2 * Copyright (C) 2008 RuggedCom, Inc.
3 * Richard Retanubun <RichardRetanubun@RuggedCom.com>
5 * SPDX-License-Identifier: GPL-2.0+
9 * Problems with CONFIG_SYS_64BIT_LBA:
11 * struct disk_partition.start in include/part.h is sized as ulong.
12 * When CONFIG_SYS_64BIT_LBA is activated, lbaint_t changes from ulong to uint64_t.
13 * For now, it is cast back to ulong at assignment.
15 * This limits the maximum size of addressable storage to < 2 Terra Bytes
17 #include <asm/unaligned.h>
23 #include <linux/ctype.h>
25 DECLARE_GLOBAL_DATA_PTR;
27 #ifdef HAVE_BLOCK_DEVICE
29 * efi_crc32() - EFI version of crc32 function
30 * @buf: buffer to calculate crc32 of
31 * @len - length of buf
33 * Description: Returns EFI-style CRC32 value for @buf
35 static inline u32 efi_crc32(const void *buf, u32 len)
37 return crc32(0, buf, len);
41 * Private function prototypes
44 static int pmbr_part_valid(struct partition *part);
45 static int is_pmbr_valid(legacy_mbr * mbr);
46 static int is_gpt_valid(block_dev_desc_t * dev_desc, unsigned long long lba,
47 gpt_header * pgpt_head, gpt_entry ** pgpt_pte);
48 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc,
49 gpt_header * pgpt_head);
50 static int is_pte_valid(gpt_entry * pte);
52 static char *print_efiname(gpt_entry *pte)
54 static char name[PARTNAME_SZ + 1];
56 for (i = 0; i < PARTNAME_SZ; i++) {
58 c = pte->partition_name[i] & 0xff;
59 c = (c && !isprint(c)) ? '.' : c;
62 name[PARTNAME_SZ] = 0;
66 static void uuid_string(unsigned char *uuid, char *str)
68 static const u8 le[16] = {3, 2, 1, 0, 5, 4, 7, 6, 8, 9, 10, 11,
72 for (i = 0; i < 16; i++) {
73 sprintf(str, "%02x", uuid[le[i]]);
86 static efi_guid_t system_guid = PARTITION_SYSTEM_GUID;
88 static inline int is_bootable(gpt_entry *p)
90 return p->attributes.fields.legacy_bios_bootable ||
91 !memcmp(&(p->partition_type_guid), &system_guid,
95 #ifdef CONFIG_EFI_PARTITION
97 * Public Functions (include/part.h)
100 void print_part_efi(block_dev_desc_t * dev_desc)
102 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
103 gpt_entry *gpt_pte = NULL;
108 printf("%s: Invalid Argument(s)\n", __func__);
111 /* This function validates AND fills in the GPT header and PTE */
112 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
113 gpt_head, &gpt_pte) != 1) {
114 printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
118 debug("%s: gpt-entry at %p\n", __func__, gpt_pte);
120 printf("Part\tStart LBA\tEnd LBA\t\tName\n");
121 printf("\tAttributes\n");
122 printf("\tType UUID\n");
123 printf("\tPartition UUID\n");
125 for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) {
126 /* Stop at the first non valid PTE */
127 if (!is_pte_valid(&gpt_pte[i]))
130 printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1),
131 le64_to_cpu(gpt_pte[i].starting_lba),
132 le64_to_cpu(gpt_pte[i].ending_lba),
133 print_efiname(&gpt_pte[i]));
134 printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw);
135 uuid_string(gpt_pte[i].partition_type_guid.b, uuid);
136 printf("\ttype:\t%s\n", uuid);
137 uuid_string(gpt_pte[i].unique_partition_guid.b, uuid);
138 printf("\tuuid:\t%s\n", uuid);
141 /* Remember to free pte */
146 int get_partition_info_efi(block_dev_desc_t * dev_desc, int part,
147 disk_partition_t * info)
149 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
150 gpt_entry *gpt_pte = NULL;
152 /* "part" argument must be at least 1 */
153 if (!dev_desc || !info || part < 1) {
154 printf("%s: Invalid Argument(s)\n", __func__);
158 /* This function validates AND fills in the GPT header and PTE */
159 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
160 gpt_head, &gpt_pte) != 1) {
161 printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
165 if (part > le32_to_cpu(gpt_head->num_partition_entries) ||
166 !is_pte_valid(&gpt_pte[part - 1])) {
167 debug("%s: *** ERROR: Invalid partition number %d ***\n",
173 /* The ulong casting limits the maximum disk size to 2 TB */
174 info->start = (u64)le64_to_cpu(gpt_pte[part - 1].starting_lba);
175 /* The ending LBA is inclusive, to calculate size, add 1 to it */
176 info->size = ((u64)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1)
178 info->blksz = dev_desc->blksz;
180 sprintf((char *)info->name, "%s",
181 print_efiname(&gpt_pte[part - 1]));
182 sprintf((char *)info->type, "U-Boot");
183 info->bootable = is_bootable(&gpt_pte[part - 1]);
184 #ifdef CONFIG_PARTITION_UUIDS
185 uuid_string(gpt_pte[part - 1].unique_partition_guid.b, info->uuid);
188 debug("%s: start 0x" LBAF ", size 0x" LBAF ", name %s", __func__,
189 info->start, info->size, info->name);
191 /* Remember to free pte */
196 int test_part_efi(block_dev_desc_t * dev_desc)
198 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz);
200 /* Read legacy MBR from block 0 and validate it */
201 if ((dev_desc->block_read(dev_desc->dev, 0, 1, (ulong *)legacymbr) != 1)
202 || (is_pmbr_valid(legacymbr) != 1)) {
209 * set_protective_mbr(): Set the EFI protective MBR
210 * @param dev_desc - block device descriptor
212 * @return - zero on success, otherwise error
214 static int set_protective_mbr(block_dev_desc_t *dev_desc)
216 /* Setup the Protective MBR */
217 ALLOC_CACHE_ALIGN_BUFFER(legacy_mbr, p_mbr, 1);
218 memset(p_mbr, 0, sizeof(*p_mbr));
221 printf("%s: calloc failed!\n", __func__);
224 /* Append signature */
225 p_mbr->signature = MSDOS_MBR_SIGNATURE;
226 p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT;
227 p_mbr->partition_record[0].start_sect = 1;
228 p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba;
230 /* Write MBR sector to the MMC device */
231 if (dev_desc->block_write(dev_desc->dev, 0, 1, p_mbr) != 1) {
232 printf("** Can't write to device %d **\n",
241 * string_uuid(); Convert UUID stored as string to bytes
243 * @param uuid - UUID represented as string
244 * @param dst - GUID buffer
246 * @return return 0 on successful conversion
248 static int string_uuid(char *uuid, u8 *dst)
257 const u8 uuid_str_len = 36;
259 /* The UUID is written in text: */
261 /* xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx */
263 debug("%s: uuid: %s\n", __func__, uuid);
265 if (strlen(uuid) != uuid_str_len)
268 for (i = 0; i < uuid_str_len; i++) {
269 if ((i == 8) || (i == 13) || (i == 18) || (i == 23)) {
273 if (!isxdigit(uuid[i]))
278 a = (u32)simple_strtoul(uuid, NULL, 16);
279 b = (u16)simple_strtoul(uuid + 9, NULL, 16);
280 c = (u16)simple_strtoul(uuid + 14, NULL, 16);
281 d = (u16)simple_strtoul(uuid + 19, NULL, 16);
282 e = (u64)simple_strtoull(uuid + 24, NULL, 16);
285 guid = EFI_GUID(a, b, c, d >> 8, d & 0xFF,
286 *(p + 5), *(p + 4), *(p + 3),
287 *(p + 2), *(p + 1) , *p);
289 memcpy(dst, guid.b, sizeof(efi_guid_t));
294 int write_gpt_table(block_dev_desc_t *dev_desc,
295 gpt_header *gpt_h, gpt_entry *gpt_e)
297 const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries
298 * sizeof(gpt_entry)), dev_desc);
302 debug("max lba: %x\n", (u32) dev_desc->lba);
303 /* Setup the Protective MBR */
304 if (set_protective_mbr(dev_desc) < 0)
307 /* Generate CRC for the Primary GPT Header */
308 calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
309 le32_to_cpu(gpt_h->num_partition_entries) *
310 le32_to_cpu(gpt_h->sizeof_partition_entry));
311 gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32);
313 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
314 le32_to_cpu(gpt_h->header_size));
315 gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
317 /* Write the First GPT to the block right after the Legacy MBR */
318 if (dev_desc->block_write(dev_desc->dev, 1, 1, gpt_h) != 1)
321 if (dev_desc->block_write(dev_desc->dev, 2, pte_blk_cnt, gpt_e)
325 /* recalculate the values for the Second GPT Header */
326 val = le64_to_cpu(gpt_h->my_lba);
327 gpt_h->my_lba = gpt_h->alternate_lba;
328 gpt_h->alternate_lba = cpu_to_le64(val);
329 gpt_h->header_crc32 = 0;
331 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
332 le32_to_cpu(gpt_h->header_size));
333 gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
335 if (dev_desc->block_write(dev_desc->dev,
336 le32_to_cpu(gpt_h->last_usable_lba + 1),
337 pte_blk_cnt, gpt_e) != pte_blk_cnt)
340 if (dev_desc->block_write(dev_desc->dev,
341 le32_to_cpu(gpt_h->my_lba), 1, gpt_h) != 1)
344 debug("GPT successfully written to block device!\n");
348 printf("** Can't write to device %d **\n", dev_desc->dev);
352 int gpt_fill_pte(gpt_header *gpt_h, gpt_entry *gpt_e,
353 disk_partition_t *partitions, int parts)
355 u32 offset = (u32)le32_to_cpu(gpt_h->first_usable_lba);
358 size_t efiname_len, dosname_len;
359 #ifdef CONFIG_PARTITION_UUIDS
363 for (i = 0; i < parts; i++) {
364 /* partition starting lba */
365 start = partitions[i].start;
366 if (start && (start < offset)) {
367 printf("Partition overlap\n");
371 gpt_e[i].starting_lba = cpu_to_le64(start);
372 offset = start + partitions[i].size;
374 gpt_e[i].starting_lba = cpu_to_le64(offset);
375 offset += partitions[i].size;
377 if (offset >= gpt_h->last_usable_lba) {
378 printf("Partitions layout exceds disk size\n");
381 /* partition ending lba */
382 if ((i == parts - 1) && (partitions[i].size == 0))
383 /* extend the last partition to maximuim */
384 gpt_e[i].ending_lba = gpt_h->last_usable_lba;
386 gpt_e[i].ending_lba = cpu_to_le64(offset - 1);
388 /* partition type GUID */
389 memcpy(gpt_e[i].partition_type_guid.b,
390 &PARTITION_BASIC_DATA_GUID, 16);
392 #ifdef CONFIG_PARTITION_UUIDS
393 str_uuid = partitions[i].uuid;
394 if (string_uuid(str_uuid, gpt_e[i].unique_partition_guid.b)) {
395 printf("Partition no. %d: invalid guid: %s\n",
401 /* partition attributes */
402 memset(&gpt_e[i].attributes, 0,
403 sizeof(gpt_entry_attributes));
406 efiname_len = sizeof(gpt_e[i].partition_name)
407 / sizeof(efi_char16_t);
408 dosname_len = sizeof(partitions[i].name);
410 memset(gpt_e[i].partition_name, 0,
411 sizeof(gpt_e[i].partition_name));
413 for (k = 0; k < min(dosname_len, efiname_len); k++)
414 gpt_e[i].partition_name[k] =
415 (efi_char16_t)(partitions[i].name[k]);
417 debug("%s: name: %s offset[%d]: 0x%x size[%d]: 0x" LBAF "\n",
418 __func__, partitions[i].name, i,
419 offset, i, partitions[i].size);
425 int gpt_fill_header(block_dev_desc_t *dev_desc, gpt_header *gpt_h,
426 char *str_guid, int parts_count)
428 gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE);
429 gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1);
430 gpt_h->header_size = cpu_to_le32(sizeof(gpt_header));
431 gpt_h->my_lba = cpu_to_le64(1);
432 gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1);
433 gpt_h->first_usable_lba = cpu_to_le64(34);
434 gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34);
435 gpt_h->partition_entry_lba = cpu_to_le64(2);
436 gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS);
437 gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry));
438 gpt_h->header_crc32 = 0;
439 gpt_h->partition_entry_array_crc32 = 0;
441 if (string_uuid(str_guid, gpt_h->disk_guid.b))
447 int gpt_restore(block_dev_desc_t *dev_desc, char *str_disk_guid,
448 disk_partition_t *partitions, int parts_count)
452 gpt_header *gpt_h = calloc(1, PAD_TO_BLOCKSIZE(sizeof(gpt_header),
457 printf("%s: calloc failed!\n", __func__);
461 gpt_e = calloc(1, PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS
465 printf("%s: calloc failed!\n", __func__);
470 /* Generate Primary GPT header (LBA1) */
471 ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count);
475 /* Generate partition entries */
476 ret = gpt_fill_pte(gpt_h, gpt_e, partitions, parts_count);
480 /* Write GPT partition table */
481 ret = write_gpt_table(dev_desc, gpt_h, gpt_e);
494 * pmbr_part_valid(): Check for EFI partition signature
496 * Returns: 1 if EFI GPT partition type is found.
498 static int pmbr_part_valid(struct partition *part)
500 if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT &&
501 get_unaligned_le32(&part->start_sect) == 1UL) {
509 * is_pmbr_valid(): test Protective MBR for validity
511 * Returns: 1 if PMBR is valid, 0 otherwise.
512 * Validity depends on two things:
513 * 1) MSDOS signature is in the last two bytes of the MBR
514 * 2) One partition of type 0xEE is found, checked by pmbr_part_valid()
516 static int is_pmbr_valid(legacy_mbr * mbr)
520 if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE)
523 for (i = 0; i < 4; i++) {
524 if (pmbr_part_valid(&mbr->partition_record[i])) {
532 * is_gpt_valid() - tests one GPT header and PTEs for validity
534 * lba is the logical block address of the GPT header to test
535 * gpt is a GPT header ptr, filled on return.
536 * ptes is a PTEs ptr, filled on return.
538 * Description: returns 1 if valid, 0 on error.
539 * If valid, returns pointers to PTEs.
541 static int is_gpt_valid(block_dev_desc_t * dev_desc, unsigned long long lba,
542 gpt_header * pgpt_head, gpt_entry ** pgpt_pte)
544 u32 crc32_backup = 0;
546 unsigned long long lastlba;
548 if (!dev_desc || !pgpt_head) {
549 printf("%s: Invalid Argument(s)\n", __func__);
553 /* Read GPT Header from device */
554 if (dev_desc->block_read(dev_desc->dev, lba, 1, pgpt_head) != 1) {
555 printf("*** ERROR: Can't read GPT header ***\n");
559 /* Check the GPT header signature */
560 if (le64_to_cpu(pgpt_head->signature) != GPT_HEADER_SIGNATURE) {
561 printf("GUID Partition Table Header signature is wrong:"
562 "0x%llX != 0x%llX\n",
563 le64_to_cpu(pgpt_head->signature),
564 GPT_HEADER_SIGNATURE);
568 /* Check the GUID Partition Table CRC */
569 memcpy(&crc32_backup, &pgpt_head->header_crc32, sizeof(crc32_backup));
570 memset(&pgpt_head->header_crc32, 0, sizeof(pgpt_head->header_crc32));
572 calc_crc32 = efi_crc32((const unsigned char *)pgpt_head,
573 le32_to_cpu(pgpt_head->header_size));
575 memcpy(&pgpt_head->header_crc32, &crc32_backup, sizeof(crc32_backup));
577 if (calc_crc32 != le32_to_cpu(crc32_backup)) {
578 printf("GUID Partition Table Header CRC is wrong:"
580 le32_to_cpu(crc32_backup), calc_crc32);
584 /* Check that the my_lba entry points to the LBA that contains the GPT */
585 if (le64_to_cpu(pgpt_head->my_lba) != lba) {
586 printf("GPT: my_lba incorrect: %llX != %llX\n",
587 le64_to_cpu(pgpt_head->my_lba),
592 /* Check the first_usable_lba and last_usable_lba are within the disk. */
593 lastlba = (unsigned long long)dev_desc->lba;
594 if (le64_to_cpu(pgpt_head->first_usable_lba) > lastlba) {
595 printf("GPT: first_usable_lba incorrect: %llX > %llX\n",
596 le64_to_cpu(pgpt_head->first_usable_lba), lastlba);
599 if (le64_to_cpu(pgpt_head->last_usable_lba) > lastlba) {
600 printf("GPT: last_usable_lba incorrect: %llX > %llX\n",
601 (u64) le64_to_cpu(pgpt_head->last_usable_lba), lastlba);
605 debug("GPT: first_usable_lba: %llX last_usable_lba %llX last lba %llX\n",
606 le64_to_cpu(pgpt_head->first_usable_lba),
607 le64_to_cpu(pgpt_head->last_usable_lba), lastlba);
609 /* Read and allocate Partition Table Entries */
610 *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head);
611 if (*pgpt_pte == NULL) {
612 printf("GPT: Failed to allocate memory for PTE\n");
616 /* Check the GUID Partition Table Entry Array CRC */
617 calc_crc32 = efi_crc32((const unsigned char *)*pgpt_pte,
618 le32_to_cpu(pgpt_head->num_partition_entries) *
619 le32_to_cpu(pgpt_head->sizeof_partition_entry));
621 if (calc_crc32 != le32_to_cpu(pgpt_head->partition_entry_array_crc32)) {
622 printf("GUID Partition Table Entry Array CRC is wrong:"
624 le32_to_cpu(pgpt_head->partition_entry_array_crc32),
631 /* We're done, all's well */
636 * alloc_read_gpt_entries(): reads partition entries from disk
640 * Description: Returns ptes on success, NULL on error.
641 * Allocates space for PTEs based on information found in @gpt.
642 * Notes: remember to free pte when you're done!
644 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc,
645 gpt_header * pgpt_head)
647 size_t count = 0, blk_cnt;
648 gpt_entry *pte = NULL;
650 if (!dev_desc || !pgpt_head) {
651 printf("%s: Invalid Argument(s)\n", __func__);
655 count = le32_to_cpu(pgpt_head->num_partition_entries) *
656 le32_to_cpu(pgpt_head->sizeof_partition_entry);
658 debug("%s: count = %u * %u = %zu\n", __func__,
659 (u32) le32_to_cpu(pgpt_head->num_partition_entries),
660 (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry), count);
662 /* Allocate memory for PTE, remember to FREE */
664 pte = memalign(ARCH_DMA_MINALIGN,
665 PAD_TO_BLOCKSIZE(count, dev_desc));
668 if (count == 0 || pte == NULL) {
669 printf("%s: ERROR: Can't allocate 0x%zX "
670 "bytes for GPT Entries\n",
675 /* Read GPT Entries from device */
676 blk_cnt = BLOCK_CNT(count, dev_desc);
677 if (dev_desc->block_read (dev_desc->dev,
678 le64_to_cpu(pgpt_head->partition_entry_lba),
679 (lbaint_t) (blk_cnt), pte)
682 printf("*** ERROR: Can't read GPT Entries ***\n");
690 * is_pte_valid(): validates a single Partition Table Entry
691 * @gpt_entry - Pointer to a single Partition Table Entry
693 * Description: returns 1 if valid, 0 on error.
695 static int is_pte_valid(gpt_entry * pte)
697 efi_guid_t unused_guid;
700 printf("%s: Invalid Argument(s)\n", __func__);
704 /* Only one validation for now:
705 * The GUID Partition Type != Unused Entry (ALL-ZERO)
707 memset(unused_guid.b, 0, sizeof(unused_guid.b));
709 if (memcmp(pte->partition_type_guid.b, unused_guid.b,
710 sizeof(unused_guid.b)) == 0) {
712 debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__,
713 (unsigned int)(uintptr_t)pte);