btrfs-progs: fix mkfs.btrfs segfault with --features option
[platform/upstream/btrfs-progs.git] / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #define _XOPEN_SOURCE 600
20 #define __USE_XOPEN2K
21 #define _GNU_SOURCE 1
22 #include <stdio.h>
23 #include <stdlib.h>
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <fcntl.h>
27 #include <unistd.h>
28 #include "kerncompat.h"
29 #include "radix-tree.h"
30 #include "ctree.h"
31 #include "disk-io.h"
32 #include "volumes.h"
33 #include "transaction.h"
34 #include "crc32c.h"
35 #include "utils.h"
36 #include "print-tree.h"
37
38 static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf)
39 {
40
41         struct btrfs_fs_devices *fs_devices;
42         int ret = 1;
43
44         if (buf->start != btrfs_header_bytenr(buf)) {
45                 printk("Check tree block failed, want=%Lu, have=%Lu\n",
46                        buf->start, btrfs_header_bytenr(buf));
47                 return ret;
48         }
49
50         fs_devices = root->fs_info->fs_devices;
51         while (fs_devices) {
52                 if (!memcmp_extent_buffer(buf, fs_devices->fsid,
53                                           btrfs_header_fsid(),
54                                           BTRFS_FSID_SIZE)) {
55                         ret = 0;
56                         break;
57                 }
58                 fs_devices = fs_devices->seed;
59         }
60         return ret;
61 }
62
63 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
64 {
65         return crc32c(seed, data, len);
66 }
67
68 void btrfs_csum_final(u32 crc, char *result)
69 {
70         *(__le32 *)result = ~cpu_to_le32(crc);
71 }
72
73 static int __csum_tree_block_size(struct extent_buffer *buf, u16 csum_size,
74                                   int verify, int silent)
75 {
76         char *result;
77         u32 len;
78         u32 crc = ~(u32)0;
79
80         result = malloc(csum_size * sizeof(char));
81         if (!result)
82                 return 1;
83
84         len = buf->len - BTRFS_CSUM_SIZE;
85         crc = crc32c(crc, buf->data + BTRFS_CSUM_SIZE, len);
86         btrfs_csum_final(crc, result);
87
88         if (verify) {
89                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
90                         if (!silent)
91                                 printk("checksum verify failed on %llu found %08X wanted %08X\n",
92                                        (unsigned long long)buf->start,
93                                        *((u32 *)result),
94                                        *((u32*)(char *)buf->data));
95                         free(result);
96                         return 1;
97                 }
98         } else {
99                 write_extent_buffer(buf, result, 0, csum_size);
100         }
101         free(result);
102         return 0;
103 }
104
105 int csum_tree_block_size(struct extent_buffer *buf, u16 csum_size, int verify)
106 {
107         return __csum_tree_block_size(buf, csum_size, verify, 0);
108 }
109
110 int verify_tree_block_csum_silent(struct extent_buffer *buf, u16 csum_size)
111 {
112         return __csum_tree_block_size(buf, csum_size, 1, 1);
113 }
114
115 int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
116                            int verify)
117 {
118         u16 csum_size =
119                 btrfs_super_csum_size(root->fs_info->super_copy);
120         return csum_tree_block_size(buf, csum_size, verify);
121 }
122
123 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
124                                             u64 bytenr, u32 blocksize)
125 {
126         return find_extent_buffer(&root->fs_info->extent_cache,
127                                   bytenr, blocksize);
128 }
129
130 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
131                                                  u64 bytenr, u32 blocksize)
132 {
133         return alloc_extent_buffer(&root->fs_info->extent_cache, bytenr,
134                                    blocksize);
135 }
136
137 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
138                          u64 parent_transid)
139 {
140         int ret;
141         struct extent_buffer *eb;
142         u64 length;
143         struct btrfs_multi_bio *multi = NULL;
144         struct btrfs_device *device;
145
146         eb = btrfs_find_tree_block(root, bytenr, blocksize);
147         if (eb && btrfs_buffer_uptodate(eb, parent_transid)) {
148                 free_extent_buffer(eb);
149                 return 0;
150         }
151
152         length = blocksize;
153         ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
154                               bytenr, &length, &multi, 0, NULL);
155         BUG_ON(ret);
156         device = multi->stripes[0].dev;
157         device->total_ios++;
158         blocksize = min(blocksize, (u32)(64 * 1024));
159         readahead(device->fd, multi->stripes[0].physical, blocksize);
160         kfree(multi);
161         return 0;
162 }
163
164 static int verify_parent_transid(struct extent_io_tree *io_tree,
165                                  struct extent_buffer *eb, u64 parent_transid,
166                                  int ignore)
167 {
168         int ret;
169
170         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
171                 return 0;
172
173         if (extent_buffer_uptodate(eb) &&
174             btrfs_header_generation(eb) == parent_transid) {
175                 ret = 0;
176                 goto out;
177         }
178         printk("parent transid verify failed on %llu wanted %llu found %llu\n",
179                (unsigned long long)eb->start,
180                (unsigned long long)parent_transid,
181                (unsigned long long)btrfs_header_generation(eb));
182         if (ignore) {
183                 eb->flags |= EXTENT_BAD_TRANSID;
184                 printk("Ignoring transid failure\n");
185                 return 0;
186         }
187
188         ret = 1;
189 out:
190         clear_extent_buffer_uptodate(io_tree, eb);
191         return ret;
192
193 }
194
195
196 int read_whole_eb(struct btrfs_fs_info *info, struct extent_buffer *eb, int mirror)
197 {
198         unsigned long offset = 0;
199         struct btrfs_multi_bio *multi = NULL;
200         struct btrfs_device *device;
201         int ret = 0;
202         u64 read_len;
203         unsigned long bytes_left = eb->len;
204
205         while (bytes_left) {
206                 read_len = bytes_left;
207                 device = NULL;
208
209                 if (!info->on_restoring) {
210                         ret = btrfs_map_block(&info->mapping_tree, READ,
211                                               eb->start + offset, &read_len, &multi,
212                                               mirror, NULL);
213                         if (ret) {
214                                 printk("Couldn't map the block %Lu\n", eb->start + offset);
215                                 kfree(multi);
216                                 return -EIO;
217                         }
218                         device = multi->stripes[0].dev;
219
220                         if (device->fd == 0) {
221                                 kfree(multi);
222                                 return -EIO;
223                         }
224
225                         eb->fd = device->fd;
226                         device->total_ios++;
227                         eb->dev_bytenr = multi->stripes[0].physical;
228                         kfree(multi);
229                         multi = NULL;
230                 } else {
231                         /* special case for restore metadump */
232                         list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
233                                 if (device->devid == 1)
234                                         break;
235                         }
236
237                         eb->fd = device->fd;
238                         eb->dev_bytenr = eb->start;
239                         device->total_ios++;
240                 }
241
242                 if (read_len > bytes_left)
243                         read_len = bytes_left;
244
245                 ret = read_extent_from_disk(eb, offset, read_len);
246                 if (ret)
247                         return -EIO;
248                 offset += read_len;
249                 bytes_left -= read_len;
250         }
251         return 0;
252 }
253
254 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
255                                      u32 blocksize, u64 parent_transid)
256 {
257         int ret;
258         struct extent_buffer *eb;
259         u64 best_transid = 0;
260         int mirror_num = 0;
261         int good_mirror = 0;
262         int num_copies;
263         int ignore = 0;
264
265         eb = btrfs_find_create_tree_block(root, bytenr, blocksize);
266         if (!eb)
267                 return NULL;
268
269         if (btrfs_buffer_uptodate(eb, parent_transid))
270                 return eb;
271
272         while (1) {
273                 ret = read_whole_eb(root->fs_info, eb, mirror_num);
274                 if (ret == 0 && check_tree_block(root, eb) == 0 &&
275                     csum_tree_block(root, eb, 1) == 0 &&
276                     verify_parent_transid(eb->tree, eb, parent_transid, ignore)
277                     == 0) {
278                         if (eb->flags & EXTENT_BAD_TRANSID &&
279                             list_empty(&eb->recow)) {
280                                 list_add_tail(&eb->recow,
281                                               &root->fs_info->recow_ebs);
282                                 eb->refs++;
283                         }
284                         btrfs_set_buffer_uptodate(eb);
285                         return eb;
286                 }
287                 if (ignore) {
288                         if (check_tree_block(root, eb))
289                                 printk("read block failed check_tree_block\n");
290                         else
291                                 printk("Csum didn't match\n");
292                         break;
293                 }
294                 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
295                                               eb->start, eb->len);
296                 if (num_copies == 1) {
297                         ignore = 1;
298                         continue;
299                 }
300                 if (btrfs_header_generation(eb) > best_transid && mirror_num) {
301                         best_transid = btrfs_header_generation(eb);
302                         good_mirror = mirror_num;
303                 }
304                 mirror_num++;
305                 if (mirror_num > num_copies) {
306                         mirror_num = good_mirror;
307                         ignore = 1;
308                         continue;
309                 }
310         }
311         free_extent_buffer(eb);
312         return NULL;
313 }
314
315 int write_and_map_eb(struct btrfs_trans_handle *trans,
316                      struct btrfs_root *root,
317                      struct extent_buffer *eb)
318 {
319         int ret;
320         int dev_nr;
321         u64 length;
322         u64 *raid_map = NULL;
323         struct btrfs_multi_bio *multi = NULL;
324
325         dev_nr = 0;
326         length = eb->len;
327         ret = btrfs_map_block(&root->fs_info->mapping_tree, WRITE,
328                               eb->start, &length, &multi, 0, &raid_map);
329
330         if (raid_map) {
331                 ret = write_raid56_with_parity(root->fs_info, eb, multi,
332                                                length, raid_map);
333                 BUG_ON(ret);
334         } else while (dev_nr < multi->num_stripes) {
335                 BUG_ON(ret);
336                 eb->fd = multi->stripes[dev_nr].dev->fd;
337                 eb->dev_bytenr = multi->stripes[dev_nr].physical;
338                 multi->stripes[dev_nr].dev->total_ios++;
339                 dev_nr++;
340                 ret = write_extent_to_disk(eb);
341                 BUG_ON(ret);
342         }
343         kfree(multi);
344         return 0;
345 }
346
347 static int write_tree_block(struct btrfs_trans_handle *trans,
348                      struct btrfs_root *root,
349                      struct extent_buffer *eb)
350 {
351         if (check_tree_block(root, eb))
352                 BUG();
353
354         if (!btrfs_buffer_uptodate(eb, trans->transid))
355                 BUG();
356
357         btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
358         csum_tree_block(root, eb, 0);
359
360         return write_and_map_eb(trans, root, eb);
361 }
362
363 int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
364                         u32 stripesize, struct btrfs_root *root,
365                         struct btrfs_fs_info *fs_info, u64 objectid)
366 {
367         root->node = NULL;
368         root->commit_root = NULL;
369         root->sectorsize = sectorsize;
370         root->nodesize = nodesize;
371         root->leafsize = leafsize;
372         root->stripesize = stripesize;
373         root->ref_cows = 0;
374         root->track_dirty = 0;
375
376         root->fs_info = fs_info;
377         root->objectid = objectid;
378         root->last_trans = 0;
379         root->highest_inode = 0;
380         root->last_inode_alloc = 0;
381
382         INIT_LIST_HEAD(&root->dirty_list);
383         memset(&root->root_key, 0, sizeof(root->root_key));
384         memset(&root->root_item, 0, sizeof(root->root_item));
385         root->root_key.objectid = objectid;
386         return 0;
387 }
388
389 static int update_cowonly_root(struct btrfs_trans_handle *trans,
390                                struct btrfs_root *root)
391 {
392         int ret;
393         u64 old_root_bytenr;
394         struct btrfs_root *tree_root = root->fs_info->tree_root;
395
396         btrfs_write_dirty_block_groups(trans, root);
397         while(1) {
398                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
399                 if (old_root_bytenr == root->node->start)
400                         break;
401                 btrfs_set_root_bytenr(&root->root_item,
402                                        root->node->start);
403                 btrfs_set_root_generation(&root->root_item,
404                                           trans->transid);
405                 root->root_item.level = btrfs_header_level(root->node);
406                 ret = btrfs_update_root(trans, tree_root,
407                                         &root->root_key,
408                                         &root->root_item);
409                 BUG_ON(ret);
410                 btrfs_write_dirty_block_groups(trans, root);
411         }
412         return 0;
413 }
414
415 static int commit_tree_roots(struct btrfs_trans_handle *trans,
416                              struct btrfs_fs_info *fs_info)
417 {
418         struct btrfs_root *root;
419         struct list_head *next;
420         struct extent_buffer *eb;
421         int ret;
422
423         if (fs_info->readonly)
424                 return 0;
425
426         eb = fs_info->tree_root->node;
427         extent_buffer_get(eb);
428         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
429         free_extent_buffer(eb);
430         if (ret)
431                 return ret;
432
433         while(!list_empty(&fs_info->dirty_cowonly_roots)) {
434                 next = fs_info->dirty_cowonly_roots.next;
435                 list_del_init(next);
436                 root = list_entry(next, struct btrfs_root, dirty_list);
437                 update_cowonly_root(trans, root);
438                 free_extent_buffer(root->commit_root);
439                 root->commit_root = NULL;
440         }
441
442         return 0;
443 }
444
445 static int __commit_transaction(struct btrfs_trans_handle *trans,
446                                 struct btrfs_root *root)
447 {
448         u64 start;
449         u64 end;
450         struct extent_buffer *eb;
451         struct extent_io_tree *tree = &root->fs_info->extent_cache;
452         int ret;
453
454         while(1) {
455                 ret = find_first_extent_bit(tree, 0, &start, &end,
456                                             EXTENT_DIRTY);
457                 if (ret)
458                         break;
459                 while(start <= end) {
460                         eb = find_first_extent_buffer(tree, start);
461                         BUG_ON(!eb || eb->start != start);
462                         ret = write_tree_block(trans, root, eb);
463                         BUG_ON(ret);
464                         start += eb->len;
465                         clear_extent_buffer_dirty(eb);
466                         free_extent_buffer(eb);
467                 }
468         }
469         return 0;
470 }
471
472 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
473                              struct btrfs_root *root)
474 {
475         u64 transid = trans->transid;
476         int ret = 0;
477         struct btrfs_fs_info *fs_info = root->fs_info;
478
479         if (root->commit_root == root->node)
480                 goto commit_tree;
481
482         free_extent_buffer(root->commit_root);
483         root->commit_root = NULL;
484
485         btrfs_set_root_bytenr(&root->root_item, root->node->start);
486         btrfs_set_root_generation(&root->root_item, trans->transid);
487         root->root_item.level = btrfs_header_level(root->node);
488         ret = btrfs_update_root(trans, root->fs_info->tree_root,
489                                 &root->root_key, &root->root_item);
490         BUG_ON(ret);
491 commit_tree:
492         ret = commit_tree_roots(trans, fs_info);
493         BUG_ON(ret);
494         ret = __commit_transaction(trans, root);
495         BUG_ON(ret);
496         write_ctree_super(trans, root);
497         btrfs_finish_extent_commit(trans, fs_info->extent_root,
498                                    &fs_info->pinned_extents);
499         btrfs_free_transaction(root, trans);
500         free_extent_buffer(root->commit_root);
501         root->commit_root = NULL;
502         fs_info->running_transaction = NULL;
503         fs_info->last_trans_committed = transid;
504         return 0;
505 }
506
507 static int find_and_setup_root(struct btrfs_root *tree_root,
508                                struct btrfs_fs_info *fs_info,
509                                u64 objectid, struct btrfs_root *root)
510 {
511         int ret;
512         u32 blocksize;
513         u64 generation;
514
515         __setup_root(tree_root->nodesize, tree_root->leafsize,
516                      tree_root->sectorsize, tree_root->stripesize,
517                      root, fs_info, objectid);
518         ret = btrfs_find_last_root(tree_root, objectid,
519                                    &root->root_item, &root->root_key);
520         if (ret)
521                 return ret;
522
523         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
524         generation = btrfs_root_generation(&root->root_item);
525         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
526                                      blocksize, generation);
527         if (!extent_buffer_uptodate(root->node))
528                 return -EIO;
529
530         return 0;
531 }
532
533 static int find_and_setup_log_root(struct btrfs_root *tree_root,
534                                struct btrfs_fs_info *fs_info,
535                                struct btrfs_super_block *disk_super)
536 {
537         u32 blocksize;
538         u64 blocknr = btrfs_super_log_root(disk_super);
539         struct btrfs_root *log_root = malloc(sizeof(struct btrfs_root));
540
541         if (!log_root)
542                 return -ENOMEM;
543
544         if (blocknr == 0) {
545                 free(log_root);
546                 return 0;
547         }
548
549         blocksize = btrfs_level_size(tree_root,
550                              btrfs_super_log_root_level(disk_super));
551
552         __setup_root(tree_root->nodesize, tree_root->leafsize,
553                      tree_root->sectorsize, tree_root->stripesize,
554                      log_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
555
556         log_root->node = read_tree_block(tree_root, blocknr,
557                                      blocksize,
558                                      btrfs_super_generation(disk_super) + 1);
559
560         fs_info->log_root_tree = log_root;
561
562         if (!extent_buffer_uptodate(log_root->node)) {
563                 free_extent_buffer(log_root->node);
564                 free(log_root);
565                 fs_info->log_root_tree = NULL;
566                 return -EIO;
567         }
568
569         return 0;
570 }
571
572
573 int btrfs_free_fs_root(struct btrfs_root *root)
574 {
575         if (root->node)
576                 free_extent_buffer(root->node);
577         if (root->commit_root)
578                 free_extent_buffer(root->commit_root);
579         kfree(root);
580         return 0;
581 }
582
583 static void __free_fs_root(struct rb_node *node)
584 {
585         struct btrfs_root *root;
586
587         root = container_of(node, struct btrfs_root, rb_node);
588         btrfs_free_fs_root(root);
589 }
590
591 FREE_RB_BASED_TREE(fs_roots, __free_fs_root);
592
593 struct btrfs_root *btrfs_read_fs_root_no_cache(struct btrfs_fs_info *fs_info,
594                                                struct btrfs_key *location)
595 {
596         struct btrfs_root *root;
597         struct btrfs_root *tree_root = fs_info->tree_root;
598         struct btrfs_path *path;
599         struct extent_buffer *l;
600         u64 generation;
601         u32 blocksize;
602         int ret = 0;
603
604         root = malloc(sizeof(*root));
605         if (!root)
606                 return ERR_PTR(-ENOMEM);
607         memset(root, 0, sizeof(*root));
608         if (location->offset == (u64)-1) {
609                 ret = find_and_setup_root(tree_root, fs_info,
610                                           location->objectid, root);
611                 if (ret) {
612                         free(root);
613                         return ERR_PTR(ret);
614                 }
615                 goto insert;
616         }
617
618         __setup_root(tree_root->nodesize, tree_root->leafsize,
619                      tree_root->sectorsize, tree_root->stripesize,
620                      root, fs_info, location->objectid);
621
622         path = btrfs_alloc_path();
623         BUG_ON(!path);
624         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
625         if (ret != 0) {
626                 if (ret > 0)
627                         ret = -ENOENT;
628                 goto out;
629         }
630         l = path->nodes[0];
631         read_extent_buffer(l, &root->root_item,
632                btrfs_item_ptr_offset(l, path->slots[0]),
633                sizeof(root->root_item));
634         memcpy(&root->root_key, location, sizeof(*location));
635         ret = 0;
636 out:
637         btrfs_release_path(path);
638         btrfs_free_path(path);
639         if (ret) {
640                 free(root);
641                 return ERR_PTR(ret);
642         }
643         generation = btrfs_root_generation(&root->root_item);
644         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
645         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
646                                      blocksize, generation);
647         if (!root->node) {
648                 free(root);
649                 return ERR_PTR(-EIO);
650         }
651 insert:
652         root->ref_cows = 1;
653         return root;
654 }
655
656 static int btrfs_fs_roots_compare_objectids(struct rb_node *node,
657                                             void *data)
658 {
659         u64 objectid = *((u64 *)data);
660         struct btrfs_root *root;
661
662         root = rb_entry(node, struct btrfs_root, rb_node);
663         if (objectid > root->objectid)
664                 return 1;
665         else if (objectid < root->objectid)
666                 return -1;
667         else
668                 return 0;
669 }
670
671 static int btrfs_fs_roots_compare_roots(struct rb_node *node1,
672                                         struct rb_node *node2)
673 {
674         struct btrfs_root *root;
675
676         root = rb_entry(node2, struct btrfs_root, rb_node);
677         return btrfs_fs_roots_compare_objectids(node1, (void *)&root->objectid);
678 }
679
680 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
681                                       struct btrfs_key *location)
682 {
683         struct btrfs_root *root;
684         struct rb_node *node;
685         int ret;
686         u64 objectid = location->objectid;
687
688         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
689                 return fs_info->tree_root;
690         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
691                 return fs_info->extent_root;
692         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
693                 return fs_info->chunk_root;
694         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
695                 return fs_info->dev_root;
696         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
697                 return fs_info->csum_root;
698
699         BUG_ON(location->objectid == BTRFS_TREE_RELOC_OBJECTID ||
700                location->offset != (u64)-1);
701
702         node = rb_search(&fs_info->fs_root_tree, (void *)&objectid,
703                          btrfs_fs_roots_compare_objectids, NULL);
704         if (node)
705                 return container_of(node, struct btrfs_root, rb_node);
706
707         root = btrfs_read_fs_root_no_cache(fs_info, location);
708         if (IS_ERR(root))
709                 return root;
710
711         ret = rb_insert(&fs_info->fs_root_tree, &root->rb_node,
712                         btrfs_fs_roots_compare_roots);
713         BUG_ON(ret);
714         return root;
715 }
716
717 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
718 {
719         free(fs_info->tree_root);
720         free(fs_info->extent_root);
721         free(fs_info->chunk_root);
722         free(fs_info->dev_root);
723         free(fs_info->csum_root);
724         free(fs_info->super_copy);
725         free(fs_info->log_root_tree);
726         free(fs_info);
727 }
728
729 struct btrfs_fs_info *btrfs_new_fs_info(int writable, u64 sb_bytenr)
730 {
731         struct btrfs_fs_info *fs_info;
732
733         fs_info = malloc(sizeof(struct btrfs_fs_info));
734         if (!fs_info)
735                 return NULL;
736
737         memset(fs_info, 0, sizeof(struct btrfs_fs_info));
738
739         fs_info->tree_root = malloc(sizeof(struct btrfs_root));
740         fs_info->extent_root = malloc(sizeof(struct btrfs_root));
741         fs_info->chunk_root = malloc(sizeof(struct btrfs_root));
742         fs_info->dev_root = malloc(sizeof(struct btrfs_root));
743         fs_info->csum_root = malloc(sizeof(struct btrfs_root));
744         fs_info->super_copy = malloc(BTRFS_SUPER_INFO_SIZE);
745
746         if (!fs_info->tree_root || !fs_info->extent_root ||
747             !fs_info->chunk_root || !fs_info->dev_root ||
748             !fs_info->csum_root || !fs_info->super_copy)
749                 goto free_all;
750
751         memset(fs_info->super_copy, 0, BTRFS_SUPER_INFO_SIZE);
752         memset(fs_info->tree_root, 0, sizeof(struct btrfs_root));
753         memset(fs_info->extent_root, 0, sizeof(struct btrfs_root));
754         memset(fs_info->chunk_root, 0, sizeof(struct btrfs_root));
755         memset(fs_info->dev_root, 0, sizeof(struct btrfs_root));
756         memset(fs_info->csum_root, 0, sizeof(struct btrfs_root));
757
758         extent_io_tree_init(&fs_info->extent_cache);
759         extent_io_tree_init(&fs_info->free_space_cache);
760         extent_io_tree_init(&fs_info->block_group_cache);
761         extent_io_tree_init(&fs_info->pinned_extents);
762         extent_io_tree_init(&fs_info->pending_del);
763         extent_io_tree_init(&fs_info->extent_ins);
764         fs_info->fs_root_tree = RB_ROOT;
765         cache_tree_init(&fs_info->mapping_tree.cache_tree);
766
767         mutex_init(&fs_info->fs_mutex);
768         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
769         INIT_LIST_HEAD(&fs_info->space_info);
770         INIT_LIST_HEAD(&fs_info->recow_ebs);
771
772         if (!writable)
773                 fs_info->readonly = 1;
774
775         fs_info->super_bytenr = sb_bytenr;
776         fs_info->data_alloc_profile = (u64)-1;
777         fs_info->metadata_alloc_profile = (u64)-1;
778         fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
779         return fs_info;
780 free_all:
781         btrfs_free_fs_info(fs_info);
782         return NULL;
783 }
784
785 int btrfs_check_fs_compatibility(struct btrfs_super_block *sb, int writable)
786 {
787         u64 features;
788
789         features = btrfs_super_incompat_flags(sb) &
790                    ~BTRFS_FEATURE_INCOMPAT_SUPP;
791         if (features) {
792                 printk("couldn't open because of unsupported "
793                        "option features (%Lx).\n",
794                        (unsigned long long)features);
795                 return -ENOTSUP;
796         }
797
798         features = btrfs_super_incompat_flags(sb);
799         if (!(features & BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF)) {
800                 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
801                 btrfs_set_super_incompat_flags(sb, features);
802         }
803
804         features = btrfs_super_compat_ro_flags(sb) &
805                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
806         if (writable && features) {
807                 printk("couldn't open RDWR because of unsupported "
808                        "option features (%Lx).\n",
809                        (unsigned long long)features);
810                 return -ENOTSUP;
811         }
812         return 0;
813 }
814
815 static int find_best_backup_root(struct btrfs_super_block *super)
816 {
817         struct btrfs_root_backup *backup;
818         u64 orig_gen = btrfs_super_generation(super);
819         u64 gen = 0;
820         int best_index = 0;
821         int i;
822
823         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
824                 backup = super->super_roots + i;
825                 if (btrfs_backup_tree_root_gen(backup) != orig_gen &&
826                     btrfs_backup_tree_root_gen(backup) > gen) {
827                         best_index = i;
828                         gen = btrfs_backup_tree_root_gen(backup);
829                 }
830         }
831         return best_index;
832 }
833
834 int btrfs_setup_all_roots(struct btrfs_fs_info *fs_info, u64 root_tree_bytenr,
835                           enum btrfs_open_ctree_flags flags)
836 {
837         struct btrfs_super_block *sb = fs_info->super_copy;
838         struct btrfs_root *root;
839         struct btrfs_key key;
840         u32 sectorsize;
841         u32 nodesize;
842         u32 leafsize;
843         u32 stripesize;
844         u64 generation;
845         u32 blocksize;
846         int ret;
847
848         nodesize = btrfs_super_nodesize(sb);
849         leafsize = btrfs_super_leafsize(sb);
850         sectorsize = btrfs_super_sectorsize(sb);
851         stripesize = btrfs_super_stripesize(sb);
852
853         root = fs_info->tree_root;
854         __setup_root(nodesize, leafsize, sectorsize, stripesize,
855                      root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
856         blocksize = btrfs_level_size(root, btrfs_super_root_level(sb));
857         generation = btrfs_super_generation(sb);
858
859         if (!root_tree_bytenr && !(flags & OPEN_CTREE_BACKUP_ROOT)) {
860                 root_tree_bytenr = btrfs_super_root(sb);
861         } else if (flags & OPEN_CTREE_BACKUP_ROOT) {
862                 struct btrfs_root_backup *backup;
863                 int index = find_best_backup_root(sb);
864                 if (index >= BTRFS_NUM_BACKUP_ROOTS) {
865                         fprintf(stderr, "Invalid backup root number\n");
866                         return -EIO;
867                 }
868                 backup = fs_info->super_copy->super_roots + index;
869                 root_tree_bytenr = btrfs_backup_tree_root(backup);
870                 generation = btrfs_backup_tree_root_gen(backup);
871         }
872
873         root->node = read_tree_block(root, root_tree_bytenr, blocksize,
874                                      generation);
875         if (!extent_buffer_uptodate(root->node)) {
876                 fprintf(stderr, "Couldn't read tree root\n");
877                 return -EIO;
878         }
879
880         ret = find_and_setup_root(root, fs_info, BTRFS_EXTENT_TREE_OBJECTID,
881                                   fs_info->extent_root);
882         if (ret) {
883                 printk("Couldn't setup extent tree\n");
884                 if (!(flags & OPEN_CTREE_PARTIAL))
885                         return -EIO;
886                 /* Need a blank node here just so we don't screw up in the
887                  * million of places that assume a root has a valid ->node
888                  */
889                 fs_info->extent_root->node =
890                         btrfs_find_create_tree_block(fs_info->extent_root, 0,
891                                                      leafsize);
892                 if (!fs_info->extent_root->node)
893                         return -ENOMEM;
894                 clear_extent_buffer_uptodate(NULL, fs_info->extent_root->node);
895         }
896         fs_info->extent_root->track_dirty = 1;
897
898         ret = find_and_setup_root(root, fs_info, BTRFS_DEV_TREE_OBJECTID,
899                                   fs_info->dev_root);
900         if (ret) {
901                 printk("Couldn't setup device tree\n");
902                 return -EIO;
903         }
904         fs_info->dev_root->track_dirty = 1;
905
906         ret = find_and_setup_root(root, fs_info, BTRFS_CSUM_TREE_OBJECTID,
907                                   fs_info->csum_root);
908         if (ret) {
909                 printk("Couldn't setup csum tree\n");
910                 if (!(flags & OPEN_CTREE_PARTIAL))
911                         return -EIO;
912         }
913         fs_info->csum_root->track_dirty = 1;
914
915         ret = find_and_setup_log_root(root, fs_info, sb);
916         if (ret) {
917                 printk("Couldn't setup log root tree\n");
918                 return -EIO;
919         }
920
921         fs_info->generation = generation;
922         fs_info->last_trans_committed = generation;
923         if (extent_buffer_uptodate(fs_info->extent_root->node) &&
924             !(flags & OPEN_CTREE_NO_BLOCK_GROUPS))
925                 btrfs_read_block_groups(fs_info->tree_root);
926
927         key.objectid = BTRFS_FS_TREE_OBJECTID;
928         key.type = BTRFS_ROOT_ITEM_KEY;
929         key.offset = (u64)-1;
930         fs_info->fs_root = btrfs_read_fs_root(fs_info, &key);
931
932         if (!fs_info->fs_root)
933                 return -EIO;
934         return 0;
935 }
936
937 void btrfs_release_all_roots(struct btrfs_fs_info *fs_info)
938 {
939         if (fs_info->csum_root)
940                 free_extent_buffer(fs_info->csum_root->node);
941         if (fs_info->dev_root)
942                 free_extent_buffer(fs_info->dev_root->node);
943         if (fs_info->extent_root)
944                 free_extent_buffer(fs_info->extent_root->node);
945         if (fs_info->tree_root)
946                 free_extent_buffer(fs_info->tree_root->node);
947         if (fs_info->log_root_tree)
948                 free_extent_buffer(fs_info->log_root_tree->node);
949         if (fs_info->chunk_root)
950                 free_extent_buffer(fs_info->chunk_root->node);
951 }
952
953 static void free_map_lookup(struct cache_extent *ce)
954 {
955         struct map_lookup *map;
956
957         map = container_of(ce, struct map_lookup, ce);
958         kfree(map);
959 }
960
961 FREE_EXTENT_CACHE_BASED_TREE(mapping_cache, free_map_lookup);
962
963 void btrfs_cleanup_all_caches(struct btrfs_fs_info *fs_info)
964 {
965         while (!list_empty(&fs_info->recow_ebs)) {
966                 struct extent_buffer *eb;
967                 eb = list_first_entry(&fs_info->recow_ebs,
968                                       struct extent_buffer, recow);
969                 list_del_init(&eb->recow);
970                 free_extent_buffer(eb);
971         }
972         free_mapping_cache_tree(&fs_info->mapping_tree.cache_tree);
973         extent_io_tree_cleanup(&fs_info->extent_cache);
974         extent_io_tree_cleanup(&fs_info->free_space_cache);
975         extent_io_tree_cleanup(&fs_info->block_group_cache);
976         extent_io_tree_cleanup(&fs_info->pinned_extents);
977         extent_io_tree_cleanup(&fs_info->pending_del);
978         extent_io_tree_cleanup(&fs_info->extent_ins);
979 }
980
981 int btrfs_scan_fs_devices(int fd, const char *path,
982                           struct btrfs_fs_devices **fs_devices,
983                           u64 sb_bytenr, int run_ioctl)
984 {
985         u64 total_devs;
986         int ret;
987         if (!sb_bytenr)
988                 sb_bytenr = BTRFS_SUPER_INFO_OFFSET;
989
990         ret = btrfs_scan_one_device(fd, path, fs_devices,
991                                     &total_devs, sb_bytenr);
992         if (ret) {
993                 fprintf(stderr, "No valid Btrfs found on %s\n", path);
994                 return ret;
995         }
996
997         if (total_devs != 1) {
998                 ret = btrfs_scan_for_fsid(run_ioctl);
999                 if (ret)
1000                         return ret;
1001         }
1002         return 0;
1003 }
1004
1005 int btrfs_setup_chunk_tree_and_device_map(struct btrfs_fs_info *fs_info)
1006 {
1007         struct btrfs_super_block *sb = fs_info->super_copy;
1008         u32 sectorsize;
1009         u32 nodesize;
1010         u32 leafsize;
1011         u32 blocksize;
1012         u32 stripesize;
1013         u64 generation;
1014         int ret;
1015
1016         nodesize = btrfs_super_nodesize(sb);
1017         leafsize = btrfs_super_leafsize(sb);
1018         sectorsize = btrfs_super_sectorsize(sb);
1019         stripesize = btrfs_super_stripesize(sb);
1020
1021         __setup_root(nodesize, leafsize, sectorsize, stripesize,
1022                      fs_info->chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1023
1024         ret = btrfs_read_sys_array(fs_info->chunk_root);
1025         if (ret)
1026                 return ret;
1027
1028         blocksize = btrfs_level_size(fs_info->chunk_root,
1029                                      btrfs_super_chunk_root_level(sb));
1030         generation = btrfs_super_chunk_root_generation(sb);
1031
1032         fs_info->chunk_root->node = read_tree_block(fs_info->chunk_root,
1033                                                     btrfs_super_chunk_root(sb),
1034                                                     blocksize, generation);
1035         if (!fs_info->chunk_root->node ||
1036             !extent_buffer_uptodate(fs_info->chunk_root->node)) {
1037                 fprintf(stderr, "Couldn't read chunk root\n");
1038                 return -EIO;
1039         }
1040
1041         if (!(btrfs_super_flags(sb) & BTRFS_SUPER_FLAG_METADUMP)) {
1042                 ret = btrfs_read_chunk_tree(fs_info->chunk_root);
1043                 if (ret) {
1044                         fprintf(stderr, "Couldn't read chunk tree\n");
1045                         return ret;
1046                 }
1047         }
1048         return 0;
1049 }
1050
1051 static struct btrfs_fs_info *__open_ctree_fd(int fp, const char *path,
1052                                              u64 sb_bytenr,
1053                                              u64 root_tree_bytenr,
1054                                              enum btrfs_open_ctree_flags flags)
1055 {
1056         struct btrfs_fs_info *fs_info;
1057         struct btrfs_super_block *disk_super;
1058         struct btrfs_fs_devices *fs_devices = NULL;
1059         struct extent_buffer *eb;
1060         int ret;
1061         int oflags;
1062
1063         if (sb_bytenr == 0)
1064                 sb_bytenr = BTRFS_SUPER_INFO_OFFSET;
1065
1066         /* try to drop all the caches */
1067         if (posix_fadvise(fp, 0, 0, POSIX_FADV_DONTNEED))
1068                 fprintf(stderr, "Warning, could not drop caches\n");
1069
1070         fs_info = btrfs_new_fs_info(flags & OPEN_CTREE_WRITES, sb_bytenr);
1071         if (!fs_info) {
1072                 fprintf(stderr, "Failed to allocate memory for fs_info\n");
1073                 return NULL;
1074         }
1075         if (flags & OPEN_CTREE_RESTORE)
1076                 fs_info->on_restoring = 1;
1077
1078         ret = btrfs_scan_fs_devices(fp, path, &fs_devices, sb_bytenr,
1079                                     !(flags & OPEN_CTREE_RECOVER_SUPER));
1080         if (ret)
1081                 goto out;
1082
1083         fs_info->fs_devices = fs_devices;
1084         if (flags & OPEN_CTREE_WRITES)
1085                 oflags = O_RDWR;
1086         else
1087                 oflags = O_RDONLY;
1088
1089         if (flags & OPEN_CTREE_EXCLUSIVE)
1090                 oflags |= O_EXCL;
1091
1092         ret = btrfs_open_devices(fs_devices, oflags);
1093         if (ret)
1094                 goto out;
1095
1096         disk_super = fs_info->super_copy;
1097         if (!(flags & OPEN_CTREE_RECOVER_SUPER))
1098                 ret = btrfs_read_dev_super(fs_devices->latest_bdev,
1099                                            disk_super, sb_bytenr);
1100         else
1101                 ret = btrfs_read_dev_super(fp, disk_super, sb_bytenr);
1102         if (ret) {
1103                 printk("No valid btrfs found\n");
1104                 goto out_devices;
1105         }
1106
1107         memcpy(fs_info->fsid, &disk_super->fsid, BTRFS_FSID_SIZE);
1108
1109         ret = btrfs_check_fs_compatibility(fs_info->super_copy,
1110                                            flags & OPEN_CTREE_WRITES);
1111         if (ret)
1112                 goto out_devices;
1113
1114         ret = btrfs_setup_chunk_tree_and_device_map(fs_info);
1115         if (ret)
1116                 goto out_chunk;
1117
1118         eb = fs_info->chunk_root->node;
1119         read_extent_buffer(eb, fs_info->chunk_tree_uuid,
1120                            btrfs_header_chunk_tree_uuid(eb),
1121                            BTRFS_UUID_SIZE);
1122
1123         ret = btrfs_setup_all_roots(fs_info, root_tree_bytenr, flags);
1124         if (ret)
1125                 goto out_failed;
1126
1127         return fs_info;
1128
1129 out_failed:
1130         if (flags & OPEN_CTREE_PARTIAL)
1131                 return fs_info;
1132 out_chunk:
1133         btrfs_release_all_roots(fs_info);
1134         btrfs_cleanup_all_caches(fs_info);
1135 out_devices:
1136         btrfs_close_devices(fs_devices);
1137 out:
1138         btrfs_free_fs_info(fs_info);
1139         return NULL;
1140 }
1141
1142 struct btrfs_fs_info *open_ctree_fs_info(const char *filename,
1143                                          u64 sb_bytenr, u64 root_tree_bytenr,
1144                                          enum btrfs_open_ctree_flags flags)
1145 {
1146         int fp;
1147         struct btrfs_fs_info *info;
1148         int oflags = O_CREAT | O_RDWR;
1149
1150         if (!(flags & OPEN_CTREE_WRITES))
1151                 oflags = O_RDONLY;
1152
1153         fp = open(filename, oflags, 0600);
1154         if (fp < 0) {
1155                 fprintf (stderr, "Could not open %s\n", filename);
1156                 return NULL;
1157         }
1158         info = __open_ctree_fd(fp, filename, sb_bytenr, root_tree_bytenr,
1159                                flags);
1160         close(fp);
1161         return info;
1162 }
1163
1164 struct btrfs_root *open_ctree(const char *filename, u64 sb_bytenr,
1165                               enum btrfs_open_ctree_flags flags)
1166 {
1167         struct btrfs_fs_info *info;
1168
1169         info = open_ctree_fs_info(filename, sb_bytenr, 0, flags);
1170         if (!info)
1171                 return NULL;
1172         return info->fs_root;
1173 }
1174
1175 struct btrfs_root *open_ctree_fd(int fp, const char *path, u64 sb_bytenr,
1176                                  enum btrfs_open_ctree_flags flags)
1177 {
1178         struct btrfs_fs_info *info;
1179         info = __open_ctree_fd(fp, path, sb_bytenr, 0, flags);
1180         if (!info)
1181                 return NULL;
1182         return info->fs_root;
1183 }
1184
1185 int btrfs_read_dev_super(int fd, struct btrfs_super_block *sb, u64 sb_bytenr)
1186 {
1187         u8 fsid[BTRFS_FSID_SIZE];
1188         int fsid_is_initialized = 0;
1189         struct btrfs_super_block buf;
1190         int i;
1191         int ret;
1192         u64 transid = 0;
1193         u64 bytenr;
1194
1195         if (sb_bytenr != BTRFS_SUPER_INFO_OFFSET) {
1196                 ret = pread64(fd, &buf, sizeof(buf), sb_bytenr);
1197                 if (ret < sizeof(buf))
1198                         return -1;
1199
1200                 if (btrfs_super_bytenr(&buf) != sb_bytenr ||
1201                     btrfs_super_magic(&buf) != BTRFS_MAGIC)
1202                         return -1;
1203
1204                 memcpy(sb, &buf, sizeof(*sb));
1205                 return 0;
1206         }
1207
1208         /*
1209         * we would like to check all the supers, but that would make
1210         * a btrfs mount succeed after a mkfs from a different FS.
1211         * So, we need to add a special mount option to scan for
1212         * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1213         */
1214
1215         for (i = 0; i < 1; i++) {
1216                 bytenr = btrfs_sb_offset(i);
1217                 ret = pread64(fd, &buf, sizeof(buf), bytenr);
1218                 if (ret < sizeof(buf))
1219                         break;
1220
1221                 if (btrfs_super_bytenr(&buf) != bytenr )
1222                         continue;
1223                 /* if magic is NULL, the device was removed */
1224                 if (btrfs_super_magic(&buf) == 0 && i == 0)
1225                         return -1;
1226                 if (btrfs_super_magic(&buf) != BTRFS_MAGIC)
1227                         continue;
1228
1229                 if (!fsid_is_initialized) {
1230                         memcpy(fsid, buf.fsid, sizeof(fsid));
1231                         fsid_is_initialized = 1;
1232                 } else if (memcmp(fsid, buf.fsid, sizeof(fsid))) {
1233                         /*
1234                          * the superblocks (the original one and
1235                          * its backups) contain data of different
1236                          * filesystems -> the super cannot be trusted
1237                          */
1238                         continue;
1239                 }
1240
1241                 if (btrfs_super_generation(&buf) > transid) {
1242                         memcpy(sb, &buf, sizeof(*sb));
1243                         transid = btrfs_super_generation(&buf);
1244                 }
1245         }
1246
1247         return transid > 0 ? 0 : -1;
1248 }
1249
1250 static int write_dev_supers(struct btrfs_root *root,
1251                             struct btrfs_super_block *sb,
1252                             struct btrfs_device *device)
1253 {
1254         u64 bytenr;
1255         u32 crc;
1256         int i, ret;
1257
1258         if (root->fs_info->super_bytenr != BTRFS_SUPER_INFO_OFFSET) {
1259                 btrfs_set_super_bytenr(sb, root->fs_info->super_bytenr);
1260                 crc = ~(u32)0;
1261                 crc = btrfs_csum_data(NULL, (char *)sb + BTRFS_CSUM_SIZE, crc,
1262                                       BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
1263                 btrfs_csum_final(crc, (char *)&sb->csum[0]);
1264
1265                 /*
1266                  * super_copy is BTRFS_SUPER_INFO_SIZE bytes and is
1267                  * zero filled, we can use it directly
1268                  */
1269                 ret = pwrite64(device->fd, root->fs_info->super_copy,
1270                                 BTRFS_SUPER_INFO_SIZE,
1271                                 root->fs_info->super_bytenr);
1272                 BUG_ON(ret != BTRFS_SUPER_INFO_SIZE);
1273                 return 0;
1274         }
1275
1276         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1277                 bytenr = btrfs_sb_offset(i);
1278                 if (bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
1279                         break;
1280
1281                 btrfs_set_super_bytenr(sb, bytenr);
1282
1283                 crc = ~(u32)0;
1284                 crc = btrfs_csum_data(NULL, (char *)sb + BTRFS_CSUM_SIZE, crc,
1285                                       BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
1286                 btrfs_csum_final(crc, (char *)&sb->csum[0]);
1287
1288                 /*
1289                  * super_copy is BTRFS_SUPER_INFO_SIZE bytes and is
1290                  * zero filled, we can use it directly
1291                  */
1292                 ret = pwrite64(device->fd, root->fs_info->super_copy,
1293                                 BTRFS_SUPER_INFO_SIZE, bytenr);
1294                 BUG_ON(ret != BTRFS_SUPER_INFO_SIZE);
1295         }
1296
1297         return 0;
1298 }
1299
1300 int write_all_supers(struct btrfs_root *root)
1301 {
1302         struct list_head *cur;
1303         struct list_head *head = &root->fs_info->fs_devices->devices;
1304         struct btrfs_device *dev;
1305         struct btrfs_super_block *sb;
1306         struct btrfs_dev_item *dev_item;
1307         int ret;
1308         u64 flags;
1309
1310         sb = root->fs_info->super_copy;
1311         dev_item = &sb->dev_item;
1312         list_for_each(cur, head) {
1313                 dev = list_entry(cur, struct btrfs_device, dev_list);
1314                 if (!dev->writeable)
1315                         continue;
1316
1317                 btrfs_set_stack_device_generation(dev_item, 0);
1318                 btrfs_set_stack_device_type(dev_item, dev->type);
1319                 btrfs_set_stack_device_id(dev_item, dev->devid);
1320                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
1321                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
1322                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
1323                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
1324                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
1325                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
1326                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
1327
1328                 flags = btrfs_super_flags(sb);
1329                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
1330
1331                 ret = write_dev_supers(root, sb, dev);
1332                 BUG_ON(ret);
1333         }
1334         return 0;
1335 }
1336
1337 int write_ctree_super(struct btrfs_trans_handle *trans,
1338                       struct btrfs_root *root)
1339 {
1340         int ret;
1341         struct btrfs_root *tree_root = root->fs_info->tree_root;
1342         struct btrfs_root *chunk_root = root->fs_info->chunk_root;
1343
1344         if (root->fs_info->readonly)
1345                 return 0;
1346
1347         btrfs_set_super_generation(root->fs_info->super_copy,
1348                                    trans->transid);
1349         btrfs_set_super_root(root->fs_info->super_copy,
1350                              tree_root->node->start);
1351         btrfs_set_super_root_level(root->fs_info->super_copy,
1352                                    btrfs_header_level(tree_root->node));
1353         btrfs_set_super_chunk_root(root->fs_info->super_copy,
1354                                    chunk_root->node->start);
1355         btrfs_set_super_chunk_root_level(root->fs_info->super_copy,
1356                                          btrfs_header_level(chunk_root->node));
1357         btrfs_set_super_chunk_root_generation(root->fs_info->super_copy,
1358                                 btrfs_header_generation(chunk_root->node));
1359
1360         ret = write_all_supers(root);
1361         if (ret)
1362                 fprintf(stderr, "failed to write new super block err %d\n", ret);
1363         return ret;
1364 }
1365
1366 int close_ctree(struct btrfs_root *root)
1367 {
1368         int ret;
1369         struct btrfs_trans_handle *trans;
1370         struct btrfs_fs_info *fs_info = root->fs_info;
1371
1372         if (fs_info->last_trans_committed !=
1373             fs_info->generation) {
1374                 trans = btrfs_start_transaction(root, 1);
1375                 btrfs_commit_transaction(trans, root);
1376                 trans = btrfs_start_transaction(root, 1);
1377                 ret = commit_tree_roots(trans, fs_info);
1378                 BUG_ON(ret);
1379                 ret = __commit_transaction(trans, root);
1380                 BUG_ON(ret);
1381                 write_ctree_super(trans, root);
1382                 btrfs_free_transaction(root, trans);
1383         }
1384         btrfs_free_block_groups(fs_info);
1385
1386         free_fs_roots_tree(&fs_info->fs_root_tree);
1387
1388         btrfs_release_all_roots(fs_info);
1389         btrfs_close_devices(fs_info->fs_devices);
1390         btrfs_cleanup_all_caches(fs_info);
1391         btrfs_free_fs_info(fs_info);
1392         return 0;
1393 }
1394
1395 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1396                      struct extent_buffer *eb)
1397 {
1398         return clear_extent_buffer_dirty(eb);
1399 }
1400
1401 int wait_on_tree_block_writeback(struct btrfs_root *root,
1402                                  struct extent_buffer *eb)
1403 {
1404         return 0;
1405 }
1406
1407 void btrfs_mark_buffer_dirty(struct extent_buffer *eb)
1408 {
1409         set_extent_buffer_dirty(eb);
1410 }
1411
1412 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
1413 {
1414         int ret;
1415
1416         ret = extent_buffer_uptodate(buf);
1417         if (!ret)
1418                 return ret;
1419
1420         ret = verify_parent_transid(buf->tree, buf, parent_transid, 1);
1421         return !ret;
1422 }
1423
1424 int btrfs_set_buffer_uptodate(struct extent_buffer *eb)
1425 {
1426         return set_extent_buffer_uptodate(eb);
1427 }