a specific number resulting from decode is to be
93 interpreted by the decoder given decode context.  That is, the three
94 bit binary pattern 'b111' can be taken to represent either 'seven' as
95 an unsigned integer, or '-1' as a signed, two's complement integer.
96 The encoder and decoder are responsible for knowing if fields are to
97 be treated as signed or unsigned.
98
99
100
101 \subsubsection{coding example}
102
103 Code the 4 bit integer value '12' [b1100] into an empty bytestream.
104 Bytestream result:
105
106 \begin{Verbatim}[commandchars=\\\{\}]
107               |
108               V
109
110         7 6 5 4 3 2 1 0
111 byte 0 [0 0 0 0 1 1 0 0]  <-
112 byte 1 [               ]
113 byte 2 [               ]
114 byte 3 [               ]
115              ...
116 byte n [               ]  bytestream length == 1 byte
117
118 \end{Verbatim}
119
120
121 Continue by coding the 3 bit integer value '-1' [b111]:
122
123 \begin{Verbatim}[commandchars=\\\{\}]
124         |
125         V
126
127         7 6 5 4 3 2 1 0
128 byte 0 [0 1 1 1 1 1 0 0]  <-
129 byte 1 [               ]
130 byte 2 [               ]
131 byte 3 [               ]
132              ...
133 byte n [               ]  bytestream length == 1 byte
134 \end{Verbatim}
135
136
137 Continue by coding the 7 bit integer value '17' [b0010001]:
138
139 \begin{Verbatim}[commandchars=\\\{\}]
140           |
141           V
142
143         7 6 5 4 3 2 1 0
144 byte 0 [1 1 1 1 1 1 0 0]
145 byte 1 [0 0 0 0 1 0 0 0]  <-
146 byte 2 [               ]
147 byte 3 [               ]
148              ...
149 byte n [               ]  bytestream length == 2 bytes
150                           bit cursor == 6
151 \end{Verbatim}
152
153
154 Continue by coding the 13 bit integer value '6969' [b110 11001110 01]:
155
156 \begin{Verbatim}[commandchars=\\\{\}]
157                 |
158                 V
159
160         7 6 5 4 3 2 1 0
161 byte 0 [1 1 1 1 1 1 0 0]
162 byte 1 [0 1 0 0 1 0 0 0]
163 byte 2 [1 1 0 0 1 1 1 0]
164 byte 3 [0 0 0 0 0 1 1 0]  <-
165              ...
166 byte n [               ]  bytestream length == 4 bytes
167
168 \end{Verbatim}
169
170
171
172
173 \subsubsection{decoding example}
174
175 Reading from the beginning of the bytestream encoded in the above example:
176
177 \begin{Verbatim}[commandchars=\\\{\}]
178                       |
179                       V
180
181         7 6 5 4 3 2 1 0
182 byte 0 [1 1 1 1 1 1 0 0]  <-
183 byte 1 [0 1 0 0 1 0 0 0]
184 byte 2 [1 1 0 0 1 1 1 0]
185 byte 3 [0 0 0 0 0 1 1 0]  bytestream length == 4 bytes
186
187 \end{Verbatim}
188
189
190 We read two, two-bit integer fields, resulting in the returned numbers
191 'b00' and 'b11'.  Two things are worth noting here:
192
193 \begin{itemize}
194 \item Although these four bits were originally written as a single
195 four-bit integer, reading some other combination of bit-widths from the
196 bitstream is well defined.  There are no artificial alignment
197 boundaries maintained in the bitstream.
198
199 \item The second value is the
200 two-bit-wide integer 'b11'.  This value may be interpreted either as
201 the unsigned value '3', or the signed value '-1'.  Signedness is
202 dependent on decode context.
203 \end{itemize}
204
205
206
207
208 \subsubsection{end-of-packet alignment}
209
210 The typical use of bitpacking is to produce many independent
211 byte-aligned packets which are embedded into a larger byte-aligned
212 container structure, such as an Ogg transport bitstream.  Externally,
213 each bytestream (encoded bitstream) must begin and end on a byte
214 boundary.  Often, the encoded bitstream is not an integer number of
215 bytes, and so there is unused (uncoded) space in the last byte of a
216 packet.
217
218 Unused space in the last byte of a bytestream is always zeroed during
219 the coding process.  Thus, should this unused space be read, it will
220 return binary zeroes.
221
222 Attempting to read past the end of an encoded packet results in an
223 'end-of-packet' condition.  End-of-packet is not to be considered an
224 error; it is merely a state indicating that there is insufficient
225 remaining data to fulfill the desired read size.  Vorbis uses truncated
226 packets as a normal mode of operation, and as such, decoders must
227 handle reading past the end of a packet as a typical mode of
228 operation. Any further read operations after an 'end-of-packet'
229 condition shall also return 'end-of-packet'.
230
231
232
233 \subsubsection{reading zero bits}
234
235 Reading a zero-bit-wide integer returns the value '0' and does not
236 increment the stream cursor.  Reading to the end of the packet (but
237 not past, such that an 'end-of-packet' condition has not triggered)
238 and then reading a zero bit integer shall succeed, returning 0, and
239 not trigger an end-of-packet condition.  Reading a zero-bit-wide
240 integer after a previous read sets 'end-of-packet' shall also fail
241 with 'end-of-packet'.
242
243
244
245
246
247