deps: upgrade V8 to 4.5.103.24
[platform/upstream/nodejs.git] / deps / v8 / src / isolate.cc
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include <stdlib.h>
6
7 #include <fstream>  // NOLINT(readability/streams)
8 #include <sstream>
9
10 #include "src/v8.h"
11
12 #include "src/ast.h"
13 #include "src/base/platform/platform.h"
14 #include "src/base/sys-info.h"
15 #include "src/base/utils/random-number-generator.h"
16 #include "src/basic-block-profiler.h"
17 #include "src/bootstrapper.h"
18 #include "src/codegen.h"
19 #include "src/compilation-cache.h"
20 #include "src/compilation-statistics.h"
21 #include "src/cpu-profiler.h"
22 #include "src/debug.h"
23 #include "src/deoptimizer.h"
24 #include "src/heap/spaces.h"
25 #include "src/heap-profiler.h"
26 #include "src/hydrogen.h"
27 #include "src/ic/stub-cache.h"
28 #include "src/lithium-allocator.h"
29 #include "src/log.h"
30 #include "src/messages.h"
31 #include "src/prototype.h"
32 #include "src/regexp-stack.h"
33 #include "src/runtime-profiler.h"
34 #include "src/sampler.h"
35 #include "src/scopeinfo.h"
36 #include "src/simulator.h"
37 #include "src/snapshot/serialize.h"
38 #include "src/version.h"
39 #include "src/vm-state-inl.h"
40
41
42 namespace v8 {
43 namespace internal {
44
45 base::Atomic32 ThreadId::highest_thread_id_ = 0;
46
47 int ThreadId::AllocateThreadId() {
48   int new_id = base::NoBarrier_AtomicIncrement(&highest_thread_id_, 1);
49   return new_id;
50 }
51
52
53 int ThreadId::GetCurrentThreadId() {
54   int thread_id = base::Thread::GetThreadLocalInt(Isolate::thread_id_key_);
55   if (thread_id == 0) {
56     thread_id = AllocateThreadId();
57     base::Thread::SetThreadLocalInt(Isolate::thread_id_key_, thread_id);
58   }
59   return thread_id;
60 }
61
62
63 ThreadLocalTop::ThreadLocalTop() {
64   InitializeInternal();
65 }
66
67
68 void ThreadLocalTop::InitializeInternal() {
69   c_entry_fp_ = 0;
70   c_function_ = 0;
71   handler_ = 0;
72 #ifdef USE_SIMULATOR
73   simulator_ = NULL;
74 #endif
75   js_entry_sp_ = NULL;
76   external_callback_scope_ = NULL;
77   current_vm_state_ = EXTERNAL;
78   try_catch_handler_ = NULL;
79   context_ = NULL;
80   thread_id_ = ThreadId::Invalid();
81   external_caught_exception_ = false;
82   failed_access_check_callback_ = NULL;
83   save_context_ = NULL;
84   promise_on_stack_ = NULL;
85
86   // These members are re-initialized later after deserialization
87   // is complete.
88   pending_exception_ = NULL;
89   rethrowing_message_ = false;
90   pending_message_obj_ = NULL;
91   scheduled_exception_ = NULL;
92 }
93
94
95 void ThreadLocalTop::Initialize() {
96   InitializeInternal();
97 #ifdef USE_SIMULATOR
98   simulator_ = Simulator::current(isolate_);
99 #endif
100   thread_id_ = ThreadId::Current();
101 }
102
103
104 void ThreadLocalTop::Free() {
105   // Match unmatched PopPromise calls.
106   while (promise_on_stack_) isolate_->PopPromise();
107 }
108
109
110 base::Thread::LocalStorageKey Isolate::isolate_key_;
111 base::Thread::LocalStorageKey Isolate::thread_id_key_;
112 base::Thread::LocalStorageKey Isolate::per_isolate_thread_data_key_;
113 base::LazyMutex Isolate::thread_data_table_mutex_ = LAZY_MUTEX_INITIALIZER;
114 Isolate::ThreadDataTable* Isolate::thread_data_table_ = NULL;
115 base::Atomic32 Isolate::isolate_counter_ = 0;
116 #if DEBUG
117 base::Atomic32 Isolate::isolate_key_created_ = 0;
118 #endif
119
120 Isolate::PerIsolateThreadData*
121     Isolate::FindOrAllocatePerThreadDataForThisThread() {
122   ThreadId thread_id = ThreadId::Current();
123   PerIsolateThreadData* per_thread = NULL;
124   {
125     base::LockGuard<base::Mutex> lock_guard(thread_data_table_mutex_.Pointer());
126     per_thread = thread_data_table_->Lookup(this, thread_id);
127     if (per_thread == NULL) {
128       per_thread = new PerIsolateThreadData(this, thread_id);
129       thread_data_table_->Insert(per_thread);
130     }
131     DCHECK(thread_data_table_->Lookup(this, thread_id) == per_thread);
132   }
133   return per_thread;
134 }
135
136
137 Isolate::PerIsolateThreadData* Isolate::FindPerThreadDataForThisThread() {
138   ThreadId thread_id = ThreadId::Current();
139   return FindPerThreadDataForThread(thread_id);
140 }
141
142
143 Isolate::PerIsolateThreadData* Isolate::FindPerThreadDataForThread(
144     ThreadId thread_id) {
145   PerIsolateThreadData* per_thread = NULL;
146   {
147     base::LockGuard<base::Mutex> lock_guard(thread_data_table_mutex_.Pointer());
148     per_thread = thread_data_table_->Lookup(this, thread_id);
149   }
150   return per_thread;
151 }
152
153
154 void Isolate::InitializeOncePerProcess() {
155   base::LockGuard<base::Mutex> lock_guard(thread_data_table_mutex_.Pointer());
156   CHECK(thread_data_table_ == NULL);
157   isolate_key_ = base::Thread::CreateThreadLocalKey();
158 #if DEBUG
159   base::NoBarrier_Store(&isolate_key_created_, 1);
160 #endif
161   thread_id_key_ = base::Thread::CreateThreadLocalKey();
162   per_isolate_thread_data_key_ = base::Thread::CreateThreadLocalKey();
163   thread_data_table_ = new Isolate::ThreadDataTable();
164 }
165
166
167 Address Isolate::get_address_from_id(Isolate::AddressId id) {
168   return isolate_addresses_[id];
169 }
170
171
172 char* Isolate::Iterate(ObjectVisitor* v, char* thread_storage) {
173   ThreadLocalTop* thread = reinterpret_cast<ThreadLocalTop*>(thread_storage);
174   Iterate(v, thread);
175   return thread_storage + sizeof(ThreadLocalTop);
176 }
177
178
179 void Isolate::IterateThread(ThreadVisitor* v, char* t) {
180   ThreadLocalTop* thread = reinterpret_cast<ThreadLocalTop*>(t);
181   v->VisitThread(this, thread);
182 }
183
184
185 void Isolate::Iterate(ObjectVisitor* v, ThreadLocalTop* thread) {
186   // Visit the roots from the top for a given thread.
187   v->VisitPointer(&thread->pending_exception_);
188   v->VisitPointer(&(thread->pending_message_obj_));
189   v->VisitPointer(bit_cast<Object**>(&(thread->context_)));
190   v->VisitPointer(&thread->scheduled_exception_);
191
192   for (v8::TryCatch* block = thread->try_catch_handler();
193        block != NULL;
194        block = block->next_) {
195     v->VisitPointer(bit_cast<Object**>(&(block->exception_)));
196     v->VisitPointer(bit_cast<Object**>(&(block->message_obj_)));
197   }
198
199   // Iterate over pointers on native execution stack.
200   for (StackFrameIterator it(this, thread); !it.done(); it.Advance()) {
201     it.frame()->Iterate(v);
202   }
203 }
204
205
206 void Isolate::Iterate(ObjectVisitor* v) {
207   ThreadLocalTop* current_t = thread_local_top();
208   Iterate(v, current_t);
209 }
210
211
212 void Isolate::IterateDeferredHandles(ObjectVisitor* visitor) {
213   for (DeferredHandles* deferred = deferred_handles_head_;
214        deferred != NULL;
215        deferred = deferred->next_) {
216     deferred->Iterate(visitor);
217   }
218 }
219
220
221 #ifdef DEBUG
222 bool Isolate::IsDeferredHandle(Object** handle) {
223   // Each DeferredHandles instance keeps the handles to one job in the
224   // concurrent recompilation queue, containing a list of blocks.  Each block
225   // contains kHandleBlockSize handles except for the first block, which may
226   // not be fully filled.
227   // We iterate through all the blocks to see whether the argument handle
228   // belongs to one of the blocks.  If so, it is deferred.
229   for (DeferredHandles* deferred = deferred_handles_head_;
230        deferred != NULL;
231        deferred = deferred->next_) {
232     List<Object**>* blocks = &deferred->blocks_;
233     for (int i = 0; i < blocks->length(); i++) {
234       Object** block_limit = (i == 0) ? deferred->first_block_limit_
235                                       : blocks->at(i) + kHandleBlockSize;
236       if (blocks->at(i) <= handle && handle < block_limit) return true;
237     }
238   }
239   return false;
240 }
241 #endif  // DEBUG
242
243
244 void Isolate::RegisterTryCatchHandler(v8::TryCatch* that) {
245   thread_local_top()->set_try_catch_handler(that);
246 }
247
248
249 void Isolate::UnregisterTryCatchHandler(v8::TryCatch* that) {
250   DCHECK(thread_local_top()->try_catch_handler() == that);
251   thread_local_top()->set_try_catch_handler(that->next_);
252 }
253
254
255 Handle<String> Isolate::StackTraceString() {
256   if (stack_trace_nesting_level_ == 0) {
257     stack_trace_nesting_level_++;
258     HeapStringAllocator allocator;
259     StringStream::ClearMentionedObjectCache(this);
260     StringStream accumulator(&allocator);
261     incomplete_message_ = &accumulator;
262     PrintStack(&accumulator);
263     Handle<String> stack_trace = accumulator.ToString(this);
264     incomplete_message_ = NULL;
265     stack_trace_nesting_level_ = 0;
266     return stack_trace;
267   } else if (stack_trace_nesting_level_ == 1) {
268     stack_trace_nesting_level_++;
269     base::OS::PrintError(
270       "\n\nAttempt to print stack while printing stack (double fault)\n");
271     base::OS::PrintError(
272       "If you are lucky you may find a partial stack dump on stdout.\n\n");
273     incomplete_message_->OutputToStdOut();
274     return factory()->empty_string();
275   } else {
276     base::OS::Abort();
277     // Unreachable
278     return factory()->empty_string();
279   }
280 }
281
282
283 void Isolate::PushStackTraceAndDie(unsigned int magic, void* ptr1, void* ptr2,
284                                    unsigned int magic2) {
285   const int kMaxStackTraceSize = 32 * KB;
286   Handle<String> trace = StackTraceString();
287   uint8_t buffer[kMaxStackTraceSize];
288   int length = Min(kMaxStackTraceSize - 1, trace->length());
289   String::WriteToFlat(*trace, buffer, 0, length);
290   buffer[length] = '\0';
291   // TODO(dcarney): convert buffer to utf8?
292   base::OS::PrintError("Stacktrace (%x-%x) %p %p: %s\n", magic, magic2, ptr1,
293                        ptr2, reinterpret_cast<char*>(buffer));
294   base::OS::Abort();
295 }
296
297
298 // Determines whether the given stack frame should be displayed in
299 // a stack trace.  The caller is the error constructor that asked
300 // for the stack trace to be collected.  The first time a construct
301 // call to this function is encountered it is skipped.  The seen_caller
302 // in/out parameter is used to remember if the caller has been seen
303 // yet.
304 static bool IsVisibleInStackTrace(JSFunction* fun,
305                                   Object* caller,
306                                   Object* receiver,
307                                   bool* seen_caller) {
308   if ((fun == caller) && !(*seen_caller)) {
309     *seen_caller = true;
310     return false;
311   }
312   // Skip all frames until we've seen the caller.
313   if (!(*seen_caller)) return false;
314   // Also, skip non-visible built-in functions and any call with the builtins
315   // object as receiver, so as to not reveal either the builtins object or
316   // an internal function.
317   // The --builtins-in-stack-traces command line flag allows including
318   // internal call sites in the stack trace for debugging purposes.
319   if (!FLAG_builtins_in_stack_traces) {
320     if (receiver->IsJSBuiltinsObject()) return false;
321     if (fun->IsBuiltin()) {
322       return fun->shared()->native();
323     } else if (!fun->IsSubjectToDebugging()) {
324       return false;
325     }
326   }
327   return true;
328 }
329
330
331 Handle<Object> Isolate::CaptureSimpleStackTrace(Handle<JSObject> error_object,
332                                                 Handle<Object> caller) {
333   // Get stack trace limit.
334   Handle<Object> error = Object::GetProperty(
335       this, js_builtins_object(), "$Error").ToHandleChecked();
336   if (!error->IsJSObject()) return factory()->undefined_value();
337
338   Handle<String> stackTraceLimit =
339       factory()->InternalizeUtf8String("stackTraceLimit");
340   DCHECK(!stackTraceLimit.is_null());
341   Handle<Object> stack_trace_limit = JSReceiver::GetDataProperty(
342       Handle<JSObject>::cast(error), stackTraceLimit);
343   if (!stack_trace_limit->IsNumber()) return factory()->undefined_value();
344   int limit = FastD2IChecked(stack_trace_limit->Number());
345   limit = Max(limit, 0);  // Ensure that limit is not negative.
346
347   int initial_size = Min(limit, 10);
348   Handle<FixedArray> elements =
349       factory()->NewFixedArrayWithHoles(initial_size * 4 + 1);
350
351   // If the caller parameter is a function we skip frames until we're
352   // under it before starting to collect.
353   bool seen_caller = !caller->IsJSFunction();
354   // First element is reserved to store the number of sloppy frames.
355   int cursor = 1;
356   int frames_seen = 0;
357   int sloppy_frames = 0;
358   bool encountered_strict_function = false;
359   for (JavaScriptFrameIterator iter(this);
360        !iter.done() && frames_seen < limit;
361        iter.Advance()) {
362     JavaScriptFrame* frame = iter.frame();
363     // Set initial size to the maximum inlining level + 1 for the outermost
364     // function.
365     List<FrameSummary> frames(FLAG_max_inlining_levels + 1);
366     frame->Summarize(&frames);
367     for (int i = frames.length() - 1; i >= 0; i--) {
368       Handle<JSFunction> fun = frames[i].function();
369       Handle<Object> recv = frames[i].receiver();
370       // Filter out internal frames that we do not want to show.
371       if (!IsVisibleInStackTrace(*fun, *caller, *recv, &seen_caller)) continue;
372       // Filter out frames from other security contexts.
373       if (!this->context()->HasSameSecurityTokenAs(fun->context())) continue;
374       if (cursor + 4 > elements->length()) {
375         int new_capacity = JSObject::NewElementsCapacity(elements->length());
376         Handle<FixedArray> new_elements =
377             factory()->NewFixedArrayWithHoles(new_capacity);
378         for (int i = 0; i < cursor; i++) {
379           new_elements->set(i, elements->get(i));
380         }
381         elements = new_elements;
382       }
383       DCHECK(cursor + 4 <= elements->length());
384
385       Handle<Code> code = frames[i].code();
386       Handle<Smi> offset(Smi::FromInt(frames[i].offset()), this);
387       // The stack trace API should not expose receivers and function
388       // objects on frames deeper than the top-most one with a strict
389       // mode function.  The number of sloppy frames is stored as
390       // first element in the result array.
391       if (!encountered_strict_function) {
392         if (is_strict(fun->shared()->language_mode())) {
393           encountered_strict_function = true;
394         } else {
395           sloppy_frames++;
396         }
397       }
398       elements->set(cursor++, *recv);
399       elements->set(cursor++, *fun);
400       elements->set(cursor++, *code);
401       elements->set(cursor++, *offset);
402       frames_seen++;
403     }
404   }
405   elements->set(0, Smi::FromInt(sloppy_frames));
406   elements->Shrink(cursor);
407   Handle<JSArray> result = factory()->NewJSArrayWithElements(elements);
408   result->set_length(Smi::FromInt(cursor));
409   // TODO(yangguo): Queue this structured stack trace for preprocessing on GC.
410   return result;
411 }
412
413
414 MaybeHandle<JSObject> Isolate::CaptureAndSetDetailedStackTrace(
415     Handle<JSObject> error_object) {
416   if (capture_stack_trace_for_uncaught_exceptions_) {
417     // Capture stack trace for a detailed exception message.
418     Handle<Name> key = factory()->detailed_stack_trace_symbol();
419     Handle<JSArray> stack_trace = CaptureCurrentStackTrace(
420         stack_trace_for_uncaught_exceptions_frame_limit_,
421         stack_trace_for_uncaught_exceptions_options_);
422     RETURN_ON_EXCEPTION(
423         this, JSObject::SetProperty(error_object, key, stack_trace, STRICT),
424         JSObject);
425   }
426   return error_object;
427 }
428
429
430 MaybeHandle<JSObject> Isolate::CaptureAndSetSimpleStackTrace(
431     Handle<JSObject> error_object, Handle<Object> caller) {
432   // Capture stack trace for simple stack trace string formatting.
433   Handle<Name> key = factory()->stack_trace_symbol();
434   Handle<Object> stack_trace = CaptureSimpleStackTrace(error_object, caller);
435   RETURN_ON_EXCEPTION(
436       this, JSObject::SetProperty(error_object, key, stack_trace, STRICT),
437       JSObject);
438   return error_object;
439 }
440
441
442 Handle<JSArray> Isolate::GetDetailedStackTrace(Handle<JSObject> error_object) {
443   Handle<Name> key_detailed = factory()->detailed_stack_trace_symbol();
444   Handle<Object> stack_trace =
445       JSReceiver::GetDataProperty(error_object, key_detailed);
446   if (stack_trace->IsJSArray()) return Handle<JSArray>::cast(stack_trace);
447
448   if (!capture_stack_trace_for_uncaught_exceptions_) return Handle<JSArray>();
449
450   // Try to get details from simple stack trace.
451   Handle<JSArray> detailed_stack_trace =
452       GetDetailedFromSimpleStackTrace(error_object);
453   if (!detailed_stack_trace.is_null()) {
454     // Save the detailed stack since the simple one might be withdrawn later.
455     JSObject::SetProperty(error_object, key_detailed, detailed_stack_trace,
456                           STRICT).Assert();
457   }
458   return detailed_stack_trace;
459 }
460
461
462 class CaptureStackTraceHelper {
463  public:
464   CaptureStackTraceHelper(Isolate* isolate,
465                           StackTrace::StackTraceOptions options)
466       : isolate_(isolate) {
467     if (options & StackTrace::kColumnOffset) {
468       column_key_ =
469           factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("column"));
470     }
471     if (options & StackTrace::kLineNumber) {
472       line_key_ =
473           factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("lineNumber"));
474     }
475     if (options & StackTrace::kScriptId) {
476       script_id_key_ =
477           factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("scriptId"));
478     }
479     if (options & StackTrace::kScriptName) {
480       script_name_key_ =
481           factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("scriptName"));
482     }
483     if (options & StackTrace::kScriptNameOrSourceURL) {
484       script_name_or_source_url_key_ = factory()->InternalizeOneByteString(
485           STATIC_CHAR_VECTOR("scriptNameOrSourceURL"));
486     }
487     if (options & StackTrace::kFunctionName) {
488       function_key_ = factory()->InternalizeOneByteString(
489           STATIC_CHAR_VECTOR("functionName"));
490     }
491     if (options & StackTrace::kIsEval) {
492       eval_key_ =
493           factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("isEval"));
494     }
495     if (options & StackTrace::kIsConstructor) {
496       constructor_key_ = factory()->InternalizeOneByteString(
497           STATIC_CHAR_VECTOR("isConstructor"));
498     }
499   }
500
501   Handle<JSObject> NewStackFrameObject(Handle<JSFunction> fun, int position,
502                                        bool is_constructor) {
503     Handle<JSObject> stack_frame =
504         factory()->NewJSObject(isolate_->object_function());
505
506     Handle<Script> script(Script::cast(fun->shared()->script()));
507
508     if (!line_key_.is_null()) {
509       int script_line_offset = script->line_offset()->value();
510       int line_number = Script::GetLineNumber(script, position);
511       // line_number is already shifted by the script_line_offset.
512       int relative_line_number = line_number - script_line_offset;
513       if (!column_key_.is_null() && relative_line_number >= 0) {
514         Handle<FixedArray> line_ends(FixedArray::cast(script->line_ends()));
515         int start = (relative_line_number == 0) ? 0 :
516             Smi::cast(line_ends->get(relative_line_number - 1))->value() + 1;
517         int column_offset = position - start;
518         if (relative_line_number == 0) {
519           // For the case where the code is on the same line as the script
520           // tag.
521           column_offset += script->column_offset()->value();
522         }
523         JSObject::AddProperty(stack_frame, column_key_,
524                               handle(Smi::FromInt(column_offset + 1), isolate_),
525                               NONE);
526       }
527       JSObject::AddProperty(stack_frame, line_key_,
528                             handle(Smi::FromInt(line_number + 1), isolate_),
529                             NONE);
530     }
531
532     if (!script_id_key_.is_null()) {
533       JSObject::AddProperty(stack_frame, script_id_key_,
534                             handle(script->id(), isolate_), NONE);
535     }
536
537     if (!script_name_key_.is_null()) {
538       JSObject::AddProperty(stack_frame, script_name_key_,
539                             handle(script->name(), isolate_), NONE);
540     }
541
542     if (!script_name_or_source_url_key_.is_null()) {
543       Handle<Object> result = Script::GetNameOrSourceURL(script);
544       JSObject::AddProperty(stack_frame, script_name_or_source_url_key_, result,
545                             NONE);
546     }
547
548     if (!function_key_.is_null()) {
549       Handle<Object> fun_name = JSFunction::GetDebugName(fun);
550       JSObject::AddProperty(stack_frame, function_key_, fun_name, NONE);
551     }
552
553     if (!eval_key_.is_null()) {
554       Handle<Object> is_eval = factory()->ToBoolean(
555           script->compilation_type() == Script::COMPILATION_TYPE_EVAL);
556       JSObject::AddProperty(stack_frame, eval_key_, is_eval, NONE);
557     }
558
559     if (!constructor_key_.is_null()) {
560       Handle<Object> is_constructor_obj = factory()->ToBoolean(is_constructor);
561       JSObject::AddProperty(stack_frame, constructor_key_, is_constructor_obj,
562                             NONE);
563     }
564
565     return stack_frame;
566   }
567
568  private:
569   inline Factory* factory() { return isolate_->factory(); }
570
571   Isolate* isolate_;
572   Handle<String> column_key_;
573   Handle<String> line_key_;
574   Handle<String> script_id_key_;
575   Handle<String> script_name_key_;
576   Handle<String> script_name_or_source_url_key_;
577   Handle<String> function_key_;
578   Handle<String> eval_key_;
579   Handle<String> constructor_key_;
580 };
581
582
583 int PositionFromStackTrace(Handle<FixedArray> elements, int index) {
584   DisallowHeapAllocation no_gc;
585   Object* maybe_code = elements->get(index + 2);
586   if (maybe_code->IsSmi()) {
587     return Smi::cast(maybe_code)->value();
588   } else {
589     Code* code = Code::cast(maybe_code);
590     Address pc = code->address() + Smi::cast(elements->get(index + 3))->value();
591     return code->SourcePosition(pc);
592   }
593 }
594
595
596 Handle<JSArray> Isolate::GetDetailedFromSimpleStackTrace(
597     Handle<JSObject> error_object) {
598   Handle<Name> key = factory()->stack_trace_symbol();
599   Handle<Object> property = JSReceiver::GetDataProperty(error_object, key);
600   if (!property->IsJSArray()) return Handle<JSArray>();
601   Handle<JSArray> simple_stack_trace = Handle<JSArray>::cast(property);
602
603   CaptureStackTraceHelper helper(this,
604                                  stack_trace_for_uncaught_exceptions_options_);
605
606   int frames_seen = 0;
607   Handle<FixedArray> elements(FixedArray::cast(simple_stack_trace->elements()));
608   int elements_limit = Smi::cast(simple_stack_trace->length())->value();
609
610   int frame_limit = stack_trace_for_uncaught_exceptions_frame_limit_;
611   if (frame_limit < 0) frame_limit = (elements_limit - 1) / 4;
612
613   Handle<JSArray> stack_trace = factory()->NewJSArray(frame_limit);
614   for (int i = 1; i < elements_limit && frames_seen < frame_limit; i += 4) {
615     Handle<Object> recv = handle(elements->get(i), this);
616     Handle<JSFunction> fun =
617         handle(JSFunction::cast(elements->get(i + 1)), this);
618     bool is_constructor =
619         recv->IsJSObject() &&
620         Handle<JSObject>::cast(recv)->map()->GetConstructor() == *fun;
621     int position = PositionFromStackTrace(elements, i);
622
623     Handle<JSObject> stack_frame =
624         helper.NewStackFrameObject(fun, position, is_constructor);
625
626     FixedArray::cast(stack_trace->elements())->set(frames_seen, *stack_frame);
627     frames_seen++;
628   }
629
630   stack_trace->set_length(Smi::FromInt(frames_seen));
631   return stack_trace;
632 }
633
634
635 Handle<JSArray> Isolate::CaptureCurrentStackTrace(
636     int frame_limit, StackTrace::StackTraceOptions options) {
637   CaptureStackTraceHelper helper(this, options);
638
639   // Ensure no negative values.
640   int limit = Max(frame_limit, 0);
641   Handle<JSArray> stack_trace = factory()->NewJSArray(frame_limit);
642
643   StackTraceFrameIterator it(this);
644   int frames_seen = 0;
645   while (!it.done() && (frames_seen < limit)) {
646     JavaScriptFrame* frame = it.frame();
647     // Set initial size to the maximum inlining level + 1 for the outermost
648     // function.
649     List<FrameSummary> frames(FLAG_max_inlining_levels + 1);
650     frame->Summarize(&frames);
651     for (int i = frames.length() - 1; i >= 0 && frames_seen < limit; i--) {
652       Handle<JSFunction> fun = frames[i].function();
653       // Filter frames from other security contexts.
654       if (!(options & StackTrace::kExposeFramesAcrossSecurityOrigins) &&
655           !this->context()->HasSameSecurityTokenAs(fun->context())) continue;
656       int position = frames[i].code()->SourcePosition(frames[i].pc());
657       Handle<JSObject> stack_frame =
658           helper.NewStackFrameObject(fun, position, frames[i].is_constructor());
659
660       FixedArray::cast(stack_trace->elements())->set(frames_seen, *stack_frame);
661       frames_seen++;
662     }
663     it.Advance();
664   }
665
666   stack_trace->set_length(Smi::FromInt(frames_seen));
667   return stack_trace;
668 }
669
670
671 void Isolate::PrintStack(FILE* out, PrintStackMode mode) {
672   if (stack_trace_nesting_level_ == 0) {
673     stack_trace_nesting_level_++;
674     StringStream::ClearMentionedObjectCache(this);
675     HeapStringAllocator allocator;
676     StringStream accumulator(&allocator);
677     incomplete_message_ = &accumulator;
678     PrintStack(&accumulator, mode);
679     accumulator.OutputToFile(out);
680     InitializeLoggingAndCounters();
681     accumulator.Log(this);
682     incomplete_message_ = NULL;
683     stack_trace_nesting_level_ = 0;
684   } else if (stack_trace_nesting_level_ == 1) {
685     stack_trace_nesting_level_++;
686     base::OS::PrintError(
687       "\n\nAttempt to print stack while printing stack (double fault)\n");
688     base::OS::PrintError(
689       "If you are lucky you may find a partial stack dump on stdout.\n\n");
690     incomplete_message_->OutputToFile(out);
691   }
692 }
693
694
695 static void PrintFrames(Isolate* isolate,
696                         StringStream* accumulator,
697                         StackFrame::PrintMode mode) {
698   StackFrameIterator it(isolate);
699   for (int i = 0; !it.done(); it.Advance()) {
700     it.frame()->Print(accumulator, mode, i++);
701   }
702 }
703
704
705 void Isolate::PrintStack(StringStream* accumulator, PrintStackMode mode) {
706   // The MentionedObjectCache is not GC-proof at the moment.
707   DisallowHeapAllocation no_gc;
708   DCHECK(accumulator->IsMentionedObjectCacheClear(this));
709
710   // Avoid printing anything if there are no frames.
711   if (c_entry_fp(thread_local_top()) == 0) return;
712
713   accumulator->Add(
714       "\n==== JS stack trace =========================================\n\n");
715   PrintFrames(this, accumulator, StackFrame::OVERVIEW);
716   if (mode == kPrintStackVerbose) {
717     accumulator->Add(
718         "\n==== Details ================================================\n\n");
719     PrintFrames(this, accumulator, StackFrame::DETAILS);
720     accumulator->PrintMentionedObjectCache(this);
721   }
722   accumulator->Add("=====================\n\n");
723 }
724
725
726 void Isolate::SetFailedAccessCheckCallback(
727     v8::FailedAccessCheckCallback callback) {
728   thread_local_top()->failed_access_check_callback_ = callback;
729 }
730
731
732 static inline AccessCheckInfo* GetAccessCheckInfo(Isolate* isolate,
733                                                   Handle<JSObject> receiver) {
734   Object* maybe_constructor = receiver->map()->GetConstructor();
735   if (!maybe_constructor->IsJSFunction()) return NULL;
736   JSFunction* constructor = JSFunction::cast(maybe_constructor);
737   if (!constructor->shared()->IsApiFunction()) return NULL;
738
739   Object* data_obj =
740      constructor->shared()->get_api_func_data()->access_check_info();
741   if (data_obj == isolate->heap()->undefined_value()) return NULL;
742
743   return AccessCheckInfo::cast(data_obj);
744 }
745
746
747 void Isolate::ReportFailedAccessCheck(Handle<JSObject> receiver) {
748   if (!thread_local_top()->failed_access_check_callback_) {
749     return ScheduleThrow(*factory()->NewTypeError(MessageTemplate::kNoAccess));
750   }
751
752   DCHECK(receiver->IsAccessCheckNeeded());
753   DCHECK(context());
754
755   // Get the data object from access check info.
756   HandleScope scope(this);
757   Handle<Object> data;
758   { DisallowHeapAllocation no_gc;
759     AccessCheckInfo* access_check_info = GetAccessCheckInfo(this, receiver);
760     if (!access_check_info) {
761       AllowHeapAllocation doesnt_matter_anymore;
762       return ScheduleThrow(
763           *factory()->NewTypeError(MessageTemplate::kNoAccess));
764     }
765     data = handle(access_check_info->data(), this);
766   }
767
768   // Leaving JavaScript.
769   VMState<EXTERNAL> state(this);
770   thread_local_top()->failed_access_check_callback_(
771       v8::Utils::ToLocal(receiver), v8::ACCESS_HAS, v8::Utils::ToLocal(data));
772 }
773
774
775 bool Isolate::IsInternallyUsedPropertyName(Handle<Object> name) {
776   if (name->IsSymbol()) {
777     return Handle<Symbol>::cast(name)->is_private();
778   }
779   return name.is_identical_to(factory()->hidden_string());
780 }
781
782
783 bool Isolate::IsInternallyUsedPropertyName(Object* name) {
784   if (name->IsSymbol()) {
785     return Symbol::cast(name)->is_private();
786   }
787   return name == heap()->hidden_string();
788 }
789
790
791 bool Isolate::MayAccess(Handle<JSObject> receiver) {
792   DCHECK(receiver->IsJSGlobalProxy() || receiver->IsAccessCheckNeeded());
793
794   // Check for compatibility between the security tokens in the
795   // current lexical context and the accessed object.
796   DCHECK(context());
797
798   {
799     DisallowHeapAllocation no_gc;
800     // During bootstrapping, callback functions are not enabled yet.
801     if (bootstrapper()->IsActive()) return true;
802
803     if (receiver->IsJSGlobalProxy()) {
804       Object* receiver_context =
805           JSGlobalProxy::cast(*receiver)->native_context();
806       if (!receiver_context->IsContext()) return false;
807
808       // Get the native context of current top context.
809       // avoid using Isolate::native_context() because it uses Handle.
810       Context* native_context = context()->global_object()->native_context();
811       if (receiver_context == native_context) return true;
812
813       if (Context::cast(receiver_context)->security_token() ==
814           native_context->security_token())
815         return true;
816     }
817   }
818
819   HandleScope scope(this);
820   Handle<Object> data;
821   v8::NamedSecurityCallback callback;
822   { DisallowHeapAllocation no_gc;
823     AccessCheckInfo* access_check_info = GetAccessCheckInfo(this, receiver);
824     if (!access_check_info) return false;
825     Object* fun_obj = access_check_info->named_callback();
826     callback = v8::ToCData<v8::NamedSecurityCallback>(fun_obj);
827     if (!callback) return false;
828     data = handle(access_check_info->data(), this);
829   }
830
831   LOG(this, ApiSecurityCheck());
832
833   // Leaving JavaScript.
834   VMState<EXTERNAL> state(this);
835   Handle<Object> key = factory()->undefined_value();
836   return callback(v8::Utils::ToLocal(receiver), v8::Utils::ToLocal(key),
837                   v8::ACCESS_HAS, v8::Utils::ToLocal(data));
838 }
839
840
841 const char* const Isolate::kStackOverflowMessage =
842   "Uncaught RangeError: Maximum call stack size exceeded";
843
844
845 Object* Isolate::StackOverflow() {
846   HandleScope scope(this);
847   // At this point we cannot create an Error object using its javascript
848   // constructor.  Instead, we copy the pre-constructed boilerplate and
849   // attach the stack trace as a hidden property.
850   Handle<String> key = factory()->stack_overflow_string();
851   Handle<Object> boilerplate =
852       Object::GetProperty(js_builtins_object(), key).ToHandleChecked();
853   if (boilerplate->IsUndefined()) {
854     return Throw(heap()->undefined_value(), nullptr);
855   }
856   Handle<JSObject> exception =
857       factory()->CopyJSObject(Handle<JSObject>::cast(boilerplate));
858   Throw(*exception, nullptr);
859
860   CaptureAndSetSimpleStackTrace(exception, factory()->undefined_value());
861 #ifdef VERIFY_HEAP
862   if (FLAG_verify_heap && FLAG_stress_compaction) {
863     heap()->CollectAllAvailableGarbage("trigger compaction");
864   }
865 #endif  // VERIFY_HEAP
866
867   return heap()->exception();
868 }
869
870
871 Object* Isolate::TerminateExecution() {
872   return Throw(heap_.termination_exception(), nullptr);
873 }
874
875
876 void Isolate::CancelTerminateExecution() {
877   if (try_catch_handler()) {
878     try_catch_handler()->has_terminated_ = false;
879   }
880   if (has_pending_exception() &&
881       pending_exception() == heap_.termination_exception()) {
882     thread_local_top()->external_caught_exception_ = false;
883     clear_pending_exception();
884   }
885   if (has_scheduled_exception() &&
886       scheduled_exception() == heap_.termination_exception()) {
887     thread_local_top()->external_caught_exception_ = false;
888     clear_scheduled_exception();
889   }
890 }
891
892
893 void Isolate::RequestInterrupt(InterruptCallback callback, void* data) {
894   ExecutionAccess access(this);
895   api_interrupts_queue_.push(InterruptEntry(callback, data));
896   stack_guard()->RequestApiInterrupt();
897 }
898
899
900 void Isolate::InvokeApiInterruptCallbacks() {
901   // Note: callback below should be called outside of execution access lock.
902   while (true) {
903     InterruptEntry entry;
904     {
905       ExecutionAccess access(this);
906       if (api_interrupts_queue_.empty()) return;
907       entry = api_interrupts_queue_.front();
908       api_interrupts_queue_.pop();
909     }
910     VMState<EXTERNAL> state(this);
911     HandleScope handle_scope(this);
912     entry.first(reinterpret_cast<v8::Isolate*>(this), entry.second);
913   }
914 }
915
916
917 void ReportBootstrappingException(Handle<Object> exception,
918                                   MessageLocation* location) {
919   base::OS::PrintError("Exception thrown during bootstrapping\n");
920   if (location == NULL || location->script().is_null()) return;
921   // We are bootstrapping and caught an error where the location is set
922   // and we have a script for the location.
923   // In this case we could have an extension (or an internal error
924   // somewhere) and we print out the line number at which the error occured
925   // to the console for easier debugging.
926   int line_number =
927       location->script()->GetLineNumber(location->start_pos()) + 1;
928   if (exception->IsString() && location->script()->name()->IsString()) {
929     base::OS::PrintError(
930         "Extension or internal compilation error: %s in %s at line %d.\n",
931         String::cast(*exception)->ToCString().get(),
932         String::cast(location->script()->name())->ToCString().get(),
933         line_number);
934   } else if (location->script()->name()->IsString()) {
935     base::OS::PrintError(
936         "Extension or internal compilation error in %s at line %d.\n",
937         String::cast(location->script()->name())->ToCString().get(),
938         line_number);
939   } else if (exception->IsString()) {
940     base::OS::PrintError("Extension or internal compilation error: %s.\n",
941                          String::cast(*exception)->ToCString().get());
942   } else {
943     base::OS::PrintError("Extension or internal compilation error.\n");
944   }
945 #ifdef OBJECT_PRINT
946   // Since comments and empty lines have been stripped from the source of
947   // builtins, print the actual source here so that line numbers match.
948   if (location->script()->source()->IsString()) {
949     Handle<String> src(String::cast(location->script()->source()));
950     PrintF("Failing script:");
951     int len = src->length();
952     if (len == 0) {
953       PrintF(" <not available>\n");
954     } else {
955       PrintF("\n");
956       int line_number = 1;
957       PrintF("%5d: ", line_number);
958       for (int i = 0; i < len; i++) {
959         uint16_t character = src->Get(i);
960         PrintF("%c", character);
961         if (character == '\n' && i < len - 2) {
962           PrintF("%5d: ", ++line_number);
963         }
964       }
965       PrintF("\n");
966     }
967   }
968 #endif
969 }
970
971
972 Object* Isolate::Throw(Object* exception, MessageLocation* location) {
973   DCHECK(!has_pending_exception());
974
975   HandleScope scope(this);
976   Handle<Object> exception_handle(exception, this);
977
978   // Determine whether a message needs to be created for the given exception
979   // depending on the following criteria:
980   // 1) External v8::TryCatch missing: Always create a message because any
981   //    JavaScript handler for a finally-block might re-throw to top-level.
982   // 2) External v8::TryCatch exists: Only create a message if the handler
983   //    captures messages or is verbose (which reports despite the catch).
984   // 3) ReThrow from v8::TryCatch: The message from a previous throw still
985   //    exists and we preserve it instead of creating a new message.
986   bool requires_message = try_catch_handler() == nullptr ||
987                           try_catch_handler()->is_verbose_ ||
988                           try_catch_handler()->capture_message_;
989   bool rethrowing_message = thread_local_top()->rethrowing_message_;
990
991   thread_local_top()->rethrowing_message_ = false;
992
993   // Notify debugger of exception.
994   if (is_catchable_by_javascript(exception)) {
995     debug()->OnThrow(exception_handle);
996   }
997
998   // Generate the message if required.
999   if (requires_message && !rethrowing_message) {
1000     MessageLocation potential_computed_location;
1001     if (location == NULL) {
1002       // If no location was specified we use a computed one instead.
1003       ComputeLocation(&potential_computed_location);
1004       location = &potential_computed_location;
1005     }
1006
1007     if (bootstrapper()->IsActive()) {
1008       // It's not safe to try to make message objects or collect stack traces
1009       // while the bootstrapper is active since the infrastructure may not have
1010       // been properly initialized.
1011       ReportBootstrappingException(exception_handle, location);
1012     } else {
1013       Handle<Object> message_obj = CreateMessage(exception_handle, location);
1014       thread_local_top()->pending_message_obj_ = *message_obj;
1015
1016       // If the abort-on-uncaught-exception flag is specified, abort on any
1017       // exception not caught by JavaScript, even when an external handler is
1018       // present.  This flag is intended for use by JavaScript developers, so
1019       // print a user-friendly stack trace (not an internal one).
1020       if (FLAG_abort_on_uncaught_exception &&
1021           PredictExceptionCatcher() != CAUGHT_BY_JAVASCRIPT) {
1022         FLAG_abort_on_uncaught_exception = false;  // Prevent endless recursion.
1023         PrintF(stderr, "%s\n\nFROM\n",
1024                MessageHandler::GetLocalizedMessage(this, message_obj).get());
1025         PrintCurrentStackTrace(stderr);
1026         base::OS::Abort();
1027       }
1028     }
1029   }
1030
1031   // Set the exception being thrown.
1032   set_pending_exception(*exception_handle);
1033   return heap()->exception();
1034 }
1035
1036
1037 Object* Isolate::ReThrow(Object* exception) {
1038   DCHECK(!has_pending_exception());
1039
1040   // Set the exception being re-thrown.
1041   set_pending_exception(exception);
1042   return heap()->exception();
1043 }
1044
1045
1046 Object* Isolate::UnwindAndFindHandler() {
1047   Object* exception = pending_exception();
1048
1049   Code* code = nullptr;
1050   Context* context = nullptr;
1051   intptr_t offset = 0;
1052   Address handler_sp = nullptr;
1053   Address handler_fp = nullptr;
1054
1055   // Special handling of termination exceptions, uncatchable by JavaScript code,
1056   // we unwind the handlers until the top ENTRY handler is found.
1057   bool catchable_by_js = is_catchable_by_javascript(exception);
1058
1059   // Compute handler and stack unwinding information by performing a full walk
1060   // over the stack and dispatching according to the frame type.
1061   for (StackFrameIterator iter(this); !iter.done(); iter.Advance()) {
1062     StackFrame* frame = iter.frame();
1063
1064     // For JSEntryStub frames we always have a handler.
1065     if (frame->is_entry() || frame->is_entry_construct()) {
1066       StackHandler* handler = frame->top_handler();
1067
1068       // Restore the next handler.
1069       thread_local_top()->handler_ = handler->next()->address();
1070
1071       // Gather information from the handler.
1072       code = frame->LookupCode();
1073       handler_sp = handler->address() + StackHandlerConstants::kSize;
1074       offset = Smi::cast(code->handler_table()->get(0))->value();
1075       break;
1076     }
1077
1078     // For optimized frames we perform a lookup in the handler table.
1079     if (frame->is_optimized() && catchable_by_js) {
1080       OptimizedFrame* js_frame = static_cast<OptimizedFrame*>(frame);
1081       int stack_slots = 0;  // Will contain stack slot count of frame.
1082       offset = js_frame->LookupExceptionHandlerInTable(&stack_slots, NULL);
1083       if (offset >= 0) {
1084         // Compute the stack pointer from the frame pointer. This ensures that
1085         // argument slots on the stack are dropped as returning would.
1086         Address return_sp = frame->fp() -
1087                             StandardFrameConstants::kFixedFrameSizeFromFp -
1088                             stack_slots * kPointerSize;
1089
1090         // Gather information from the frame.
1091         code = frame->LookupCode();
1092         handler_sp = return_sp;
1093         handler_fp = frame->fp();
1094         break;
1095       }
1096     }
1097
1098     // For JavaScript frames we perform a range lookup in the handler table.
1099     if (frame->is_java_script() && catchable_by_js) {
1100       JavaScriptFrame* js_frame = static_cast<JavaScriptFrame*>(frame);
1101       int stack_slots = 0;  // Will contain operand stack depth of handler.
1102       offset = js_frame->LookupExceptionHandlerInTable(&stack_slots, NULL);
1103       if (offset >= 0) {
1104         // Compute the stack pointer from the frame pointer. This ensures that
1105         // operand stack slots are dropped for nested statements. Also restore
1106         // correct context for the handler which is pushed within the try-block.
1107         Address return_sp = frame->fp() -
1108                             StandardFrameConstants::kFixedFrameSizeFromFp -
1109                             stack_slots * kPointerSize;
1110         STATIC_ASSERT(TryBlockConstant::kElementCount == 1);
1111         context = Context::cast(Memory::Object_at(return_sp - kPointerSize));
1112
1113         // Gather information from the frame.
1114         code = frame->LookupCode();
1115         handler_sp = return_sp;
1116         handler_fp = frame->fp();
1117         break;
1118       }
1119     }
1120
1121     RemoveMaterializedObjectsOnUnwind(frame);
1122   }
1123
1124   // Handler must exist.
1125   CHECK(code != nullptr);
1126
1127   // Store information to be consumed by the CEntryStub.
1128   thread_local_top()->pending_handler_context_ = context;
1129   thread_local_top()->pending_handler_code_ = code;
1130   thread_local_top()->pending_handler_offset_ = offset;
1131   thread_local_top()->pending_handler_fp_ = handler_fp;
1132   thread_local_top()->pending_handler_sp_ = handler_sp;
1133
1134   // Return and clear pending exception.
1135   clear_pending_exception();
1136   return exception;
1137 }
1138
1139
1140 Isolate::CatchType Isolate::PredictExceptionCatcher() {
1141   Address external_handler = thread_local_top()->try_catch_handler_address();
1142   Address entry_handler = Isolate::handler(thread_local_top());
1143   if (IsExternalHandlerOnTop(nullptr)) return CAUGHT_BY_EXTERNAL;
1144
1145   // Search for an exception handler by performing a full walk over the stack.
1146   for (StackFrameIterator iter(this); !iter.done(); iter.Advance()) {
1147     StackFrame* frame = iter.frame();
1148
1149     // For JSEntryStub frames we update the JS_ENTRY handler.
1150     if (frame->is_entry() || frame->is_entry_construct()) {
1151       entry_handler = frame->top_handler()->next()->address();
1152     }
1153
1154     // For JavaScript frames we perform a lookup in the handler table.
1155     if (frame->is_java_script()) {
1156       JavaScriptFrame* js_frame = static_cast<JavaScriptFrame*>(frame);
1157       int stack_slots = 0;  // The computed stack slot count is not used.
1158       HandlerTable::CatchPrediction prediction;
1159       if (js_frame->LookupExceptionHandlerInTable(&stack_slots, &prediction) >
1160           0) {
1161         // We are conservative with our prediction: try-finally is considered
1162         // to always rethrow, to meet the expectation of the debugger.
1163         if (prediction == HandlerTable::CAUGHT) return CAUGHT_BY_JAVASCRIPT;
1164       }
1165     }
1166
1167     // The exception has been externally caught if and only if there is an
1168     // external handler which is on top of the top-most JS_ENTRY handler.
1169     if (external_handler != nullptr && !try_catch_handler()->is_verbose_) {
1170       if (entry_handler == nullptr || entry_handler > external_handler) {
1171         return CAUGHT_BY_EXTERNAL;
1172       }
1173     }
1174   }
1175
1176   // Handler not found.
1177   return NOT_CAUGHT;
1178 }
1179
1180
1181 void Isolate::RemoveMaterializedObjectsOnUnwind(StackFrame* frame) {
1182   if (frame->is_optimized()) {
1183     bool removed = materialized_object_store_->Remove(frame->fp());
1184     USE(removed);
1185     // If there were any materialized objects, the code should be
1186     // marked for deopt.
1187     DCHECK(!removed || frame->LookupCode()->marked_for_deoptimization());
1188   }
1189 }
1190
1191
1192 Object* Isolate::ThrowIllegalOperation() {
1193   if (FLAG_stack_trace_on_illegal) PrintStack(stdout);
1194   return Throw(heap()->illegal_access_string());
1195 }
1196
1197
1198 void Isolate::ScheduleThrow(Object* exception) {
1199   // When scheduling a throw we first throw the exception to get the
1200   // error reporting if it is uncaught before rescheduling it.
1201   Throw(exception);
1202   PropagatePendingExceptionToExternalTryCatch();
1203   if (has_pending_exception()) {
1204     thread_local_top()->scheduled_exception_ = pending_exception();
1205     thread_local_top()->external_caught_exception_ = false;
1206     clear_pending_exception();
1207   }
1208 }
1209
1210
1211 void Isolate::RestorePendingMessageFromTryCatch(v8::TryCatch* handler) {
1212   DCHECK(handler == try_catch_handler());
1213   DCHECK(handler->HasCaught());
1214   DCHECK(handler->rethrow_);
1215   DCHECK(handler->capture_message_);
1216   Object* message = reinterpret_cast<Object*>(handler->message_obj_);
1217   DCHECK(message->IsJSMessageObject() || message->IsTheHole());
1218   thread_local_top()->pending_message_obj_ = message;
1219 }
1220
1221
1222 void Isolate::CancelScheduledExceptionFromTryCatch(v8::TryCatch* handler) {
1223   DCHECK(has_scheduled_exception());
1224   if (scheduled_exception() == handler->exception_) {
1225     DCHECK(scheduled_exception() != heap()->termination_exception());
1226     clear_scheduled_exception();
1227   }
1228 }
1229
1230
1231 Object* Isolate::PromoteScheduledException() {
1232   Object* thrown = scheduled_exception();
1233   clear_scheduled_exception();
1234   // Re-throw the exception to avoid getting repeated error reporting.
1235   return ReThrow(thrown);
1236 }
1237
1238
1239 void Isolate::PrintCurrentStackTrace(FILE* out) {
1240   StackTraceFrameIterator it(this);
1241   while (!it.done()) {
1242     HandleScope scope(this);
1243     // Find code position if recorded in relocation info.
1244     JavaScriptFrame* frame = it.frame();
1245     int pos = frame->LookupCode()->SourcePosition(frame->pc());
1246     Handle<Object> pos_obj(Smi::FromInt(pos), this);
1247     // Fetch function and receiver.
1248     Handle<JSFunction> fun(frame->function());
1249     Handle<Object> recv(frame->receiver(), this);
1250     // Advance to the next JavaScript frame and determine if the
1251     // current frame is the top-level frame.
1252     it.Advance();
1253     Handle<Object> is_top_level = factory()->ToBoolean(it.done());
1254     // Generate and print stack trace line.
1255     Handle<String> line =
1256         Execution::GetStackTraceLine(recv, fun, pos_obj, is_top_level);
1257     if (line->length() > 0) {
1258       line->PrintOn(out);
1259       PrintF(out, "\n");
1260     }
1261   }
1262 }
1263
1264
1265 void Isolate::ComputeLocation(MessageLocation* target) {
1266   *target = MessageLocation(Handle<Script>(heap_.empty_script()), -1, -1);
1267   StackTraceFrameIterator it(this);
1268   if (!it.done()) {
1269     JavaScriptFrame* frame = it.frame();
1270     JSFunction* fun = frame->function();
1271     Object* script = fun->shared()->script();
1272     if (script->IsScript() &&
1273         !(Script::cast(script)->source()->IsUndefined())) {
1274       int pos = frame->LookupCode()->SourcePosition(frame->pc());
1275       // Compute the location from the function and the reloc info.
1276       Handle<Script> casted_script(Script::cast(script));
1277       *target = MessageLocation(casted_script, pos, pos + 1, handle(fun));
1278     }
1279   }
1280 }
1281
1282
1283 bool Isolate::ComputeLocationFromException(MessageLocation* target,
1284                                            Handle<Object> exception) {
1285   if (!exception->IsJSObject()) return false;
1286
1287   Handle<Name> start_pos_symbol = factory()->error_start_pos_symbol();
1288   Handle<Object> start_pos = JSReceiver::GetDataProperty(
1289       Handle<JSObject>::cast(exception), start_pos_symbol);
1290   if (!start_pos->IsSmi()) return false;
1291   int start_pos_value = Handle<Smi>::cast(start_pos)->value();
1292
1293   Handle<Name> end_pos_symbol = factory()->error_end_pos_symbol();
1294   Handle<Object> end_pos = JSReceiver::GetDataProperty(
1295       Handle<JSObject>::cast(exception), end_pos_symbol);
1296   if (!end_pos->IsSmi()) return false;
1297   int end_pos_value = Handle<Smi>::cast(end_pos)->value();
1298
1299   Handle<Name> script_symbol = factory()->error_script_symbol();
1300   Handle<Object> script = JSReceiver::GetDataProperty(
1301       Handle<JSObject>::cast(exception), script_symbol);
1302   if (!script->IsScript()) return false;
1303
1304   Handle<Script> cast_script(Script::cast(*script));
1305   *target = MessageLocation(cast_script, start_pos_value, end_pos_value);
1306   return true;
1307 }
1308
1309
1310 bool Isolate::ComputeLocationFromStackTrace(MessageLocation* target,
1311                                             Handle<Object> exception) {
1312   *target = MessageLocation(Handle<Script>(heap_.empty_script()), -1, -1);
1313
1314   if (!exception->IsJSObject()) return false;
1315   Handle<Name> key = factory()->stack_trace_symbol();
1316   Handle<Object> property =
1317       JSReceiver::GetDataProperty(Handle<JSObject>::cast(exception), key);
1318   if (!property->IsJSArray()) return false;
1319   Handle<JSArray> simple_stack_trace = Handle<JSArray>::cast(property);
1320
1321   Handle<FixedArray> elements(FixedArray::cast(simple_stack_trace->elements()));
1322   int elements_limit = Smi::cast(simple_stack_trace->length())->value();
1323
1324   for (int i = 1; i < elements_limit; i += 4) {
1325     Handle<JSFunction> fun =
1326         handle(JSFunction::cast(elements->get(i + 1)), this);
1327     if (!fun->IsSubjectToDebugging()) continue;
1328
1329     Object* script = fun->shared()->script();
1330     if (script->IsScript() &&
1331         !(Script::cast(script)->source()->IsUndefined())) {
1332       int pos = PositionFromStackTrace(elements, i);
1333       Handle<Script> casted_script(Script::cast(script));
1334       *target = MessageLocation(casted_script, pos, pos + 1);
1335       return true;
1336     }
1337   }
1338   return false;
1339 }
1340
1341
1342 // Traverse prototype chain to find out whether the object is derived from
1343 // the Error object.
1344 bool Isolate::IsErrorObject(Handle<Object> obj) {
1345   if (!obj->IsJSObject()) return false;
1346
1347   Handle<String> error_key =
1348       factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("$Error"));
1349   Handle<Object> error_constructor = Object::GetProperty(
1350       js_builtins_object(), error_key).ToHandleChecked();
1351
1352   DisallowHeapAllocation no_gc;
1353   for (PrototypeIterator iter(this, *obj, PrototypeIterator::START_AT_RECEIVER);
1354        !iter.IsAtEnd(); iter.Advance()) {
1355     if (iter.GetCurrent()->IsJSProxy()) return false;
1356     if (JSObject::cast(iter.GetCurrent())->map()->GetConstructor() ==
1357         *error_constructor) {
1358       return true;
1359     }
1360   }
1361   return false;
1362 }
1363
1364
1365 Handle<JSMessageObject> Isolate::CreateMessage(Handle<Object> exception,
1366                                                MessageLocation* location) {
1367   Handle<JSArray> stack_trace_object;
1368   MessageLocation potential_computed_location;
1369   if (capture_stack_trace_for_uncaught_exceptions_) {
1370     if (IsErrorObject(exception)) {
1371       // We fetch the stack trace that corresponds to this error object.
1372       // If the lookup fails, the exception is probably not a valid Error
1373       // object. In that case, we fall through and capture the stack trace
1374       // at this throw site.
1375       stack_trace_object =
1376           GetDetailedStackTrace(Handle<JSObject>::cast(exception));
1377     }
1378     if (stack_trace_object.is_null()) {
1379       // Not an error object, we capture stack and location at throw site.
1380       stack_trace_object = CaptureCurrentStackTrace(
1381           stack_trace_for_uncaught_exceptions_frame_limit_,
1382           stack_trace_for_uncaught_exceptions_options_);
1383     }
1384   }
1385   if (!location) {
1386     if (!ComputeLocationFromException(&potential_computed_location,
1387                                       exception)) {
1388       if (!ComputeLocationFromStackTrace(&potential_computed_location,
1389                                          exception)) {
1390         ComputeLocation(&potential_computed_location);
1391       }
1392     }
1393     location = &potential_computed_location;
1394   }
1395
1396   return MessageHandler::MakeMessageObject(
1397       this, MessageTemplate::kUncaughtException, location, exception,
1398       stack_trace_object);
1399 }
1400
1401
1402 bool Isolate::IsJavaScriptHandlerOnTop(Object* exception) {
1403   DCHECK_NE(heap()->the_hole_value(), exception);
1404
1405   // For uncatchable exceptions, the JavaScript handler cannot be on top.
1406   if (!is_catchable_by_javascript(exception)) return false;
1407
1408   // Get the top-most JS_ENTRY handler, cannot be on top if it doesn't exist.
1409   Address entry_handler = Isolate::handler(thread_local_top());
1410   if (entry_handler == nullptr) return false;
1411
1412   // Get the address of the external handler so we can compare the address to
1413   // determine which one is closer to the top of the stack.
1414   Address external_handler = thread_local_top()->try_catch_handler_address();
1415   if (external_handler == nullptr) return true;
1416
1417   // The exception has been externally caught if and only if there is an
1418   // external handler which is on top of the top-most JS_ENTRY handler.
1419   //
1420   // Note, that finally clauses would re-throw an exception unless it's aborted
1421   // by jumps in control flow (like return, break, etc.) and we'll have another
1422   // chance to set proper v8::TryCatch later.
1423   return (entry_handler < external_handler);
1424 }
1425
1426
1427 bool Isolate::IsExternalHandlerOnTop(Object* exception) {
1428   DCHECK_NE(heap()->the_hole_value(), exception);
1429
1430   // Get the address of the external handler so we can compare the address to
1431   // determine which one is closer to the top of the stack.
1432   Address external_handler = thread_local_top()->try_catch_handler_address();
1433   if (external_handler == nullptr) return false;
1434
1435   // For uncatchable exceptions, the external handler is always on top.
1436   if (!is_catchable_by_javascript(exception)) return true;
1437
1438   // Get the top-most JS_ENTRY handler, cannot be on top if it doesn't exist.
1439   Address entry_handler = Isolate::handler(thread_local_top());
1440   if (entry_handler == nullptr) return true;
1441
1442   // The exception has been externally caught if and only if there is an
1443   // external handler which is on top of the top-most JS_ENTRY handler.
1444   //
1445   // Note, that finally clauses would re-throw an exception unless it's aborted
1446   // by jumps in control flow (like return, break, etc.) and we'll have another
1447   // chance to set proper v8::TryCatch later.
1448   return (entry_handler > external_handler);
1449 }
1450
1451
1452 void Isolate::ReportPendingMessages() {
1453   Object* exception = pending_exception();
1454
1455   // Try to propagate the exception to an external v8::TryCatch handler. If
1456   // propagation was unsuccessful, then we will get another chance at reporting
1457   // the pending message if the exception is re-thrown.
1458   bool has_been_propagated = PropagatePendingExceptionToExternalTryCatch();
1459   if (!has_been_propagated) return;
1460
1461   // Clear the pending message object early to avoid endless recursion.
1462   Object* message_obj = thread_local_top_.pending_message_obj_;
1463   clear_pending_message();
1464
1465   // For uncatchable exceptions we do nothing. If needed, the exception and the
1466   // message have already been propagated to v8::TryCatch.
1467   if (!is_catchable_by_javascript(exception)) return;
1468
1469   // Determine whether the message needs to be reported to all message handlers
1470   // depending on whether and external v8::TryCatch or an internal JavaScript
1471   // handler is on top.
1472   bool should_report_exception;
1473   if (IsExternalHandlerOnTop(exception)) {
1474     // Only report the exception if the external handler is verbose.
1475     should_report_exception = try_catch_handler()->is_verbose_;
1476   } else {
1477     // Report the exception if it isn't caught by JavaScript code.
1478     should_report_exception = !IsJavaScriptHandlerOnTop(exception);
1479   }
1480
1481   // Actually report the pending message to all message handlers.
1482   if (!message_obj->IsTheHole() && should_report_exception) {
1483     HandleScope scope(this);
1484     Handle<JSMessageObject> message(JSMessageObject::cast(message_obj));
1485     Handle<JSValue> script_wrapper(JSValue::cast(message->script()));
1486     Handle<Script> script(Script::cast(script_wrapper->value()));
1487     int start_pos = message->start_position();
1488     int end_pos = message->end_position();
1489     MessageLocation location(script, start_pos, end_pos);
1490     MessageHandler::ReportMessage(this, &location, message);
1491   }
1492 }
1493
1494
1495 MessageLocation Isolate::GetMessageLocation() {
1496   DCHECK(has_pending_exception());
1497
1498   if (thread_local_top_.pending_exception_ != heap()->termination_exception() &&
1499       !thread_local_top_.pending_message_obj_->IsTheHole()) {
1500     Handle<JSMessageObject> message_obj(
1501         JSMessageObject::cast(thread_local_top_.pending_message_obj_));
1502     Handle<JSValue> script_wrapper(JSValue::cast(message_obj->script()));
1503     Handle<Script> script(Script::cast(script_wrapper->value()));
1504     int start_pos = message_obj->start_position();
1505     int end_pos = message_obj->end_position();
1506     return MessageLocation(script, start_pos, end_pos);
1507   }
1508
1509   return MessageLocation();
1510 }
1511
1512
1513 bool Isolate::OptionalRescheduleException(bool is_bottom_call) {
1514   DCHECK(has_pending_exception());
1515   PropagatePendingExceptionToExternalTryCatch();
1516
1517   bool is_termination_exception =
1518       pending_exception() == heap_.termination_exception();
1519
1520   // Do not reschedule the exception if this is the bottom call.
1521   bool clear_exception = is_bottom_call;
1522
1523   if (is_termination_exception) {
1524     if (is_bottom_call) {
1525       thread_local_top()->external_caught_exception_ = false;
1526       clear_pending_exception();
1527       return false;
1528     }
1529   } else if (thread_local_top()->external_caught_exception_) {
1530     // If the exception is externally caught, clear it if there are no
1531     // JavaScript frames on the way to the C++ frame that has the
1532     // external handler.
1533     DCHECK(thread_local_top()->try_catch_handler_address() != NULL);
1534     Address external_handler_address =
1535         thread_local_top()->try_catch_handler_address();
1536     JavaScriptFrameIterator it(this);
1537     if (it.done() || (it.frame()->sp() > external_handler_address)) {
1538       clear_exception = true;
1539     }
1540   }
1541
1542   // Clear the exception if needed.
1543   if (clear_exception) {
1544     thread_local_top()->external_caught_exception_ = false;
1545     clear_pending_exception();
1546     return false;
1547   }
1548
1549   // Reschedule the exception.
1550   thread_local_top()->scheduled_exception_ = pending_exception();
1551   clear_pending_exception();
1552   return true;
1553 }
1554
1555
1556 void Isolate::PushPromise(Handle<JSObject> promise,
1557                           Handle<JSFunction> function) {
1558   ThreadLocalTop* tltop = thread_local_top();
1559   PromiseOnStack* prev = tltop->promise_on_stack_;
1560   Handle<JSObject> global_promise =
1561       Handle<JSObject>::cast(global_handles()->Create(*promise));
1562   Handle<JSFunction> global_function =
1563       Handle<JSFunction>::cast(global_handles()->Create(*function));
1564   tltop->promise_on_stack_ =
1565       new PromiseOnStack(global_function, global_promise, prev);
1566 }
1567
1568
1569 void Isolate::PopPromise() {
1570   ThreadLocalTop* tltop = thread_local_top();
1571   if (tltop->promise_on_stack_ == NULL) return;
1572   PromiseOnStack* prev = tltop->promise_on_stack_->prev();
1573   Handle<Object> global_function = tltop->promise_on_stack_->function();
1574   Handle<Object> global_promise = tltop->promise_on_stack_->promise();
1575   delete tltop->promise_on_stack_;
1576   tltop->promise_on_stack_ = prev;
1577   global_handles()->Destroy(global_function.location());
1578   global_handles()->Destroy(global_promise.location());
1579 }
1580
1581
1582 Handle<Object> Isolate::GetPromiseOnStackOnThrow() {
1583   Handle<Object> undefined = factory()->undefined_value();
1584   ThreadLocalTop* tltop = thread_local_top();
1585   if (tltop->promise_on_stack_ == NULL) return undefined;
1586   Handle<JSFunction> promise_function = tltop->promise_on_stack_->function();
1587   // Find the top-most try-catch or try-finally handler.
1588   if (PredictExceptionCatcher() != CAUGHT_BY_JAVASCRIPT) return undefined;
1589   for (JavaScriptFrameIterator it(this); !it.done(); it.Advance()) {
1590     JavaScriptFrame* frame = it.frame();
1591     int stack_slots = 0;  // The computed stack slot count is not used.
1592     if (frame->LookupExceptionHandlerInTable(&stack_slots, NULL) > 0) {
1593       // Throwing inside a Promise only leads to a reject if not caught by an
1594       // inner try-catch or try-finally.
1595       if (frame->function() == *promise_function) {
1596         return tltop->promise_on_stack_->promise();
1597       }
1598       return undefined;
1599     }
1600   }
1601   return undefined;
1602 }
1603
1604
1605 void Isolate::SetCaptureStackTraceForUncaughtExceptions(
1606       bool capture,
1607       int frame_limit,
1608       StackTrace::StackTraceOptions options) {
1609   capture_stack_trace_for_uncaught_exceptions_ = capture;
1610   stack_trace_for_uncaught_exceptions_frame_limit_ = frame_limit;
1611   stack_trace_for_uncaught_exceptions_options_ = options;
1612 }
1613
1614
1615 Handle<Context> Isolate::native_context() {
1616   return handle(context()->native_context());
1617 }
1618
1619
1620 Handle<Context> Isolate::GetCallingNativeContext() {
1621   JavaScriptFrameIterator it(this);
1622   if (debug_->in_debug_scope()) {
1623     while (!it.done()) {
1624       JavaScriptFrame* frame = it.frame();
1625       Context* context = Context::cast(frame->context());
1626       if (context->native_context() == *debug_->debug_context()) {
1627         it.Advance();
1628       } else {
1629         break;
1630       }
1631     }
1632   }
1633   if (it.done()) return Handle<Context>::null();
1634   JavaScriptFrame* frame = it.frame();
1635   Context* context = Context::cast(frame->context());
1636   return Handle<Context>(context->native_context());
1637 }
1638
1639
1640 char* Isolate::ArchiveThread(char* to) {
1641   MemCopy(to, reinterpret_cast<char*>(thread_local_top()),
1642           sizeof(ThreadLocalTop));
1643   InitializeThreadLocal();
1644   clear_pending_exception();
1645   clear_pending_message();
1646   clear_scheduled_exception();
1647   return to + sizeof(ThreadLocalTop);
1648 }
1649
1650
1651 char* Isolate::RestoreThread(char* from) {
1652   MemCopy(reinterpret_cast<char*>(thread_local_top()), from,
1653           sizeof(ThreadLocalTop));
1654 // This might be just paranoia, but it seems to be needed in case a
1655 // thread_local_top_ is restored on a separate OS thread.
1656 #ifdef USE_SIMULATOR
1657   thread_local_top()->simulator_ = Simulator::current(this);
1658 #endif
1659   DCHECK(context() == NULL || context()->IsContext());
1660   return from + sizeof(ThreadLocalTop);
1661 }
1662
1663
1664 Isolate::ThreadDataTable::ThreadDataTable()
1665     : list_(NULL) {
1666 }
1667
1668
1669 Isolate::ThreadDataTable::~ThreadDataTable() {
1670   // TODO(svenpanne) The assertion below would fire if an embedder does not
1671   // cleanly dispose all Isolates before disposing v8, so we are conservative
1672   // and leave it out for now.
1673   // DCHECK_NULL(list_);
1674 }
1675
1676
1677 Isolate::PerIsolateThreadData::~PerIsolateThreadData() {
1678 #if defined(USE_SIMULATOR)
1679   delete simulator_;
1680 #endif
1681 }
1682
1683
1684 Isolate::PerIsolateThreadData*
1685     Isolate::ThreadDataTable::Lookup(Isolate* isolate,
1686                                      ThreadId thread_id) {
1687   for (PerIsolateThreadData* data = list_; data != NULL; data = data->next_) {
1688     if (data->Matches(isolate, thread_id)) return data;
1689   }
1690   return NULL;
1691 }
1692
1693
1694 void Isolate::ThreadDataTable::Insert(Isolate::PerIsolateThreadData* data) {
1695   if (list_ != NULL) list_->prev_ = data;
1696   data->next_ = list_;
1697   list_ = data;
1698 }
1699
1700
1701 void Isolate::ThreadDataTable::Remove(PerIsolateThreadData* data) {
1702   if (list_ == data) list_ = data->next_;
1703   if (data->next_ != NULL) data->next_->prev_ = data->prev_;
1704   if (data->prev_ != NULL) data->prev_->next_ = data->next_;
1705   delete data;
1706 }
1707
1708
1709 void Isolate::ThreadDataTable::RemoveAllThreads(Isolate* isolate) {
1710   PerIsolateThreadData* data = list_;
1711   while (data != NULL) {
1712     PerIsolateThreadData* next = data->next_;
1713     if (data->isolate() == isolate) Remove(data);
1714     data = next;
1715   }
1716 }
1717
1718
1719 #ifdef DEBUG
1720 #define TRACE_ISOLATE(tag)                                              \
1721   do {                                                                  \
1722     if (FLAG_trace_isolates) {                                          \
1723       PrintF("Isolate %p (id %d)" #tag "\n",                            \
1724              reinterpret_cast<void*>(this), id());                      \
1725     }                                                                   \
1726   } while (false)
1727 #else
1728 #define TRACE_ISOLATE(tag)
1729 #endif
1730
1731
1732 Isolate::Isolate(bool enable_serializer)
1733     : embedder_data_(),
1734       entry_stack_(NULL),
1735       stack_trace_nesting_level_(0),
1736       incomplete_message_(NULL),
1737       bootstrapper_(NULL),
1738       runtime_profiler_(NULL),
1739       compilation_cache_(NULL),
1740       counters_(NULL),
1741       code_range_(NULL),
1742       logger_(NULL),
1743       stats_table_(NULL),
1744       stub_cache_(NULL),
1745       code_aging_helper_(NULL),
1746       deoptimizer_data_(NULL),
1747       materialized_object_store_(NULL),
1748       capture_stack_trace_for_uncaught_exceptions_(false),
1749       stack_trace_for_uncaught_exceptions_frame_limit_(0),
1750       stack_trace_for_uncaught_exceptions_options_(StackTrace::kOverview),
1751       memory_allocator_(NULL),
1752       keyed_lookup_cache_(NULL),
1753       context_slot_cache_(NULL),
1754       descriptor_lookup_cache_(NULL),
1755       handle_scope_implementer_(NULL),
1756       unicode_cache_(NULL),
1757       inner_pointer_to_code_cache_(NULL),
1758       global_handles_(NULL),
1759       eternal_handles_(NULL),
1760       thread_manager_(NULL),
1761       has_installed_extensions_(false),
1762       string_tracker_(NULL),
1763       regexp_stack_(NULL),
1764       date_cache_(NULL),
1765       call_descriptor_data_(NULL),
1766       // TODO(bmeurer) Initialized lazily because it depends on flags; can
1767       // be fixed once the default isolate cleanup is done.
1768       random_number_generator_(NULL),
1769       store_buffer_hash_set_1_address_(NULL),
1770       store_buffer_hash_set_2_address_(NULL),
1771       serializer_enabled_(enable_serializer),
1772       has_fatal_error_(false),
1773       initialized_from_snapshot_(false),
1774       cpu_profiler_(NULL),
1775       heap_profiler_(NULL),
1776       function_entry_hook_(NULL),
1777       deferred_handles_head_(NULL),
1778       optimizing_compile_dispatcher_(NULL),
1779       stress_deopt_count_(0),
1780       next_optimization_id_(0),
1781 #if TRACE_MAPS
1782       next_unique_sfi_id_(0),
1783 #endif
1784       use_counter_callback_(NULL),
1785       basic_block_profiler_(NULL) {
1786   {
1787     base::LockGuard<base::Mutex> lock_guard(thread_data_table_mutex_.Pointer());
1788     CHECK(thread_data_table_);
1789   }
1790   id_ = base::NoBarrier_AtomicIncrement(&isolate_counter_, 1);
1791   TRACE_ISOLATE(constructor);
1792
1793   memset(isolate_addresses_, 0,
1794       sizeof(isolate_addresses_[0]) * (kIsolateAddressCount + 1));
1795
1796   heap_.isolate_ = this;
1797   stack_guard_.isolate_ = this;
1798
1799   // ThreadManager is initialized early to support locking an isolate
1800   // before it is entered.
1801   thread_manager_ = new ThreadManager();
1802   thread_manager_->isolate_ = this;
1803
1804 #ifdef DEBUG
1805   // heap_histograms_ initializes itself.
1806   memset(&js_spill_information_, 0, sizeof(js_spill_information_));
1807 #endif
1808
1809   handle_scope_data_.Initialize();
1810
1811 #define ISOLATE_INIT_EXECUTE(type, name, initial_value)                        \
1812   name##_ = (initial_value);
1813   ISOLATE_INIT_LIST(ISOLATE_INIT_EXECUTE)
1814 #undef ISOLATE_INIT_EXECUTE
1815
1816 #define ISOLATE_INIT_ARRAY_EXECUTE(type, name, length)                         \
1817   memset(name##_, 0, sizeof(type) * length);
1818   ISOLATE_INIT_ARRAY_LIST(ISOLATE_INIT_ARRAY_EXECUTE)
1819 #undef ISOLATE_INIT_ARRAY_EXECUTE
1820
1821   InitializeLoggingAndCounters();
1822   debug_ = new Debug(this);
1823 }
1824
1825
1826 void Isolate::TearDown() {
1827   TRACE_ISOLATE(tear_down);
1828
1829   // Temporarily set this isolate as current so that various parts of
1830   // the isolate can access it in their destructors without having a
1831   // direct pointer. We don't use Enter/Exit here to avoid
1832   // initializing the thread data.
1833   PerIsolateThreadData* saved_data = CurrentPerIsolateThreadData();
1834   Isolate* saved_isolate = UncheckedCurrent();
1835   SetIsolateThreadLocals(this, NULL);
1836
1837   Deinit();
1838
1839   {
1840     base::LockGuard<base::Mutex> lock_guard(thread_data_table_mutex_.Pointer());
1841     thread_data_table_->RemoveAllThreads(this);
1842   }
1843
1844   delete this;
1845
1846   // Restore the previous current isolate.
1847   SetIsolateThreadLocals(saved_isolate, saved_data);
1848 }
1849
1850
1851 void Isolate::GlobalTearDown() {
1852   delete thread_data_table_;
1853   thread_data_table_ = NULL;
1854 }
1855
1856
1857 void Isolate::ClearSerializerData() {
1858   delete external_reference_table_;
1859   external_reference_table_ = NULL;
1860   delete external_reference_map_;
1861   external_reference_map_ = NULL;
1862   delete root_index_map_;
1863   root_index_map_ = NULL;
1864 }
1865
1866
1867 void Isolate::Deinit() {
1868   TRACE_ISOLATE(deinit);
1869
1870   debug()->Unload();
1871
1872   FreeThreadResources();
1873
1874   if (concurrent_recompilation_enabled()) {
1875     optimizing_compile_dispatcher_->Stop();
1876     delete optimizing_compile_dispatcher_;
1877     optimizing_compile_dispatcher_ = NULL;
1878   }
1879
1880   if (heap_.mark_compact_collector()->sweeping_in_progress()) {
1881     heap_.mark_compact_collector()->EnsureSweepingCompleted();
1882   }
1883
1884   DumpAndResetCompilationStats();
1885
1886   if (FLAG_print_deopt_stress) {
1887     PrintF(stdout, "=== Stress deopt counter: %u\n", stress_deopt_count_);
1888   }
1889
1890   // We must stop the logger before we tear down other components.
1891   Sampler* sampler = logger_->sampler();
1892   if (sampler && sampler->IsActive()) sampler->Stop();
1893
1894   delete deoptimizer_data_;
1895   deoptimizer_data_ = NULL;
1896   builtins_.TearDown();
1897   bootstrapper_->TearDown();
1898
1899   if (runtime_profiler_ != NULL) {
1900     delete runtime_profiler_;
1901     runtime_profiler_ = NULL;
1902   }
1903
1904   delete basic_block_profiler_;
1905   basic_block_profiler_ = NULL;
1906
1907   heap_.TearDown();
1908   logger_->TearDown();
1909
1910   delete heap_profiler_;
1911   heap_profiler_ = NULL;
1912   delete cpu_profiler_;
1913   cpu_profiler_ = NULL;
1914
1915   ClearSerializerData();
1916 }
1917
1918
1919 void Isolate::SetIsolateThreadLocals(Isolate* isolate,
1920                                      PerIsolateThreadData* data) {
1921   base::Thread::SetThreadLocal(isolate_key_, isolate);
1922   base::Thread::SetThreadLocal(per_isolate_thread_data_key_, data);
1923 }
1924
1925
1926 Isolate::~Isolate() {
1927   TRACE_ISOLATE(destructor);
1928
1929   // Has to be called while counters_ are still alive
1930   runtime_zone_.DeleteKeptSegment();
1931
1932   // The entry stack must be empty when we get here.
1933   DCHECK(entry_stack_ == NULL || entry_stack_->previous_item == NULL);
1934
1935   delete entry_stack_;
1936   entry_stack_ = NULL;
1937
1938   delete unicode_cache_;
1939   unicode_cache_ = NULL;
1940
1941   delete date_cache_;
1942   date_cache_ = NULL;
1943
1944   delete[] call_descriptor_data_;
1945   call_descriptor_data_ = NULL;
1946
1947   delete regexp_stack_;
1948   regexp_stack_ = NULL;
1949
1950   delete descriptor_lookup_cache_;
1951   descriptor_lookup_cache_ = NULL;
1952   delete context_slot_cache_;
1953   context_slot_cache_ = NULL;
1954   delete keyed_lookup_cache_;
1955   keyed_lookup_cache_ = NULL;
1956
1957   delete stub_cache_;
1958   stub_cache_ = NULL;
1959   delete code_aging_helper_;
1960   code_aging_helper_ = NULL;
1961   delete stats_table_;
1962   stats_table_ = NULL;
1963
1964   delete materialized_object_store_;
1965   materialized_object_store_ = NULL;
1966
1967   delete logger_;
1968   logger_ = NULL;
1969
1970   delete counters_;
1971   counters_ = NULL;
1972
1973   delete handle_scope_implementer_;
1974   handle_scope_implementer_ = NULL;
1975
1976   delete code_tracer();
1977   set_code_tracer(NULL);
1978
1979   delete compilation_cache_;
1980   compilation_cache_ = NULL;
1981   delete bootstrapper_;
1982   bootstrapper_ = NULL;
1983   delete inner_pointer_to_code_cache_;
1984   inner_pointer_to_code_cache_ = NULL;
1985
1986   delete thread_manager_;
1987   thread_manager_ = NULL;
1988
1989   delete string_tracker_;
1990   string_tracker_ = NULL;
1991
1992   delete memory_allocator_;
1993   memory_allocator_ = NULL;
1994   delete code_range_;
1995   code_range_ = NULL;
1996   delete global_handles_;
1997   global_handles_ = NULL;
1998   delete eternal_handles_;
1999   eternal_handles_ = NULL;
2000
2001   delete string_stream_debug_object_cache_;
2002   string_stream_debug_object_cache_ = NULL;
2003
2004   delete random_number_generator_;
2005   random_number_generator_ = NULL;
2006
2007   delete debug_;
2008   debug_ = NULL;
2009
2010 #if USE_SIMULATOR
2011   Simulator::TearDown(simulator_i_cache_, simulator_redirection_);
2012   simulator_i_cache_ = nullptr;
2013   simulator_redirection_ = nullptr;
2014 #endif
2015 }
2016
2017
2018 void Isolate::InitializeThreadLocal() {
2019   thread_local_top_.isolate_ = this;
2020   thread_local_top_.Initialize();
2021 }
2022
2023
2024 bool Isolate::PropagatePendingExceptionToExternalTryCatch() {
2025   Object* exception = pending_exception();
2026
2027   if (IsJavaScriptHandlerOnTop(exception)) {
2028     thread_local_top_.external_caught_exception_ = false;
2029     return false;
2030   }
2031
2032   if (!IsExternalHandlerOnTop(exception)) {
2033     thread_local_top_.external_caught_exception_ = false;
2034     return true;
2035   }
2036
2037   thread_local_top_.external_caught_exception_ = true;
2038   if (!is_catchable_by_javascript(exception)) {
2039     try_catch_handler()->can_continue_ = false;
2040     try_catch_handler()->has_terminated_ = true;
2041     try_catch_handler()->exception_ = heap()->null_value();
2042   } else {
2043     v8::TryCatch* handler = try_catch_handler();
2044     DCHECK(thread_local_top_.pending_message_obj_->IsJSMessageObject() ||
2045            thread_local_top_.pending_message_obj_->IsTheHole());
2046     handler->can_continue_ = true;
2047     handler->has_terminated_ = false;
2048     handler->exception_ = pending_exception();
2049     // Propagate to the external try-catch only if we got an actual message.
2050     if (thread_local_top_.pending_message_obj_->IsTheHole()) return true;
2051
2052     handler->message_obj_ = thread_local_top_.pending_message_obj_;
2053   }
2054   return true;
2055 }
2056
2057
2058 void Isolate::InitializeLoggingAndCounters() {
2059   if (logger_ == NULL) {
2060     logger_ = new Logger(this);
2061   }
2062   if (counters_ == NULL) {
2063     counters_ = new Counters(this);
2064   }
2065 }
2066
2067
2068 bool Isolate::Init(Deserializer* des) {
2069   TRACE_ISOLATE(init);
2070
2071   stress_deopt_count_ = FLAG_deopt_every_n_times;
2072
2073   has_fatal_error_ = false;
2074
2075   if (function_entry_hook() != NULL) {
2076     // When function entry hooking is in effect, we have to create the code
2077     // stubs from scratch to get entry hooks, rather than loading the previously
2078     // generated stubs from disk.
2079     // If this assert fires, the initialization path has regressed.
2080     DCHECK(des == NULL);
2081   }
2082
2083   // The initialization process does not handle memory exhaustion.
2084   DisallowAllocationFailure disallow_allocation_failure(this);
2085
2086   memory_allocator_ = new MemoryAllocator(this);
2087   code_range_ = new CodeRange(this);
2088
2089   // Safe after setting Heap::isolate_, and initializing StackGuard
2090   heap_.SetStackLimits();
2091
2092 #define ASSIGN_ELEMENT(CamelName, hacker_name)                  \
2093   isolate_addresses_[Isolate::k##CamelName##Address] =          \
2094       reinterpret_cast<Address>(hacker_name##_address());
2095   FOR_EACH_ISOLATE_ADDRESS_NAME(ASSIGN_ELEMENT)
2096 #undef ASSIGN_ELEMENT
2097
2098   string_tracker_ = new StringTracker();
2099   string_tracker_->isolate_ = this;
2100   compilation_cache_ = new CompilationCache(this);
2101   keyed_lookup_cache_ = new KeyedLookupCache();
2102   context_slot_cache_ = new ContextSlotCache();
2103   descriptor_lookup_cache_ = new DescriptorLookupCache();
2104   unicode_cache_ = new UnicodeCache();
2105   inner_pointer_to_code_cache_ = new InnerPointerToCodeCache(this);
2106   global_handles_ = new GlobalHandles(this);
2107   eternal_handles_ = new EternalHandles();
2108   bootstrapper_ = new Bootstrapper(this);
2109   handle_scope_implementer_ = new HandleScopeImplementer(this);
2110   stub_cache_ = new StubCache(this);
2111   materialized_object_store_ = new MaterializedObjectStore(this);
2112   regexp_stack_ = new RegExpStack();
2113   regexp_stack_->isolate_ = this;
2114   date_cache_ = new DateCache();
2115   call_descriptor_data_ =
2116       new CallInterfaceDescriptorData[CallDescriptors::NUMBER_OF_DESCRIPTORS];
2117   cpu_profiler_ = new CpuProfiler(this);
2118   heap_profiler_ = new HeapProfiler(heap());
2119
2120   // Enable logging before setting up the heap
2121   logger_->SetUp(this);
2122
2123   // Initialize other runtime facilities
2124 #if defined(USE_SIMULATOR)
2125 #if V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_MIPS || \
2126     V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_PPC
2127   Simulator::Initialize(this);
2128 #endif
2129 #endif
2130
2131   code_aging_helper_ = new CodeAgingHelper();
2132
2133   { // NOLINT
2134     // Ensure that the thread has a valid stack guard.  The v8::Locker object
2135     // will ensure this too, but we don't have to use lockers if we are only
2136     // using one thread.
2137     ExecutionAccess lock(this);
2138     stack_guard_.InitThread(lock);
2139   }
2140
2141   // SetUp the object heap.
2142   DCHECK(!heap_.HasBeenSetUp());
2143   if (!heap_.SetUp()) {
2144     V8::FatalProcessOutOfMemory("heap setup");
2145     return false;
2146   }
2147
2148   deoptimizer_data_ = new DeoptimizerData(memory_allocator_);
2149
2150   const bool create_heap_objects = (des == NULL);
2151   if (create_heap_objects && !heap_.CreateHeapObjects()) {
2152     V8::FatalProcessOutOfMemory("heap object creation");
2153     return false;
2154   }
2155
2156   if (create_heap_objects) {
2157     // Terminate the cache array with the sentinel so we can iterate.
2158     partial_snapshot_cache_.Add(heap_.undefined_value());
2159   }
2160
2161   InitializeThreadLocal();
2162
2163   bootstrapper_->Initialize(create_heap_objects);
2164   builtins_.SetUp(this, create_heap_objects);
2165
2166   if (FLAG_log_internal_timer_events) {
2167     set_event_logger(Logger::DefaultEventLoggerSentinel);
2168   }
2169
2170   if (FLAG_trace_hydrogen || FLAG_trace_hydrogen_stubs) {
2171     PrintF("Concurrent recompilation has been disabled for tracing.\n");
2172   } else if (OptimizingCompileDispatcher::Enabled()) {
2173     optimizing_compile_dispatcher_ = new OptimizingCompileDispatcher(this);
2174   }
2175
2176   // Initialize runtime profiler before deserialization, because collections may
2177   // occur, clearing/updating ICs.
2178   runtime_profiler_ = new RuntimeProfiler(this);
2179
2180   // If we are deserializing, read the state into the now-empty heap.
2181   if (!create_heap_objects) {
2182     des->Deserialize(this);
2183   }
2184   stub_cache_->Initialize();
2185
2186   // Finish initialization of ThreadLocal after deserialization is done.
2187   clear_pending_exception();
2188   clear_pending_message();
2189   clear_scheduled_exception();
2190
2191   // Deserializing may put strange things in the root array's copy of the
2192   // stack guard.
2193   heap_.SetStackLimits();
2194
2195   // Quiet the heap NaN if needed on target platform.
2196   if (!create_heap_objects) Assembler::QuietNaN(heap_.nan_value());
2197
2198   if (FLAG_trace_turbo) {
2199     // Create an empty file.
2200     std::ofstream(GetTurboCfgFileName().c_str(), std::ios_base::trunc);
2201   }
2202
2203   CHECK_EQ(static_cast<int>(OFFSET_OF(Isolate, embedder_data_)),
2204            Internals::kIsolateEmbedderDataOffset);
2205   CHECK_EQ(static_cast<int>(OFFSET_OF(Isolate, heap_.roots_)),
2206            Internals::kIsolateRootsOffset);
2207   CHECK_EQ(static_cast<int>(
2208                OFFSET_OF(Isolate, heap_.amount_of_external_allocated_memory_)),
2209            Internals::kAmountOfExternalAllocatedMemoryOffset);
2210   CHECK_EQ(static_cast<int>(OFFSET_OF(
2211                Isolate,
2212                heap_.amount_of_external_allocated_memory_at_last_global_gc_)),
2213            Internals::kAmountOfExternalAllocatedMemoryAtLastGlobalGCOffset);
2214
2215   time_millis_at_init_ = base::OS::TimeCurrentMillis();
2216
2217   heap_.NotifyDeserializationComplete();
2218
2219   if (!create_heap_objects) {
2220     // Now that the heap is consistent, it's OK to generate the code for the
2221     // deopt entry table that might have been referred to by optimized code in
2222     // the snapshot.
2223     HandleScope scope(this);
2224     Deoptimizer::EnsureCodeForDeoptimizationEntry(
2225         this,
2226         Deoptimizer::LAZY,
2227         kDeoptTableSerializeEntryCount - 1);
2228   }
2229
2230   if (!serializer_enabled()) {
2231     // Ensure that all stubs which need to be generated ahead of time, but
2232     // cannot be serialized into the snapshot have been generated.
2233     HandleScope scope(this);
2234     CodeStub::GenerateFPStubs(this);
2235     StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(this);
2236     StubFailureTrampolineStub::GenerateAheadOfTime(this);
2237   }
2238
2239   initialized_from_snapshot_ = (des != NULL);
2240
2241   if (!FLAG_inline_new) heap_.DisableInlineAllocation();
2242
2243   return true;
2244 }
2245
2246
2247 // Initialized lazily to allow early
2248 // v8::V8::SetAddHistogramSampleFunction calls.
2249 StatsTable* Isolate::stats_table() {
2250   if (stats_table_ == NULL) {
2251     stats_table_ = new StatsTable;
2252   }
2253   return stats_table_;
2254 }
2255
2256
2257 void Isolate::Enter() {
2258   Isolate* current_isolate = NULL;
2259   PerIsolateThreadData* current_data = CurrentPerIsolateThreadData();
2260   if (current_data != NULL) {
2261     current_isolate = current_data->isolate_;
2262     DCHECK(current_isolate != NULL);
2263     if (current_isolate == this) {
2264       DCHECK(Current() == this);
2265       DCHECK(entry_stack_ != NULL);
2266       DCHECK(entry_stack_->previous_thread_data == NULL ||
2267              entry_stack_->previous_thread_data->thread_id().Equals(
2268                  ThreadId::Current()));
2269       // Same thread re-enters the isolate, no need to re-init anything.
2270       entry_stack_->entry_count++;
2271       return;
2272     }
2273   }
2274
2275   PerIsolateThreadData* data = FindOrAllocatePerThreadDataForThisThread();
2276   DCHECK(data != NULL);
2277   DCHECK(data->isolate_ == this);
2278
2279   EntryStackItem* item = new EntryStackItem(current_data,
2280                                             current_isolate,
2281                                             entry_stack_);
2282   entry_stack_ = item;
2283
2284   SetIsolateThreadLocals(this, data);
2285
2286   // In case it's the first time some thread enters the isolate.
2287   set_thread_id(data->thread_id());
2288 }
2289
2290
2291 void Isolate::Exit() {
2292   DCHECK(entry_stack_ != NULL);
2293   DCHECK(entry_stack_->previous_thread_data == NULL ||
2294          entry_stack_->previous_thread_data->thread_id().Equals(
2295              ThreadId::Current()));
2296
2297   if (--entry_stack_->entry_count > 0) return;
2298
2299   DCHECK(CurrentPerIsolateThreadData() != NULL);
2300   DCHECK(CurrentPerIsolateThreadData()->isolate_ == this);
2301
2302   // Pop the stack.
2303   EntryStackItem* item = entry_stack_;
2304   entry_stack_ = item->previous_item;
2305
2306   PerIsolateThreadData* previous_thread_data = item->previous_thread_data;
2307   Isolate* previous_isolate = item->previous_isolate;
2308
2309   delete item;
2310
2311   // Reinit the current thread for the isolate it was running before this one.
2312   SetIsolateThreadLocals(previous_isolate, previous_thread_data);
2313 }
2314
2315
2316 void Isolate::LinkDeferredHandles(DeferredHandles* deferred) {
2317   deferred->next_ = deferred_handles_head_;
2318   if (deferred_handles_head_ != NULL) {
2319     deferred_handles_head_->previous_ = deferred;
2320   }
2321   deferred_handles_head_ = deferred;
2322 }
2323
2324
2325 void Isolate::UnlinkDeferredHandles(DeferredHandles* deferred) {
2326 #ifdef DEBUG
2327   // In debug mode assert that the linked list is well-formed.
2328   DeferredHandles* deferred_iterator = deferred;
2329   while (deferred_iterator->previous_ != NULL) {
2330     deferred_iterator = deferred_iterator->previous_;
2331   }
2332   DCHECK(deferred_handles_head_ == deferred_iterator);
2333 #endif
2334   if (deferred_handles_head_ == deferred) {
2335     deferred_handles_head_ = deferred_handles_head_->next_;
2336   }
2337   if (deferred->next_ != NULL) {
2338     deferred->next_->previous_ = deferred->previous_;
2339   }
2340   if (deferred->previous_ != NULL) {
2341     deferred->previous_->next_ = deferred->next_;
2342   }
2343 }
2344
2345
2346 void Isolate::DumpAndResetCompilationStats() {
2347   if (turbo_statistics() != nullptr) {
2348     OFStream os(stdout);
2349     os << *turbo_statistics() << std::endl;
2350   }
2351   if (hstatistics() != nullptr) hstatistics()->Print();
2352   delete turbo_statistics_;
2353   turbo_statistics_ = nullptr;
2354   delete hstatistics_;
2355   hstatistics_ = nullptr;
2356 }
2357
2358
2359 HStatistics* Isolate::GetHStatistics() {
2360   if (hstatistics() == NULL) set_hstatistics(new HStatistics());
2361   return hstatistics();
2362 }
2363
2364
2365 CompilationStatistics* Isolate::GetTurboStatistics() {
2366   if (turbo_statistics() == NULL)
2367     set_turbo_statistics(new CompilationStatistics());
2368   return turbo_statistics();
2369 }
2370
2371
2372 HTracer* Isolate::GetHTracer() {
2373   if (htracer() == NULL) set_htracer(new HTracer(id()));
2374   return htracer();
2375 }
2376
2377
2378 CodeTracer* Isolate::GetCodeTracer() {
2379   if (code_tracer() == NULL) set_code_tracer(new CodeTracer(id()));
2380   return code_tracer();
2381 }
2382
2383
2384 Map* Isolate::get_initial_js_array_map(ElementsKind kind, Strength strength) {
2385   Context* native_context = context()->native_context();
2386   Object* maybe_map_array = is_strong(strength)
2387                                 ? native_context->js_array_strong_maps()
2388                                 : native_context->js_array_maps();
2389   if (!maybe_map_array->IsUndefined()) {
2390     Object* maybe_transitioned_map =
2391         FixedArray::cast(maybe_map_array)->get(kind);
2392     if (!maybe_transitioned_map->IsUndefined()) {
2393       return Map::cast(maybe_transitioned_map);
2394     }
2395   }
2396   return NULL;
2397 }
2398
2399
2400 bool Isolate::use_crankshaft() const {
2401   return FLAG_crankshaft &&
2402          !serializer_enabled_ &&
2403          CpuFeatures::SupportsCrankshaft();
2404 }
2405
2406
2407 bool Isolate::IsFastArrayConstructorPrototypeChainIntact() {
2408   PropertyCell* no_elements_cell = heap()->array_protector();
2409   bool cell_reports_intact =
2410       no_elements_cell->value()->IsSmi() &&
2411       Smi::cast(no_elements_cell->value())->value() == kArrayProtectorValid;
2412
2413 #ifdef DEBUG
2414   Map* root_array_map =
2415       get_initial_js_array_map(GetInitialFastElementsKind());
2416   Context* native_context = context()->native_context();
2417   JSObject* initial_array_proto = JSObject::cast(
2418       native_context->get(Context::INITIAL_ARRAY_PROTOTYPE_INDEX));
2419   JSObject* initial_object_proto = JSObject::cast(
2420       native_context->get(Context::INITIAL_OBJECT_PROTOTYPE_INDEX));
2421
2422   if (root_array_map == NULL || initial_array_proto == initial_object_proto) {
2423     // We are in the bootstrapping process, and the entire check sequence
2424     // shouldn't be performed.
2425     return cell_reports_intact;
2426   }
2427
2428   // Check that the array prototype hasn't been altered WRT empty elements.
2429   if (root_array_map->prototype() != initial_array_proto) {
2430     DCHECK_EQ(false, cell_reports_intact);
2431     return cell_reports_intact;
2432   }
2433
2434   if (initial_array_proto->elements() != heap()->empty_fixed_array()) {
2435     DCHECK_EQ(false, cell_reports_intact);
2436     return cell_reports_intact;
2437   }
2438
2439   // Check that the object prototype hasn't been altered WRT empty elements.
2440   PrototypeIterator iter(this, initial_array_proto);
2441   if (iter.IsAtEnd() || iter.GetCurrent() != initial_object_proto) {
2442     DCHECK_EQ(false, cell_reports_intact);
2443     return cell_reports_intact;
2444   }
2445   if (initial_object_proto->elements() != heap()->empty_fixed_array()) {
2446     DCHECK_EQ(false, cell_reports_intact);
2447     return cell_reports_intact;
2448   }
2449
2450   iter.Advance();
2451   if (!iter.IsAtEnd()) {
2452     DCHECK_EQ(false, cell_reports_intact);
2453     return cell_reports_intact;
2454   }
2455
2456 #endif
2457
2458   return cell_reports_intact;
2459 }
2460
2461
2462 void Isolate::UpdateArrayProtectorOnSetElement(Handle<JSObject> object) {
2463   if (IsFastArrayConstructorPrototypeChainIntact() &&
2464       object->map()->is_prototype_map()) {
2465     Object* context = heap()->native_contexts_list();
2466     while (!context->IsUndefined()) {
2467       Context* current_context = Context::cast(context);
2468       if (current_context->get(Context::INITIAL_OBJECT_PROTOTYPE_INDEX) ==
2469               *object ||
2470           current_context->get(Context::INITIAL_ARRAY_PROTOTYPE_INDEX) ==
2471               *object) {
2472         PropertyCell::SetValueWithInvalidation(
2473             factory()->array_protector(),
2474             handle(Smi::FromInt(kArrayProtectorInvalid), this));
2475         break;
2476       }
2477       context = current_context->get(Context::NEXT_CONTEXT_LINK);
2478     }
2479   }
2480 }
2481
2482
2483 bool Isolate::IsAnyInitialArrayPrototype(Handle<JSArray> array) {
2484   if (array->map()->is_prototype_map()) {
2485     Object* context = heap()->native_contexts_list();
2486     while (!context->IsUndefined()) {
2487       Context* current_context = Context::cast(context);
2488       if (current_context->get(Context::INITIAL_ARRAY_PROTOTYPE_INDEX) ==
2489           *array) {
2490         return true;
2491       }
2492       context = current_context->get(Context::NEXT_CONTEXT_LINK);
2493     }
2494   }
2495   return false;
2496 }
2497
2498
2499 CallInterfaceDescriptorData* Isolate::call_descriptor_data(int index) {
2500   DCHECK(0 <= index && index < CallDescriptors::NUMBER_OF_DESCRIPTORS);
2501   return &call_descriptor_data_[index];
2502 }
2503
2504
2505 base::RandomNumberGenerator* Isolate::random_number_generator() {
2506   if (random_number_generator_ == NULL) {
2507     if (FLAG_random_seed != 0) {
2508       random_number_generator_ =
2509           new base::RandomNumberGenerator(FLAG_random_seed);
2510     } else {
2511       random_number_generator_ = new base::RandomNumberGenerator();
2512     }
2513   }
2514   return random_number_generator_;
2515 }
2516
2517
2518 Object* Isolate::FindCodeObject(Address a) {
2519   return inner_pointer_to_code_cache()->GcSafeFindCodeForInnerPointer(a);
2520 }
2521
2522
2523 #ifdef DEBUG
2524 #define ISOLATE_FIELD_OFFSET(type, name, ignored)                       \
2525 const intptr_t Isolate::name##_debug_offset_ = OFFSET_OF(Isolate, name##_);
2526 ISOLATE_INIT_LIST(ISOLATE_FIELD_OFFSET)
2527 ISOLATE_INIT_ARRAY_LIST(ISOLATE_FIELD_OFFSET)
2528 #undef ISOLATE_FIELD_OFFSET
2529 #endif
2530
2531
2532 Handle<JSObject> Isolate::SetUpSubregistry(Handle<JSObject> registry,
2533                                            Handle<Map> map, const char* cname) {
2534   Handle<String> name = factory()->InternalizeUtf8String(cname);
2535   Handle<JSObject> obj = factory()->NewJSObjectFromMap(map);
2536   JSObject::NormalizeProperties(obj, CLEAR_INOBJECT_PROPERTIES, 0,
2537                                 "SetupSymbolRegistry");
2538   JSObject::AddProperty(registry, name, obj, NONE);
2539   return obj;
2540 }
2541
2542
2543 Handle<JSObject> Isolate::GetSymbolRegistry() {
2544   if (heap()->symbol_registry()->IsSmi()) {
2545     Handle<Map> map = factory()->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
2546     Handle<JSObject> registry = factory()->NewJSObjectFromMap(map);
2547     heap()->set_symbol_registry(*registry);
2548
2549     SetUpSubregistry(registry, map, "for");
2550     SetUpSubregistry(registry, map, "for_api");
2551     SetUpSubregistry(registry, map, "keyFor");
2552     SetUpSubregistry(registry, map, "private_api");
2553     heap()->AddPrivateGlobalSymbols(
2554         SetUpSubregistry(registry, map, "private_intern"));
2555   }
2556   return Handle<JSObject>::cast(factory()->symbol_registry());
2557 }
2558
2559
2560 void Isolate::AddCallCompletedCallback(CallCompletedCallback callback) {
2561   for (int i = 0; i < call_completed_callbacks_.length(); i++) {
2562     if (callback == call_completed_callbacks_.at(i)) return;
2563   }
2564   call_completed_callbacks_.Add(callback);
2565 }
2566
2567
2568 void Isolate::RemoveCallCompletedCallback(CallCompletedCallback callback) {
2569   for (int i = 0; i < call_completed_callbacks_.length(); i++) {
2570     if (callback == call_completed_callbacks_.at(i)) {
2571       call_completed_callbacks_.Remove(i);
2572     }
2573   }
2574 }
2575
2576
2577 void Isolate::FireCallCompletedCallback() {
2578   bool has_call_completed_callbacks = !call_completed_callbacks_.is_empty();
2579   bool run_microtasks = autorun_microtasks() && pending_microtask_count();
2580   if (!has_call_completed_callbacks && !run_microtasks) return;
2581
2582   if (!handle_scope_implementer()->CallDepthIsZero()) return;
2583   if (run_microtasks) RunMicrotasks();
2584   // Fire callbacks.  Increase call depth to prevent recursive callbacks.
2585   v8::Isolate::SuppressMicrotaskExecutionScope suppress(
2586       reinterpret_cast<v8::Isolate*>(this));
2587   for (int i = 0; i < call_completed_callbacks_.length(); i++) {
2588     call_completed_callbacks_.at(i)();
2589   }
2590 }
2591
2592
2593 void Isolate::SetPromiseRejectCallback(PromiseRejectCallback callback) {
2594   promise_reject_callback_ = callback;
2595 }
2596
2597
2598 void Isolate::ReportPromiseReject(Handle<JSObject> promise,
2599                                   Handle<Object> value,
2600                                   v8::PromiseRejectEvent event) {
2601   if (promise_reject_callback_ == NULL) return;
2602   Handle<JSArray> stack_trace;
2603   if (event == v8::kPromiseRejectWithNoHandler && value->IsJSObject()) {
2604     stack_trace = GetDetailedStackTrace(Handle<JSObject>::cast(value));
2605   }
2606   promise_reject_callback_(v8::PromiseRejectMessage(
2607       v8::Utils::PromiseToLocal(promise), event, v8::Utils::ToLocal(value),
2608       v8::Utils::StackTraceToLocal(stack_trace)));
2609 }
2610
2611
2612 void Isolate::EnqueueMicrotask(Handle<Object> microtask) {
2613   DCHECK(microtask->IsJSFunction() || microtask->IsCallHandlerInfo());
2614   Handle<FixedArray> queue(heap()->microtask_queue(), this);
2615   int num_tasks = pending_microtask_count();
2616   DCHECK(num_tasks <= queue->length());
2617   if (num_tasks == 0) {
2618     queue = factory()->NewFixedArray(8);
2619     heap()->set_microtask_queue(*queue);
2620   } else if (num_tasks == queue->length()) {
2621     queue = FixedArray::CopySize(queue, num_tasks * 2);
2622     heap()->set_microtask_queue(*queue);
2623   }
2624   DCHECK(queue->get(num_tasks)->IsUndefined());
2625   queue->set(num_tasks, *microtask);
2626   set_pending_microtask_count(num_tasks + 1);
2627 }
2628
2629
2630 void Isolate::RunMicrotasks() {
2631   // %RunMicrotasks may be called in mjsunit tests, which violates
2632   // this assertion, hence the check for --allow-natives-syntax.
2633   // TODO(adamk): However, this also fails some layout tests.
2634   //
2635   // DCHECK(FLAG_allow_natives_syntax ||
2636   //        handle_scope_implementer()->CallDepthIsZero());
2637
2638   // Increase call depth to prevent recursive callbacks.
2639   v8::Isolate::SuppressMicrotaskExecutionScope suppress(
2640       reinterpret_cast<v8::Isolate*>(this));
2641
2642   while (pending_microtask_count() > 0) {
2643     HandleScope scope(this);
2644     int num_tasks = pending_microtask_count();
2645     Handle<FixedArray> queue(heap()->microtask_queue(), this);
2646     DCHECK(num_tasks <= queue->length());
2647     set_pending_microtask_count(0);
2648     heap()->set_microtask_queue(heap()->empty_fixed_array());
2649
2650     for (int i = 0; i < num_tasks; i++) {
2651       HandleScope scope(this);
2652       Handle<Object> microtask(queue->get(i), this);
2653       if (microtask->IsJSFunction()) {
2654         Handle<JSFunction> microtask_function =
2655             Handle<JSFunction>::cast(microtask);
2656         SaveContext save(this);
2657         set_context(microtask_function->context()->native_context());
2658         MaybeHandle<Object> maybe_exception;
2659         MaybeHandle<Object> result =
2660             Execution::TryCall(microtask_function, factory()->undefined_value(),
2661                                0, NULL, &maybe_exception);
2662         // If execution is terminating, just bail out.
2663         Handle<Object> exception;
2664         if (result.is_null() && maybe_exception.is_null()) {
2665           // Clear out any remaining callbacks in the queue.
2666           heap()->set_microtask_queue(heap()->empty_fixed_array());
2667           set_pending_microtask_count(0);
2668           return;
2669         }
2670       } else {
2671         Handle<CallHandlerInfo> callback_info =
2672             Handle<CallHandlerInfo>::cast(microtask);
2673         v8::MicrotaskCallback callback =
2674             v8::ToCData<v8::MicrotaskCallback>(callback_info->callback());
2675         void* data = v8::ToCData<void*>(callback_info->data());
2676         callback(data);
2677       }
2678     }
2679   }
2680 }
2681
2682
2683 void Isolate::SetUseCounterCallback(v8::Isolate::UseCounterCallback callback) {
2684   DCHECK(!use_counter_callback_);
2685   use_counter_callback_ = callback;
2686 }
2687
2688
2689 void Isolate::CountUsage(v8::Isolate::UseCounterFeature feature) {
2690   // The counter callback may cause the embedder to call into V8, which is not
2691   // generally possible during GC.
2692   if (heap_.gc_state() == Heap::NOT_IN_GC) {
2693     if (use_counter_callback_) {
2694       HandleScope handle_scope(this);
2695       use_counter_callback_(reinterpret_cast<v8::Isolate*>(this), feature);
2696     }
2697   } else {
2698     heap_.IncrementDeferredCount(feature);
2699   }
2700 }
2701
2702
2703 BasicBlockProfiler* Isolate::GetOrCreateBasicBlockProfiler() {
2704   if (basic_block_profiler_ == NULL) {
2705     basic_block_profiler_ = new BasicBlockProfiler();
2706   }
2707   return basic_block_profiler_;
2708 }
2709
2710
2711 std::string Isolate::GetTurboCfgFileName() {
2712   if (FLAG_trace_turbo_cfg_file == NULL) {
2713     std::ostringstream os;
2714     os << "turbo-" << base::OS::GetCurrentProcessId() << "-" << id() << ".cfg";
2715     return os.str();
2716   } else {
2717     return FLAG_trace_turbo_cfg_file;
2718   }
2719 }
2720
2721
2722 // Heap::detached_contexts tracks detached contexts as pairs
2723 // (number of GC since the context was detached, the context).
2724 void Isolate::AddDetachedContext(Handle<Context> context) {
2725   HandleScope scope(this);
2726   Handle<WeakCell> cell = factory()->NewWeakCell(context);
2727   Handle<FixedArray> detached_contexts(heap()->detached_contexts());
2728   int length = detached_contexts->length();
2729   detached_contexts = FixedArray::CopySize(detached_contexts, length + 2);
2730   detached_contexts->set(length, Smi::FromInt(0));
2731   detached_contexts->set(length + 1, *cell);
2732   heap()->set_detached_contexts(*detached_contexts);
2733 }
2734
2735
2736 void Isolate::CheckDetachedContextsAfterGC() {
2737   HandleScope scope(this);
2738   Handle<FixedArray> detached_contexts(heap()->detached_contexts());
2739   int length = detached_contexts->length();
2740   if (length == 0) return;
2741   int new_length = 0;
2742   for (int i = 0; i < length; i += 2) {
2743     int mark_sweeps = Smi::cast(detached_contexts->get(i))->value();
2744     DCHECK(detached_contexts->get(i + 1)->IsWeakCell());
2745     WeakCell* cell = WeakCell::cast(detached_contexts->get(i + 1));
2746     if (!cell->cleared()) {
2747       detached_contexts->set(new_length, Smi::FromInt(mark_sweeps + 1));
2748       detached_contexts->set(new_length + 1, cell);
2749       new_length += 2;
2750     }
2751     counters()->detached_context_age_in_gc()->AddSample(mark_sweeps + 1);
2752   }
2753   if (FLAG_trace_detached_contexts) {
2754     PrintF("%d detached contexts are collected out of %d\n",
2755            length - new_length, length);
2756     for (int i = 0; i < new_length; i += 2) {
2757       int mark_sweeps = Smi::cast(detached_contexts->get(i))->value();
2758       DCHECK(detached_contexts->get(i + 1)->IsWeakCell());
2759       WeakCell* cell = WeakCell::cast(detached_contexts->get(i + 1));
2760       if (mark_sweeps > 3) {
2761         PrintF("detached context 0x%p\n survived %d GCs (leak?)\n",
2762                static_cast<void*>(cell->value()), mark_sweeps);
2763       }
2764     }
2765   }
2766   if (new_length == 0) {
2767     heap()->set_detached_contexts(heap()->empty_fixed_array());
2768   } else if (new_length < length) {
2769     heap()->RightTrimFixedArray<Heap::CONCURRENT_TO_SWEEPER>(
2770         *detached_contexts, length - new_length);
2771   }
2772 }
2773
2774
2775 bool StackLimitCheck::JsHasOverflowed(uintptr_t gap) const {
2776   StackGuard* stack_guard = isolate_->stack_guard();
2777 #ifdef USE_SIMULATOR
2778   // The simulator uses a separate JS stack.
2779   Address jssp_address = Simulator::current(isolate_)->get_sp();
2780   uintptr_t jssp = reinterpret_cast<uintptr_t>(jssp_address);
2781   if (jssp - gap < stack_guard->real_jslimit()) return true;
2782 #endif  // USE_SIMULATOR
2783   return GetCurrentStackPosition() - gap < stack_guard->real_climit();
2784 }
2785
2786
2787 SaveContext::SaveContext(Isolate* isolate)
2788     : isolate_(isolate), prev_(isolate->save_context()) {
2789   if (isolate->context() != NULL) {
2790     context_ = Handle<Context>(isolate->context());
2791   }
2792   isolate->set_save_context(this);
2793
2794   c_entry_fp_ = isolate->c_entry_fp(isolate->thread_local_top());
2795 }
2796
2797
2798 bool PostponeInterruptsScope::Intercept(StackGuard::InterruptFlag flag) {
2799   // First check whether the previous scope intercepts.
2800   if (prev_ && prev_->Intercept(flag)) return true;
2801   // Then check whether this scope intercepts.
2802   if ((flag & intercept_mask_)) {
2803     intercepted_flags_ |= flag;
2804     return true;
2805   }
2806   return false;
2807 }
2808
2809 }  // namespace internal
2810 }  // namespace v8