mkfs: fix mkfs -r to properly allocate space
[platform/upstream/btrfs-progs.git] / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #define _XOPEN_SOURCE 600
20 #define __USE_XOPEN2K
21 #define _GNU_SOURCE 1
22 #include <stdio.h>
23 #include <stdlib.h>
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <fcntl.h>
27 #include <unistd.h>
28 #include "kerncompat.h"
29 #include "radix-tree.h"
30 #include "ctree.h"
31 #include "disk-io.h"
32 #include "volumes.h"
33 #include "transaction.h"
34 #include "crc32c.h"
35 #include "utils.h"
36 #include "print-tree.h"
37
38 static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf)
39 {
40
41         struct btrfs_fs_devices *fs_devices;
42         int ret = 1;
43
44         if (buf->start != btrfs_header_bytenr(buf)) {
45                 printk("Check tree block failed, want=%Lu, have=%Lu\n",
46                        buf->start, btrfs_header_bytenr(buf));
47                 return ret;
48         }
49
50         fs_devices = root->fs_info->fs_devices;
51         while (fs_devices) {
52                 if (!memcmp_extent_buffer(buf, fs_devices->fsid,
53                                           btrfs_header_fsid(),
54                                           BTRFS_FSID_SIZE)) {
55                         ret = 0;
56                         break;
57                 }
58                 fs_devices = fs_devices->seed;
59         }
60         return ret;
61 }
62
63 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
64 {
65         return crc32c(seed, data, len);
66 }
67
68 void btrfs_csum_final(u32 crc, char *result)
69 {
70         *(__le32 *)result = ~cpu_to_le32(crc);
71 }
72
73 static int __csum_tree_block_size(struct extent_buffer *buf, u16 csum_size,
74                                   int verify, int silent)
75 {
76         char *result;
77         u32 len;
78         u32 crc = ~(u32)0;
79
80         result = malloc(csum_size * sizeof(char));
81         if (!result)
82                 return 1;
83
84         len = buf->len - BTRFS_CSUM_SIZE;
85         crc = crc32c(crc, buf->data + BTRFS_CSUM_SIZE, len);
86         btrfs_csum_final(crc, result);
87
88         if (verify) {
89                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
90                         if (!silent)
91                                 printk("checksum verify failed on %llu found %08X wanted %08X\n",
92                                        (unsigned long long)buf->start,
93                                        *((u32 *)result),
94                                        *((u32*)(char *)buf->data));
95                         free(result);
96                         return 1;
97                 }
98         } else {
99                 write_extent_buffer(buf, result, 0, csum_size);
100         }
101         free(result);
102         return 0;
103 }
104
105 int csum_tree_block_size(struct extent_buffer *buf, u16 csum_size, int verify)
106 {
107         return __csum_tree_block_size(buf, csum_size, verify, 0);
108 }
109
110 int verify_tree_block_csum_silent(struct extent_buffer *buf, u16 csum_size)
111 {
112         return __csum_tree_block_size(buf, csum_size, 1, 1);
113 }
114
115 int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
116                            int verify)
117 {
118         u16 csum_size =
119                 btrfs_super_csum_size(root->fs_info->super_copy);
120         return csum_tree_block_size(buf, csum_size, verify);
121 }
122
123 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
124                                             u64 bytenr, u32 blocksize)
125 {
126         return find_extent_buffer(&root->fs_info->extent_cache,
127                                   bytenr, blocksize);
128 }
129
130 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
131                                                  u64 bytenr, u32 blocksize)
132 {
133         return alloc_extent_buffer(&root->fs_info->extent_cache, bytenr,
134                                    blocksize);
135 }
136
137 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
138                          u64 parent_transid)
139 {
140         int ret;
141         struct extent_buffer *eb;
142         u64 length;
143         struct btrfs_multi_bio *multi = NULL;
144         struct btrfs_device *device;
145
146         eb = btrfs_find_tree_block(root, bytenr, blocksize);
147         if (eb && btrfs_buffer_uptodate(eb, parent_transid)) {
148                 free_extent_buffer(eb);
149                 return 0;
150         }
151
152         length = blocksize;
153         ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
154                               bytenr, &length, &multi, 0, NULL);
155         BUG_ON(ret);
156         device = multi->stripes[0].dev;
157         device->total_ios++;
158         blocksize = min(blocksize, (u32)(64 * 1024));
159         readahead(device->fd, multi->stripes[0].physical, blocksize);
160         kfree(multi);
161         return 0;
162 }
163
164 static int verify_parent_transid(struct extent_io_tree *io_tree,
165                                  struct extent_buffer *eb, u64 parent_transid,
166                                  int ignore)
167 {
168         int ret;
169
170         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
171                 return 0;
172
173         if (extent_buffer_uptodate(eb) &&
174             btrfs_header_generation(eb) == parent_transid) {
175                 ret = 0;
176                 goto out;
177         }
178         printk("parent transid verify failed on %llu wanted %llu found %llu\n",
179                (unsigned long long)eb->start,
180                (unsigned long long)parent_transid,
181                (unsigned long long)btrfs_header_generation(eb));
182         if (ignore) {
183                 eb->flags |= EXTENT_BAD_TRANSID;
184                 printk("Ignoring transid failure\n");
185                 return 0;
186         }
187
188         ret = 1;
189 out:
190         clear_extent_buffer_uptodate(io_tree, eb);
191         return ret;
192
193 }
194
195
196 int read_whole_eb(struct btrfs_fs_info *info, struct extent_buffer *eb, int mirror)
197 {
198         unsigned long offset = 0;
199         struct btrfs_multi_bio *multi = NULL;
200         struct btrfs_device *device;
201         int ret = 0;
202         u64 read_len;
203         unsigned long bytes_left = eb->len;
204
205         while (bytes_left) {
206                 read_len = bytes_left;
207                 device = NULL;
208
209                 if (!info->on_restoring) {
210                         ret = btrfs_map_block(&info->mapping_tree, READ,
211                                               eb->start + offset, &read_len, &multi,
212                                               mirror, NULL);
213                         if (ret) {
214                                 printk("Couldn't map the block %Lu\n", eb->start + offset);
215                                 kfree(multi);
216                                 return -EIO;
217                         }
218                         device = multi->stripes[0].dev;
219
220                         if (device->fd == 0) {
221                                 kfree(multi);
222                                 return -EIO;
223                         }
224
225                         eb->fd = device->fd;
226                         device->total_ios++;
227                         eb->dev_bytenr = multi->stripes[0].physical;
228                         kfree(multi);
229                         multi = NULL;
230                 } else {
231                         /* special case for restore metadump */
232                         list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
233                                 if (device->devid == 1)
234                                         break;
235                         }
236
237                         eb->fd = device->fd;
238                         eb->dev_bytenr = eb->start;
239                         device->total_ios++;
240                 }
241
242                 if (read_len > bytes_left)
243                         read_len = bytes_left;
244
245                 ret = read_extent_from_disk(eb, offset, read_len);
246                 if (ret)
247                         return -EIO;
248                 offset += read_len;
249                 bytes_left -= read_len;
250         }
251         return 0;
252 }
253
254 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
255                                      u32 blocksize, u64 parent_transid)
256 {
257         int ret;
258         struct extent_buffer *eb;
259         u64 best_transid = 0;
260         int mirror_num = 0;
261         int good_mirror = 0;
262         int num_copies;
263         int ignore = 0;
264
265         eb = btrfs_find_create_tree_block(root, bytenr, blocksize);
266         if (!eb)
267                 return NULL;
268
269         if (btrfs_buffer_uptodate(eb, parent_transid))
270                 return eb;
271
272         while (1) {
273                 ret = read_whole_eb(root->fs_info, eb, mirror_num);
274                 if (ret == 0 && check_tree_block(root, eb) == 0 &&
275                     csum_tree_block(root, eb, 1) == 0 &&
276                     verify_parent_transid(eb->tree, eb, parent_transid, ignore)
277                     == 0) {
278                         if (eb->flags & EXTENT_BAD_TRANSID &&
279                             list_empty(&eb->recow)) {
280                                 list_add_tail(&eb->recow,
281                                               &root->fs_info->recow_ebs);
282                                 eb->refs++;
283                         }
284                         btrfs_set_buffer_uptodate(eb);
285                         return eb;
286                 }
287                 if (ignore) {
288                         if (check_tree_block(root, eb))
289                                 printk("read block failed check_tree_block\n");
290                         else
291                                 printk("Csum didn't match\n");
292                         break;
293                 }
294                 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
295                                               eb->start, eb->len);
296                 if (num_copies == 1) {
297                         ignore = 1;
298                         continue;
299                 }
300                 if (btrfs_header_generation(eb) > best_transid) {
301                         best_transid = btrfs_header_generation(eb);
302                         good_mirror = mirror_num;
303                 }
304                 mirror_num++;
305                 if (mirror_num > num_copies) {
306                         mirror_num = good_mirror;
307                         ignore = 1;
308                         continue;
309                 }
310         }
311         free_extent_buffer(eb);
312         return NULL;
313 }
314
315 int write_and_map_eb(struct btrfs_trans_handle *trans,
316                      struct btrfs_root *root,
317                      struct extent_buffer *eb)
318 {
319         int ret;
320         int dev_nr;
321         u64 length;
322         u64 *raid_map = NULL;
323         struct btrfs_multi_bio *multi = NULL;
324
325         dev_nr = 0;
326         length = eb->len;
327         ret = btrfs_map_block(&root->fs_info->mapping_tree, WRITE,
328                               eb->start, &length, &multi, 0, &raid_map);
329
330         if (raid_map) {
331                 ret = write_raid56_with_parity(root->fs_info, eb, multi,
332                                                length, raid_map);
333                 BUG_ON(ret);
334         } else while (dev_nr < multi->num_stripes) {
335                 BUG_ON(ret);
336                 eb->fd = multi->stripes[dev_nr].dev->fd;
337                 eb->dev_bytenr = multi->stripes[dev_nr].physical;
338                 multi->stripes[dev_nr].dev->total_ios++;
339                 dev_nr++;
340                 ret = write_extent_to_disk(eb);
341                 BUG_ON(ret);
342         }
343         kfree(multi);
344         return 0;
345 }
346
347 int write_tree_block(struct btrfs_trans_handle *trans,
348                      struct btrfs_root *root,
349                      struct extent_buffer *eb)
350 {
351         if (check_tree_block(root, eb))
352                 BUG();
353
354         if (!btrfs_buffer_uptodate(eb, trans->transid))
355                 BUG();
356
357         btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
358         csum_tree_block(root, eb, 0);
359
360         return write_and_map_eb(trans, root, eb);
361 }
362
363 int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
364                         u32 stripesize, struct btrfs_root *root,
365                         struct btrfs_fs_info *fs_info, u64 objectid)
366 {
367         root->node = NULL;
368         root->commit_root = NULL;
369         root->sectorsize = sectorsize;
370         root->nodesize = nodesize;
371         root->leafsize = leafsize;
372         root->stripesize = stripesize;
373         root->ref_cows = 0;
374         root->track_dirty = 0;
375
376         root->fs_info = fs_info;
377         root->objectid = objectid;
378         root->last_trans = 0;
379         root->highest_inode = 0;
380         root->last_inode_alloc = 0;
381
382         INIT_LIST_HEAD(&root->dirty_list);
383         memset(&root->root_key, 0, sizeof(root->root_key));
384         memset(&root->root_item, 0, sizeof(root->root_item));
385         root->root_key.objectid = objectid;
386         return 0;
387 }
388
389 static int update_cowonly_root(struct btrfs_trans_handle *trans,
390                                struct btrfs_root *root)
391 {
392         int ret;
393         u64 old_root_bytenr;
394         struct btrfs_root *tree_root = root->fs_info->tree_root;
395
396         btrfs_write_dirty_block_groups(trans, root);
397         while(1) {
398                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
399                 if (old_root_bytenr == root->node->start)
400                         break;
401                 btrfs_set_root_bytenr(&root->root_item,
402                                        root->node->start);
403                 btrfs_set_root_generation(&root->root_item,
404                                           trans->transid);
405                 root->root_item.level = btrfs_header_level(root->node);
406                 ret = btrfs_update_root(trans, tree_root,
407                                         &root->root_key,
408                                         &root->root_item);
409                 BUG_ON(ret);
410                 btrfs_write_dirty_block_groups(trans, root);
411         }
412         return 0;
413 }
414
415 static int commit_tree_roots(struct btrfs_trans_handle *trans,
416                              struct btrfs_fs_info *fs_info)
417 {
418         struct btrfs_root *root;
419         struct list_head *next;
420         struct extent_buffer *eb;
421         int ret;
422
423         if (fs_info->readonly)
424                 return 0;
425
426         eb = fs_info->tree_root->node;
427         extent_buffer_get(eb);
428         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
429         free_extent_buffer(eb);
430         if (ret)
431                 return ret;
432
433         while(!list_empty(&fs_info->dirty_cowonly_roots)) {
434                 next = fs_info->dirty_cowonly_roots.next;
435                 list_del_init(next);
436                 root = list_entry(next, struct btrfs_root, dirty_list);
437                 update_cowonly_root(trans, root);
438                 free_extent_buffer(root->commit_root);
439                 root->commit_root = NULL;
440         }
441
442         return 0;
443 }
444
445 static int __commit_transaction(struct btrfs_trans_handle *trans,
446                                 struct btrfs_root *root)
447 {
448         u64 start;
449         u64 end;
450         struct extent_buffer *eb;
451         struct extent_io_tree *tree = &root->fs_info->extent_cache;
452         int ret;
453
454         while(1) {
455                 ret = find_first_extent_bit(tree, 0, &start, &end,
456                                             EXTENT_DIRTY);
457                 if (ret)
458                         break;
459                 while(start <= end) {
460                         eb = find_first_extent_buffer(tree, start);
461                         BUG_ON(!eb || eb->start != start);
462                         ret = write_tree_block(trans, root, eb);
463                         BUG_ON(ret);
464                         start += eb->len;
465                         clear_extent_buffer_dirty(eb);
466                         free_extent_buffer(eb);
467                 }
468         }
469         return 0;
470 }
471
472 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
473                              struct btrfs_root *root)
474 {
475         u64 transid = trans->transid;
476         int ret = 0;
477         struct btrfs_fs_info *fs_info = root->fs_info;
478
479         if (root->commit_root == root->node)
480                 goto commit_tree;
481
482         free_extent_buffer(root->commit_root);
483         root->commit_root = NULL;
484
485         btrfs_set_root_bytenr(&root->root_item, root->node->start);
486         btrfs_set_root_generation(&root->root_item, trans->transid);
487         root->root_item.level = btrfs_header_level(root->node);
488         ret = btrfs_update_root(trans, root->fs_info->tree_root,
489                                 &root->root_key, &root->root_item);
490         BUG_ON(ret);
491 commit_tree:
492         ret = commit_tree_roots(trans, fs_info);
493         BUG_ON(ret);
494         ret = __commit_transaction(trans, root);
495         BUG_ON(ret);
496         write_ctree_super(trans, root);
497         btrfs_finish_extent_commit(trans, fs_info->extent_root,
498                                    &fs_info->pinned_extents);
499         btrfs_free_transaction(root, trans);
500         free_extent_buffer(root->commit_root);
501         root->commit_root = NULL;
502         fs_info->running_transaction = NULL;
503         fs_info->last_trans_committed = transid;
504         return 0;
505 }
506
507 static int find_and_setup_root(struct btrfs_root *tree_root,
508                                struct btrfs_fs_info *fs_info,
509                                u64 objectid, struct btrfs_root *root)
510 {
511         int ret;
512         u32 blocksize;
513         u64 generation;
514
515         __setup_root(tree_root->nodesize, tree_root->leafsize,
516                      tree_root->sectorsize, tree_root->stripesize,
517                      root, fs_info, objectid);
518         ret = btrfs_find_last_root(tree_root, objectid,
519                                    &root->root_item, &root->root_key);
520         if (ret)
521                 return ret;
522
523         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
524         generation = btrfs_root_generation(&root->root_item);
525         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
526                                      blocksize, generation);
527         if (!extent_buffer_uptodate(root->node))
528                 return -EIO;
529
530         return 0;
531 }
532
533 static int find_and_setup_log_root(struct btrfs_root *tree_root,
534                                struct btrfs_fs_info *fs_info,
535                                struct btrfs_super_block *disk_super)
536 {
537         u32 blocksize;
538         u64 blocknr = btrfs_super_log_root(disk_super);
539         struct btrfs_root *log_root = malloc(sizeof(struct btrfs_root));
540
541         if (!log_root)
542                 return -ENOMEM;
543
544         if (blocknr == 0) {
545                 free(log_root);
546                 return 0;
547         }
548
549         blocksize = btrfs_level_size(tree_root,
550                              btrfs_super_log_root_level(disk_super));
551
552         __setup_root(tree_root->nodesize, tree_root->leafsize,
553                      tree_root->sectorsize, tree_root->stripesize,
554                      log_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
555
556         log_root->node = read_tree_block(tree_root, blocknr,
557                                      blocksize,
558                                      btrfs_super_generation(disk_super) + 1);
559
560         fs_info->log_root_tree = log_root;
561
562         if (!extent_buffer_uptodate(log_root->node)) {
563                 free_extent_buffer(log_root->node);
564                 free(log_root);
565                 fs_info->log_root_tree = NULL;
566                 return -EIO;
567         }
568
569         return 0;
570 }
571
572
573 int btrfs_free_fs_root(struct btrfs_root *root)
574 {
575         if (root->node)
576                 free_extent_buffer(root->node);
577         if (root->commit_root)
578                 free_extent_buffer(root->commit_root);
579         kfree(root);
580         return 0;
581 }
582
583 static void __free_fs_root(struct rb_node *node)
584 {
585         struct btrfs_root *root;
586
587         root = container_of(node, struct btrfs_root, rb_node);
588         btrfs_free_fs_root(root);
589 }
590
591 FREE_RB_BASED_TREE(fs_roots, __free_fs_root);
592
593 struct btrfs_root *btrfs_read_fs_root_no_cache(struct btrfs_fs_info *fs_info,
594                                                struct btrfs_key *location)
595 {
596         struct btrfs_root *root;
597         struct btrfs_root *tree_root = fs_info->tree_root;
598         struct btrfs_path *path;
599         struct extent_buffer *l;
600         u64 generation;
601         u32 blocksize;
602         int ret = 0;
603
604         root = malloc(sizeof(*root));
605         if (!root)
606                 return ERR_PTR(-ENOMEM);
607         memset(root, 0, sizeof(*root));
608         if (location->offset == (u64)-1) {
609                 ret = find_and_setup_root(tree_root, fs_info,
610                                           location->objectid, root);
611                 if (ret) {
612                         free(root);
613                         return ERR_PTR(ret);
614                 }
615                 goto insert;
616         }
617
618         __setup_root(tree_root->nodesize, tree_root->leafsize,
619                      tree_root->sectorsize, tree_root->stripesize,
620                      root, fs_info, location->objectid);
621
622         path = btrfs_alloc_path();
623         BUG_ON(!path);
624         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
625         if (ret != 0) {
626                 if (ret > 0)
627                         ret = -ENOENT;
628                 goto out;
629         }
630         l = path->nodes[0];
631         read_extent_buffer(l, &root->root_item,
632                btrfs_item_ptr_offset(l, path->slots[0]),
633                sizeof(root->root_item));
634         memcpy(&root->root_key, location, sizeof(*location));
635         ret = 0;
636 out:
637         btrfs_release_path(path);
638         btrfs_free_path(path);
639         if (ret) {
640                 free(root);
641                 return ERR_PTR(ret);
642         }
643         generation = btrfs_root_generation(&root->root_item);
644         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
645         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
646                                      blocksize, generation);
647         BUG_ON(!root->node);
648 insert:
649         root->ref_cows = 1;
650         return root;
651 }
652
653 static int btrfs_fs_roots_compare_objectids(struct rb_node *node,
654                                             void *data)
655 {
656         u64 objectid = *((u64 *)data);
657         struct btrfs_root *root;
658
659         root = rb_entry(node, struct btrfs_root, rb_node);
660         if (objectid > root->objectid)
661                 return 1;
662         else if (objectid < root->objectid)
663                 return -1;
664         else
665                 return 0;
666 }
667
668 static int btrfs_fs_roots_compare_roots(struct rb_node *node1,
669                                         struct rb_node *node2)
670 {
671         struct btrfs_root *root;
672
673         root = rb_entry(node2, struct btrfs_root, rb_node);
674         return btrfs_fs_roots_compare_objectids(node1, (void *)&root->objectid);
675 }
676
677 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
678                                       struct btrfs_key *location)
679 {
680         struct btrfs_root *root;
681         struct rb_node *node;
682         int ret;
683
684         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
685                 return fs_info->tree_root;
686         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
687                 return fs_info->extent_root;
688         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
689                 return fs_info->chunk_root;
690         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
691                 return fs_info->dev_root;
692         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
693                 return fs_info->csum_root;
694
695         BUG_ON(location->objectid == BTRFS_TREE_RELOC_OBJECTID ||
696                location->offset != (u64)-1);
697
698         node = rb_search(&fs_info->fs_root_tree, (void *)&location->objectid,
699                          btrfs_fs_roots_compare_objectids, NULL);
700         if (node)
701                 return container_of(node, struct btrfs_root, rb_node);
702
703         root = btrfs_read_fs_root_no_cache(fs_info, location);
704         if (IS_ERR(root))
705                 return root;
706
707         ret = rb_insert(&fs_info->fs_root_tree, &root->rb_node,
708                         btrfs_fs_roots_compare_roots);
709         BUG_ON(ret);
710         return root;
711 }
712
713 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
714 {
715         free(fs_info->tree_root);
716         free(fs_info->extent_root);
717         free(fs_info->chunk_root);
718         free(fs_info->dev_root);
719         free(fs_info->csum_root);
720         free(fs_info->super_copy);
721         free(fs_info->log_root_tree);
722         free(fs_info);
723 }
724
725 struct btrfs_fs_info *btrfs_new_fs_info(int writable, u64 sb_bytenr)
726 {
727         struct btrfs_fs_info *fs_info;
728
729         fs_info = malloc(sizeof(struct btrfs_fs_info));
730         if (!fs_info)
731                 return NULL;
732
733         memset(fs_info, 0, sizeof(struct btrfs_fs_info));
734
735         fs_info->tree_root = malloc(sizeof(struct btrfs_root));
736         fs_info->extent_root = malloc(sizeof(struct btrfs_root));
737         fs_info->chunk_root = malloc(sizeof(struct btrfs_root));
738         fs_info->dev_root = malloc(sizeof(struct btrfs_root));
739         fs_info->csum_root = malloc(sizeof(struct btrfs_root));
740         fs_info->super_copy = malloc(BTRFS_SUPER_INFO_SIZE);
741
742         if (!fs_info->tree_root || !fs_info->extent_root ||
743             !fs_info->chunk_root || !fs_info->dev_root ||
744             !fs_info->csum_root || !fs_info->super_copy)
745                 goto free_all;
746
747         memset(fs_info->super_copy, 0, BTRFS_SUPER_INFO_SIZE);
748         memset(fs_info->tree_root, 0, sizeof(struct btrfs_root));
749         memset(fs_info->extent_root, 0, sizeof(struct btrfs_root));
750         memset(fs_info->chunk_root, 0, sizeof(struct btrfs_root));
751         memset(fs_info->dev_root, 0, sizeof(struct btrfs_root));
752         memset(fs_info->csum_root, 0, sizeof(struct btrfs_root));
753
754         extent_io_tree_init(&fs_info->extent_cache);
755         extent_io_tree_init(&fs_info->free_space_cache);
756         extent_io_tree_init(&fs_info->block_group_cache);
757         extent_io_tree_init(&fs_info->pinned_extents);
758         extent_io_tree_init(&fs_info->pending_del);
759         extent_io_tree_init(&fs_info->extent_ins);
760         fs_info->fs_root_tree = RB_ROOT;
761         cache_tree_init(&fs_info->mapping_tree.cache_tree);
762
763         mutex_init(&fs_info->fs_mutex);
764         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
765         INIT_LIST_HEAD(&fs_info->space_info);
766         INIT_LIST_HEAD(&fs_info->recow_ebs);
767
768         if (!writable)
769                 fs_info->readonly = 1;
770
771         fs_info->super_bytenr = sb_bytenr;
772         fs_info->data_alloc_profile = (u64)-1;
773         fs_info->metadata_alloc_profile = (u64)-1;
774         fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
775         return fs_info;
776 free_all:
777         btrfs_free_fs_info(fs_info);
778         return NULL;
779 }
780
781 int btrfs_check_fs_compatibility(struct btrfs_super_block *sb, int writable)
782 {
783         u64 features;
784
785         features = btrfs_super_incompat_flags(sb) &
786                    ~BTRFS_FEATURE_INCOMPAT_SUPP;
787         if (features) {
788                 printk("couldn't open because of unsupported "
789                        "option features (%Lx).\n",
790                        (unsigned long long)features);
791                 return -ENOTSUP;
792         }
793
794         features = btrfs_super_incompat_flags(sb);
795         if (!(features & BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF)) {
796                 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
797                 btrfs_set_super_incompat_flags(sb, features);
798         }
799
800         features = btrfs_super_compat_ro_flags(sb) &
801                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
802         if (writable && features) {
803                 printk("couldn't open RDWR because of unsupported "
804                        "option features (%Lx).\n",
805                        (unsigned long long)features);
806                 return -ENOTSUP;
807         }
808         return 0;
809 }
810
811 int btrfs_setup_all_roots(struct btrfs_fs_info *fs_info,
812                           u64 root_tree_bytenr, int partial)
813 {
814         struct btrfs_super_block *sb = fs_info->super_copy;
815         struct btrfs_root *root;
816         struct btrfs_key key;
817         u32 sectorsize;
818         u32 nodesize;
819         u32 leafsize;
820         u32 stripesize;
821         u64 generation;
822         u32 blocksize;
823         int ret;
824
825         nodesize = btrfs_super_nodesize(sb);
826         leafsize = btrfs_super_leafsize(sb);
827         sectorsize = btrfs_super_sectorsize(sb);
828         stripesize = btrfs_super_stripesize(sb);
829
830         root = fs_info->tree_root;
831         __setup_root(nodesize, leafsize, sectorsize, stripesize,
832                      root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
833         blocksize = btrfs_level_size(root, btrfs_super_root_level(sb));
834         generation = btrfs_super_generation(sb);
835
836         if (!root_tree_bytenr)
837                 root_tree_bytenr = btrfs_super_root(sb);
838         root->node = read_tree_block(root, root_tree_bytenr, blocksize,
839                                      generation);
840         if (!extent_buffer_uptodate(root->node)) {
841                 fprintf(stderr, "Couldn't read tree root\n");
842                 return -EIO;
843         }
844
845         ret = find_and_setup_root(root, fs_info, BTRFS_EXTENT_TREE_OBJECTID,
846                                   fs_info->extent_root);
847         if (ret) {
848                 printk("Couldn't setup extent tree\n");
849                 return -EIO;
850         }
851         fs_info->extent_root->track_dirty = 1;
852
853         ret = find_and_setup_root(root, fs_info, BTRFS_DEV_TREE_OBJECTID,
854                                   fs_info->dev_root);
855         if (ret) {
856                 printk("Couldn't setup device tree\n");
857                 return -EIO;
858         }
859         fs_info->dev_root->track_dirty = 1;
860
861         ret = find_and_setup_root(root, fs_info, BTRFS_CSUM_TREE_OBJECTID,
862                                   fs_info->csum_root);
863         if (ret) {
864                 printk("Couldn't setup csum tree\n");
865                 if (!partial)
866                         return -EIO;
867         }
868         fs_info->csum_root->track_dirty = 1;
869
870         ret = find_and_setup_log_root(root, fs_info, sb);
871         if (ret) {
872                 printk("Couldn't setup log root tree\n");
873                 return -EIO;
874         }
875
876         fs_info->generation = generation;
877         fs_info->last_trans_committed = generation;
878         btrfs_read_block_groups(fs_info->tree_root);
879
880         key.objectid = BTRFS_FS_TREE_OBJECTID;
881         key.type = BTRFS_ROOT_ITEM_KEY;
882         key.offset = (u64)-1;
883         fs_info->fs_root = btrfs_read_fs_root(fs_info, &key);
884
885         if (!fs_info->fs_root)
886                 return -EIO;
887         return 0;
888 }
889
890 void btrfs_release_all_roots(struct btrfs_fs_info *fs_info)
891 {
892         if (fs_info->csum_root)
893                 free_extent_buffer(fs_info->csum_root->node);
894         if (fs_info->dev_root)
895                 free_extent_buffer(fs_info->dev_root->node);
896         if (fs_info->extent_root)
897                 free_extent_buffer(fs_info->extent_root->node);
898         if (fs_info->tree_root)
899                 free_extent_buffer(fs_info->tree_root->node);
900         if (fs_info->log_root_tree)
901                 free_extent_buffer(fs_info->log_root_tree->node);
902         if (fs_info->chunk_root)
903                 free_extent_buffer(fs_info->chunk_root->node);
904 }
905
906 static void free_map_lookup(struct cache_extent *ce)
907 {
908         struct map_lookup *map;
909
910         map = container_of(ce, struct map_lookup, ce);
911         kfree(map);
912 }
913
914 FREE_EXTENT_CACHE_BASED_TREE(mapping_cache, free_map_lookup);
915
916 void btrfs_cleanup_all_caches(struct btrfs_fs_info *fs_info)
917 {
918         while (!list_empty(&fs_info->recow_ebs)) {
919                 struct extent_buffer *eb;
920                 eb = list_first_entry(&fs_info->recow_ebs,
921                                       struct extent_buffer, recow);
922                 list_del_init(&eb->recow);
923                 free_extent_buffer(eb);
924         }
925         free_mapping_cache_tree(&fs_info->mapping_tree.cache_tree);
926         extent_io_tree_cleanup(&fs_info->extent_cache);
927         extent_io_tree_cleanup(&fs_info->free_space_cache);
928         extent_io_tree_cleanup(&fs_info->block_group_cache);
929         extent_io_tree_cleanup(&fs_info->pinned_extents);
930         extent_io_tree_cleanup(&fs_info->pending_del);
931         extent_io_tree_cleanup(&fs_info->extent_ins);
932 }
933
934 int btrfs_scan_fs_devices(int fd, const char *path,
935                           struct btrfs_fs_devices **fs_devices,
936                           u64 sb_bytenr, int run_ioctl)
937 {
938         u64 total_devs;
939         int ret;
940         if (!sb_bytenr)
941                 sb_bytenr = BTRFS_SUPER_INFO_OFFSET;
942
943         ret = btrfs_scan_one_device(fd, path, fs_devices,
944                                     &total_devs, sb_bytenr);
945         if (ret) {
946                 fprintf(stderr, "No valid Btrfs found on %s\n", path);
947                 return ret;
948         }
949
950         if (total_devs != 1) {
951                 ret = btrfs_scan_for_fsid(run_ioctl);
952                 if (ret)
953                         return ret;
954         }
955         return 0;
956 }
957
958 int btrfs_setup_chunk_tree_and_device_map(struct btrfs_fs_info *fs_info)
959 {
960         struct btrfs_super_block *sb = fs_info->super_copy;
961         u32 sectorsize;
962         u32 nodesize;
963         u32 leafsize;
964         u32 blocksize;
965         u32 stripesize;
966         u64 generation;
967         int ret;
968
969         nodesize = btrfs_super_nodesize(sb);
970         leafsize = btrfs_super_leafsize(sb);
971         sectorsize = btrfs_super_sectorsize(sb);
972         stripesize = btrfs_super_stripesize(sb);
973
974         __setup_root(nodesize, leafsize, sectorsize, stripesize,
975                      fs_info->chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
976
977         ret = btrfs_read_sys_array(fs_info->chunk_root);
978         if (ret)
979                 return ret;
980
981         blocksize = btrfs_level_size(fs_info->chunk_root,
982                                      btrfs_super_chunk_root_level(sb));
983         generation = btrfs_super_chunk_root_generation(sb);
984
985         fs_info->chunk_root->node = read_tree_block(fs_info->chunk_root,
986                                                     btrfs_super_chunk_root(sb),
987                                                     blocksize, generation);
988         if (!fs_info->chunk_root->node ||
989             !extent_buffer_uptodate(fs_info->chunk_root->node)) {
990                 fprintf(stderr, "Couldn't read chunk root\n");
991                 return -EIO;
992         }
993
994         if (!(btrfs_super_flags(sb) & BTRFS_SUPER_FLAG_METADUMP)) {
995                 ret = btrfs_read_chunk_tree(fs_info->chunk_root);
996                 if (ret) {
997                         fprintf(stderr, "Couldn't read chunk tree\n");
998                         return ret;
999                 }
1000         }
1001         return 0;
1002 }
1003
1004 static struct btrfs_fs_info *__open_ctree_fd(int fp, const char *path,
1005                                              u64 sb_bytenr,
1006                                              u64 root_tree_bytenr, int writes,
1007                                              int partial, int restore,
1008                                              int recover_super)
1009 {
1010         struct btrfs_fs_info *fs_info;
1011         struct btrfs_super_block *disk_super;
1012         struct btrfs_fs_devices *fs_devices = NULL;
1013         struct extent_buffer *eb;
1014         int ret;
1015
1016         if (sb_bytenr == 0)
1017                 sb_bytenr = BTRFS_SUPER_INFO_OFFSET;
1018
1019         /* try to drop all the caches */
1020         if (posix_fadvise(fp, 0, 0, POSIX_FADV_DONTNEED))
1021                 fprintf(stderr, "Warning, could not drop caches\n");
1022
1023         fs_info = btrfs_new_fs_info(writes, sb_bytenr);
1024         if (!fs_info) {
1025                 fprintf(stderr, "Failed to allocate memory for fs_info\n");
1026                 return NULL;
1027         }
1028         if (restore)
1029                 fs_info->on_restoring = 1;
1030
1031         ret = btrfs_scan_fs_devices(fp, path, &fs_devices, sb_bytenr,
1032                                     !recover_super);
1033         if (ret)
1034                 goto out;
1035
1036         fs_info->fs_devices = fs_devices;
1037         if (writes)
1038                 ret = btrfs_open_devices(fs_devices, O_RDWR);
1039         else
1040                 ret = btrfs_open_devices(fs_devices, O_RDONLY);
1041         if (ret)
1042                 goto out_devices;
1043
1044
1045         disk_super = fs_info->super_copy;
1046         if (!recover_super)
1047                 ret = btrfs_read_dev_super(fs_devices->latest_bdev,
1048                                            disk_super, sb_bytenr);
1049         else
1050                 ret = btrfs_read_dev_super(fp, disk_super, sb_bytenr);
1051         if (ret) {
1052                 printk("No valid btrfs found\n");
1053                 goto out_devices;
1054         }
1055
1056         memcpy(fs_info->fsid, &disk_super->fsid, BTRFS_FSID_SIZE);
1057
1058         ret = btrfs_check_fs_compatibility(fs_info->super_copy, writes);
1059         if (ret)
1060                 goto out_devices;
1061
1062         ret = btrfs_setup_chunk_tree_and_device_map(fs_info);
1063         if (ret)
1064                 goto out_chunk;
1065
1066         eb = fs_info->chunk_root->node;
1067         read_extent_buffer(eb, fs_info->chunk_tree_uuid,
1068                            (unsigned long)btrfs_header_chunk_tree_uuid(eb),
1069                            BTRFS_UUID_SIZE);
1070
1071         ret = btrfs_setup_all_roots(fs_info, root_tree_bytenr, partial);
1072         if (ret)
1073                 goto out_failed;
1074
1075         return fs_info;
1076
1077 out_failed:
1078         if (partial)
1079                 return fs_info;
1080 out_chunk:
1081         btrfs_release_all_roots(fs_info);
1082         btrfs_cleanup_all_caches(fs_info);
1083 out_devices:
1084         btrfs_close_devices(fs_devices);
1085 out:
1086         btrfs_free_fs_info(fs_info);
1087         return NULL;
1088 }
1089
1090 struct btrfs_fs_info *open_ctree_fs_info_restore(const char *filename,
1091                                          u64 sb_bytenr, u64 root_tree_bytenr,
1092                                          int writes, int partial)
1093 {
1094         int fp;
1095         struct btrfs_fs_info *info;
1096         int flags = O_CREAT | O_RDWR;
1097         int restore = 1;
1098
1099         if (!writes)
1100                 flags = O_RDONLY;
1101
1102         fp = open(filename, flags, 0600);
1103         if (fp < 0) {
1104                 fprintf (stderr, "Could not open %s\n", filename);
1105                 return NULL;
1106         }
1107         info = __open_ctree_fd(fp, filename, sb_bytenr, root_tree_bytenr,
1108                                writes, partial, restore, 0);
1109         close(fp);
1110         return info;
1111 }
1112
1113 struct btrfs_fs_info *open_ctree_fs_info(const char *filename,
1114                                          u64 sb_bytenr, u64 root_tree_bytenr,
1115                                          int writes, int partial)
1116 {
1117         int fp;
1118         struct btrfs_fs_info *info;
1119         int flags = O_CREAT | O_RDWR;
1120
1121         if (!writes)
1122                 flags = O_RDONLY;
1123
1124         fp = open(filename, flags, 0600);
1125         if (fp < 0) {
1126                 fprintf (stderr, "Could not open %s\n", filename);
1127                 return NULL;
1128         }
1129         info = __open_ctree_fd(fp, filename, sb_bytenr, root_tree_bytenr,
1130                                writes, partial, 0, 0);
1131         close(fp);
1132         return info;
1133 }
1134
1135 struct btrfs_root *open_ctree_with_broken_super(const char *filename,
1136                                         u64 sb_bytenr, int writes)
1137 {
1138         int fp;
1139         struct btrfs_fs_info *info;
1140         int flags = O_CREAT | O_RDWR;
1141
1142         if (!writes)
1143                 flags = O_RDONLY;
1144
1145         fp = open(filename, flags, 0600);
1146         if (fp < 0) {
1147                 fprintf(stderr, "Could not open %s\n", filename);
1148                 return NULL;
1149         }
1150         info = __open_ctree_fd(fp, filename, sb_bytenr, 0,
1151                                writes, 0, 0, 1);
1152         close(fp);
1153         if (info)
1154                 return info->fs_root;
1155         return NULL;
1156 }
1157
1158 struct btrfs_root *open_ctree(const char *filename, u64 sb_bytenr, int writes)
1159 {
1160         struct btrfs_fs_info *info;
1161
1162         info = open_ctree_fs_info(filename, sb_bytenr, 0, writes, 0);
1163         if (!info)
1164                 return NULL;
1165         return info->fs_root;
1166 }
1167
1168 struct btrfs_root *open_ctree_fd(int fp, const char *path, u64 sb_bytenr,
1169                                  int writes)
1170 {
1171         struct btrfs_fs_info *info;
1172         info = __open_ctree_fd(fp, path, sb_bytenr, 0, writes, 0, 0, 0);
1173         if (!info)
1174                 return NULL;
1175         return info->fs_root;
1176 }
1177
1178 int btrfs_read_dev_super(int fd, struct btrfs_super_block *sb, u64 sb_bytenr)
1179 {
1180         u8 fsid[BTRFS_FSID_SIZE];
1181         int fsid_is_initialized = 0;
1182         struct btrfs_super_block buf;
1183         int i;
1184         int ret;
1185         u64 transid = 0;
1186         u64 bytenr;
1187
1188         if (sb_bytenr != BTRFS_SUPER_INFO_OFFSET) {
1189                 ret = pread64(fd, &buf, sizeof(buf), sb_bytenr);
1190                 if (ret < sizeof(buf))
1191                         return -1;
1192
1193                 if (btrfs_super_bytenr(&buf) != sb_bytenr ||
1194                     btrfs_super_magic(&buf) != BTRFS_MAGIC)
1195                         return -1;
1196
1197                 memcpy(sb, &buf, sizeof(*sb));
1198                 return 0;
1199         }
1200
1201         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1202                 bytenr = btrfs_sb_offset(i);
1203                 ret = pread64(fd, &buf, sizeof(buf), bytenr);
1204                 if (ret < sizeof(buf))
1205                         break;
1206
1207                 if (btrfs_super_bytenr(&buf) != bytenr )
1208                         continue;
1209                 /* if magic is NULL, the device was removed */
1210                 if (btrfs_super_magic(&buf) == 0 && i == 0)
1211                         return -1;
1212                 if (btrfs_super_magic(&buf) != BTRFS_MAGIC)
1213                         continue;
1214
1215                 if (!fsid_is_initialized) {
1216                         memcpy(fsid, buf.fsid, sizeof(fsid));
1217                         fsid_is_initialized = 1;
1218                 } else if (memcmp(fsid, buf.fsid, sizeof(fsid))) {
1219                         /*
1220                          * the superblocks (the original one and
1221                          * its backups) contain data of different
1222                          * filesystems -> the super cannot be trusted
1223                          */
1224                         continue;
1225                 }
1226
1227                 if (btrfs_super_generation(&buf) > transid) {
1228                         memcpy(sb, &buf, sizeof(*sb));
1229                         transid = btrfs_super_generation(&buf);
1230                 }
1231         }
1232
1233         return transid > 0 ? 0 : -1;
1234 }
1235
1236 static int write_dev_supers(struct btrfs_root *root,
1237                             struct btrfs_super_block *sb,
1238                             struct btrfs_device *device)
1239 {
1240         u64 bytenr;
1241         u32 crc;
1242         int i, ret;
1243
1244         if (root->fs_info->super_bytenr != BTRFS_SUPER_INFO_OFFSET) {
1245                 btrfs_set_super_bytenr(sb, root->fs_info->super_bytenr);
1246                 crc = ~(u32)0;
1247                 crc = btrfs_csum_data(NULL, (char *)sb + BTRFS_CSUM_SIZE, crc,
1248                                       BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
1249                 btrfs_csum_final(crc, (char *)&sb->csum[0]);
1250
1251                 /*
1252                  * super_copy is BTRFS_SUPER_INFO_SIZE bytes and is
1253                  * zero filled, we can use it directly
1254                  */
1255                 ret = pwrite64(device->fd, root->fs_info->super_copy,
1256                                 BTRFS_SUPER_INFO_SIZE,
1257                                 root->fs_info->super_bytenr);
1258                 BUG_ON(ret != BTRFS_SUPER_INFO_SIZE);
1259                 return 0;
1260         }
1261
1262         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1263                 bytenr = btrfs_sb_offset(i);
1264                 if (bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
1265                         break;
1266
1267                 btrfs_set_super_bytenr(sb, bytenr);
1268
1269                 crc = ~(u32)0;
1270                 crc = btrfs_csum_data(NULL, (char *)sb + BTRFS_CSUM_SIZE, crc,
1271                                       BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
1272                 btrfs_csum_final(crc, (char *)&sb->csum[0]);
1273
1274                 /*
1275                  * super_copy is BTRFS_SUPER_INFO_SIZE bytes and is
1276                  * zero filled, we can use it directly
1277                  */
1278                 ret = pwrite64(device->fd, root->fs_info->super_copy,
1279                                 BTRFS_SUPER_INFO_SIZE, bytenr);
1280                 BUG_ON(ret != BTRFS_SUPER_INFO_SIZE);
1281         }
1282
1283         return 0;
1284 }
1285
1286 int write_all_supers(struct btrfs_root *root)
1287 {
1288         struct list_head *cur;
1289         struct list_head *head = &root->fs_info->fs_devices->devices;
1290         struct btrfs_device *dev;
1291         struct btrfs_super_block *sb;
1292         struct btrfs_dev_item *dev_item;
1293         int ret;
1294         u64 flags;
1295
1296         sb = root->fs_info->super_copy;
1297         dev_item = &sb->dev_item;
1298         list_for_each(cur, head) {
1299                 dev = list_entry(cur, struct btrfs_device, dev_list);
1300                 if (!dev->writeable)
1301                         continue;
1302
1303                 btrfs_set_stack_device_generation(dev_item, 0);
1304                 btrfs_set_stack_device_type(dev_item, dev->type);
1305                 btrfs_set_stack_device_id(dev_item, dev->devid);
1306                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
1307                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
1308                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
1309                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
1310                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
1311                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
1312                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
1313
1314                 flags = btrfs_super_flags(sb);
1315                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
1316
1317                 ret = write_dev_supers(root, sb, dev);
1318                 BUG_ON(ret);
1319         }
1320         return 0;
1321 }
1322
1323 int write_ctree_super(struct btrfs_trans_handle *trans,
1324                       struct btrfs_root *root)
1325 {
1326         int ret;
1327         struct btrfs_root *tree_root = root->fs_info->tree_root;
1328         struct btrfs_root *chunk_root = root->fs_info->chunk_root;
1329
1330         if (root->fs_info->readonly)
1331                 return 0;
1332
1333         btrfs_set_super_generation(root->fs_info->super_copy,
1334                                    trans->transid);
1335         btrfs_set_super_root(root->fs_info->super_copy,
1336                              tree_root->node->start);
1337         btrfs_set_super_root_level(root->fs_info->super_copy,
1338                                    btrfs_header_level(tree_root->node));
1339         btrfs_set_super_chunk_root(root->fs_info->super_copy,
1340                                    chunk_root->node->start);
1341         btrfs_set_super_chunk_root_level(root->fs_info->super_copy,
1342                                          btrfs_header_level(chunk_root->node));
1343         btrfs_set_super_chunk_root_generation(root->fs_info->super_copy,
1344                                 btrfs_header_generation(chunk_root->node));
1345
1346         ret = write_all_supers(root);
1347         if (ret)
1348                 fprintf(stderr, "failed to write new super block err %d\n", ret);
1349         return ret;
1350 }
1351
1352 int close_ctree(struct btrfs_root *root)
1353 {
1354         int ret;
1355         struct btrfs_trans_handle *trans;
1356         struct btrfs_fs_info *fs_info = root->fs_info;
1357
1358         if (fs_info->last_trans_committed !=
1359             fs_info->generation) {
1360                 trans = btrfs_start_transaction(root, 1);
1361                 btrfs_commit_transaction(trans, root);
1362                 trans = btrfs_start_transaction(root, 1);
1363                 ret = commit_tree_roots(trans, fs_info);
1364                 BUG_ON(ret);
1365                 ret = __commit_transaction(trans, root);
1366                 BUG_ON(ret);
1367                 write_ctree_super(trans, root);
1368                 btrfs_free_transaction(root, trans);
1369         }
1370         btrfs_free_block_groups(fs_info);
1371
1372         free_fs_roots_tree(&fs_info->fs_root_tree);
1373
1374         btrfs_release_all_roots(fs_info);
1375         btrfs_close_devices(fs_info->fs_devices);
1376         btrfs_cleanup_all_caches(fs_info);
1377         btrfs_free_fs_info(fs_info);
1378         return 0;
1379 }
1380
1381 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1382                      struct extent_buffer *eb)
1383 {
1384         return clear_extent_buffer_dirty(eb);
1385 }
1386
1387 int wait_on_tree_block_writeback(struct btrfs_root *root,
1388                                  struct extent_buffer *eb)
1389 {
1390         return 0;
1391 }
1392
1393 void btrfs_mark_buffer_dirty(struct extent_buffer *eb)
1394 {
1395         set_extent_buffer_dirty(eb);
1396 }
1397
1398 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
1399 {
1400         int ret;
1401
1402         ret = extent_buffer_uptodate(buf);
1403         if (!ret)
1404                 return ret;
1405
1406         ret = verify_parent_transid(buf->tree, buf, parent_transid, 1);
1407         return !ret;
1408 }
1409
1410 int btrfs_set_buffer_uptodate(struct extent_buffer *eb)
1411 {
1412         return set_extent_buffer_uptodate(eb);
1413 }