btrfs-progs: docs: enhance manual page for balance
[platform/upstream/btrfs-progs.git] / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <stdio.h>
20 #include <stdlib.h>
21 #include <sys/types.h>
22 #include <sys/stat.h>
23 #include <fcntl.h>
24 #include <unistd.h>
25 #include <uuid/uuid.h>
26 #include "kerncompat.h"
27 #include "radix-tree.h"
28 #include "ctree.h"
29 #include "disk-io.h"
30 #include "volumes.h"
31 #include "transaction.h"
32 #include "crc32c.h"
33 #include "utils.h"
34 #include "print-tree.h"
35 #include "rbtree-utils.h"
36
37 /* specified errno for check_tree_block */
38 #define BTRFS_BAD_BYTENR                (-1)
39 #define BTRFS_BAD_FSID                  (-2)
40 #define BTRFS_BAD_LEVEL                 (-3)
41 #define BTRFS_BAD_NRITEMS               (-4)
42
43 #define IS_ALIGNED(x, a)                (((x) & ((typeof(x))(a) - 1)) == 0)
44
45 /* Calculate max possible nritems for a leaf/node */
46 static u32 max_nritems(u8 level, u32 nodesize)
47 {
48
49         if (level == 0)
50                 return ((nodesize - sizeof(struct btrfs_header)) /
51                         sizeof(struct btrfs_item));
52         return ((nodesize - sizeof(struct btrfs_header)) /
53                 sizeof(struct btrfs_key_ptr));
54 }
55
56 static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf)
57 {
58
59         struct btrfs_fs_devices *fs_devices;
60         int ret = BTRFS_BAD_FSID;
61
62         if (buf->start != btrfs_header_bytenr(buf))
63                 return BTRFS_BAD_BYTENR;
64         if (btrfs_header_level(buf) >= BTRFS_MAX_LEVEL)
65                 return BTRFS_BAD_LEVEL;
66         if (btrfs_header_nritems(buf) > max_nritems(btrfs_header_level(buf),
67                                                     root->nodesize))
68                 return BTRFS_BAD_NRITEMS;
69
70         fs_devices = root->fs_info->fs_devices;
71         while (fs_devices) {
72                 if (root->fs_info->ignore_fsid_mismatch ||
73                     !memcmp_extent_buffer(buf, fs_devices->fsid,
74                                           btrfs_header_fsid(),
75                                           BTRFS_FSID_SIZE)) {
76                         ret = 0;
77                         break;
78                 }
79                 fs_devices = fs_devices->seed;
80         }
81         return ret;
82 }
83
84 static void print_tree_block_error(struct btrfs_root *root,
85                                 struct extent_buffer *eb,
86                                 int err)
87 {
88         char fs_uuid[BTRFS_UUID_UNPARSED_SIZE] = {'\0'};
89         char found_uuid[BTRFS_UUID_UNPARSED_SIZE] = {'\0'};
90         u8 buf[BTRFS_UUID_SIZE];
91
92         switch (err) {
93         case BTRFS_BAD_FSID:
94                 read_extent_buffer(eb, buf, btrfs_header_fsid(),
95                                    BTRFS_UUID_SIZE);
96                 uuid_unparse(buf, found_uuid);
97                 uuid_unparse(root->fs_info->fsid, fs_uuid);
98                 fprintf(stderr, "fsid mismatch, want=%s, have=%s\n",
99                         fs_uuid, found_uuid);
100                 break;
101         case BTRFS_BAD_BYTENR:
102                 fprintf(stderr, "bytenr mismatch, want=%llu, have=%llu\n",
103                         eb->start, btrfs_header_bytenr(eb));
104                 break;
105         case BTRFS_BAD_LEVEL:
106                 fprintf(stderr, "bad level, %u > %u\n",
107                         btrfs_header_level(eb), BTRFS_MAX_LEVEL);
108                 break;
109         case BTRFS_BAD_NRITEMS:
110                 fprintf(stderr, "invalid nr_items: %u\n",
111                         btrfs_header_nritems(eb));
112                 break;
113         }
114 }
115
116 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
117 {
118         return crc32c(seed, data, len);
119 }
120
121 void btrfs_csum_final(u32 crc, char *result)
122 {
123         *(__le32 *)result = ~cpu_to_le32(crc);
124 }
125
126 static int __csum_tree_block_size(struct extent_buffer *buf, u16 csum_size,
127                                   int verify, int silent)
128 {
129         char *result;
130         u32 len;
131         u32 crc = ~(u32)0;
132
133         result = malloc(csum_size * sizeof(char));
134         if (!result)
135                 return 1;
136
137         len = buf->len - BTRFS_CSUM_SIZE;
138         crc = crc32c(crc, buf->data + BTRFS_CSUM_SIZE, len);
139         btrfs_csum_final(crc, result);
140
141         if (verify) {
142                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
143                         if (!silent)
144                                 printk("checksum verify failed on %llu found %08X wanted %08X\n",
145                                        (unsigned long long)buf->start,
146                                        *((u32 *)result),
147                                        *((u32*)(char *)buf->data));
148                         free(result);
149                         return 1;
150                 }
151         } else {
152                 write_extent_buffer(buf, result, 0, csum_size);
153         }
154         free(result);
155         return 0;
156 }
157
158 int csum_tree_block_size(struct extent_buffer *buf, u16 csum_size, int verify)
159 {
160         return __csum_tree_block_size(buf, csum_size, verify, 0);
161 }
162
163 int verify_tree_block_csum_silent(struct extent_buffer *buf, u16 csum_size)
164 {
165         return __csum_tree_block_size(buf, csum_size, 1, 1);
166 }
167
168 int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
169                            int verify)
170 {
171         u16 csum_size =
172                 btrfs_super_csum_size(root->fs_info->super_copy);
173         if (verify && root->fs_info->suppress_check_block_errors)
174                 return verify_tree_block_csum_silent(buf, csum_size);
175         return csum_tree_block_size(buf, csum_size, verify);
176 }
177
178 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
179                                             u64 bytenr, u32 blocksize)
180 {
181         return find_extent_buffer(&root->fs_info->extent_cache,
182                                   bytenr, blocksize);
183 }
184
185 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
186                                                  u64 bytenr, u32 blocksize)
187 {
188         return alloc_extent_buffer(&root->fs_info->extent_cache, bytenr,
189                                    blocksize);
190 }
191
192 void readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
193                           u64 parent_transid)
194 {
195         struct extent_buffer *eb;
196         u64 length;
197         struct btrfs_multi_bio *multi = NULL;
198         struct btrfs_device *device;
199
200         eb = btrfs_find_tree_block(root, bytenr, blocksize);
201         if (!(eb && btrfs_buffer_uptodate(eb, parent_transid)) &&
202             !btrfs_map_block(&root->fs_info->mapping_tree, READ,
203                              bytenr, &length, &multi, 0, NULL)) {
204                 device = multi->stripes[0].dev;
205                 device->total_ios++;
206                 blocksize = min(blocksize, (u32)(64 * 1024));
207                 readahead(device->fd, multi->stripes[0].physical, blocksize);
208         }
209
210         free_extent_buffer(eb);
211         kfree(multi);
212 }
213
214 static int verify_parent_transid(struct extent_io_tree *io_tree,
215                                  struct extent_buffer *eb, u64 parent_transid,
216                                  int ignore)
217 {
218         int ret;
219
220         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
221                 return 0;
222
223         if (extent_buffer_uptodate(eb) &&
224             btrfs_header_generation(eb) == parent_transid) {
225                 ret = 0;
226                 goto out;
227         }
228         printk("parent transid verify failed on %llu wanted %llu found %llu\n",
229                (unsigned long long)eb->start,
230                (unsigned long long)parent_transid,
231                (unsigned long long)btrfs_header_generation(eb));
232         if (ignore) {
233                 eb->flags |= EXTENT_BAD_TRANSID;
234                 printk("Ignoring transid failure\n");
235                 return 0;
236         }
237
238         ret = 1;
239 out:
240         clear_extent_buffer_uptodate(io_tree, eb);
241         return ret;
242
243 }
244
245
246 int read_whole_eb(struct btrfs_fs_info *info, struct extent_buffer *eb, int mirror)
247 {
248         unsigned long offset = 0;
249         struct btrfs_multi_bio *multi = NULL;
250         struct btrfs_device *device;
251         int ret = 0;
252         u64 read_len;
253         unsigned long bytes_left = eb->len;
254
255         while (bytes_left) {
256                 read_len = bytes_left;
257                 device = NULL;
258
259                 if (!info->on_restoring &&
260                     eb->start != BTRFS_SUPER_INFO_OFFSET) {
261                         ret = btrfs_map_block(&info->mapping_tree, READ,
262                                               eb->start + offset, &read_len, &multi,
263                                               mirror, NULL);
264                         if (ret) {
265                                 printk("Couldn't map the block %Lu\n", eb->start + offset);
266                                 kfree(multi);
267                                 return -EIO;
268                         }
269                         device = multi->stripes[0].dev;
270
271                         if (device->fd <= 0) {
272                                 kfree(multi);
273                                 return -EIO;
274                         }
275
276                         eb->fd = device->fd;
277                         device->total_ios++;
278                         eb->dev_bytenr = multi->stripes[0].physical;
279                         kfree(multi);
280                         multi = NULL;
281                 } else {
282                         /* special case for restore metadump */
283                         list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
284                                 if (device->devid == 1)
285                                         break;
286                         }
287
288                         eb->fd = device->fd;
289                         eb->dev_bytenr = eb->start;
290                         device->total_ios++;
291                 }
292
293                 if (read_len > bytes_left)
294                         read_len = bytes_left;
295
296                 ret = read_extent_from_disk(eb, offset, read_len);
297                 if (ret)
298                         return -EIO;
299                 offset += read_len;
300                 bytes_left -= read_len;
301         }
302         return 0;
303 }
304
305 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
306                                      u32 blocksize, u64 parent_transid)
307 {
308         int ret;
309         struct extent_buffer *eb;
310         u64 best_transid = 0;
311         int mirror_num = 0;
312         int good_mirror = 0;
313         int num_copies;
314         int ignore = 0;
315
316         eb = btrfs_find_create_tree_block(root, bytenr, blocksize);
317         if (!eb)
318                 return ERR_PTR(-ENOMEM);
319
320         if (btrfs_buffer_uptodate(eb, parent_transid))
321                 return eb;
322
323         while (1) {
324                 ret = read_whole_eb(root->fs_info, eb, mirror_num);
325                 if (ret == 0 && csum_tree_block(root, eb, 1) == 0 &&
326                     check_tree_block(root, eb) == 0 &&
327                     verify_parent_transid(eb->tree, eb, parent_transid, ignore)
328                     == 0) {
329                         if (eb->flags & EXTENT_BAD_TRANSID &&
330                             list_empty(&eb->recow)) {
331                                 list_add_tail(&eb->recow,
332                                               &root->fs_info->recow_ebs);
333                                 eb->refs++;
334                         }
335                         btrfs_set_buffer_uptodate(eb);
336                         return eb;
337                 }
338                 if (ignore) {
339                         if (check_tree_block(root, eb)) {
340                                 if (!root->fs_info->suppress_check_block_errors)
341                                         print_tree_block_error(root, eb,
342                                                 check_tree_block(root, eb));
343                         } else {
344                                 if (!root->fs_info->suppress_check_block_errors)
345                                         fprintf(stderr, "Csum didn't match\n");
346                         }
347                         ret = -EIO;
348                         break;
349                 }
350                 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
351                                               eb->start, eb->len);
352                 if (num_copies == 1) {
353                         ignore = 1;
354                         continue;
355                 }
356                 if (btrfs_header_generation(eb) > best_transid && mirror_num) {
357                         best_transid = btrfs_header_generation(eb);
358                         good_mirror = mirror_num;
359                 }
360                 mirror_num++;
361                 if (mirror_num > num_copies) {
362                         mirror_num = good_mirror;
363                         ignore = 1;
364                         continue;
365                 }
366         }
367         free_extent_buffer(eb);
368         return ERR_PTR(ret);
369 }
370
371 int read_extent_data(struct btrfs_root *root, char *data,
372                            u64 logical, u64 *len, int mirror)
373 {
374         u64 offset = 0;
375         struct btrfs_multi_bio *multi = NULL;
376         struct btrfs_fs_info *info = root->fs_info;
377         struct btrfs_device *device;
378         int ret = 0;
379         u64 max_len = *len;
380
381         ret = btrfs_map_block(&info->mapping_tree, READ, logical, len,
382                               &multi, mirror, NULL);
383         if (ret) {
384                 fprintf(stderr, "Couldn't map the block %llu\n",
385                                 logical + offset);
386                 goto err;
387         }
388         device = multi->stripes[0].dev;
389
390         if (device->fd <= 0)
391                 goto err;
392         if (*len > max_len)
393                 *len = max_len;
394
395         ret = pread64(device->fd, data, *len, multi->stripes[0].physical);
396         if (ret != *len)
397                 ret = -EIO;
398         else
399                 ret = 0;
400 err:
401         kfree(multi);
402         return ret;
403 }
404
405 int write_and_map_eb(struct btrfs_trans_handle *trans,
406                      struct btrfs_root *root,
407                      struct extent_buffer *eb)
408 {
409         int ret;
410         int dev_nr;
411         u64 length;
412         u64 *raid_map = NULL;
413         struct btrfs_multi_bio *multi = NULL;
414
415         dev_nr = 0;
416         length = eb->len;
417         ret = btrfs_map_block(&root->fs_info->mapping_tree, WRITE,
418                               eb->start, &length, &multi, 0, &raid_map);
419
420         if (raid_map) {
421                 ret = write_raid56_with_parity(root->fs_info, eb, multi,
422                                                length, raid_map);
423                 BUG_ON(ret);
424         } else while (dev_nr < multi->num_stripes) {
425                 BUG_ON(ret);
426                 eb->fd = multi->stripes[dev_nr].dev->fd;
427                 eb->dev_bytenr = multi->stripes[dev_nr].physical;
428                 multi->stripes[dev_nr].dev->total_ios++;
429                 dev_nr++;
430                 ret = write_extent_to_disk(eb);
431                 BUG_ON(ret);
432         }
433         kfree(raid_map);
434         kfree(multi);
435         return 0;
436 }
437
438 int write_tree_block(struct btrfs_trans_handle *trans,
439                      struct btrfs_root *root,
440                      struct extent_buffer *eb)
441 {
442         if (check_tree_block(root, eb)) {
443                 print_tree_block_error(root, eb, check_tree_block(root, eb));
444                 BUG();
445         }
446
447         if (trans && !btrfs_buffer_uptodate(eb, trans->transid))
448                 BUG();
449
450         btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
451         csum_tree_block(root, eb, 0);
452
453         return write_and_map_eb(trans, root, eb);
454 }
455
456 int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
457                         u32 stripesize, struct btrfs_root *root,
458                         struct btrfs_fs_info *fs_info, u64 objectid)
459 {
460         root->node = NULL;
461         root->commit_root = NULL;
462         root->sectorsize = sectorsize;
463         root->nodesize = nodesize;
464         root->leafsize = leafsize;
465         root->stripesize = stripesize;
466         root->ref_cows = 0;
467         root->track_dirty = 0;
468
469         root->fs_info = fs_info;
470         root->objectid = objectid;
471         root->last_trans = 0;
472         root->highest_inode = 0;
473         root->last_inode_alloc = 0;
474
475         INIT_LIST_HEAD(&root->dirty_list);
476         INIT_LIST_HEAD(&root->orphan_data_extents);
477         memset(&root->root_key, 0, sizeof(root->root_key));
478         memset(&root->root_item, 0, sizeof(root->root_item));
479         root->root_key.objectid = objectid;
480         return 0;
481 }
482
483 static int update_cowonly_root(struct btrfs_trans_handle *trans,
484                                struct btrfs_root *root)
485 {
486         int ret;
487         u64 old_root_bytenr;
488         struct btrfs_root *tree_root = root->fs_info->tree_root;
489
490         btrfs_write_dirty_block_groups(trans, root);
491         while(1) {
492                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
493                 if (old_root_bytenr == root->node->start)
494                         break;
495                 btrfs_set_root_bytenr(&root->root_item,
496                                        root->node->start);
497                 btrfs_set_root_generation(&root->root_item,
498                                           trans->transid);
499                 root->root_item.level = btrfs_header_level(root->node);
500                 ret = btrfs_update_root(trans, tree_root,
501                                         &root->root_key,
502                                         &root->root_item);
503                 BUG_ON(ret);
504                 btrfs_write_dirty_block_groups(trans, root);
505         }
506         return 0;
507 }
508
509 static int commit_tree_roots(struct btrfs_trans_handle *trans,
510                              struct btrfs_fs_info *fs_info)
511 {
512         struct btrfs_root *root;
513         struct list_head *next;
514         struct extent_buffer *eb;
515         int ret;
516
517         if (fs_info->readonly)
518                 return 0;
519
520         eb = fs_info->tree_root->node;
521         extent_buffer_get(eb);
522         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
523         free_extent_buffer(eb);
524         if (ret)
525                 return ret;
526
527         while(!list_empty(&fs_info->dirty_cowonly_roots)) {
528                 next = fs_info->dirty_cowonly_roots.next;
529                 list_del_init(next);
530                 root = list_entry(next, struct btrfs_root, dirty_list);
531                 update_cowonly_root(trans, root);
532                 free_extent_buffer(root->commit_root);
533                 root->commit_root = NULL;
534         }
535
536         return 0;
537 }
538
539 static int __commit_transaction(struct btrfs_trans_handle *trans,
540                                 struct btrfs_root *root)
541 {
542         u64 start;
543         u64 end;
544         struct extent_buffer *eb;
545         struct extent_io_tree *tree = &root->fs_info->extent_cache;
546         int ret;
547
548         while(1) {
549                 ret = find_first_extent_bit(tree, 0, &start, &end,
550                                             EXTENT_DIRTY);
551                 if (ret)
552                         break;
553                 while(start <= end) {
554                         eb = find_first_extent_buffer(tree, start);
555                         BUG_ON(!eb || eb->start != start);
556                         ret = write_tree_block(trans, root, eb);
557                         BUG_ON(ret);
558                         start += eb->len;
559                         clear_extent_buffer_dirty(eb);
560                         free_extent_buffer(eb);
561                 }
562         }
563         return 0;
564 }
565
566 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
567                              struct btrfs_root *root)
568 {
569         u64 transid = trans->transid;
570         int ret = 0;
571         struct btrfs_fs_info *fs_info = root->fs_info;
572
573         if (root->commit_root == root->node)
574                 goto commit_tree;
575         if (root == root->fs_info->tree_root)
576                 goto commit_tree;
577         if (root == root->fs_info->chunk_root)
578                 goto commit_tree;
579
580         free_extent_buffer(root->commit_root);
581         root->commit_root = NULL;
582
583         btrfs_set_root_bytenr(&root->root_item, root->node->start);
584         btrfs_set_root_generation(&root->root_item, trans->transid);
585         root->root_item.level = btrfs_header_level(root->node);
586         ret = btrfs_update_root(trans, root->fs_info->tree_root,
587                                 &root->root_key, &root->root_item);
588         BUG_ON(ret);
589 commit_tree:
590         ret = commit_tree_roots(trans, fs_info);
591         BUG_ON(ret);
592         ret = __commit_transaction(trans, root);
593         BUG_ON(ret);
594         write_ctree_super(trans, root);
595         btrfs_finish_extent_commit(trans, fs_info->extent_root,
596                                    &fs_info->pinned_extents);
597         btrfs_free_transaction(root, trans);
598         free_extent_buffer(root->commit_root);
599         root->commit_root = NULL;
600         fs_info->running_transaction = NULL;
601         fs_info->last_trans_committed = transid;
602         return 0;
603 }
604
605 static int find_and_setup_root(struct btrfs_root *tree_root,
606                                struct btrfs_fs_info *fs_info,
607                                u64 objectid, struct btrfs_root *root)
608 {
609         int ret;
610         u32 blocksize;
611         u64 generation;
612
613         __setup_root(tree_root->nodesize, tree_root->leafsize,
614                      tree_root->sectorsize, tree_root->stripesize,
615                      root, fs_info, objectid);
616         ret = btrfs_find_last_root(tree_root, objectid,
617                                    &root->root_item, &root->root_key);
618         if (ret)
619                 return ret;
620
621         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
622         generation = btrfs_root_generation(&root->root_item);
623         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
624                                      blocksize, generation);
625         if (!extent_buffer_uptodate(root->node))
626                 return -EIO;
627
628         return 0;
629 }
630
631 static int find_and_setup_log_root(struct btrfs_root *tree_root,
632                                struct btrfs_fs_info *fs_info,
633                                struct btrfs_super_block *disk_super)
634 {
635         u32 blocksize;
636         u64 blocknr = btrfs_super_log_root(disk_super);
637         struct btrfs_root *log_root = malloc(sizeof(struct btrfs_root));
638
639         if (!log_root)
640                 return -ENOMEM;
641
642         if (blocknr == 0) {
643                 free(log_root);
644                 return 0;
645         }
646
647         blocksize = btrfs_level_size(tree_root,
648                              btrfs_super_log_root_level(disk_super));
649
650         __setup_root(tree_root->nodesize, tree_root->leafsize,
651                      tree_root->sectorsize, tree_root->stripesize,
652                      log_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
653
654         log_root->node = read_tree_block(tree_root, blocknr,
655                                      blocksize,
656                                      btrfs_super_generation(disk_super) + 1);
657
658         fs_info->log_root_tree = log_root;
659
660         if (!extent_buffer_uptodate(log_root->node)) {
661                 free_extent_buffer(log_root->node);
662                 free(log_root);
663                 fs_info->log_root_tree = NULL;
664                 return -EIO;
665         }
666
667         return 0;
668 }
669
670 int btrfs_free_fs_root(struct btrfs_root *root)
671 {
672         if (root->node)
673                 free_extent_buffer(root->node);
674         if (root->commit_root)
675                 free_extent_buffer(root->commit_root);
676         kfree(root);
677         return 0;
678 }
679
680 static void __free_fs_root(struct rb_node *node)
681 {
682         struct btrfs_root *root;
683
684         root = container_of(node, struct btrfs_root, rb_node);
685         btrfs_free_fs_root(root);
686 }
687
688 FREE_RB_BASED_TREE(fs_roots, __free_fs_root);
689
690 struct btrfs_root *btrfs_read_fs_root_no_cache(struct btrfs_fs_info *fs_info,
691                                                struct btrfs_key *location)
692 {
693         struct btrfs_root *root;
694         struct btrfs_root *tree_root = fs_info->tree_root;
695         struct btrfs_path *path;
696         struct extent_buffer *l;
697         u64 generation;
698         u32 blocksize;
699         int ret = 0;
700
701         root = calloc(1, sizeof(*root));
702         if (!root)
703                 return ERR_PTR(-ENOMEM);
704         if (location->offset == (u64)-1) {
705                 ret = find_and_setup_root(tree_root, fs_info,
706                                           location->objectid, root);
707                 if (ret) {
708                         free(root);
709                         return ERR_PTR(ret);
710                 }
711                 goto insert;
712         }
713
714         __setup_root(tree_root->nodesize, tree_root->leafsize,
715                      tree_root->sectorsize, tree_root->stripesize,
716                      root, fs_info, location->objectid);
717
718         path = btrfs_alloc_path();
719         BUG_ON(!path);
720         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
721         if (ret != 0) {
722                 if (ret > 0)
723                         ret = -ENOENT;
724                 goto out;
725         }
726         l = path->nodes[0];
727         read_extent_buffer(l, &root->root_item,
728                btrfs_item_ptr_offset(l, path->slots[0]),
729                sizeof(root->root_item));
730         memcpy(&root->root_key, location, sizeof(*location));
731         ret = 0;
732 out:
733         btrfs_free_path(path);
734         if (ret) {
735                 free(root);
736                 return ERR_PTR(ret);
737         }
738         generation = btrfs_root_generation(&root->root_item);
739         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
740         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
741                                      blocksize, generation);
742         if (!extent_buffer_uptodate(root->node)) {
743                 free(root);
744                 return ERR_PTR(-EIO);
745         }
746 insert:
747         root->ref_cows = 1;
748         return root;
749 }
750
751 static int btrfs_fs_roots_compare_objectids(struct rb_node *node,
752                                             void *data)
753 {
754         u64 objectid = *((u64 *)data);
755         struct btrfs_root *root;
756
757         root = rb_entry(node, struct btrfs_root, rb_node);
758         if (objectid > root->objectid)
759                 return 1;
760         else if (objectid < root->objectid)
761                 return -1;
762         else
763                 return 0;
764 }
765
766 static int btrfs_fs_roots_compare_roots(struct rb_node *node1,
767                                         struct rb_node *node2)
768 {
769         struct btrfs_root *root;
770
771         root = rb_entry(node2, struct btrfs_root, rb_node);
772         return btrfs_fs_roots_compare_objectids(node1, (void *)&root->objectid);
773 }
774
775 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
776                                       struct btrfs_key *location)
777 {
778         struct btrfs_root *root;
779         struct rb_node *node;
780         int ret;
781         u64 objectid = location->objectid;
782
783         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
784                 return fs_info->tree_root;
785         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
786                 return fs_info->extent_root;
787         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
788                 return fs_info->chunk_root;
789         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
790                 return fs_info->dev_root;
791         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
792                 return fs_info->csum_root;
793         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
794                 return fs_info->quota_root;
795
796         BUG_ON(location->objectid == BTRFS_TREE_RELOC_OBJECTID ||
797                location->offset != (u64)-1);
798
799         node = rb_search(&fs_info->fs_root_tree, (void *)&objectid,
800                          btrfs_fs_roots_compare_objectids, NULL);
801         if (node)
802                 return container_of(node, struct btrfs_root, rb_node);
803
804         root = btrfs_read_fs_root_no_cache(fs_info, location);
805         if (IS_ERR(root))
806                 return root;
807
808         ret = rb_insert(&fs_info->fs_root_tree, &root->rb_node,
809                         btrfs_fs_roots_compare_roots);
810         BUG_ON(ret);
811         return root;
812 }
813
814 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
815 {
816         free(fs_info->tree_root);
817         free(fs_info->extent_root);
818         free(fs_info->chunk_root);
819         free(fs_info->dev_root);
820         free(fs_info->csum_root);
821         free(fs_info->quota_root);
822         free(fs_info->super_copy);
823         free(fs_info->log_root_tree);
824         free(fs_info);
825 }
826
827 struct btrfs_fs_info *btrfs_new_fs_info(int writable, u64 sb_bytenr)
828 {
829         struct btrfs_fs_info *fs_info;
830
831         fs_info = calloc(1, sizeof(struct btrfs_fs_info));
832         if (!fs_info)
833                 return NULL;
834
835         fs_info->tree_root = calloc(1, sizeof(struct btrfs_root));
836         fs_info->extent_root = calloc(1, sizeof(struct btrfs_root));
837         fs_info->chunk_root = calloc(1, sizeof(struct btrfs_root));
838         fs_info->dev_root = calloc(1, sizeof(struct btrfs_root));
839         fs_info->csum_root = calloc(1, sizeof(struct btrfs_root));
840         fs_info->quota_root = calloc(1, sizeof(struct btrfs_root));
841         fs_info->super_copy = calloc(1, BTRFS_SUPER_INFO_SIZE);
842
843         if (!fs_info->tree_root || !fs_info->extent_root ||
844             !fs_info->chunk_root || !fs_info->dev_root ||
845             !fs_info->csum_root || !fs_info->quota_root ||
846             !fs_info->super_copy)
847                 goto free_all;
848
849         extent_io_tree_init(&fs_info->extent_cache);
850         extent_io_tree_init(&fs_info->free_space_cache);
851         extent_io_tree_init(&fs_info->block_group_cache);
852         extent_io_tree_init(&fs_info->pinned_extents);
853         extent_io_tree_init(&fs_info->pending_del);
854         extent_io_tree_init(&fs_info->extent_ins);
855         fs_info->excluded_extents = NULL;
856
857         fs_info->fs_root_tree = RB_ROOT;
858         cache_tree_init(&fs_info->mapping_tree.cache_tree);
859
860         mutex_init(&fs_info->fs_mutex);
861         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
862         INIT_LIST_HEAD(&fs_info->space_info);
863         INIT_LIST_HEAD(&fs_info->recow_ebs);
864
865         if (!writable)
866                 fs_info->readonly = 1;
867
868         fs_info->super_bytenr = sb_bytenr;
869         fs_info->data_alloc_profile = (u64)-1;
870         fs_info->metadata_alloc_profile = (u64)-1;
871         fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
872         return fs_info;
873 free_all:
874         btrfs_free_fs_info(fs_info);
875         return NULL;
876 }
877
878 int btrfs_check_fs_compatibility(struct btrfs_super_block *sb, int writable)
879 {
880         u64 features;
881
882         features = btrfs_super_incompat_flags(sb) &
883                    ~BTRFS_FEATURE_INCOMPAT_SUPP;
884         if (features) {
885                 printk("couldn't open because of unsupported "
886                        "option features (%Lx).\n",
887                        (unsigned long long)features);
888                 return -ENOTSUP;
889         }
890
891         features = btrfs_super_incompat_flags(sb);
892         if (!(features & BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF)) {
893                 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
894                 btrfs_set_super_incompat_flags(sb, features);
895         }
896
897         features = btrfs_super_compat_ro_flags(sb) &
898                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
899         if (writable && features) {
900                 printk("couldn't open RDWR because of unsupported "
901                        "option features (%Lx).\n",
902                        (unsigned long long)features);
903                 return -ENOTSUP;
904         }
905         return 0;
906 }
907
908 static int find_best_backup_root(struct btrfs_super_block *super)
909 {
910         struct btrfs_root_backup *backup;
911         u64 orig_gen = btrfs_super_generation(super);
912         u64 gen = 0;
913         int best_index = 0;
914         int i;
915
916         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
917                 backup = super->super_roots + i;
918                 if (btrfs_backup_tree_root_gen(backup) != orig_gen &&
919                     btrfs_backup_tree_root_gen(backup) > gen) {
920                         best_index = i;
921                         gen = btrfs_backup_tree_root_gen(backup);
922                 }
923         }
924         return best_index;
925 }
926
927 static int setup_root_or_create_block(struct btrfs_fs_info *fs_info,
928                                       enum btrfs_open_ctree_flags flags,
929                                       struct btrfs_root *info_root,
930                                       u64 objectid, char *str)
931 {
932         struct btrfs_super_block *sb = fs_info->super_copy;
933         struct btrfs_root *root = fs_info->tree_root;
934         u32 leafsize = btrfs_super_leafsize(sb);
935         int ret;
936
937         ret = find_and_setup_root(root, fs_info, objectid, info_root);
938         if (ret) {
939                 printk("Couldn't setup %s tree\n", str);
940                 if (!(flags & OPEN_CTREE_PARTIAL))
941                         return -EIO;
942                 /*
943                  * Need a blank node here just so we don't screw up in the
944                  * million of places that assume a root has a valid ->node
945                  */
946                 info_root->node =
947                         btrfs_find_create_tree_block(info_root, 0, leafsize);
948                 if (!info_root->node)
949                         return -ENOMEM;
950                 clear_extent_buffer_uptodate(NULL, info_root->node);
951         }
952
953         return 0;
954 }
955
956 int btrfs_setup_all_roots(struct btrfs_fs_info *fs_info, u64 root_tree_bytenr,
957                           enum btrfs_open_ctree_flags flags)
958 {
959         struct btrfs_super_block *sb = fs_info->super_copy;
960         struct btrfs_root *root;
961         struct btrfs_key key;
962         u32 sectorsize;
963         u32 nodesize;
964         u32 leafsize;
965         u32 stripesize;
966         u64 generation;
967         u32 blocksize;
968         int ret;
969
970         nodesize = btrfs_super_nodesize(sb);
971         leafsize = btrfs_super_leafsize(sb);
972         sectorsize = btrfs_super_sectorsize(sb);
973         stripesize = btrfs_super_stripesize(sb);
974
975         root = fs_info->tree_root;
976         __setup_root(nodesize, leafsize, sectorsize, stripesize,
977                      root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
978         blocksize = btrfs_level_size(root, btrfs_super_root_level(sb));
979         generation = btrfs_super_generation(sb);
980
981         if (!root_tree_bytenr && !(flags & OPEN_CTREE_BACKUP_ROOT)) {
982                 root_tree_bytenr = btrfs_super_root(sb);
983         } else if (flags & OPEN_CTREE_BACKUP_ROOT) {
984                 struct btrfs_root_backup *backup;
985                 int index = find_best_backup_root(sb);
986                 if (index >= BTRFS_NUM_BACKUP_ROOTS) {
987                         fprintf(stderr, "Invalid backup root number\n");
988                         return -EIO;
989                 }
990                 backup = fs_info->super_copy->super_roots + index;
991                 root_tree_bytenr = btrfs_backup_tree_root(backup);
992                 generation = btrfs_backup_tree_root_gen(backup);
993         }
994
995         root->node = read_tree_block(root, root_tree_bytenr, blocksize,
996                                      generation);
997         if (!extent_buffer_uptodate(root->node)) {
998                 fprintf(stderr, "Couldn't read tree root\n");
999                 return -EIO;
1000         }
1001
1002         ret = setup_root_or_create_block(fs_info, flags, fs_info->extent_root,
1003                                          BTRFS_EXTENT_TREE_OBJECTID, "extent");
1004         if (ret)
1005                 return ret;
1006         fs_info->extent_root->track_dirty = 1;
1007
1008         ret = find_and_setup_root(root, fs_info, BTRFS_DEV_TREE_OBJECTID,
1009                                   fs_info->dev_root);
1010         if (ret) {
1011                 printk("Couldn't setup device tree\n");
1012                 return -EIO;
1013         }
1014         fs_info->dev_root->track_dirty = 1;
1015
1016         ret = setup_root_or_create_block(fs_info, flags, fs_info->csum_root,
1017                                          BTRFS_CSUM_TREE_OBJECTID, "csum");
1018         if (ret)
1019                 return ret;
1020         fs_info->csum_root->track_dirty = 1;
1021
1022         ret = find_and_setup_root(root, fs_info, BTRFS_QUOTA_TREE_OBJECTID,
1023                                   fs_info->quota_root);
1024         if (ret == 0)
1025                 fs_info->quota_enabled = 1;
1026
1027         ret = find_and_setup_log_root(root, fs_info, sb);
1028         if (ret) {
1029                 printk("Couldn't setup log root tree\n");
1030                 if (!(flags & OPEN_CTREE_PARTIAL))
1031                         return -EIO;
1032         }
1033
1034         fs_info->generation = generation;
1035         fs_info->last_trans_committed = generation;
1036         if (extent_buffer_uptodate(fs_info->extent_root->node) &&
1037             !(flags & OPEN_CTREE_NO_BLOCK_GROUPS))
1038                 btrfs_read_block_groups(fs_info->tree_root);
1039
1040         key.objectid = BTRFS_FS_TREE_OBJECTID;
1041         key.type = BTRFS_ROOT_ITEM_KEY;
1042         key.offset = (u64)-1;
1043         fs_info->fs_root = btrfs_read_fs_root(fs_info, &key);
1044
1045         if (IS_ERR(fs_info->fs_root))
1046                 return -EIO;
1047         return 0;
1048 }
1049
1050 void btrfs_release_all_roots(struct btrfs_fs_info *fs_info)
1051 {
1052         if (fs_info->quota_root)
1053                 free_extent_buffer(fs_info->quota_root->node);
1054         if (fs_info->csum_root)
1055                 free_extent_buffer(fs_info->csum_root->node);
1056         if (fs_info->dev_root)
1057                 free_extent_buffer(fs_info->dev_root->node);
1058         if (fs_info->extent_root)
1059                 free_extent_buffer(fs_info->extent_root->node);
1060         if (fs_info->tree_root)
1061                 free_extent_buffer(fs_info->tree_root->node);
1062         if (fs_info->log_root_tree)
1063                 free_extent_buffer(fs_info->log_root_tree->node);
1064         if (fs_info->chunk_root)
1065                 free_extent_buffer(fs_info->chunk_root->node);
1066 }
1067
1068 static void free_map_lookup(struct cache_extent *ce)
1069 {
1070         struct map_lookup *map;
1071
1072         map = container_of(ce, struct map_lookup, ce);
1073         kfree(map);
1074 }
1075
1076 FREE_EXTENT_CACHE_BASED_TREE(mapping_cache, free_map_lookup);
1077
1078 void btrfs_cleanup_all_caches(struct btrfs_fs_info *fs_info)
1079 {
1080         while (!list_empty(&fs_info->recow_ebs)) {
1081                 struct extent_buffer *eb;
1082                 eb = list_first_entry(&fs_info->recow_ebs,
1083                                       struct extent_buffer, recow);
1084                 list_del_init(&eb->recow);
1085                 free_extent_buffer(eb);
1086         }
1087         free_mapping_cache_tree(&fs_info->mapping_tree.cache_tree);
1088         extent_io_tree_cleanup(&fs_info->extent_cache);
1089         extent_io_tree_cleanup(&fs_info->free_space_cache);
1090         extent_io_tree_cleanup(&fs_info->block_group_cache);
1091         extent_io_tree_cleanup(&fs_info->pinned_extents);
1092         extent_io_tree_cleanup(&fs_info->pending_del);
1093         extent_io_tree_cleanup(&fs_info->extent_ins);
1094 }
1095
1096 int btrfs_scan_fs_devices(int fd, const char *path,
1097                           struct btrfs_fs_devices **fs_devices,
1098                           u64 sb_bytenr, int super_recover,
1099                           int skip_devices)
1100 {
1101         u64 total_devs;
1102         u64 dev_size;
1103         off_t seek_ret;
1104         int ret;
1105         if (!sb_bytenr)
1106                 sb_bytenr = BTRFS_SUPER_INFO_OFFSET;
1107
1108         seek_ret = lseek(fd, 0, SEEK_END);
1109         if (seek_ret < 0)
1110                 return -errno;
1111
1112         dev_size = seek_ret;
1113         lseek(fd, 0, SEEK_SET);
1114         if (sb_bytenr > dev_size) {
1115                 fprintf(stderr, "Superblock bytenr is larger than device size\n");
1116                 return -EINVAL;
1117         }
1118
1119         ret = btrfs_scan_one_device(fd, path, fs_devices,
1120                                     &total_devs, sb_bytenr, super_recover);
1121         if (ret) {
1122                 fprintf(stderr, "No valid Btrfs found on %s\n", path);
1123                 return ret;
1124         }
1125
1126         if (!skip_devices && total_devs != 1) {
1127                 ret = btrfs_scan_lblkid();
1128                 if (ret)
1129                         return ret;
1130         }
1131         return 0;
1132 }
1133
1134 int btrfs_setup_chunk_tree_and_device_map(struct btrfs_fs_info *fs_info)
1135 {
1136         struct btrfs_super_block *sb = fs_info->super_copy;
1137         u32 sectorsize;
1138         u32 nodesize;
1139         u32 leafsize;
1140         u32 blocksize;
1141         u32 stripesize;
1142         u64 generation;
1143         int ret;
1144
1145         nodesize = btrfs_super_nodesize(sb);
1146         leafsize = btrfs_super_leafsize(sb);
1147         sectorsize = btrfs_super_sectorsize(sb);
1148         stripesize = btrfs_super_stripesize(sb);
1149
1150         __setup_root(nodesize, leafsize, sectorsize, stripesize,
1151                      fs_info->chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1152
1153         ret = btrfs_read_sys_array(fs_info->chunk_root);
1154         if (ret)
1155                 return ret;
1156
1157         blocksize = btrfs_level_size(fs_info->chunk_root,
1158                                      btrfs_super_chunk_root_level(sb));
1159         generation = btrfs_super_chunk_root_generation(sb);
1160
1161         fs_info->chunk_root->node = read_tree_block(fs_info->chunk_root,
1162                                                     btrfs_super_chunk_root(sb),
1163                                                     blocksize, generation);
1164         if (!extent_buffer_uptodate(fs_info->chunk_root->node)) {
1165                 fprintf(stderr, "Couldn't read chunk root\n");
1166                 return -EIO;
1167         }
1168
1169         if (!(btrfs_super_flags(sb) & BTRFS_SUPER_FLAG_METADUMP)) {
1170                 ret = btrfs_read_chunk_tree(fs_info->chunk_root);
1171                 if (ret) {
1172                         fprintf(stderr, "Couldn't read chunk tree\n");
1173                         return ret;
1174                 }
1175         }
1176         return 0;
1177 }
1178
1179 static struct btrfs_fs_info *__open_ctree_fd(int fp, const char *path,
1180                                              u64 sb_bytenr,
1181                                              u64 root_tree_bytenr,
1182                                              enum btrfs_open_ctree_flags flags)
1183 {
1184         struct btrfs_fs_info *fs_info;
1185         struct btrfs_super_block *disk_super;
1186         struct btrfs_fs_devices *fs_devices = NULL;
1187         struct extent_buffer *eb;
1188         int ret;
1189         int oflags;
1190
1191         if (sb_bytenr == 0)
1192                 sb_bytenr = BTRFS_SUPER_INFO_OFFSET;
1193
1194         /* try to drop all the caches */
1195         if (posix_fadvise(fp, 0, 0, POSIX_FADV_DONTNEED))
1196                 fprintf(stderr, "Warning, could not drop caches\n");
1197
1198         fs_info = btrfs_new_fs_info(flags & OPEN_CTREE_WRITES, sb_bytenr);
1199         if (!fs_info) {
1200                 fprintf(stderr, "Failed to allocate memory for fs_info\n");
1201                 return NULL;
1202         }
1203         if (flags & OPEN_CTREE_RESTORE)
1204                 fs_info->on_restoring = 1;
1205         if (flags & OPEN_CTREE_SUPPRESS_CHECK_BLOCK_ERRORS)
1206                 fs_info->suppress_check_block_errors = 1;
1207         if (flags & OPEN_CTREE_IGNORE_FSID_MISMATCH)
1208                 fs_info->ignore_fsid_mismatch = 1;
1209
1210         ret = btrfs_scan_fs_devices(fp, path, &fs_devices, sb_bytenr,
1211                                     (flags & OPEN_CTREE_RECOVER_SUPER),
1212                                     (flags & OPEN_CTREE_NO_DEVICES));
1213         if (ret)
1214                 goto out;
1215
1216         fs_info->fs_devices = fs_devices;
1217         if (flags & OPEN_CTREE_WRITES)
1218                 oflags = O_RDWR;
1219         else
1220                 oflags = O_RDONLY;
1221
1222         if (flags & OPEN_CTREE_EXCLUSIVE)
1223                 oflags |= O_EXCL;
1224
1225         ret = btrfs_open_devices(fs_devices, oflags);
1226         if (ret)
1227                 goto out;
1228
1229         disk_super = fs_info->super_copy;
1230         if (!(flags & OPEN_CTREE_RECOVER_SUPER))
1231                 ret = btrfs_read_dev_super(fs_devices->latest_bdev,
1232                                            disk_super, sb_bytenr, 1);
1233         else
1234                 ret = btrfs_read_dev_super(fp, disk_super, sb_bytenr, 0);
1235         if (ret) {
1236                 printk("No valid btrfs found\n");
1237                 goto out_devices;
1238         }
1239
1240         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID &&
1241             !fs_info->ignore_fsid_mismatch) {
1242                 fprintf(stderr, "ERROR: Filesystem UUID change in progress\n");
1243                 goto out_devices;
1244         }
1245
1246         memcpy(fs_info->fsid, &disk_super->fsid, BTRFS_FSID_SIZE);
1247
1248         ret = btrfs_check_fs_compatibility(fs_info->super_copy,
1249                                            flags & OPEN_CTREE_WRITES);
1250         if (ret)
1251                 goto out_devices;
1252
1253         ret = btrfs_setup_chunk_tree_and_device_map(fs_info);
1254         if (ret)
1255                 goto out_chunk;
1256
1257         eb = fs_info->chunk_root->node;
1258         read_extent_buffer(eb, fs_info->chunk_tree_uuid,
1259                            btrfs_header_chunk_tree_uuid(eb),
1260                            BTRFS_UUID_SIZE);
1261
1262         ret = btrfs_setup_all_roots(fs_info, root_tree_bytenr, flags);
1263         if (ret && !(flags & __OPEN_CTREE_RETURN_CHUNK_ROOT))
1264                 goto out_chunk;
1265
1266         return fs_info;
1267
1268 out_chunk:
1269         btrfs_release_all_roots(fs_info);
1270         btrfs_cleanup_all_caches(fs_info);
1271 out_devices:
1272         btrfs_close_devices(fs_devices);
1273 out:
1274         btrfs_free_fs_info(fs_info);
1275         return NULL;
1276 }
1277
1278 struct btrfs_fs_info *open_ctree_fs_info(const char *filename,
1279                                          u64 sb_bytenr, u64 root_tree_bytenr,
1280                                          enum btrfs_open_ctree_flags flags)
1281 {
1282         int fp;
1283         struct btrfs_fs_info *info;
1284         int oflags = O_CREAT | O_RDWR;
1285
1286         if (!(flags & OPEN_CTREE_WRITES))
1287                 oflags = O_RDONLY;
1288
1289         fp = open(filename, oflags, 0600);
1290         if (fp < 0) {
1291                 fprintf (stderr, "Could not open %s\n", filename);
1292                 return NULL;
1293         }
1294         info = __open_ctree_fd(fp, filename, sb_bytenr, root_tree_bytenr,
1295                                flags);
1296         close(fp);
1297         return info;
1298 }
1299
1300 struct btrfs_root *open_ctree(const char *filename, u64 sb_bytenr,
1301                               enum btrfs_open_ctree_flags flags)
1302 {
1303         struct btrfs_fs_info *info;
1304
1305         info = open_ctree_fs_info(filename, sb_bytenr, 0, flags);
1306         if (!info)
1307                 return NULL;
1308         if (flags & __OPEN_CTREE_RETURN_CHUNK_ROOT)
1309                 return info->chunk_root;
1310         return info->fs_root;
1311 }
1312
1313 struct btrfs_root *open_ctree_fd(int fp, const char *path, u64 sb_bytenr,
1314                                  enum btrfs_open_ctree_flags flags)
1315 {
1316         struct btrfs_fs_info *info;
1317         info = __open_ctree_fd(fp, path, sb_bytenr, 0, flags);
1318         if (!info)
1319                 return NULL;
1320         if (flags & __OPEN_CTREE_RETURN_CHUNK_ROOT)
1321                 return info->chunk_root;
1322         return info->fs_root;
1323 }
1324
1325 /*
1326  * Check if the super is valid:
1327  * - nodesize/sectorsize - minimum, maximum, alignment
1328  * - tree block starts   - alignment
1329  * - number of devices   - something sane
1330  * - sys array size      - maximum
1331  */
1332 static int check_super(struct btrfs_super_block *sb)
1333 {
1334         char result[BTRFS_CSUM_SIZE];
1335         u32 crc;
1336         u16 csum_type;
1337         int csum_size;
1338
1339         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
1340                 fprintf(stderr, "ERROR: superblock magic doesn't match\n");
1341                 return -EIO;
1342         }
1343
1344         csum_type = btrfs_super_csum_type(sb);
1345         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
1346                 fprintf(stderr, "ERROR: unsupported checksum algorithm %u\n",
1347                         csum_type);
1348                 return -EIO;
1349         }
1350         csum_size = btrfs_csum_sizes[csum_type];
1351
1352         crc = ~(u32)0;
1353         crc = btrfs_csum_data(NULL, (char *)sb + BTRFS_CSUM_SIZE, crc,
1354                               BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
1355         btrfs_csum_final(crc, result);
1356
1357         if (memcmp(result, sb->csum, csum_size)) {
1358                 fprintf(stderr, "ERROR: superblock checksum mismatch\n");
1359                 return -EIO;
1360         }
1361         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
1362                 fprintf(stderr, "ERROR: tree_root level too big: %d >= %d\n",
1363                         btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
1364                 return -EIO;
1365         }
1366         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
1367                 fprintf(stderr, "ERROR: chunk_root level too big: %d >= %d\n",
1368                         btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
1369                 return -EIO;
1370         }
1371         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
1372                 fprintf(stderr, "ERROR: log_root level too big: %d >= %d\n",
1373                         btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
1374                 return -EIO;
1375         }
1376
1377         if (!IS_ALIGNED(btrfs_super_root(sb), 4096)) {
1378                 fprintf(stderr, "ERROR: tree_root block unaligned: %llu\n",
1379                         btrfs_super_root(sb));
1380                 return -EIO;
1381         }
1382         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096)) {
1383                 fprintf(stderr, "ERROR: chunk_root block unaligned: %llu\n",
1384                         btrfs_super_chunk_root(sb));
1385                 return -EIO;
1386         }
1387         if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096)) {
1388                 fprintf(stderr, "ERROR: log_root block unaligned: %llu\n",
1389                         btrfs_super_log_root(sb));
1390                 return -EIO;
1391         }
1392         if (btrfs_super_nodesize(sb) < 4096) {
1393                 fprintf(stderr, "ERROR: nodesize too small: %u < 4096\n",
1394                         btrfs_super_nodesize(sb));
1395                 return -EIO;
1396         }
1397         if (!IS_ALIGNED(btrfs_super_nodesize(sb), 4096)) {
1398                 fprintf(stderr, "ERROR: nodesize unaligned: %u\n",
1399                         btrfs_super_nodesize(sb));
1400                 return -EIO;
1401         }
1402         if (btrfs_super_sectorsize(sb) < 4096) {
1403                 fprintf(stderr, "ERROR: sectorsize too small: %u < 4096\n",
1404                         btrfs_super_sectorsize(sb));
1405                 return -EIO;
1406         }
1407         if (!IS_ALIGNED(btrfs_super_sectorsize(sb), 4096)) {
1408                 fprintf(stderr, "ERROR: sectorsize unaligned: %u\n",
1409                         btrfs_super_sectorsize(sb));
1410                 return -EIO;
1411         }
1412
1413         if (memcmp(sb->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
1414                 char fsid[BTRFS_UUID_UNPARSED_SIZE];
1415                 char dev_fsid[BTRFS_UUID_UNPARSED_SIZE];
1416
1417                 uuid_unparse(sb->fsid, fsid);
1418                 uuid_unparse(sb->dev_item.fsid, dev_fsid);
1419                 printk(KERN_ERR
1420                         "ERROR: dev_item UUID does not match fsid: %s != %s\n",
1421                         dev_fsid, fsid);
1422                 return -EIO;
1423         }
1424
1425         /*
1426          * Hint to catch really bogus numbers, bitflips or so
1427          */
1428         if (btrfs_super_num_devices(sb) > (1UL << 31)) {
1429                 fprintf(stderr, "WARNING: suspicious number of devices: %llu\n",
1430                         btrfs_super_num_devices(sb));
1431         }
1432
1433         if (btrfs_super_num_devices(sb) == 0) {
1434                 fprintf(stderr, "ERROR: number of devices is 0\n");
1435                 return -EIO;
1436         }
1437
1438         /*
1439          * Obvious sys_chunk_array corruptions, it must hold at least one key
1440          * and one chunk
1441          */
1442         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
1443                 fprintf(stderr, "BTRFS: system chunk array too big %u > %u\n",
1444                         btrfs_super_sys_array_size(sb),
1445                         BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
1446                 return -EIO;
1447         }
1448         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
1449                         + sizeof(struct btrfs_chunk)) {
1450                 fprintf(stderr, "BTRFS: system chunk array too small %u < %lu\n",
1451                         btrfs_super_sys_array_size(sb),
1452                         sizeof(struct btrfs_disk_key) +
1453                         sizeof(struct btrfs_chunk));
1454                 return -EIO;
1455         }
1456
1457         return 0;
1458 }
1459
1460 int btrfs_read_dev_super(int fd, struct btrfs_super_block *sb, u64 sb_bytenr,
1461                          int super_recover)
1462 {
1463         u8 fsid[BTRFS_FSID_SIZE];
1464         int fsid_is_initialized = 0;
1465         char tmp[BTRFS_SUPER_INFO_SIZE];
1466         struct btrfs_super_block *buf = (struct btrfs_super_block *)tmp;
1467         int i;
1468         int ret;
1469         int max_super = super_recover ? BTRFS_SUPER_MIRROR_MAX : 1;
1470         u64 transid = 0;
1471         u64 bytenr;
1472
1473         if (sb_bytenr != BTRFS_SUPER_INFO_OFFSET) {
1474                 ret = pread64(fd, buf, BTRFS_SUPER_INFO_SIZE, sb_bytenr);
1475                 if (ret < BTRFS_SUPER_INFO_SIZE)
1476                         return -1;
1477
1478                 if (btrfs_super_bytenr(buf) != sb_bytenr)
1479                         return -1;
1480
1481                 if (check_super(buf))
1482                         return -1;
1483                 memcpy(sb, buf, BTRFS_SUPER_INFO_SIZE);
1484                 return 0;
1485         }
1486
1487         /*
1488         * we would like to check all the supers, but that would make
1489         * a btrfs mount succeed after a mkfs from a different FS.
1490         * So, we need to add a special mount option to scan for
1491         * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1492         */
1493
1494         for (i = 0; i < max_super; i++) {
1495                 bytenr = btrfs_sb_offset(i);
1496                 ret = pread64(fd, buf, BTRFS_SUPER_INFO_SIZE, bytenr);
1497                 if (ret < BTRFS_SUPER_INFO_SIZE)
1498                         break;
1499
1500                 if (btrfs_super_bytenr(buf) != bytenr )
1501                         continue;
1502                 /* if magic is NULL, the device was removed */
1503                 if (btrfs_super_magic(buf) == 0 && i == 0)
1504                         break;
1505                 if (check_super(buf))
1506                         continue;
1507
1508                 if (!fsid_is_initialized) {
1509                         memcpy(fsid, buf->fsid, sizeof(fsid));
1510                         fsid_is_initialized = 1;
1511                 } else if (memcmp(fsid, buf->fsid, sizeof(fsid))) {
1512                         /*
1513                          * the superblocks (the original one and
1514                          * its backups) contain data of different
1515                          * filesystems -> the super cannot be trusted
1516                          */
1517                         continue;
1518                 }
1519
1520                 if (btrfs_super_generation(buf) > transid) {
1521                         memcpy(sb, buf, BTRFS_SUPER_INFO_SIZE);
1522                         transid = btrfs_super_generation(buf);
1523                 }
1524         }
1525
1526         return transid > 0 ? 0 : -1;
1527 }
1528
1529 static int write_dev_supers(struct btrfs_root *root,
1530                             struct btrfs_super_block *sb,
1531                             struct btrfs_device *device)
1532 {
1533         u64 bytenr;
1534         u32 crc;
1535         int i, ret;
1536
1537         if (root->fs_info->super_bytenr != BTRFS_SUPER_INFO_OFFSET) {
1538                 btrfs_set_super_bytenr(sb, root->fs_info->super_bytenr);
1539                 crc = ~(u32)0;
1540                 crc = btrfs_csum_data(NULL, (char *)sb + BTRFS_CSUM_SIZE, crc,
1541                                       BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
1542                 btrfs_csum_final(crc, (char *)&sb->csum[0]);
1543
1544                 /*
1545                  * super_copy is BTRFS_SUPER_INFO_SIZE bytes and is
1546                  * zero filled, we can use it directly
1547                  */
1548                 ret = pwrite64(device->fd, root->fs_info->super_copy,
1549                                 BTRFS_SUPER_INFO_SIZE,
1550                                 root->fs_info->super_bytenr);
1551                 if (ret != BTRFS_SUPER_INFO_SIZE)
1552                         goto write_err;
1553                 return 0;
1554         }
1555
1556         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1557                 bytenr = btrfs_sb_offset(i);
1558                 if (bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
1559                         break;
1560
1561                 btrfs_set_super_bytenr(sb, bytenr);
1562
1563                 crc = ~(u32)0;
1564                 crc = btrfs_csum_data(NULL, (char *)sb + BTRFS_CSUM_SIZE, crc,
1565                                       BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
1566                 btrfs_csum_final(crc, (char *)&sb->csum[0]);
1567
1568                 /*
1569                  * super_copy is BTRFS_SUPER_INFO_SIZE bytes and is
1570                  * zero filled, we can use it directly
1571                  */
1572                 ret = pwrite64(device->fd, root->fs_info->super_copy,
1573                                 BTRFS_SUPER_INFO_SIZE, bytenr);
1574                 if (ret != BTRFS_SUPER_INFO_SIZE)
1575                         goto write_err;
1576         }
1577
1578         return 0;
1579
1580 write_err:
1581         if (ret > 0)
1582                 fprintf(stderr, "WARNING: failed to write all sb data\n");
1583         else
1584                 fprintf(stderr, "WARNING: failed to write sb: %s\n",
1585                         strerror(errno));
1586         return ret;
1587 }
1588
1589 int write_all_supers(struct btrfs_root *root)
1590 {
1591         struct list_head *cur;
1592         struct list_head *head = &root->fs_info->fs_devices->devices;
1593         struct btrfs_device *dev;
1594         struct btrfs_super_block *sb;
1595         struct btrfs_dev_item *dev_item;
1596         int ret;
1597         u64 flags;
1598
1599         sb = root->fs_info->super_copy;
1600         dev_item = &sb->dev_item;
1601         list_for_each(cur, head) {
1602                 dev = list_entry(cur, struct btrfs_device, dev_list);
1603                 if (!dev->writeable)
1604                         continue;
1605
1606                 btrfs_set_stack_device_generation(dev_item, 0);
1607                 btrfs_set_stack_device_type(dev_item, dev->type);
1608                 btrfs_set_stack_device_id(dev_item, dev->devid);
1609                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
1610                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
1611                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
1612                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
1613                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
1614                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
1615                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
1616
1617                 flags = btrfs_super_flags(sb);
1618                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
1619
1620                 ret = write_dev_supers(root, sb, dev);
1621                 BUG_ON(ret);
1622         }
1623         return 0;
1624 }
1625
1626 int write_ctree_super(struct btrfs_trans_handle *trans,
1627                       struct btrfs_root *root)
1628 {
1629         int ret;
1630         struct btrfs_root *tree_root = root->fs_info->tree_root;
1631         struct btrfs_root *chunk_root = root->fs_info->chunk_root;
1632
1633         if (root->fs_info->readonly)
1634                 return 0;
1635
1636         btrfs_set_super_generation(root->fs_info->super_copy,
1637                                    trans->transid);
1638         btrfs_set_super_root(root->fs_info->super_copy,
1639                              tree_root->node->start);
1640         btrfs_set_super_root_level(root->fs_info->super_copy,
1641                                    btrfs_header_level(tree_root->node));
1642         btrfs_set_super_chunk_root(root->fs_info->super_copy,
1643                                    chunk_root->node->start);
1644         btrfs_set_super_chunk_root_level(root->fs_info->super_copy,
1645                                          btrfs_header_level(chunk_root->node));
1646         btrfs_set_super_chunk_root_generation(root->fs_info->super_copy,
1647                                 btrfs_header_generation(chunk_root->node));
1648
1649         ret = write_all_supers(root);
1650         if (ret)
1651                 fprintf(stderr, "failed to write new super block err %d\n", ret);
1652         return ret;
1653 }
1654
1655 int close_ctree(struct btrfs_root *root)
1656 {
1657         int ret;
1658         struct btrfs_trans_handle *trans;
1659         struct btrfs_fs_info *fs_info = root->fs_info;
1660
1661         if (fs_info->last_trans_committed !=
1662             fs_info->generation) {
1663                 trans = btrfs_start_transaction(root, 1);
1664                 btrfs_commit_transaction(trans, root);
1665                 trans = btrfs_start_transaction(root, 1);
1666                 ret = commit_tree_roots(trans, fs_info);
1667                 BUG_ON(ret);
1668                 ret = __commit_transaction(trans, root);
1669                 BUG_ON(ret);
1670                 write_ctree_super(trans, root);
1671                 btrfs_free_transaction(root, trans);
1672         }
1673         btrfs_free_block_groups(fs_info);
1674
1675         free_fs_roots_tree(&fs_info->fs_root_tree);
1676
1677         btrfs_release_all_roots(fs_info);
1678         btrfs_close_devices(fs_info->fs_devices);
1679         btrfs_cleanup_all_caches(fs_info);
1680         btrfs_free_fs_info(fs_info);
1681         return 0;
1682 }
1683
1684 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1685                      struct extent_buffer *eb)
1686 {
1687         return clear_extent_buffer_dirty(eb);
1688 }
1689
1690 int wait_on_tree_block_writeback(struct btrfs_root *root,
1691                                  struct extent_buffer *eb)
1692 {
1693         return 0;
1694 }
1695
1696 void btrfs_mark_buffer_dirty(struct extent_buffer *eb)
1697 {
1698         set_extent_buffer_dirty(eb);
1699 }
1700
1701 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
1702 {
1703         int ret;
1704
1705         ret = extent_buffer_uptodate(buf);
1706         if (!ret)
1707                 return ret;
1708
1709         ret = verify_parent_transid(buf->tree, buf, parent_transid, 1);
1710         return !ret;
1711 }
1712
1713 int btrfs_set_buffer_uptodate(struct extent_buffer *eb)
1714 {
1715         return set_extent_buffer_uptodate(eb);
1716 }