deps: update v8 to 4.3.61.21
[platform/upstream/nodejs.git] / deps / v8 / test / cctest / test-spaces.cc
1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include <stdlib.h>
29
30 #include "src/base/platform/platform.h"
31 #include "src/snapshot/snapshot.h"
32 #include "src/v8.h"
33 #include "test/cctest/cctest.h"
34
35
36 using namespace v8::internal;
37
38 #if 0
39 static void VerifyRegionMarking(Address page_start) {
40 #ifdef ENABLE_CARDMARKING_WRITE_BARRIER
41   Page* p = Page::FromAddress(page_start);
42
43   p->SetRegionMarks(Page::kAllRegionsCleanMarks);
44
45   for (Address addr = p->ObjectAreaStart();
46        addr < p->ObjectAreaEnd();
47        addr += kPointerSize) {
48     CHECK(!Page::FromAddress(addr)->IsRegionDirty(addr));
49   }
50
51   for (Address addr = p->ObjectAreaStart();
52        addr < p->ObjectAreaEnd();
53        addr += kPointerSize) {
54     Page::FromAddress(addr)->MarkRegionDirty(addr);
55   }
56
57   for (Address addr = p->ObjectAreaStart();
58        addr < p->ObjectAreaEnd();
59        addr += kPointerSize) {
60     CHECK(Page::FromAddress(addr)->IsRegionDirty(addr));
61   }
62 #endif
63 }
64 #endif
65
66
67 // TODO(gc) you can no longer allocate pages like this. Details are hidden.
68 #if 0
69 TEST(Page) {
70   byte* mem = NewArray<byte>(2*Page::kPageSize);
71   CHECK(mem != NULL);
72
73   Address start = reinterpret_cast<Address>(mem);
74   Address page_start = RoundUp(start, Page::kPageSize);
75
76   Page* p = Page::FromAddress(page_start);
77   // Initialized Page has heap pointer, normally set by memory_allocator.
78   p->heap_ = CcTest::heap();
79   CHECK(p->address() == page_start);
80   CHECK(p->is_valid());
81
82   p->opaque_header = 0;
83   p->SetIsLargeObjectPage(false);
84   CHECK(!p->next_page()->is_valid());
85
86   CHECK(p->ObjectAreaStart() == page_start + Page::kObjectStartOffset);
87   CHECK(p->ObjectAreaEnd() == page_start + Page::kPageSize);
88
89   CHECK(p->Offset(page_start + Page::kObjectStartOffset) ==
90         Page::kObjectStartOffset);
91   CHECK(p->Offset(page_start + Page::kPageSize) == Page::kPageSize);
92
93   CHECK(p->OffsetToAddress(Page::kObjectStartOffset) == p->ObjectAreaStart());
94   CHECK(p->OffsetToAddress(Page::kPageSize) == p->ObjectAreaEnd());
95
96   // test region marking
97   VerifyRegionMarking(page_start);
98
99   DeleteArray(mem);
100 }
101 #endif
102
103
104 namespace v8 {
105 namespace internal {
106
107 // Temporarily sets a given allocator in an isolate.
108 class TestMemoryAllocatorScope {
109  public:
110   TestMemoryAllocatorScope(Isolate* isolate, MemoryAllocator* allocator)
111       : isolate_(isolate),
112         old_allocator_(isolate->memory_allocator_) {
113     isolate->memory_allocator_ = allocator;
114   }
115
116   ~TestMemoryAllocatorScope() {
117     isolate_->memory_allocator_ = old_allocator_;
118   }
119
120  private:
121   Isolate* isolate_;
122   MemoryAllocator* old_allocator_;
123
124   DISALLOW_COPY_AND_ASSIGN(TestMemoryAllocatorScope);
125 };
126
127
128 // Temporarily sets a given code range in an isolate.
129 class TestCodeRangeScope {
130  public:
131   TestCodeRangeScope(Isolate* isolate, CodeRange* code_range)
132       : isolate_(isolate),
133         old_code_range_(isolate->code_range_) {
134     isolate->code_range_ = code_range;
135   }
136
137   ~TestCodeRangeScope() {
138     isolate_->code_range_ = old_code_range_;
139   }
140
141  private:
142   Isolate* isolate_;
143   CodeRange* old_code_range_;
144
145   DISALLOW_COPY_AND_ASSIGN(TestCodeRangeScope);
146 };
147
148 } }  // namespace v8::internal
149
150
151 static void VerifyMemoryChunk(Isolate* isolate,
152                               Heap* heap,
153                               CodeRange* code_range,
154                               size_t reserve_area_size,
155                               size_t commit_area_size,
156                               size_t second_commit_area_size,
157                               Executability executable) {
158   MemoryAllocator* memory_allocator = new MemoryAllocator(isolate);
159   CHECK(memory_allocator->SetUp(heap->MaxReserved(),
160                                 heap->MaxExecutableSize()));
161   TestMemoryAllocatorScope test_allocator_scope(isolate, memory_allocator);
162   TestCodeRangeScope test_code_range_scope(isolate, code_range);
163
164   size_t header_size = (executable == EXECUTABLE)
165                        ? MemoryAllocator::CodePageGuardStartOffset()
166                        : MemoryChunk::kObjectStartOffset;
167   size_t guard_size = (executable == EXECUTABLE)
168                        ? MemoryAllocator::CodePageGuardSize()
169                        : 0;
170
171   MemoryChunk* memory_chunk = memory_allocator->AllocateChunk(reserve_area_size,
172                                                               commit_area_size,
173                                                               executable,
174                                                               NULL);
175   size_t alignment = code_range != NULL && code_range->valid() ?
176                      MemoryChunk::kAlignment : v8::base::OS::CommitPageSize();
177   size_t reserved_size =
178       ((executable == EXECUTABLE))
179           ? RoundUp(header_size + guard_size + reserve_area_size + guard_size,
180                     alignment)
181           : RoundUp(header_size + reserve_area_size,
182                     v8::base::OS::CommitPageSize());
183   CHECK(memory_chunk->size() == reserved_size);
184   CHECK(memory_chunk->area_start() < memory_chunk->address() +
185                                      memory_chunk->size());
186   CHECK(memory_chunk->area_end() <= memory_chunk->address() +
187                                     memory_chunk->size());
188   CHECK(static_cast<size_t>(memory_chunk->area_size()) == commit_area_size);
189
190   Address area_start = memory_chunk->area_start();
191
192   memory_chunk->CommitArea(second_commit_area_size);
193   CHECK(area_start == memory_chunk->area_start());
194   CHECK(memory_chunk->area_start() < memory_chunk->address() +
195                                      memory_chunk->size());
196   CHECK(memory_chunk->area_end() <= memory_chunk->address() +
197                                     memory_chunk->size());
198   CHECK(static_cast<size_t>(memory_chunk->area_size()) ==
199       second_commit_area_size);
200
201   memory_allocator->Free(memory_chunk);
202   memory_allocator->TearDown();
203   delete memory_allocator;
204 }
205
206
207 TEST(Regress3540) {
208   Isolate* isolate = CcTest::i_isolate();
209   Heap* heap = isolate->heap();
210   const int pageSize = Page::kPageSize;
211   MemoryAllocator* memory_allocator = new MemoryAllocator(isolate);
212   CHECK(
213       memory_allocator->SetUp(heap->MaxReserved(), heap->MaxExecutableSize()));
214   TestMemoryAllocatorScope test_allocator_scope(isolate, memory_allocator);
215   CodeRange* code_range = new CodeRange(isolate);
216   const size_t code_range_size = 4 * pageSize;
217   if (!code_range->SetUp(
218           code_range_size +
219           RoundUp(v8::base::OS::CommitPageSize() * kReservedCodeRangePages,
220                   MemoryChunk::kAlignment) +
221           v8::internal::MemoryAllocator::CodePageAreaSize())) {
222     return;
223   }
224   Address address;
225   size_t size;
226   address = code_range->AllocateRawMemory(
227       code_range_size - 2 * pageSize, code_range_size - 2 * pageSize, &size);
228   CHECK(address != NULL);
229   Address null_address;
230   size_t null_size;
231   null_address = code_range->AllocateRawMemory(
232       code_range_size - pageSize, code_range_size - pageSize, &null_size);
233   CHECK(null_address == NULL);
234   code_range->FreeRawMemory(address, size);
235   delete code_range;
236   memory_allocator->TearDown();
237   delete memory_allocator;
238 }
239
240
241 static unsigned int Pseudorandom() {
242   static uint32_t lo = 2345;
243   lo = 18273 * (lo & 0xFFFFF) + (lo >> 16);
244   return lo & 0xFFFFF;
245 }
246
247
248 TEST(MemoryChunk) {
249   Isolate* isolate = CcTest::i_isolate();
250   Heap* heap = isolate->heap();
251
252   size_t reserve_area_size = 1 * MB;
253   size_t initial_commit_area_size, second_commit_area_size;
254
255   for (int i = 0; i < 100; i++) {
256     initial_commit_area_size = Pseudorandom();
257     second_commit_area_size = Pseudorandom();
258
259     // With CodeRange.
260     CodeRange* code_range = new CodeRange(isolate);
261     const size_t code_range_size = 32 * MB;
262     if (!code_range->SetUp(code_range_size)) return;
263
264     VerifyMemoryChunk(isolate,
265                       heap,
266                       code_range,
267                       reserve_area_size,
268                       initial_commit_area_size,
269                       second_commit_area_size,
270                       EXECUTABLE);
271
272     VerifyMemoryChunk(isolate,
273                       heap,
274                       code_range,
275                       reserve_area_size,
276                       initial_commit_area_size,
277                       second_commit_area_size,
278                       NOT_EXECUTABLE);
279     delete code_range;
280
281     // Without CodeRange.
282     code_range = NULL;
283     VerifyMemoryChunk(isolate,
284                       heap,
285                       code_range,
286                       reserve_area_size,
287                       initial_commit_area_size,
288                       second_commit_area_size,
289                       EXECUTABLE);
290
291     VerifyMemoryChunk(isolate,
292                       heap,
293                       code_range,
294                       reserve_area_size,
295                       initial_commit_area_size,
296                       second_commit_area_size,
297                       NOT_EXECUTABLE);
298   }
299 }
300
301
302 TEST(MemoryAllocator) {
303   Isolate* isolate = CcTest::i_isolate();
304   Heap* heap = isolate->heap();
305
306   MemoryAllocator* memory_allocator = new MemoryAllocator(isolate);
307   CHECK(memory_allocator->SetUp(heap->MaxReserved(),
308                                 heap->MaxExecutableSize()));
309
310   int total_pages = 0;
311   OldSpace faked_space(heap, heap->MaxReserved(), OLD_POINTER_SPACE,
312                        NOT_EXECUTABLE);
313   Page* first_page = memory_allocator->AllocatePage(
314       faked_space.AreaSize(), &faked_space, NOT_EXECUTABLE);
315
316   first_page->InsertAfter(faked_space.anchor()->prev_page());
317   CHECK(first_page->is_valid());
318   CHECK(first_page->next_page() == faked_space.anchor());
319   total_pages++;
320
321   for (Page* p = first_page; p != faked_space.anchor(); p = p->next_page()) {
322     CHECK(p->owner() == &faked_space);
323   }
324
325   // Again, we should get n or n - 1 pages.
326   Page* other = memory_allocator->AllocatePage(
327       faked_space.AreaSize(), &faked_space, NOT_EXECUTABLE);
328   CHECK(other->is_valid());
329   total_pages++;
330   other->InsertAfter(first_page);
331   int page_count = 0;
332   for (Page* p = first_page; p != faked_space.anchor(); p = p->next_page()) {
333     CHECK(p->owner() == &faked_space);
334     page_count++;
335   }
336   CHECK(total_pages == page_count);
337
338   Page* second_page = first_page->next_page();
339   CHECK(second_page->is_valid());
340   memory_allocator->Free(first_page);
341   memory_allocator->Free(second_page);
342   memory_allocator->TearDown();
343   delete memory_allocator;
344 }
345
346
347 TEST(NewSpace) {
348   Isolate* isolate = CcTest::i_isolate();
349   Heap* heap = isolate->heap();
350   MemoryAllocator* memory_allocator = new MemoryAllocator(isolate);
351   CHECK(memory_allocator->SetUp(heap->MaxReserved(),
352                                 heap->MaxExecutableSize()));
353   TestMemoryAllocatorScope test_scope(isolate, memory_allocator);
354
355   NewSpace new_space(heap);
356
357   CHECK(new_space.SetUp(CcTest::heap()->ReservedSemiSpaceSize(),
358                         CcTest::heap()->ReservedSemiSpaceSize()));
359   CHECK(new_space.HasBeenSetUp());
360
361   while (new_space.Available() >= Page::kMaxRegularHeapObjectSize) {
362     Object* obj = new_space.AllocateRaw(
363         Page::kMaxRegularHeapObjectSize).ToObjectChecked();
364     CHECK(new_space.Contains(HeapObject::cast(obj)));
365   }
366
367   new_space.TearDown();
368   memory_allocator->TearDown();
369   delete memory_allocator;
370 }
371
372
373 TEST(OldSpace) {
374   Isolate* isolate = CcTest::i_isolate();
375   Heap* heap = isolate->heap();
376   MemoryAllocator* memory_allocator = new MemoryAllocator(isolate);
377   CHECK(memory_allocator->SetUp(heap->MaxReserved(),
378                                 heap->MaxExecutableSize()));
379   TestMemoryAllocatorScope test_scope(isolate, memory_allocator);
380
381   OldSpace* s = new OldSpace(heap, heap->MaxOldGenerationSize(),
382                              OLD_POINTER_SPACE, NOT_EXECUTABLE);
383   CHECK(s != NULL);
384
385   CHECK(s->SetUp());
386
387   while (s->Available() > 0) {
388     s->AllocateRaw(Page::kMaxRegularHeapObjectSize).ToObjectChecked();
389   }
390
391   s->TearDown();
392   delete s;
393   memory_allocator->TearDown();
394   delete memory_allocator;
395 }
396
397
398 TEST(LargeObjectSpace) {
399   v8::V8::Initialize();
400
401   LargeObjectSpace* lo = CcTest::heap()->lo_space();
402   CHECK(lo != NULL);
403
404   int lo_size = Page::kPageSize;
405
406   Object* obj = lo->AllocateRaw(lo_size, NOT_EXECUTABLE).ToObjectChecked();
407   CHECK(obj->IsHeapObject());
408
409   HeapObject* ho = HeapObject::cast(obj);
410
411   CHECK(lo->Contains(HeapObject::cast(obj)));
412
413   CHECK(lo->FindObject(ho->address()) == obj);
414
415   CHECK(lo->Contains(ho));
416
417   while (true) {
418     intptr_t available = lo->Available();
419     { AllocationResult allocation = lo->AllocateRaw(lo_size, NOT_EXECUTABLE);
420       if (allocation.IsRetry()) break;
421     }
422     // The available value is conservative such that it may report
423     // zero prior to heap exhaustion.
424     CHECK(lo->Available() < available || available == 0);
425   }
426
427   CHECK(!lo->IsEmpty());
428
429   CHECK(lo->AllocateRaw(lo_size, NOT_EXECUTABLE).IsRetry());
430 }
431
432
433 TEST(SizeOfFirstPageIsLargeEnough) {
434   if (i::FLAG_always_opt) return;
435   // Bootstrapping without a snapshot causes more allocations.
436   CcTest::InitializeVM();
437   Isolate* isolate = CcTest::i_isolate();
438   if (!isolate->snapshot_available()) return;
439   if (Snapshot::EmbedsScript(isolate)) return;
440
441   // Freshly initialized VM gets by with one page per space.
442   for (int i = FIRST_PAGED_SPACE; i <= LAST_PAGED_SPACE; i++) {
443     // Debug code can be very large, so skip CODE_SPACE if we are generating it.
444     if (i == CODE_SPACE && i::FLAG_debug_code) continue;
445     CHECK_EQ(1, isolate->heap()->paged_space(i)->CountTotalPages());
446   }
447
448   // Executing the empty script gets by with one page per space.
449   HandleScope scope(isolate);
450   CompileRun("/*empty*/");
451   for (int i = FIRST_PAGED_SPACE; i <= LAST_PAGED_SPACE; i++) {
452     // Debug code can be very large, so skip CODE_SPACE if we are generating it.
453     if (i == CODE_SPACE && i::FLAG_debug_code) continue;
454     CHECK_EQ(1, isolate->heap()->paged_space(i)->CountTotalPages());
455   }
456
457   // No large objects required to perform the above steps.
458   CHECK(isolate->heap()->lo_space()->IsEmpty());
459 }
460
461
462 UNINITIALIZED_TEST(NewSpaceGrowsToTargetCapacity) {
463   FLAG_target_semi_space_size = 2 * (Page::kPageSize / MB);
464   if (FLAG_optimize_for_size) return;
465
466   v8::Isolate* isolate = v8::Isolate::New();
467   {
468     v8::Isolate::Scope isolate_scope(isolate);
469     v8::HandleScope handle_scope(isolate);
470     v8::Context::New(isolate)->Enter();
471
472     Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);
473
474     NewSpace* new_space = i_isolate->heap()->new_space();
475
476     // This test doesn't work if we start with a non-default new space
477     // configuration.
478     if (new_space->InitialTotalCapacity() == Page::kPageSize) {
479       CHECK(new_space->CommittedMemory() == new_space->InitialTotalCapacity());
480
481       // Fill up the first (and only) page of the semi space.
482       FillCurrentPage(new_space);
483
484       // Try to allocate out of the new space. A new page should be added and
485       // the
486       // allocation should succeed.
487       v8::internal::AllocationResult allocation = new_space->AllocateRaw(80);
488       CHECK(!allocation.IsRetry());
489       CHECK(new_space->CommittedMemory() == 2 * Page::kPageSize);
490
491       // Turn the allocation into a proper object so isolate teardown won't
492       // crash.
493       HeapObject* free_space = NULL;
494       CHECK(allocation.To(&free_space));
495       new_space->heap()->CreateFillerObjectAt(free_space->address(), 80);
496     }
497   }
498   isolate->Dispose();
499 }