Btrfs-progs: remove global transaction from fsck
[platform/upstream/btrfs-progs.git] / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <stdio.h>
20 #include <stdlib.h>
21 #include <sys/types.h>
22 #include <sys/stat.h>
23 #include <fcntl.h>
24 #include <unistd.h>
25 #include "kerncompat.h"
26 #include "radix-tree.h"
27 #include "ctree.h"
28 #include "disk-io.h"
29 #include "volumes.h"
30 #include "transaction.h"
31 #include "crc32c.h"
32 #include "utils.h"
33 #include "print-tree.h"
34 #include "rbtree-utils.h"
35
36 static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf)
37 {
38
39         struct btrfs_fs_devices *fs_devices;
40         int ret = 1;
41
42         if (buf->start != btrfs_header_bytenr(buf)) {
43                 printk("Check tree block failed, want=%Lu, have=%Lu\n",
44                        buf->start, btrfs_header_bytenr(buf));
45                 return ret;
46         }
47
48         fs_devices = root->fs_info->fs_devices;
49         while (fs_devices) {
50                 if (!memcmp_extent_buffer(buf, fs_devices->fsid,
51                                           btrfs_header_fsid(),
52                                           BTRFS_FSID_SIZE)) {
53                         ret = 0;
54                         break;
55                 }
56                 fs_devices = fs_devices->seed;
57         }
58         return ret;
59 }
60
61 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
62 {
63         return crc32c(seed, data, len);
64 }
65
66 void btrfs_csum_final(u32 crc, char *result)
67 {
68         *(__le32 *)result = ~cpu_to_le32(crc);
69 }
70
71 static int __csum_tree_block_size(struct extent_buffer *buf, u16 csum_size,
72                                   int verify, int silent)
73 {
74         char *result;
75         u32 len;
76         u32 crc = ~(u32)0;
77
78         result = malloc(csum_size * sizeof(char));
79         if (!result)
80                 return 1;
81
82         len = buf->len - BTRFS_CSUM_SIZE;
83         crc = crc32c(crc, buf->data + BTRFS_CSUM_SIZE, len);
84         btrfs_csum_final(crc, result);
85
86         if (verify) {
87                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
88                         if (!silent)
89                                 printk("checksum verify failed on %llu found %08X wanted %08X\n",
90                                        (unsigned long long)buf->start,
91                                        *((u32 *)result),
92                                        *((u32*)(char *)buf->data));
93                         free(result);
94                         return 1;
95                 }
96         } else {
97                 write_extent_buffer(buf, result, 0, csum_size);
98         }
99         free(result);
100         return 0;
101 }
102
103 int csum_tree_block_size(struct extent_buffer *buf, u16 csum_size, int verify)
104 {
105         return __csum_tree_block_size(buf, csum_size, verify, 0);
106 }
107
108 int verify_tree_block_csum_silent(struct extent_buffer *buf, u16 csum_size)
109 {
110         return __csum_tree_block_size(buf, csum_size, 1, 1);
111 }
112
113 int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
114                            int verify)
115 {
116         u16 csum_size =
117                 btrfs_super_csum_size(root->fs_info->super_copy);
118         return csum_tree_block_size(buf, csum_size, verify);
119 }
120
121 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
122                                             u64 bytenr, u32 blocksize)
123 {
124         return find_extent_buffer(&root->fs_info->extent_cache,
125                                   bytenr, blocksize);
126 }
127
128 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
129                                                  u64 bytenr, u32 blocksize)
130 {
131         return alloc_extent_buffer(&root->fs_info->extent_cache, bytenr,
132                                    blocksize);
133 }
134
135 void readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
136                           u64 parent_transid)
137 {
138         struct extent_buffer *eb;
139         u64 length;
140         struct btrfs_multi_bio *multi = NULL;
141         struct btrfs_device *device;
142
143         eb = btrfs_find_tree_block(root, bytenr, blocksize);
144         if (!(eb && btrfs_buffer_uptodate(eb, parent_transid)) &&
145             !btrfs_map_block(&root->fs_info->mapping_tree, READ,
146                              bytenr, &length, &multi, 0, NULL)) {
147                 device = multi->stripes[0].dev;
148                 device->total_ios++;
149                 blocksize = min(blocksize, (u32)(64 * 1024));
150                 readahead(device->fd, multi->stripes[0].physical, blocksize);
151         }
152
153         free_extent_buffer(eb);
154         kfree(multi);
155 }
156
157 static int verify_parent_transid(struct extent_io_tree *io_tree,
158                                  struct extent_buffer *eb, u64 parent_transid,
159                                  int ignore)
160 {
161         int ret;
162
163         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
164                 return 0;
165
166         if (extent_buffer_uptodate(eb) &&
167             btrfs_header_generation(eb) == parent_transid) {
168                 ret = 0;
169                 goto out;
170         }
171         printk("parent transid verify failed on %llu wanted %llu found %llu\n",
172                (unsigned long long)eb->start,
173                (unsigned long long)parent_transid,
174                (unsigned long long)btrfs_header_generation(eb));
175         if (ignore) {
176                 eb->flags |= EXTENT_BAD_TRANSID;
177                 printk("Ignoring transid failure\n");
178                 return 0;
179         }
180
181         ret = 1;
182 out:
183         clear_extent_buffer_uptodate(io_tree, eb);
184         return ret;
185
186 }
187
188
189 int read_whole_eb(struct btrfs_fs_info *info, struct extent_buffer *eb, int mirror)
190 {
191         unsigned long offset = 0;
192         struct btrfs_multi_bio *multi = NULL;
193         struct btrfs_device *device;
194         int ret = 0;
195         u64 read_len;
196         unsigned long bytes_left = eb->len;
197
198         while (bytes_left) {
199                 read_len = bytes_left;
200                 device = NULL;
201
202                 if (!info->on_restoring &&
203                     eb->start != BTRFS_SUPER_INFO_OFFSET) {
204                         ret = btrfs_map_block(&info->mapping_tree, READ,
205                                               eb->start + offset, &read_len, &multi,
206                                               mirror, NULL);
207                         if (ret) {
208                                 printk("Couldn't map the block %Lu\n", eb->start + offset);
209                                 kfree(multi);
210                                 return -EIO;
211                         }
212                         device = multi->stripes[0].dev;
213
214                         if (device->fd == 0) {
215                                 kfree(multi);
216                                 return -EIO;
217                         }
218
219                         eb->fd = device->fd;
220                         device->total_ios++;
221                         eb->dev_bytenr = multi->stripes[0].physical;
222                         kfree(multi);
223                         multi = NULL;
224                 } else {
225                         /* special case for restore metadump */
226                         list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
227                                 if (device->devid == 1)
228                                         break;
229                         }
230
231                         eb->fd = device->fd;
232                         eb->dev_bytenr = eb->start;
233                         device->total_ios++;
234                 }
235
236                 if (read_len > bytes_left)
237                         read_len = bytes_left;
238
239                 ret = read_extent_from_disk(eb, offset, read_len);
240                 if (ret)
241                         return -EIO;
242                 offset += read_len;
243                 bytes_left -= read_len;
244         }
245         return 0;
246 }
247
248 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
249                                      u32 blocksize, u64 parent_transid)
250 {
251         int ret;
252         struct extent_buffer *eb;
253         u64 best_transid = 0;
254         int mirror_num = 0;
255         int good_mirror = 0;
256         int num_copies;
257         int ignore = 0;
258
259         eb = btrfs_find_create_tree_block(root, bytenr, blocksize);
260         if (!eb)
261                 return ERR_PTR(-ENOMEM);
262
263         if (btrfs_buffer_uptodate(eb, parent_transid))
264                 return eb;
265
266         while (1) {
267                 ret = read_whole_eb(root->fs_info, eb, mirror_num);
268                 if (ret == 0 && check_tree_block(root, eb) == 0 &&
269                     csum_tree_block(root, eb, 1) == 0 &&
270                     verify_parent_transid(eb->tree, eb, parent_transid, ignore)
271                     == 0) {
272                         if (eb->flags & EXTENT_BAD_TRANSID &&
273                             list_empty(&eb->recow)) {
274                                 list_add_tail(&eb->recow,
275                                               &root->fs_info->recow_ebs);
276                                 eb->refs++;
277                         }
278                         btrfs_set_buffer_uptodate(eb);
279                         return eb;
280                 }
281                 if (ignore) {
282                         if (check_tree_block(root, eb))
283                                 printk("read block failed check_tree_block\n");
284                         else
285                                 printk("Csum didn't match\n");
286                         ret = -EIO;
287                         break;
288                 }
289                 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
290                                               eb->start, eb->len);
291                 if (num_copies == 1) {
292                         ignore = 1;
293                         continue;
294                 }
295                 if (btrfs_header_generation(eb) > best_transid && mirror_num) {
296                         best_transid = btrfs_header_generation(eb);
297                         good_mirror = mirror_num;
298                 }
299                 mirror_num++;
300                 if (mirror_num > num_copies) {
301                         mirror_num = good_mirror;
302                         ignore = 1;
303                         continue;
304                 }
305         }
306         free_extent_buffer(eb);
307         return ERR_PTR(ret);
308 }
309
310 int write_and_map_eb(struct btrfs_trans_handle *trans,
311                      struct btrfs_root *root,
312                      struct extent_buffer *eb)
313 {
314         int ret;
315         int dev_nr;
316         u64 length;
317         u64 *raid_map = NULL;
318         struct btrfs_multi_bio *multi = NULL;
319
320         dev_nr = 0;
321         length = eb->len;
322         ret = btrfs_map_block(&root->fs_info->mapping_tree, WRITE,
323                               eb->start, &length, &multi, 0, &raid_map);
324
325         if (raid_map) {
326                 ret = write_raid56_with_parity(root->fs_info, eb, multi,
327                                                length, raid_map);
328                 BUG_ON(ret);
329         } else while (dev_nr < multi->num_stripes) {
330                 BUG_ON(ret);
331                 eb->fd = multi->stripes[dev_nr].dev->fd;
332                 eb->dev_bytenr = multi->stripes[dev_nr].physical;
333                 multi->stripes[dev_nr].dev->total_ios++;
334                 dev_nr++;
335                 ret = write_extent_to_disk(eb);
336                 BUG_ON(ret);
337         }
338         kfree(multi);
339         return 0;
340 }
341
342 static int write_tree_block(struct btrfs_trans_handle *trans,
343                      struct btrfs_root *root,
344                      struct extent_buffer *eb)
345 {
346         if (check_tree_block(root, eb))
347                 BUG();
348
349         if (!btrfs_buffer_uptodate(eb, trans->transid))
350                 BUG();
351
352         btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
353         csum_tree_block(root, eb, 0);
354
355         return write_and_map_eb(trans, root, eb);
356 }
357
358 int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
359                         u32 stripesize, struct btrfs_root *root,
360                         struct btrfs_fs_info *fs_info, u64 objectid)
361 {
362         root->node = NULL;
363         root->commit_root = NULL;
364         root->sectorsize = sectorsize;
365         root->nodesize = nodesize;
366         root->leafsize = leafsize;
367         root->stripesize = stripesize;
368         root->ref_cows = 0;
369         root->track_dirty = 0;
370
371         root->fs_info = fs_info;
372         root->objectid = objectid;
373         root->last_trans = 0;
374         root->highest_inode = 0;
375         root->last_inode_alloc = 0;
376
377         INIT_LIST_HEAD(&root->dirty_list);
378         INIT_LIST_HEAD(&root->orphan_data_extents);
379         memset(&root->root_key, 0, sizeof(root->root_key));
380         memset(&root->root_item, 0, sizeof(root->root_item));
381         root->root_key.objectid = objectid;
382         return 0;
383 }
384
385 static int update_cowonly_root(struct btrfs_trans_handle *trans,
386                                struct btrfs_root *root)
387 {
388         int ret;
389         u64 old_root_bytenr;
390         struct btrfs_root *tree_root = root->fs_info->tree_root;
391
392         btrfs_write_dirty_block_groups(trans, root);
393         while(1) {
394                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
395                 if (old_root_bytenr == root->node->start)
396                         break;
397                 btrfs_set_root_bytenr(&root->root_item,
398                                        root->node->start);
399                 btrfs_set_root_generation(&root->root_item,
400                                           trans->transid);
401                 root->root_item.level = btrfs_header_level(root->node);
402                 ret = btrfs_update_root(trans, tree_root,
403                                         &root->root_key,
404                                         &root->root_item);
405                 BUG_ON(ret);
406                 btrfs_write_dirty_block_groups(trans, root);
407         }
408         return 0;
409 }
410
411 static int commit_tree_roots(struct btrfs_trans_handle *trans,
412                              struct btrfs_fs_info *fs_info)
413 {
414         struct btrfs_root *root;
415         struct list_head *next;
416         struct extent_buffer *eb;
417         int ret;
418
419         if (fs_info->readonly)
420                 return 0;
421
422         eb = fs_info->tree_root->node;
423         extent_buffer_get(eb);
424         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
425         free_extent_buffer(eb);
426         if (ret)
427                 return ret;
428
429         while(!list_empty(&fs_info->dirty_cowonly_roots)) {
430                 next = fs_info->dirty_cowonly_roots.next;
431                 list_del_init(next);
432                 root = list_entry(next, struct btrfs_root, dirty_list);
433                 update_cowonly_root(trans, root);
434                 free_extent_buffer(root->commit_root);
435                 root->commit_root = NULL;
436         }
437
438         return 0;
439 }
440
441 static int __commit_transaction(struct btrfs_trans_handle *trans,
442                                 struct btrfs_root *root)
443 {
444         u64 start;
445         u64 end;
446         struct extent_buffer *eb;
447         struct extent_io_tree *tree = &root->fs_info->extent_cache;
448         int ret;
449
450         while(1) {
451                 ret = find_first_extent_bit(tree, 0, &start, &end,
452                                             EXTENT_DIRTY);
453                 if (ret)
454                         break;
455                 while(start <= end) {
456                         eb = find_first_extent_buffer(tree, start);
457                         BUG_ON(!eb || eb->start != start);
458                         ret = write_tree_block(trans, root, eb);
459                         BUG_ON(ret);
460                         start += eb->len;
461                         clear_extent_buffer_dirty(eb);
462                         free_extent_buffer(eb);
463                 }
464         }
465         return 0;
466 }
467
468 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
469                              struct btrfs_root *root)
470 {
471         u64 transid = trans->transid;
472         int ret = 0;
473         struct btrfs_fs_info *fs_info = root->fs_info;
474
475         if (root->commit_root == root->node)
476                 goto commit_tree;
477         if (root == root->fs_info->tree_root)
478                 goto commit_tree;
479
480         free_extent_buffer(root->commit_root);
481         root->commit_root = NULL;
482
483         btrfs_set_root_bytenr(&root->root_item, root->node->start);
484         btrfs_set_root_generation(&root->root_item, trans->transid);
485         root->root_item.level = btrfs_header_level(root->node);
486         ret = btrfs_update_root(trans, root->fs_info->tree_root,
487                                 &root->root_key, &root->root_item);
488         BUG_ON(ret);
489 commit_tree:
490         ret = commit_tree_roots(trans, fs_info);
491         BUG_ON(ret);
492         ret = __commit_transaction(trans, root);
493         BUG_ON(ret);
494         write_ctree_super(trans, root);
495         btrfs_finish_extent_commit(trans, fs_info->extent_root,
496                                    &fs_info->pinned_extents);
497         btrfs_free_transaction(root, trans);
498         free_extent_buffer(root->commit_root);
499         root->commit_root = NULL;
500         fs_info->running_transaction = NULL;
501         fs_info->last_trans_committed = transid;
502         return 0;
503 }
504
505 static int find_and_setup_root(struct btrfs_root *tree_root,
506                                struct btrfs_fs_info *fs_info,
507                                u64 objectid, struct btrfs_root *root)
508 {
509         int ret;
510         u32 blocksize;
511         u64 generation;
512
513         __setup_root(tree_root->nodesize, tree_root->leafsize,
514                      tree_root->sectorsize, tree_root->stripesize,
515                      root, fs_info, objectid);
516         ret = btrfs_find_last_root(tree_root, objectid,
517                                    &root->root_item, &root->root_key);
518         if (ret)
519                 return ret;
520
521         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
522         generation = btrfs_root_generation(&root->root_item);
523         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
524                                      blocksize, generation);
525         if (!extent_buffer_uptodate(root->node))
526                 return -EIO;
527
528         return 0;
529 }
530
531 static int find_and_setup_log_root(struct btrfs_root *tree_root,
532                                struct btrfs_fs_info *fs_info,
533                                struct btrfs_super_block *disk_super)
534 {
535         u32 blocksize;
536         u64 blocknr = btrfs_super_log_root(disk_super);
537         struct btrfs_root *log_root = malloc(sizeof(struct btrfs_root));
538
539         if (!log_root)
540                 return -ENOMEM;
541
542         if (blocknr == 0) {
543                 free(log_root);
544                 return 0;
545         }
546
547         blocksize = btrfs_level_size(tree_root,
548                              btrfs_super_log_root_level(disk_super));
549
550         __setup_root(tree_root->nodesize, tree_root->leafsize,
551                      tree_root->sectorsize, tree_root->stripesize,
552                      log_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
553
554         log_root->node = read_tree_block(tree_root, blocknr,
555                                      blocksize,
556                                      btrfs_super_generation(disk_super) + 1);
557
558         fs_info->log_root_tree = log_root;
559
560         if (!extent_buffer_uptodate(log_root->node)) {
561                 free_extent_buffer(log_root->node);
562                 free(log_root);
563                 fs_info->log_root_tree = NULL;
564                 return -EIO;
565         }
566
567         return 0;
568 }
569
570 int btrfs_free_fs_root(struct btrfs_root *root)
571 {
572         if (root->node)
573                 free_extent_buffer(root->node);
574         if (root->commit_root)
575                 free_extent_buffer(root->commit_root);
576         kfree(root);
577         return 0;
578 }
579
580 static void __free_fs_root(struct rb_node *node)
581 {
582         struct btrfs_root *root;
583
584         root = container_of(node, struct btrfs_root, rb_node);
585         btrfs_free_fs_root(root);
586 }
587
588 FREE_RB_BASED_TREE(fs_roots, __free_fs_root);
589
590 struct btrfs_root *btrfs_read_fs_root_no_cache(struct btrfs_fs_info *fs_info,
591                                                struct btrfs_key *location)
592 {
593         struct btrfs_root *root;
594         struct btrfs_root *tree_root = fs_info->tree_root;
595         struct btrfs_path *path;
596         struct extent_buffer *l;
597         u64 generation;
598         u32 blocksize;
599         int ret = 0;
600
601         root = malloc(sizeof(*root));
602         if (!root)
603                 return ERR_PTR(-ENOMEM);
604         memset(root, 0, sizeof(*root));
605         if (location->offset == (u64)-1) {
606                 ret = find_and_setup_root(tree_root, fs_info,
607                                           location->objectid, root);
608                 if (ret) {
609                         free(root);
610                         return ERR_PTR(ret);
611                 }
612                 goto insert;
613         }
614
615         __setup_root(tree_root->nodesize, tree_root->leafsize,
616                      tree_root->sectorsize, tree_root->stripesize,
617                      root, fs_info, location->objectid);
618
619         path = btrfs_alloc_path();
620         BUG_ON(!path);
621         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
622         if (ret != 0) {
623                 if (ret > 0)
624                         ret = -ENOENT;
625                 goto out;
626         }
627         l = path->nodes[0];
628         read_extent_buffer(l, &root->root_item,
629                btrfs_item_ptr_offset(l, path->slots[0]),
630                sizeof(root->root_item));
631         memcpy(&root->root_key, location, sizeof(*location));
632         ret = 0;
633 out:
634         btrfs_free_path(path);
635         if (ret) {
636                 free(root);
637                 return ERR_PTR(ret);
638         }
639         generation = btrfs_root_generation(&root->root_item);
640         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
641         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
642                                      blocksize, generation);
643         if (!extent_buffer_uptodate(root->node)) {
644                 free(root);
645                 return ERR_PTR(-EIO);
646         }
647 insert:
648         root->ref_cows = 1;
649         return root;
650 }
651
652 static int btrfs_fs_roots_compare_objectids(struct rb_node *node,
653                                             void *data)
654 {
655         u64 objectid = *((u64 *)data);
656         struct btrfs_root *root;
657
658         root = rb_entry(node, struct btrfs_root, rb_node);
659         if (objectid > root->objectid)
660                 return 1;
661         else if (objectid < root->objectid)
662                 return -1;
663         else
664                 return 0;
665 }
666
667 static int btrfs_fs_roots_compare_roots(struct rb_node *node1,
668                                         struct rb_node *node2)
669 {
670         struct btrfs_root *root;
671
672         root = rb_entry(node2, struct btrfs_root, rb_node);
673         return btrfs_fs_roots_compare_objectids(node1, (void *)&root->objectid);
674 }
675
676 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
677                                       struct btrfs_key *location)
678 {
679         struct btrfs_root *root;
680         struct rb_node *node;
681         int ret;
682         u64 objectid = location->objectid;
683
684         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
685                 return fs_info->tree_root;
686         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
687                 return fs_info->extent_root;
688         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
689                 return fs_info->chunk_root;
690         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
691                 return fs_info->dev_root;
692         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
693                 return fs_info->csum_root;
694         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
695                 return fs_info->quota_root;
696
697         BUG_ON(location->objectid == BTRFS_TREE_RELOC_OBJECTID ||
698                location->offset != (u64)-1);
699
700         node = rb_search(&fs_info->fs_root_tree, (void *)&objectid,
701                          btrfs_fs_roots_compare_objectids, NULL);
702         if (node)
703                 return container_of(node, struct btrfs_root, rb_node);
704
705         root = btrfs_read_fs_root_no_cache(fs_info, location);
706         if (IS_ERR(root))
707                 return root;
708
709         ret = rb_insert(&fs_info->fs_root_tree, &root->rb_node,
710                         btrfs_fs_roots_compare_roots);
711         BUG_ON(ret);
712         return root;
713 }
714
715 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
716 {
717         free(fs_info->tree_root);
718         free(fs_info->extent_root);
719         free(fs_info->chunk_root);
720         free(fs_info->dev_root);
721         free(fs_info->csum_root);
722         free(fs_info->quota_root);
723         free(fs_info->super_copy);
724         free(fs_info->log_root_tree);
725         free(fs_info);
726 }
727
728 struct btrfs_fs_info *btrfs_new_fs_info(int writable, u64 sb_bytenr)
729 {
730         struct btrfs_fs_info *fs_info;
731
732         fs_info = malloc(sizeof(struct btrfs_fs_info));
733         if (!fs_info)
734                 return NULL;
735
736         memset(fs_info, 0, sizeof(struct btrfs_fs_info));
737
738         fs_info->tree_root = malloc(sizeof(struct btrfs_root));
739         fs_info->extent_root = malloc(sizeof(struct btrfs_root));
740         fs_info->chunk_root = malloc(sizeof(struct btrfs_root));
741         fs_info->dev_root = malloc(sizeof(struct btrfs_root));
742         fs_info->csum_root = malloc(sizeof(struct btrfs_root));
743         fs_info->quota_root = malloc(sizeof(struct btrfs_root));
744         fs_info->super_copy = malloc(BTRFS_SUPER_INFO_SIZE);
745
746         if (!fs_info->tree_root || !fs_info->extent_root ||
747             !fs_info->chunk_root || !fs_info->dev_root ||
748             !fs_info->csum_root || !fs_info->quota_root ||
749             !fs_info->super_copy)
750                 goto free_all;
751
752         memset(fs_info->super_copy, 0, BTRFS_SUPER_INFO_SIZE);
753         memset(fs_info->tree_root, 0, sizeof(struct btrfs_root));
754         memset(fs_info->extent_root, 0, sizeof(struct btrfs_root));
755         memset(fs_info->chunk_root, 0, sizeof(struct btrfs_root));
756         memset(fs_info->dev_root, 0, sizeof(struct btrfs_root));
757         memset(fs_info->csum_root, 0, sizeof(struct btrfs_root));
758         memset(fs_info->quota_root, 0, sizeof(struct btrfs_root));
759
760         extent_io_tree_init(&fs_info->extent_cache);
761         extent_io_tree_init(&fs_info->free_space_cache);
762         extent_io_tree_init(&fs_info->block_group_cache);
763         extent_io_tree_init(&fs_info->pinned_extents);
764         extent_io_tree_init(&fs_info->pending_del);
765         extent_io_tree_init(&fs_info->extent_ins);
766         fs_info->excluded_extents = NULL;
767
768         fs_info->fs_root_tree = RB_ROOT;
769         cache_tree_init(&fs_info->mapping_tree.cache_tree);
770
771         mutex_init(&fs_info->fs_mutex);
772         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
773         INIT_LIST_HEAD(&fs_info->space_info);
774         INIT_LIST_HEAD(&fs_info->recow_ebs);
775
776         if (!writable)
777                 fs_info->readonly = 1;
778
779         fs_info->super_bytenr = sb_bytenr;
780         fs_info->data_alloc_profile = (u64)-1;
781         fs_info->metadata_alloc_profile = (u64)-1;
782         fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
783         return fs_info;
784 free_all:
785         btrfs_free_fs_info(fs_info);
786         return NULL;
787 }
788
789 int btrfs_check_fs_compatibility(struct btrfs_super_block *sb, int writable)
790 {
791         u64 features;
792
793         features = btrfs_super_incompat_flags(sb) &
794                    ~BTRFS_FEATURE_INCOMPAT_SUPP;
795         if (features) {
796                 printk("couldn't open because of unsupported "
797                        "option features (%Lx).\n",
798                        (unsigned long long)features);
799                 return -ENOTSUP;
800         }
801
802         features = btrfs_super_incompat_flags(sb);
803         if (!(features & BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF)) {
804                 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
805                 btrfs_set_super_incompat_flags(sb, features);
806         }
807
808         features = btrfs_super_compat_ro_flags(sb) &
809                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
810         if (writable && features) {
811                 printk("couldn't open RDWR because of unsupported "
812                        "option features (%Lx).\n",
813                        (unsigned long long)features);
814                 return -ENOTSUP;
815         }
816         return 0;
817 }
818
819 static int find_best_backup_root(struct btrfs_super_block *super)
820 {
821         struct btrfs_root_backup *backup;
822         u64 orig_gen = btrfs_super_generation(super);
823         u64 gen = 0;
824         int best_index = 0;
825         int i;
826
827         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
828                 backup = super->super_roots + i;
829                 if (btrfs_backup_tree_root_gen(backup) != orig_gen &&
830                     btrfs_backup_tree_root_gen(backup) > gen) {
831                         best_index = i;
832                         gen = btrfs_backup_tree_root_gen(backup);
833                 }
834         }
835         return best_index;
836 }
837
838 static int setup_root_or_create_block(struct btrfs_fs_info *fs_info,
839                                       enum btrfs_open_ctree_flags flags,
840                                       struct btrfs_root *info_root,
841                                       u64 objectid, char *str)
842 {
843         struct btrfs_super_block *sb = fs_info->super_copy;
844         struct btrfs_root *root = fs_info->tree_root;
845         u32 leafsize = btrfs_super_leafsize(sb);
846         int ret;
847
848         ret = find_and_setup_root(root, fs_info, objectid, info_root);
849         if (ret) {
850                 printk("Couldn't setup %s tree\n", str);
851                 if (!(flags & OPEN_CTREE_PARTIAL))
852                         return -EIO;
853                 /*
854                  * Need a blank node here just so we don't screw up in the
855                  * million of places that assume a root has a valid ->node
856                  */
857                 info_root->node =
858                         btrfs_find_create_tree_block(info_root, 0, leafsize);
859                 if (!info_root->node)
860                         return -ENOMEM;
861                 clear_extent_buffer_uptodate(NULL, info_root->node);
862         }
863
864         return 0;
865 }
866
867 int btrfs_setup_all_roots(struct btrfs_fs_info *fs_info, u64 root_tree_bytenr,
868                           enum btrfs_open_ctree_flags flags)
869 {
870         struct btrfs_super_block *sb = fs_info->super_copy;
871         struct btrfs_root *root;
872         struct btrfs_key key;
873         u32 sectorsize;
874         u32 nodesize;
875         u32 leafsize;
876         u32 stripesize;
877         u64 generation;
878         u32 blocksize;
879         int ret;
880
881         nodesize = btrfs_super_nodesize(sb);
882         leafsize = btrfs_super_leafsize(sb);
883         sectorsize = btrfs_super_sectorsize(sb);
884         stripesize = btrfs_super_stripesize(sb);
885
886         root = fs_info->tree_root;
887         __setup_root(nodesize, leafsize, sectorsize, stripesize,
888                      root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
889         blocksize = btrfs_level_size(root, btrfs_super_root_level(sb));
890         generation = btrfs_super_generation(sb);
891
892         if (!root_tree_bytenr && !(flags & OPEN_CTREE_BACKUP_ROOT)) {
893                 root_tree_bytenr = btrfs_super_root(sb);
894         } else if (flags & OPEN_CTREE_BACKUP_ROOT) {
895                 struct btrfs_root_backup *backup;
896                 int index = find_best_backup_root(sb);
897                 if (index >= BTRFS_NUM_BACKUP_ROOTS) {
898                         fprintf(stderr, "Invalid backup root number\n");
899                         return -EIO;
900                 }
901                 backup = fs_info->super_copy->super_roots + index;
902                 root_tree_bytenr = btrfs_backup_tree_root(backup);
903                 generation = btrfs_backup_tree_root_gen(backup);
904         }
905
906         root->node = read_tree_block(root, root_tree_bytenr, blocksize,
907                                      generation);
908         if (!extent_buffer_uptodate(root->node)) {
909                 fprintf(stderr, "Couldn't read tree root\n");
910                 return -EIO;
911         }
912
913         ret = setup_root_or_create_block(fs_info, flags, fs_info->extent_root,
914                                          BTRFS_EXTENT_TREE_OBJECTID, "extent");
915         if (ret)
916                 return ret;
917         fs_info->extent_root->track_dirty = 1;
918
919         ret = find_and_setup_root(root, fs_info, BTRFS_DEV_TREE_OBJECTID,
920                                   fs_info->dev_root);
921         if (ret) {
922                 printk("Couldn't setup device tree\n");
923                 return -EIO;
924         }
925         fs_info->dev_root->track_dirty = 1;
926
927         ret = setup_root_or_create_block(fs_info, flags, fs_info->csum_root,
928                                          BTRFS_CSUM_TREE_OBJECTID, "csum");
929         if (ret)
930                 return ret;
931         fs_info->csum_root->track_dirty = 1;
932
933         ret = find_and_setup_root(root, fs_info, BTRFS_QUOTA_TREE_OBJECTID,
934                                   fs_info->quota_root);
935         if (ret == 0)
936                 fs_info->quota_enabled = 1;
937
938         ret = find_and_setup_log_root(root, fs_info, sb);
939         if (ret) {
940                 printk("Couldn't setup log root tree\n");
941                 if (!(flags & OPEN_CTREE_PARTIAL))
942                         return -EIO;
943         }
944
945         fs_info->generation = generation;
946         fs_info->last_trans_committed = generation;
947         if (extent_buffer_uptodate(fs_info->extent_root->node) &&
948             !(flags & OPEN_CTREE_NO_BLOCK_GROUPS))
949                 btrfs_read_block_groups(fs_info->tree_root);
950
951         key.objectid = BTRFS_FS_TREE_OBJECTID;
952         key.type = BTRFS_ROOT_ITEM_KEY;
953         key.offset = (u64)-1;
954         fs_info->fs_root = btrfs_read_fs_root(fs_info, &key);
955
956         if (IS_ERR(fs_info->fs_root))
957                 return -EIO;
958         return 0;
959 }
960
961 void btrfs_release_all_roots(struct btrfs_fs_info *fs_info)
962 {
963         if (fs_info->quota_root)
964                 free_extent_buffer(fs_info->quota_root->node);
965         if (fs_info->csum_root)
966                 free_extent_buffer(fs_info->csum_root->node);
967         if (fs_info->dev_root)
968                 free_extent_buffer(fs_info->dev_root->node);
969         if (fs_info->extent_root)
970                 free_extent_buffer(fs_info->extent_root->node);
971         if (fs_info->tree_root)
972                 free_extent_buffer(fs_info->tree_root->node);
973         if (fs_info->log_root_tree)
974                 free_extent_buffer(fs_info->log_root_tree->node);
975         if (fs_info->chunk_root)
976                 free_extent_buffer(fs_info->chunk_root->node);
977 }
978
979 static void free_map_lookup(struct cache_extent *ce)
980 {
981         struct map_lookup *map;
982
983         map = container_of(ce, struct map_lookup, ce);
984         kfree(map);
985 }
986
987 FREE_EXTENT_CACHE_BASED_TREE(mapping_cache, free_map_lookup);
988
989 void btrfs_cleanup_all_caches(struct btrfs_fs_info *fs_info)
990 {
991         while (!list_empty(&fs_info->recow_ebs)) {
992                 struct extent_buffer *eb;
993                 eb = list_first_entry(&fs_info->recow_ebs,
994                                       struct extent_buffer, recow);
995                 list_del_init(&eb->recow);
996                 free_extent_buffer(eb);
997         }
998         free_mapping_cache_tree(&fs_info->mapping_tree.cache_tree);
999         extent_io_tree_cleanup(&fs_info->extent_cache);
1000         extent_io_tree_cleanup(&fs_info->free_space_cache);
1001         extent_io_tree_cleanup(&fs_info->block_group_cache);
1002         extent_io_tree_cleanup(&fs_info->pinned_extents);
1003         extent_io_tree_cleanup(&fs_info->pending_del);
1004         extent_io_tree_cleanup(&fs_info->extent_ins);
1005 }
1006
1007 int btrfs_scan_fs_devices(int fd, const char *path,
1008                           struct btrfs_fs_devices **fs_devices,
1009                           u64 sb_bytenr, int super_recover)
1010 {
1011         u64 total_devs;
1012         u64 dev_size;
1013         off_t seek_ret;
1014         int ret;
1015         if (!sb_bytenr)
1016                 sb_bytenr = BTRFS_SUPER_INFO_OFFSET;
1017
1018         seek_ret = lseek(fd, 0, SEEK_END);
1019         if (seek_ret < 0)
1020                 return -errno;
1021
1022         dev_size = seek_ret;
1023         lseek(fd, 0, SEEK_SET);
1024         if (sb_bytenr > dev_size) {
1025                 fprintf(stderr, "Superblock bytenr is larger than device size\n");
1026                 return -EINVAL;
1027         }
1028
1029         ret = btrfs_scan_one_device(fd, path, fs_devices,
1030                                     &total_devs, sb_bytenr, super_recover);
1031         if (ret) {
1032                 fprintf(stderr, "No valid Btrfs found on %s\n", path);
1033                 return ret;
1034         }
1035
1036         if (total_devs != 1) {
1037                 ret = btrfs_scan_lblkid();
1038                 if (ret)
1039                         return ret;
1040         }
1041         return 0;
1042 }
1043
1044 int btrfs_setup_chunk_tree_and_device_map(struct btrfs_fs_info *fs_info)
1045 {
1046         struct btrfs_super_block *sb = fs_info->super_copy;
1047         u32 sectorsize;
1048         u32 nodesize;
1049         u32 leafsize;
1050         u32 blocksize;
1051         u32 stripesize;
1052         u64 generation;
1053         int ret;
1054
1055         nodesize = btrfs_super_nodesize(sb);
1056         leafsize = btrfs_super_leafsize(sb);
1057         sectorsize = btrfs_super_sectorsize(sb);
1058         stripesize = btrfs_super_stripesize(sb);
1059
1060         __setup_root(nodesize, leafsize, sectorsize, stripesize,
1061                      fs_info->chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1062
1063         ret = btrfs_read_sys_array(fs_info->chunk_root);
1064         if (ret)
1065                 return ret;
1066
1067         blocksize = btrfs_level_size(fs_info->chunk_root,
1068                                      btrfs_super_chunk_root_level(sb));
1069         generation = btrfs_super_chunk_root_generation(sb);
1070
1071         fs_info->chunk_root->node = read_tree_block(fs_info->chunk_root,
1072                                                     btrfs_super_chunk_root(sb),
1073                                                     blocksize, generation);
1074         if (!extent_buffer_uptodate(fs_info->chunk_root->node)) {
1075                 fprintf(stderr, "Couldn't read chunk root\n");
1076                 return -EIO;
1077         }
1078
1079         if (!(btrfs_super_flags(sb) & BTRFS_SUPER_FLAG_METADUMP)) {
1080                 ret = btrfs_read_chunk_tree(fs_info->chunk_root);
1081                 if (ret) {
1082                         fprintf(stderr, "Couldn't read chunk tree\n");
1083                         return ret;
1084                 }
1085         }
1086         return 0;
1087 }
1088
1089 static struct btrfs_fs_info *__open_ctree_fd(int fp, const char *path,
1090                                              u64 sb_bytenr,
1091                                              u64 root_tree_bytenr,
1092                                              enum btrfs_open_ctree_flags flags)
1093 {
1094         struct btrfs_fs_info *fs_info;
1095         struct btrfs_super_block *disk_super;
1096         struct btrfs_fs_devices *fs_devices = NULL;
1097         struct extent_buffer *eb;
1098         int ret;
1099         int oflags;
1100
1101         if (sb_bytenr == 0)
1102                 sb_bytenr = BTRFS_SUPER_INFO_OFFSET;
1103
1104         /* try to drop all the caches */
1105         if (posix_fadvise(fp, 0, 0, POSIX_FADV_DONTNEED))
1106                 fprintf(stderr, "Warning, could not drop caches\n");
1107
1108         fs_info = btrfs_new_fs_info(flags & OPEN_CTREE_WRITES, sb_bytenr);
1109         if (!fs_info) {
1110                 fprintf(stderr, "Failed to allocate memory for fs_info\n");
1111                 return NULL;
1112         }
1113         if (flags & OPEN_CTREE_RESTORE)
1114                 fs_info->on_restoring = 1;
1115
1116         ret = btrfs_scan_fs_devices(fp, path, &fs_devices, sb_bytenr,
1117                                     (flags & OPEN_CTREE_RECOVER_SUPER));
1118         if (ret)
1119                 goto out;
1120
1121         fs_info->fs_devices = fs_devices;
1122         if (flags & OPEN_CTREE_WRITES)
1123                 oflags = O_RDWR;
1124         else
1125                 oflags = O_RDONLY;
1126
1127         if (flags & OPEN_CTREE_EXCLUSIVE)
1128                 oflags |= O_EXCL;
1129
1130         ret = btrfs_open_devices(fs_devices, oflags);
1131         if (ret)
1132                 goto out;
1133
1134         disk_super = fs_info->super_copy;
1135         if (!(flags & OPEN_CTREE_RECOVER_SUPER))
1136                 ret = btrfs_read_dev_super(fs_devices->latest_bdev,
1137                                            disk_super, sb_bytenr, 1);
1138         else
1139                 ret = btrfs_read_dev_super(fp, disk_super, sb_bytenr, 0);
1140         if (ret) {
1141                 printk("No valid btrfs found\n");
1142                 goto out_devices;
1143         }
1144
1145         memcpy(fs_info->fsid, &disk_super->fsid, BTRFS_FSID_SIZE);
1146
1147         ret = btrfs_check_fs_compatibility(fs_info->super_copy,
1148                                            flags & OPEN_CTREE_WRITES);
1149         if (ret)
1150                 goto out_devices;
1151
1152         ret = btrfs_setup_chunk_tree_and_device_map(fs_info);
1153         if (ret)
1154                 goto out_chunk;
1155
1156         eb = fs_info->chunk_root->node;
1157         read_extent_buffer(eb, fs_info->chunk_tree_uuid,
1158                            btrfs_header_chunk_tree_uuid(eb),
1159                            BTRFS_UUID_SIZE);
1160
1161         ret = btrfs_setup_all_roots(fs_info, root_tree_bytenr, flags);
1162         if (ret)
1163                 goto out_chunk;
1164
1165         return fs_info;
1166
1167 out_chunk:
1168         btrfs_release_all_roots(fs_info);
1169         btrfs_cleanup_all_caches(fs_info);
1170 out_devices:
1171         btrfs_close_devices(fs_devices);
1172 out:
1173         btrfs_free_fs_info(fs_info);
1174         return NULL;
1175 }
1176
1177 struct btrfs_fs_info *open_ctree_fs_info(const char *filename,
1178                                          u64 sb_bytenr, u64 root_tree_bytenr,
1179                                          enum btrfs_open_ctree_flags flags)
1180 {
1181         int fp;
1182         struct btrfs_fs_info *info;
1183         int oflags = O_CREAT | O_RDWR;
1184
1185         if (!(flags & OPEN_CTREE_WRITES))
1186                 oflags = O_RDONLY;
1187
1188         fp = open(filename, oflags, 0600);
1189         if (fp < 0) {
1190                 fprintf (stderr, "Could not open %s\n", filename);
1191                 return NULL;
1192         }
1193         info = __open_ctree_fd(fp, filename, sb_bytenr, root_tree_bytenr,
1194                                flags);
1195         close(fp);
1196         return info;
1197 }
1198
1199 struct btrfs_root *open_ctree(const char *filename, u64 sb_bytenr,
1200                               enum btrfs_open_ctree_flags flags)
1201 {
1202         struct btrfs_fs_info *info;
1203
1204         info = open_ctree_fs_info(filename, sb_bytenr, 0, flags);
1205         if (!info)
1206                 return NULL;
1207         return info->fs_root;
1208 }
1209
1210 struct btrfs_root *open_ctree_fd(int fp, const char *path, u64 sb_bytenr,
1211                                  enum btrfs_open_ctree_flags flags)
1212 {
1213         struct btrfs_fs_info *info;
1214         info = __open_ctree_fd(fp, path, sb_bytenr, 0, flags);
1215         if (!info)
1216                 return NULL;
1217         return info->fs_root;
1218 }
1219
1220 int btrfs_read_dev_super(int fd, struct btrfs_super_block *sb, u64 sb_bytenr,
1221                          int super_recover)
1222 {
1223         u8 fsid[BTRFS_FSID_SIZE];
1224         int fsid_is_initialized = 0;
1225         struct btrfs_super_block buf;
1226         int i;
1227         int ret;
1228         int max_super = super_recover ? BTRFS_SUPER_MIRROR_MAX : 1;
1229         u64 transid = 0;
1230         u64 bytenr;
1231
1232         if (sb_bytenr != BTRFS_SUPER_INFO_OFFSET) {
1233                 ret = pread64(fd, &buf, sizeof(buf), sb_bytenr);
1234                 if (ret < sizeof(buf))
1235                         return -1;
1236
1237                 if (btrfs_super_bytenr(&buf) != sb_bytenr ||
1238                     btrfs_super_magic(&buf) != BTRFS_MAGIC)
1239                         return -1;
1240
1241                 memcpy(sb, &buf, sizeof(*sb));
1242                 return 0;
1243         }
1244
1245         /*
1246         * we would like to check all the supers, but that would make
1247         * a btrfs mount succeed after a mkfs from a different FS.
1248         * So, we need to add a special mount option to scan for
1249         * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1250         */
1251
1252         for (i = 0; i < max_super; i++) {
1253                 bytenr = btrfs_sb_offset(i);
1254                 ret = pread64(fd, &buf, sizeof(buf), bytenr);
1255                 if (ret < sizeof(buf))
1256                         break;
1257
1258                 if (btrfs_super_bytenr(&buf) != bytenr )
1259                         continue;
1260                 /* if magic is NULL, the device was removed */
1261                 if (btrfs_super_magic(&buf) == 0 && i == 0)
1262                         return -1;
1263                 if (btrfs_super_magic(&buf) != BTRFS_MAGIC)
1264                         continue;
1265
1266                 if (!fsid_is_initialized) {
1267                         memcpy(fsid, buf.fsid, sizeof(fsid));
1268                         fsid_is_initialized = 1;
1269                 } else if (memcmp(fsid, buf.fsid, sizeof(fsid))) {
1270                         /*
1271                          * the superblocks (the original one and
1272                          * its backups) contain data of different
1273                          * filesystems -> the super cannot be trusted
1274                          */
1275                         continue;
1276                 }
1277
1278                 if (btrfs_super_generation(&buf) > transid) {
1279                         memcpy(sb, &buf, sizeof(*sb));
1280                         transid = btrfs_super_generation(&buf);
1281                 }
1282         }
1283
1284         return transid > 0 ? 0 : -1;
1285 }
1286
1287 static int write_dev_supers(struct btrfs_root *root,
1288                             struct btrfs_super_block *sb,
1289                             struct btrfs_device *device)
1290 {
1291         u64 bytenr;
1292         u32 crc;
1293         int i, ret;
1294
1295         if (root->fs_info->super_bytenr != BTRFS_SUPER_INFO_OFFSET) {
1296                 btrfs_set_super_bytenr(sb, root->fs_info->super_bytenr);
1297                 crc = ~(u32)0;
1298                 crc = btrfs_csum_data(NULL, (char *)sb + BTRFS_CSUM_SIZE, crc,
1299                                       BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
1300                 btrfs_csum_final(crc, (char *)&sb->csum[0]);
1301
1302                 /*
1303                  * super_copy is BTRFS_SUPER_INFO_SIZE bytes and is
1304                  * zero filled, we can use it directly
1305                  */
1306                 ret = pwrite64(device->fd, root->fs_info->super_copy,
1307                                 BTRFS_SUPER_INFO_SIZE,
1308                                 root->fs_info->super_bytenr);
1309                 BUG_ON(ret != BTRFS_SUPER_INFO_SIZE);
1310                 return 0;
1311         }
1312
1313         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1314                 bytenr = btrfs_sb_offset(i);
1315                 if (bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
1316                         break;
1317
1318                 btrfs_set_super_bytenr(sb, bytenr);
1319
1320                 crc = ~(u32)0;
1321                 crc = btrfs_csum_data(NULL, (char *)sb + BTRFS_CSUM_SIZE, crc,
1322                                       BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
1323                 btrfs_csum_final(crc, (char *)&sb->csum[0]);
1324
1325                 /*
1326                  * super_copy is BTRFS_SUPER_INFO_SIZE bytes and is
1327                  * zero filled, we can use it directly
1328                  */
1329                 ret = pwrite64(device->fd, root->fs_info->super_copy,
1330                                 BTRFS_SUPER_INFO_SIZE, bytenr);
1331                 BUG_ON(ret != BTRFS_SUPER_INFO_SIZE);
1332         }
1333
1334         return 0;
1335 }
1336
1337 int write_all_supers(struct btrfs_root *root)
1338 {
1339         struct list_head *cur;
1340         struct list_head *head = &root->fs_info->fs_devices->devices;
1341         struct btrfs_device *dev;
1342         struct btrfs_super_block *sb;
1343         struct btrfs_dev_item *dev_item;
1344         int ret;
1345         u64 flags;
1346
1347         sb = root->fs_info->super_copy;
1348         dev_item = &sb->dev_item;
1349         list_for_each(cur, head) {
1350                 dev = list_entry(cur, struct btrfs_device, dev_list);
1351                 if (!dev->writeable)
1352                         continue;
1353
1354                 btrfs_set_stack_device_generation(dev_item, 0);
1355                 btrfs_set_stack_device_type(dev_item, dev->type);
1356                 btrfs_set_stack_device_id(dev_item, dev->devid);
1357                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
1358                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
1359                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
1360                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
1361                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
1362                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
1363                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
1364
1365                 flags = btrfs_super_flags(sb);
1366                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
1367
1368                 ret = write_dev_supers(root, sb, dev);
1369                 BUG_ON(ret);
1370         }
1371         return 0;
1372 }
1373
1374 int write_ctree_super(struct btrfs_trans_handle *trans,
1375                       struct btrfs_root *root)
1376 {
1377         int ret;
1378         struct btrfs_root *tree_root = root->fs_info->tree_root;
1379         struct btrfs_root *chunk_root = root->fs_info->chunk_root;
1380
1381         if (root->fs_info->readonly)
1382                 return 0;
1383
1384         btrfs_set_super_generation(root->fs_info->super_copy,
1385                                    trans->transid);
1386         btrfs_set_super_root(root->fs_info->super_copy,
1387                              tree_root->node->start);
1388         btrfs_set_super_root_level(root->fs_info->super_copy,
1389                                    btrfs_header_level(tree_root->node));
1390         btrfs_set_super_chunk_root(root->fs_info->super_copy,
1391                                    chunk_root->node->start);
1392         btrfs_set_super_chunk_root_level(root->fs_info->super_copy,
1393                                          btrfs_header_level(chunk_root->node));
1394         btrfs_set_super_chunk_root_generation(root->fs_info->super_copy,
1395                                 btrfs_header_generation(chunk_root->node));
1396
1397         ret = write_all_supers(root);
1398         if (ret)
1399                 fprintf(stderr, "failed to write new super block err %d\n", ret);
1400         return ret;
1401 }
1402
1403 int close_ctree(struct btrfs_root *root)
1404 {
1405         int ret;
1406         struct btrfs_trans_handle *trans;
1407         struct btrfs_fs_info *fs_info = root->fs_info;
1408
1409         if (fs_info->last_trans_committed !=
1410             fs_info->generation) {
1411                 trans = btrfs_start_transaction(root, 1);
1412                 btrfs_commit_transaction(trans, root);
1413                 trans = btrfs_start_transaction(root, 1);
1414                 ret = commit_tree_roots(trans, fs_info);
1415                 BUG_ON(ret);
1416                 ret = __commit_transaction(trans, root);
1417                 BUG_ON(ret);
1418                 write_ctree_super(trans, root);
1419                 btrfs_free_transaction(root, trans);
1420         }
1421         btrfs_free_block_groups(fs_info);
1422
1423         free_fs_roots_tree(&fs_info->fs_root_tree);
1424
1425         btrfs_release_all_roots(fs_info);
1426         btrfs_close_devices(fs_info->fs_devices);
1427         btrfs_cleanup_all_caches(fs_info);
1428         btrfs_free_fs_info(fs_info);
1429         return 0;
1430 }
1431
1432 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1433                      struct extent_buffer *eb)
1434 {
1435         return clear_extent_buffer_dirty(eb);
1436 }
1437
1438 int wait_on_tree_block_writeback(struct btrfs_root *root,
1439                                  struct extent_buffer *eb)
1440 {
1441         return 0;
1442 }
1443
1444 void btrfs_mark_buffer_dirty(struct extent_buffer *eb)
1445 {
1446         set_extent_buffer_dirty(eb);
1447 }
1448
1449 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
1450 {
1451         int ret;
1452
1453         ret = extent_buffer_uptodate(buf);
1454         if (!ret)
1455                 return ret;
1456
1457         ret = verify_parent_transid(buf->tree, buf, parent_transid, 1);
1458         return !ret;
1459 }
1460
1461 int btrfs_set_buffer_uptodate(struct extent_buffer *eb)
1462 {
1463         return set_extent_buffer_uptodate(eb);
1464 }